Hydrogenation of phenol with supported Rh catalysts in the presence of compressed CO$_2$: Its effects on reaction rate, product selectivity and catalyst life

Shin-ichiro Fujita,† Takuya Yamada,† Yoshinari Akiyama,† Haiyang Cheng,‡ Fengyu Zhao,‡ and Masahiko Arai†*

Division of Chemical Process Engineering, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan

State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China

* Corresponding author. Tel & Fax: +81-11-706-6594, E-mail: marai@eng.hokudai.ac.jp
† Hokkaido University
‡ Changchun Institute of Applied Chemistry
ABSTRACT

Hydrogenation of phenol to cyclohexanone and cyclohexanol in/under compressed CO₂ was examined using commercial Rh/C and Rh/Al₂O₃ catalysts to investigate the effects of CO₂ pressurization on the total conversion and the product selectivity. Although the total rate of phenol hydrogenation with Rh/C was lowered by the presence of CO₂, the selectivity to cyclohexanone was improved at high conversion levels > 70%. On the other hand, the activity of Rh/Al₂O₃ was completely lost in an early stage of reaction. The features of these multiphase catalytic hydrogenation reactions using compressed CO₂ were studied in detail by phase behavior and solubility measurements, in situ high pressure FTIR for molecular interactions of CO₂ with reacting species and formation/adsorption of CO on the catalysts, and simulation of reaction kinetics using a simple model. The CO₂ pressurization was shown to suppress the hydrogenation of cyclohexanone to cyclohexanol, improving the selectivity to cyclohexanone. The formation and adsorption of CO were observed for the two catalysts at high CO₂ pressures in the presence of H₂, which was one of important factors retarding the rate of hydrogenation in the presence of CO₂. It was further indicated that the adsorption of CO on Rh/Al₂O₃ was strong and caused the complete loss of its activity.

Keywords: Rhodium; Hydrogenation; Supercritical CO₂; Cyclohexanone; Cyclohexanol
1. Introduction

Catalytic hydrogenation of phenol is industrially important for the synthesis of cyclohexanone and cyclohexanol as the intermediate for the manufacture of nylon-6 and -66. Generally, the hydrogenation of phenol is carried out in the vapor phase over supported Pd catalysts [1-12]. In the cases of vapor phase hydrogenation, high temperatures are needed, which usually cause catalyst deactivation by coking during the reaction. In a few studies, liquid phase hydrogenation of phenol was carried out with Pd catalysts [13-16]. However, high reaction temperatures or long reaction time were still required to obtain high phenol conversions.

Supercritical carbon dioxide (scCO₂) has been gaining considerable interests as an ecologically benign new reaction medium [17-21]. Rode et al. showed that a charcoal-supported rhodium (Rh/C) catalyst was highly active for the ring hydrogenation of phenol and cresols in scCO₂, and high conversions of phenol were achieved over Rh/C under such conditions as 328 K, 10 MPa H₂, and 12 MPa CO₂ [22]. Carbon supported Pd, Ru and Pt catalysts were much less active than Rh/C. Our group has also reported that a Rh catalyst supported on carbon nanofiber is active for the phenol hydrogenation in scCO₂ at a low temperature of 323 K and at a lower hydrogen pressure of 4 MPa [23]. Recently, Chatterjee et al. have screened several supported catalysts using different noble metals and supports and found that Pd on Al-MCM-41 is effective to the hydrogenation of phenol to cyclohexanone in dense phase CO₂ (12 MPa) [24]. Very recently Liu et al. indicated an interesting synergistic effect of supported Pd particles and solid Lewis acid, with which the hydrogenation of phenol to cyclohexanone was achieved in almost 100% selectivity under mild conditions [25].

Those results indicate the interesting features of phenol hydrogenation using supported metal catalysts and dense phase CO₂. However, the details of these complicated multiphase reactions are still unknown. The reaction rate and the product distribution should depend on several factors [26]. Our group has reported that interactions of carbonyl group with CO₂ molecules can cause the enhancement in the reactivity and/or the change in the reaction selectivity [27-30]. Conversion and selectivity of hydrogenation of α, β-unsaturated aldehydes (cinnamaldehyde and citral) to unsaturated alcohols were significantly enhanced by the presence of pressurized CO₂ [27-30]. Enhancement in the product yield by pressurized CO₂ was also observed for Heck reactions that did not involve gaseous reactants like hydrogen [30]. The molecular interactions between carbonyl group and CO₂ were shown to depend significantly on the structure of the carbonyl compounds [31]. It is known that an organic liquid phase expands when it is pressurized by CO₂ and the extent of volume expansion may change with the kind of organic liquid and the CO₂ pressure [32-36]. These CO₂-dissolved expanded liquid phases are demonstrated to be interesting reaction media for reactions including gaseous reactants like O₂, H₂, and CO. Moreover, it is reported that CO may be formed in hydrogenation reactions with supported noble metal catalysts in scCO₂ and this has negative impacts on the catalytic activity and, subsequently, the reaction rate and selectivity [37-42].
The present work has been undertaken to investigate in detail the hydrogenation of phenol in/under pressurized CO\textsubscript{2} using commercial Rh/C and Rh/Al\textsubscript{2}O\textsubscript{3} catalysts. In addition to the reaction runs, the authors have made the simulation of reaction kinetics and examined the phase behavior of reaction mixture and the solubility of reacting species (phenol and cyclohexanone) in pressurized CO\textsubscript{2}. Furthermore, in situ high-pressure transmittance FTIR measurements have been made to study the molecular interactions of the reacting species with CO\textsubscript{2} and the formation and adsorption of CO on the catalysts at high pressures. In situ high-pressure measurement of the formation of CO from pressurized CO\textsubscript{2} and H\textsubscript{2} over supported metal catalysts was studied only by Baiker et al., who used attenuated total reflection infrared (ATR-IR) spectroscopy [37,38,40]. In the present work, those reaction, characterization, and simulation results have been used to clarify the features of the hydrogenation of phenol, the influence of CO\textsubscript{2} pressurization on the reaction rate and the product selectivity, and significant factors responsible for the effects of CO\textsubscript{2} pressurization on this hydrogenation.

2. Experimental

2.1. Catalyst and characterization

Commercially available 5 wt.-% Rh/C and 5 wt.-% Rh/Al\textsubscript{2}O\textsubscript{3} catalysts (Wako) were used without further treatments. The degree of metal dispersion of these catalysts was determined by hydrogen adsorption. After the catalyst sample was reduced with flowing hydrogen at 373 K for 1 h and treated with flowing helium at 473 K for 30 min, hydrogen was adsorbed on the sample at 323 K. The dispersion of Rh was calculated from the amount of hydrogen adsorbed on the assumption of H/Rh = 1. The dispersion values thus determined were 44.3\% and 30.9\% for Rh/C and Rh/Al\textsubscript{2}O\textsubscript{3}, respectively. The surface properties of these supported Rh particles were examined by X-ray photoelectron spectroscopy (Shimadzu ESCA3200). Catalyst samples were dispersed on carbon tape and X-ray photoelectron spectra were collected without any pretreatment. Correction of the spectra was made on the basis of the Au 4f\textsubscript{7/2} line at 83.8 eV of gold wire that was placed on the edge of the carbon tape together with the catalyst sample.

2.2. Hydrogenation reaction

The hydrogenation reaction runs were carried out in a 50 cm3 stainless steel autoclave. In a typical run, 20 mg of Rh/C and 10.6 mmol of phenol were charged into the reactor and the reactor was flushed with H\textsubscript{2} three times to remove the air. This purge of the reactor had no significant impact on the amount of phenol at the start of reaction. After the reactor was heated up to 323 K, H\textsubscript{2} (4 MPa) was introduced, and then compressed liquid CO\textsubscript{2} was fed into the reactor with a high-pressure liquid pump attached with a cooler (JASCO SCF-GET). The reaction runs were conducted while stirring with a magnetic stirrer. At the end of the reaction, the autoclave was cooled to room temperature and then depressurized carefully by a backpressure regulator (JASCO SCF-bpg). The composition of reaction mixture was...
analyzed by a gas chromatograph (GL Science GC-900B) using a capillary column (Zebron ZB-WAX) and a flame ionization detector. In several runs, the phenol conversion was controlled to be below 10% by decreasing the catalyst amount and shortening the reaction time to measure the initial rate of reaction. For comparison, hydrogenation of cyclohexanone was also conducted in similar manners. The total conversion of phenol was determined by 1 - (the final amount of phenol unreacted / the initial amount of phenol loaded). The yield of cyclohexanone (or cyclohexanol) was calculated by the amount of cyclohexanone (or cyclohexanol) formed / the initial amount of phenol loaded. The selectivity to cyclohexanone was determined by the amount of cyclohexanone formed / the total amount of cyclohexanone and cyclohexanol formed. No other products were observed in our reaction runs. The conversion and selectivity values could be determined with < ± 5% relative errors under the conditions used.

In some reaction runs using CO₂, gases in the reactor were collected and analyzed by a gas chromatograph (Hitachi G3000) equipped with a MS-5A column, a methanizer and a flame ionization detector, to investigate the formation of gaseous CO.

2.3. Solubility in pressurized CO₂

The solubility of phenol in CO₂ was measured with a 10 cm³ high-pressure view cell equipped with two sapphire windows. The cell was charged with a certain amount of substrate, flushed with 0.2-0.3 MPa CO₂ twice, and heated up to 323 K (reaction temperature) by the circulation of preheated oil around it (JULABO F25-HP). Then, liquid CO₂ was introduced into the cell and stirring was started. When the pressure reached to the desired value, the stirring was continued further for 5 min and stopped; then, the state of the mixture including the substrate and CO₂ was visually inspected. This examination was made at intervals of 0.2-0.5 MPa to determine the pressure at which the substrate was completely dissolved into CO₂, forming a single phase. These measurements were also made for the products of cyclohexanone and cyclohexanol to determine the solubility of them. Changes in the volume of the liquid phases by pressurization with CO₂ were also investigated with an 85 cm³ high-pressure view cell in procedures similar to those for the solubility measurement.

2.4. In situ FTIR in pressurized CO₂

The FTIR spectra of phenol and cyclohexanone in pressurized CO₂ medium were measured in situ with an FT-IR spectrometer (JASCO FTIR-620) equipped with a 1.5 cm³ high pressure cell with an optical path length of 4 mm. The FTIR measurements were made at 323 K and at CO₂ pressures up to 20 MPa. A small volume (about 0.01 cm³) of a sample carbonyl compound was introduced into the cell and it was purged with CO₂ three times. The cell was heated up to a temperature of 323 K by the circulation of preheated oil around it. Then, the pressure was increased slowly by introduction of liquid CO₂ by the high-pressure liquid pump while stirring by a Teflon coated magnetic stirrer. When the pressure reached a certain value, the stirring was further continued for 2 min and stopped. The FTIR spectra were measured with a triglycine sulfate (TGS) detector at a wavenumber resolution of 2 cm⁻¹ by using the absorption spectrum of pure CO₂ at the same pressure as background. For
comparison, the gas and liquid phase spectra of phenol and cyclohexanone were also collected. The gas phase spectra were measured with the above-mentioned cell at 323 K in ambient CO₂ atmosphere. The liquid spectra were measured at ambient temperature for a thin liquid film jammed by KBr crystal plates.

For the purpose of obtaining direct evidence for the formation of adsorbed CO in the mixture of compressed CO₂ and H₂, the authors made a stainless steel cell with ZnSe windows for in situ transmittance FTIR measurements at high pressures. The cell temperature was controlled by using four rod heaters put in the wall of the cell. A mixture of Rh/C (10 mg) and a silica gel (20 mg) or Rh/Al₂O₃ alone (30 mg) was pelletized and put into the cell. The cell was introduced with H₂ up to 4 MPa and the sample was reduced at 323 K for 1 h in the closed cell. After passing H₂ through the cell for a while, H₂ was again introduced up to 4 MPa. Then, CO₂ was introduced and FTIR measurements were made at different CO₂ pressures. The FTIR spectra were collected at 323 K using the spectra obtained at the same CO₂ pressures in the absence of catalyst sample as backgrounds.

3. Results

Under the conditions employed in the present study, oxygen-containing cyclohexanone and cyclohexanol were observed to form but no hydrocarbon products such as benzene, cyclohexane and cyclohexene were detected. The rate of phenol conversion and the product selectivity were found to depend on CO₂ pressure and the catalysts used.

3.1. Rh/C catalyst

Fig. 1 represents the variations of the phenol conversion and the product yields with reaction time obtained using Rh/C in the absence and presence of 16 MPa CO₂. Fig. 1a indicates that the yield of cyclohexanone increased with time and then decreases through a maximum at around 30 min, while that of cyclohexanol increased monotonically in the absence of CO₂. Similar trends were also observed in the presence of CO₂ at 16 MPa (Fig. 1b) and lower pressures. In Fig. 2, the selectivity to cyclohexanone is plotted against the phenol conversion. At extrapolated zero phenol conversion, the selectivity to cyclohexanone was around 60% irrespective of CO₂ pressures used. When the conversion increased up to 70%, the selectivity to cyclohexanone gradually decreased. The presence of pressurized CO₂ had no effect on the product selectivity at conversions between 0 and 70%. At larger conversions, however, the selectivity to cyclohexanone decreased rapidly with the conversion in the absence of CO₂, whereas the selectivity also decreased in the presence of CO₂ but gradually similar to the change at lower conversions. The selectivity to cyclohexanone at 100% conversion was < 10% in the absence of CO₂ but about 40% in the presence of CO₂ at 4 - 16 MPa. As a result, the selectivity to cyclohexanone obtained in the presence of CO₂ was always higher irrespective of CO₂ pressures than that in the absence of CO₂.
The apparent initial rates of phenol hydrogenation, moles of phenol consumed per unit time per unit weight of catalyst, were measured in the presence of CO$_2$ at various pressures to investigate the influence of CO$_2$ on the reaction. Fig. 3a gives the initial rate against the CO$_2$ pressure. In the presence of CO$_2$ at pressures between 1 and 13 MPa, the rate was smaller by a factor of 1/3 than that in the absence of CO$_2$. When the pressure was raised to 14 MPa, the initial rate increased, but it did not change so much at higher pressures. The rate obtained in the presence of CO$_2$ was smaller than that in the absence of CO$_2$. Thus, pressurized CO$_2$ had negative effect on the rate of hydrogenation of phenol. In addition, the apparent initial rate of hydrogenation of cyclohexanone, instead of phenol, was measured at different CO$_2$ pressures (Fig. 3b). Similar rates appeared in the presence of CO$_2$, which were about 1/3 of the one obtained in the absence of CO$_2$. Similar to phenol, the CO$_2$ pressurization had negative effect on the rate of hydrogenation of cyclohexanone. In contrast to phenol in which the rate increased with CO$_2$ pressure at 14 MPa or above, for the hydrogenation of cyclohexanone in the presence of CO$_2$, the rates were similar irrespective of CO$_2$ pressures (4 - 20 MPa).

3.2. Rh/Al$_2$O$_3$ catalyst Similar reaction runs were also carried out with Rh/Al$_2$O$_3$ catalyst for comparison. Fig. 4 represents the variations of the phenol conversion and the product yields with time in the absence of CO$_2$. The yield of cyclohexanone showed a maximum at around 30 min, whereas that of cyclohexanol increased monotonically with time. Thus, the results obtained in the absence of CO$_2$ with Rh/Al$_2$O$_3$ were very similar to those obtained with Rh/C (Fig. 1). When the reaction was conducted in the presence of CO$_2$, different results were obtained. Fig. 5 gives the results obtained at CO$_2$ pressures of 8 and 14 MPa, indicating that the hydrogenation reaction of phenol stopped in an early stage of reaction. That is, the activity of Rh/Al$_2$O$_3$ was rapidly and completely lost during the reaction. Note that the reaction stopped in about 30 min at 8 MPa but in a shorter time of 5 min at a higher CO$_2$ pressure of 14 MPa.

Fig. 6 represents the influence of CO$_2$ on the relationship between the phenol conversion and the product selectivity over Rh/Al$_2$O$_3$. It was not possible to get high conversion in the presence of CO$_2$ because of the rapid catalyst deactivation as mentioned above. Similar to the results obtained over Rh/C, the presence of CO$_2$ had no effect on the selectivity at low and medium conversions. Comparison of Figs. 2 and 6 shows that, in the absence of CO$_2$, the selectivity to cyclohexanone over Rh/Al$_2$O$_3$ was about 15% higher than that over Rh/C in the
whole range of phenol conversion.

3.3. Solubility in pressurized CO2

The solubility of reacting species in CO2 gas phase is one of important factors determining the outcome of multiphase reactions using pressurized CO2. Fig. 7 shows the solubility of phenol, cyclohexanone, and cyclohexanol in CO2 in the presence of 4 MPa H2 at a reaction temperature of 323 K. The solubility was cyclohexanone >> cyclohexanol > phenol. For the reaction runs, 10.6 mmol of phenol was charged in the reactor volume of 50 cm³ and the initial concentration of phenol was 0.21 mmol cm⁻³. So, the reaction mixture should change from solid–liquid–gas three-phase state to solid–gas two-phase state at a CO2 pressure around 14 MPa. It should be noted that this pressure accorded with the pressure at which the initial rate of phenol hydrogenation was observed to increase (Fig. 3a).

Furthermore, the volume expansion of organic liquids on CO2 pressurization was measured for phenol and cyclohexanone with similar liquid/reactor volume ratio as used in the reaction runs. It was found that the latter expanded significantly by pressurization with CO2, while such expansion was not observed for the former (Fig. 8). The extent of volume expansion of liquid cyclohexanone is plotted against CO2 pressure in Fig. 9. The volume increased slightly with the pressure up to 6 MPa and significantly at higher pressures. The expansion is caused from the dissolution of CO2 molecules into the liquid phase [26,32-36]. CO2-expanded liquid phase has recently been gaining considerable attention, because it will facilitate the dissolution of other coexisting gases of H2, O2, CO, and so on and may accelerate the reactions involved with these gaseous reactants although CO2 is not a reactant but rather a diluent [26-28,32-36].

3.4. In situ high pressure FTIR

Interactions of CO2 with reacting organic compounds were examined by in situ high pressure FTIR spectroscopy at 323 K. The FTIR spectra of phenol were measured in pressurized CO2 at different pressures and similar spectra were obtained. It is unlikely, therefore, that the reactivity of phenol is modified by CO2. Fig. 10 shows FTIR spectra in the region of carbonyl absorption for cyclohexanone in liquid and gas states and in CO2. Liquid cyclohexanone exhibited a broad absorption band assigned to ν(C=O) at 1710 cm⁻¹. This band of gaseous cyclohexanone was shifted to a larger wavenumber by 30 cm⁻¹ compared with the liquid state. For the spectra measured in CO2, the ν(C=O) band was located at a position between those of liquid and gaseous cyclohexanone and red-shifted with CO2 pressure. This red-shift would result from Lewis acid - base type interactions between CO2 and its carbonyl
group, as previously discussed [28,31]. Other absorption bands due to C-H and C-C bonds were not observed to be shifted with CO$_2$ pressure.

Figure 10

Furthermore, *in situ* high-pressure transmittance FTIR was used to examine the formation of CO from compressed CO$_2$ and H$_2$. Fig. 11 shows the spectra for Rh/Al$_2$O$_3$ obtained at different times after the introduction of CO$_2$ up to 4 MPa and 16 MPa. At 4 MPa CO$_2$, absorption bands appeared at 2069, 2020, and 1844 cm$^{-1}$ and the one also seemed to exist at 1970 cm$^{-1}$, which were assignable to various types of CO adsorbed on Rh as summarized in Table 1 according to the literature [42-44]. The strength of a weak absorption band at 2069 cm$^{-1}$ seemed to increase with time but marginally. Similar absorption bands were observed but stronger at a higher CO$_2$ pressure of 16 MPa. These results give direct evidence that CO is formed from the mixture of compressed CO$_2$ and H$_2$ in the presence of Rh/Al$_2$O$_3$ catalyst and CO is adsorbed on the surface of supported Rh particles in different modes. It is further indicated that the type of adsorbed CO species little depends on CO$_2$ pressure but the amount of CO adsorbed seems to be larger at 16 MPa than that at 4 MPa. In addition to those absorption bands due to the various types of adsorbed CO species, broad absorption bands were also observed at 1700 – 1200 cm$^{-1}$, which may indicate the presence of formate species [42,45-49] and/or other carbonyl groups [49] such as -COOH and -COO- on the support.

Figure 11, Table 1

The same FTIR measurements were also conducted with Rh/C sample. The formation and adsorption of CO on Rh in the mixture of compressed CO$_2$ and H$_2$ were also evidenced. The FTIR spectra collected are presented in Fig. 12. At 4 MPa CO$_2$, an absorption band was seen at 2069 cm$^{-1}$ with a shoulder at smaller wavenumbers but no absorption was detected at 2020 - 1850 cm$^{-1}$, in contrast to the abovementioned spectra for Rh/Al$_2$O$_3$. The spectra at 16 MPa were very similar to those at 4 MPa but the amount of adsorbed CO was larger at 16 MPa. The Rh/C catalyst did not indicate the absorption bands due to formate at 1700 – 1200 cm$^{-1}$ at both CO$_2$ pressures. The difference in the surface properties such as acidity would explain the formation of the formate on Rh/Al$_2$O$_3$ but not on Rh/C. Acidic surface of the support Al$_2$O$_3$ may interact with basic CO$_2$ molecules and facilitate the formation of the formate species [45-49]. The comparison of the spectra of Fig. 11 and Fig. 12 shows that the types of adsorbed CO species are different between Rh/C and Rh/Al$_2$O$_3$ catalysts. That is, the majority is of linear type for the former while the other types (dicarbonyl, bridged, triply bridged) also exist for the latter. This difference may be related to difference in the stability (strength) of adsorbed CO species, as described in the following.
In addition, FTIR spectra were measured after the IR cell was depressurized to ambient pressure following the FTIR measurements at 16 MPa CO$_2$ and at 323 K. Fig. 13 compares the spectra collected at 16 MPa and at ambient pressure. It is interesting to note that no absorption was observed in the range of wavenumber due to the adsorbed CO species for Rh/C. For Rh/Al$_2$O$_3$, the absorption band due to the linear type of adsorbed CO at 2073 cm$^{-1}$ also disappeared on depressurization; however, the absorption bands assignable to the adsorbed CO of the other types and formate species still remained at ambient pressure. These absorption bands remained unchanged after the IR cell was purged with 0.1 MPa H$_2$. That is, for Rh/C, the CO species can be adsorbed on its surface in the presence of compressed CO$_2$ but not in the absence of compressed CO$_2$. For Rh/Al$_2$O$_3$, in contrast, the CO species can be adsorbed even at ambient pressure but only those of the types other than the linear one. Note that the formation and adsorption of CO under high pressure conditions cannot be denied even though no adsorption is detected under ambient conditions (for Rh/C in the present case).

4. Discussion

4.1. Reaction pathways of phenol hydrogenation

As shown in Fig. 1, the yield of cyclohexanone was maximal in the course of the reaction with Rh/C, whereas that of cyclohexanol increased monotonously with time and it was likely to form at the expense of cyclohexanone in the latter stage of reaction. Similar results were obtained with Rh/Al$_2$O$_3$ in the absence of CO$_2$ (Fig. 4). These results strongly suggest that cyclohexanol is formed through the hydrogenation of cyclohexanone. If cyclohexanol was always produced by the hydrogenation of cyclohexanone, the selectivity to cyclohexanone would be 100% at zero conversion; however, this is not the case, as shown in Figs. 2 and 6. It is assumed, therefore, that cyclohexanone and cyclohexanol are produced through parallel pathways at low conversion levels. On the basis of these results, it can be concluded that the phenol hydrogenation proceeds through the pathways illustrated in Scheme 1: phenol is sequentially hydrogenated through cyclohexanone to cyclohexanol (paths i and iii) and directly to cyclohexanol (path ii). In contrast to the present results, almost 100% selectivity to cyclohexanone was obtained with supported Pd catalysts in both the gas–phase [1-12] and liquid–phase [13-16,25] hydrogenation reactions. The direct formation of cyclohexanol from phenol (path ii) is unlikely to occur with these Pd catalysts. The difference between the Rh and Pd catalysts is interesting but difficult to explain at present.

Scheme 1
4.2. Simulation of reaction kinetics

The three pathways of Scheme 1 are assumed to be first order reactions with respect to the quantities of phenol and cyclohexanone. The apparent total rate of phenol consumption, \(r_0 \), moles of phenol consumed per unit time per unit weight of catalyst, is given as:

\[
-r_0 = (k_1 + k_2)Q_0
\]

(1)

the rates of cyclohexanone and cyclohexanol formations, \(r_1 \) and \(r_2 \), are respectively given as

\[
r_1 = k_1Q_0 - k_3Q_1
\]

(2)

\[
r_2 = k_2Q_0 + k_3Q_1
\]

(3)

where \(k_1, k_2 \) and \(k_3 \) are rate constants of the corresponding pathways in Scheme 1 and \(Q_0, Q_1 \) and \(Q_2 \) are the quantities of phenol, cyclohexanone and cyclohexanol in the reactor, respectively.

Using these simplified reaction rates, we calculated the variations of phenol conversion \((X_0) \), cyclohexanone yield \((Y_1) \), and cyclohexanol yield \((Y_2) \) with reaction time by the following equations:

\[
X_0 = 1 - \exp[-(k_1 + k_2)wt]
\]

(4)

\[
Y_1 = k_1\{\exp[-(k_1 + k_2)wt] - \exp(-k_3wt)\}/(k_3 - k_1 - k_2)
\]

(5)

\[
Y_2 = X_0 - Y_1
\]

(6)

where \(w \) is the amount of catalyst used and \(t \) is time. These kinetic equations were used to simulate the results of hydrogenation reactions of phenol obtained under different conditions. Fig. 14 shows the simulation results for the reactions with Rh/C at CO2 pressures of 0, 4, and 16 MPa using the values of the rate constants listed in Table 2. The variations of the total conversion and the product yields with reaction time can be well fitted by this simulation, except for the results at high conversion levels at a CO2 pressure of 4 MPa.

Figure 14, Table 2

In a similar manner, the simulation was made for the results with Rh/Al2O3 in the absence of CO2 (Fig. 15). The values of the rate constants used for this simulation are also given in Table 2. Also for Rh/Al2O3, the simulation can well fit the experimental reaction results obtained. The difference of the rate constants between Rh/C and Rh/Al2O3 will be discussed later.

Figure 15

Next, the relationship between the total conversion and the product selectivity was calculated using the above-mentioned kinetic equations and the rate constants determined (Table 2). Fig. 16 shows that the experimental results are well simulated for the hydrogenation reactions of phenol with Rh/C and Rh/Al2O3. The present kinetics model can explain the gradual decrease of the selectivity to cyclohexanone with the conversion up to 70% and the marked difference in the selectivity at higher conversion levels between the reactions with Rh/C in the presence and
absence of CO\textsubscript{2}. For Rh/C, all the rate constants are smaller in the presence of pressurized CO\textsubscript{2}. However, the extent of the decrease of k\textsubscript{3} by the presence of CO\textsubscript{2} is the largest among the rate constants. Thus, the CO\textsubscript{2} pressurization has stronger impact on the reaction pathway iii than on the ones i and ii (Scheme 1). In other words, the hydrogenation of cyclohexanone to cyclohexanol can be suppressed in the presence of pressurized CO\textsubscript{2} more significantly than the hydrogenations of phenol to cyclohexanone and to cyclohexanol. Probably, this would be caused by the difference in the required adsorption mode between the phenol and cyclohexanone hydrogenation reactions. For the former reaction, the adsorption of aromatic ring on Rh surface is required, while the adsorption of C=O group is required for the latter reaction.

4.3. Influence of pressurized CO\textsubscript{2} on phenol hydrogenation

The initial rates of phenol and cyclohexanone hydrogenation reactions were measured with Rh/C in the presence of 8 MPa N\textsubscript{2} instead of CO\textsubscript{2}. The rate of phenol hydrogenation obtained was 62.0 mmol min-1 g-1 and the selectivity to cyclohexanone was 45.3% at a phenol conversion of 58.6% and decreased to 1.4% at 98.6% conversion. In addition, the hydrogenation of cyclohexanone was conducted under the same conditions and the initial rate was 61.7 mmol min-1 g-1. Comparison of these data with those of Fig. 2 shows that the presence of the compressed inert N\textsubscript{2} gas had no effect on the hydrogenation reactions of these substrates. Thus, it can be said that the effects of pressurized CO\textsubscript{2} resulted from its physicochemical nature but not simply its static pressure.

The initial rate of phenol hydrogenation with Rh/C was retarded by CO\textsubscript{2} (Fig. 3a) and the reaction with Rh/Al\textsubscript{2}O\textsubscript{3} in the presence of CO\textsubscript{2} stopped in a short period of reaction time (Fig. 5). The FTIR results showed that there was no interaction of phenol with CO\textsubscript{2} and its reactivity was not changed by CO\textsubscript{2}. A few possible factors may be related to the retardation effect of CO\textsubscript{2} observed. The first one is the formation of CO species adsorbed over Rh surface. It was confirmed by in situ high-pressure FTIR (Fig. 11) that the adsorbed CO was produced from CO\textsubscript{2}-H\textsubscript{2}, although no gaseous CO was detected in the gas phase after the hydrogenation runs in the presence of CO\textsubscript{2}. Several research groups reported, by FTIR (not in situ), the formation of adsorbed CO from CO\textsubscript{2}-H\textsubscript{2} mixtures via reverse water gas shift reaction over Pt [37-40], Rh [40], Ru [40,41], and Pd [40,41] catalysts even at such a low temperatures as 323 K. Some authors have also shown that adsorbed CO suppresses hydrogenation of ethyl pyruvate over Pt/Al\textsubscript{2}O\textsubscript{3} [38] and dechlorination of chloroaniline over Pt/C [39]. Hence, the formation and adsorption of CO should retard the phenol hydrogenation by blocking Rh active site. In the case of Rh/Al\textsubscript{2}O\textsubscript{3}, the CO adsorption is so strong that its activity is completely lost during the reaction in the presence of CO\textsubscript{2} (Fig. 5). CO is formed along with water through the reverse water gas shift reaction. The amount of water formed was not measured in the present work but it should be small since the amount of CO in the gas phase was unable to be measured by GC. It is supposed that the water molecules formed are likely to be adsorbed on the supports rather than the Rh
particles and so the water would be less significant for the hydrogenation of phenol that occurs on the surface of supported Rh particles.

Another possible factor is the competitive adsorption of CO$_2$ and the substrate phenol on the catalyst surface. The adsorption of CO$_2$ could make the adsorption of phenol difficult, resulting in the retardation of its hydrogenation. However, this is implausible, because some reaction time was needed for the reaction with Rh/Al$_2$O$_3$ to completely stop and the time for the complete deactivation depended on the CO$_2$ pressure (Fig. 5). If the competitive adsorption of CO$_2$ and phenol is important, the catalyst deactivation should occur shortly after the start of reaction at any CO$_2$ pressures since the adsorption usually reaches its equilibrium rapidly irrespective of the pressure. It was previously reported that the amount of adsorbed CO produced from CO$_2$ gradually increased with time [37,40]. This can explain the induction period for the complete deactivation of Rh/Al$_2$O$_3$ catalyst. It can be noted again that the formation of adsorbed CO is one of important reasons for the retardation effect of CO$_2$ in phenol hydrogenation in the presence of CO$_2$.

A different factor is the simple dilution effect that the dissolution of CO$_2$ occurs into the liquid substrate phase under pressurized conditions and this would promote the dissolution of H$_2$ but, at the same time, decrease the concentration of the substrate in the reaction medium and make it more difficult for the substrate to contact with the catalyst. This negative, dilution effect should also be important for the retardation effect of CO$_2$ on the hydrogenation reaction of phenol. When the pressure is raised, phenol is likely to dissolve in the CO$_2$ gas phase more significantly and the hydrogenation reactions should take place in both liquid and gas phases. Although the rate constants k_1 and k_2 are not different between in the liquid phase (of G-L-S) and in the gas phase (of G-S) reactions, the concentration of the substrates is more diluted in the CO$_2$ gas phase. This negative effect should be significant at high CO$_2$ pressures above the pressure at which the reaction mixture changes from the G-L-S state to the G-S state. If this negative effect could be overcome by positive effects of complete miscibility of H$_2$ and fast mass transfer in the G-S mixture, the rate of reaction would be improved on the change of phase behavior. This could be the case for the increase in the rate of phenol hydrogenation at about 14 MPa as shown in Fig. 3b.

The initial rate of cyclohexanone hydrogenation was also retarded by the presence of CO$_2$ (Fig. 3b), similar to phenol, and this retardation would also be caused by the formation of adsorbed CO. The FTIR results with cyclohexanone showed the red shift of its ν(C=O) absorption band with CO$_2$ pressure, suggesting that the reactivity of its carbonyl group is enhanced with CO$_2$ pressure (Fig. 10). However, this positive effect of CO$_2$ should be overcome by the negative effect of the adsorbed CO produced from CO$_2$ and H$_2$. In contrast to phenol, the volume expansion of cyclohexanone on CO$_2$ pressurization was more remarkable (Fig. 9), implying that a larger quantity of CO$_2$ was dissolved into the cyclohexanone. The phase change of the G-L-S to the G-S occurred at a lower pressure of about 11 MPa due to the larger solubility of cyclohexanone in CO$_2$ (Fig. 7). As above-mentioned, the volume expansion gives a positive
effect of facilitating the dissolution of H₂ but a negative effect of the dilution of the reacting species and the phase change also has positive (complete miscibility of H₂) and negative (fast mass transfer and/or unknown factors) effects. Those positive and negative effects should depend on the CO₂ pressure. The superiority and inferiority of those pressure-dependent effects could result in similar reaction rates in the presence of CO₂ at 4 - 20 MPa irrespective of the pressure; the reaction is likely to occur in the liquid phase, in the liquid and gas phases, and in the gas phase at low, phase transition, and high pressures, respectively.

4.4. Comparison of Rh/C and Rh/Al₂O₃

The apparent initial rate of phenol consumption, \((k_1 + k_2)Q_0\), and the cyclohexanone selectivity at a conversion of zero, \(k_1/(k_1 + k_2)\), were estimated from the rate constants listed in Table 2. Table 3 compares the total activity and the cyclohexanone selectivity between Rh/C and Rh/Al₂O₃ catalysts in the absence of CO₂. The latter was more active than the former and the turnover frequency (TOF, molecules of phenol consumed per an exposed Rh atom per unit time) of Rh/Al₂O₃ was about twice that of Rh/C. This may result from difference in the acid-base properties of the supports and/or that in the electronic properties of supported Rh crystallites. The cyclohexanone selectivity over Rh/Al₂O₃ was 15% higher than that over Rh/C. According to Scheme 1, the selectivity to cyclohexanone at low phenol conversions can be determined by the relative rates of pathways i and ii \((k_1/k_2)\). As shown in Table 3, the value of \(k_1/k_2\) over Rh/Al₂O₃ is above twice that over Rh/C. This may result from stronger acidity of Al₂O₃ support compared with active carbon. Liu et al. point out the significance of Lewis acidity of support materials in determining the high selectivity to the formation of cyclohexanone, which is prevented from being hydrogenated to cyclohexanol by interactions between the acid sites and the cyclohexanone [25].

Table 3

The effects of CO₂ pressurization were greatly different between Rh/C and Rh/Al₂O₃ catalysts. The activity of the former was somewhat lowered by the presence of CO₂ (Fig. 3a), while the latter lost its activity completely within a short period of reaction time in the presence of CO₂ (Fig. 5). One of significant factors is the difference in the nature of adsorbed CO between Rh/C and Rh/Al₂O₃. In contrast to the former, the adsorption of CO on the latter is so strong and it still remains adsorbed at ambient pressure (Fig. 13), causing the stronger inhibition effect of CO on Rh/Al₂O₃. This might depend on difference in the electronic properties of Rh particles dispersed on C and Al₂O₃ supports, which was indicated by XPS measurements (Fig. 17). It was indicated that the binding energy of either Rh 3d₅/₂ or Rh 3d₃/₂ was larger for Rh/Al₂O₃ than for Rh/C. The surface of Rh particles on Al₂O₃ was likely to be beneficial for CO to be adsorbed with 5σ electron to the exposed Rh atoms, resulting in strong adsorption of CO on Rh/Al₂O₃ than on Rh/C. The CO species adsorbed on Rh/Al₂O₃ catalysts are stable according to the literature. Nehasil et al. reported a heat of CO adsorption of 120 kJ mol⁻¹ in the limit of zero coverage,
which decreased with an increase in coverage θ, being 110 kJ mol$^{-1}$ at $\theta = 1$ [50]. Dulaurent et al. showed that the heat of CO adsorption depended on the type of CO species adsorbed on an Rh/Al$_2$O$_3$ catalyst [51]. It was reported to be 195 kJ mol$^{-1}$ at $\theta = 0$ and 103 kJ mol$^{-1}$ at $\theta = 1$ for the linear CO while 125 kJ mol$^{-1}$ at $\theta = 0$ and 75 kJ mol$^{-1}$ at $\theta = 1$ for the bridged CO. The heat of CO adsorption is larger for the linear CO than for the bridged CO. Dubois and Somorjai indicated that the bridged CO species on Rh(111) were removed by evacuation at 360 K while the coverage of the linear CO species was only slightly changed [52]. Using temperature programmed desorption (TPD), Belton et al. distinguished two different types of CO adsorbed on Rh(111) and determined the activation energy for desorption, which was 141 kJ mol$^{-1}$ for one type (assigned to linear CO) and 125 kJ mol$^{-1}$ for the other (bridged CO) [53]. These results obtained under dynamic methods (evacuation at a constant temperature and TPD) indicate that the linear CO species on Rh are more stable compared to the bridged ones. This is not in accordance with the present results that the linear CO species disappear on depressurization while the bridged CO species still remain. In our experiments, however, the catalyst was always exposed to the mixture of CO$_2$ and H$_2$ at decreasing pressures on the depressurization to ambient pressure at a constant temperature. This continuous exposure to the CO$_2$ + H$_2$ mixture is assumed to be important for the present results of the depressurization. The coverage of CO might be relatively large under the depressurization conditions used and so the bridged CO species should remain. Delouise et al. reported that, on Rh(111), the linear CO species were formed first at low coverage, followed by progressive appearance of the bridged ones with an increase in coverage [54].

Figure 17

It is reported by Chatterjee et al. that phenol is hydrogenated to cyclohexanone with a high selectivity $> 97\%$ with Pd/Al-MCM-41 catalyst at H$_2$ and CO$_2$ pressures of 4 MPa and 12 MPa, respectively [24]. The selectivity to cyclohexanone was found to depend on CO$_2$ pressure and it was $< 60\%$ at 7 MPa or below. Their similar Rh/Al-MCM-41 catalyst is less selective to the formation of cyclohexanone even at high CO$_2$ pressures. The difference between Pd and Rh on the same support would be ascribed to difference in their intrinsic natures. Unfortunately, these authors did not mention the possibility and significance of the formation of adsorbed CO in their catalytic hydrogenation reactions in dense phase CO$_2$ with Pd and Rh on Al-MCM-41. Recently, Liu et al. revealed the synergistic effect of supported Pd particles and solid Lewis acid sites for the selective hydrogenation of phenol to cyclohexanone [25]. The acid sites interact with C=O of cyclohexanone, preventing its further hydrogenation to the undesired cyclohexanol [25]. The Lewis acidity of the MCM-41 supports of Chatterjee’s catalysts [24] may contribute to their high selectivity to cyclohexanone observed.
5. Conclusions

The following conclusions on the effects of CO$_2$ pressurization in hydrogenation of phenol with supported Rh catalysts may be withdrawn from the present results. The presence of compressed CO$_2$ retards the total rate of hydrogenation of phenol with Rh/C and Rh/Al$_2$O$_3$. This is crucial for the latter catalyst, for which its activity is completely lost in an early stage of reaction. For Rh/C, the selectivity to cyclohexanone in the presence of CO$_2$ does not depend on CO$_2$ pressure and is larger at high conversion levels > 70% than that obtained with CO$_2$. Molecular interactions of CO$_2$ are assumed to exist for cyclohexanone but not for phenol. The reactivity of carbonyl bond of cyclohexanone is suggested to increase by CO$_2$ but this is insignificant in determining the rate of hydrogenation of cyclohexanone to cyclohexanol. Possible reaction mechanisms involve direct transformations of phenol to either cyclohexanone and cyclohexanol and hydrogenation of cyclohexanone to cyclohexanol. It is suggested that the presence of CO$_2$ does not affect the direct transformations of phenol to either cyclohexanone or cyclohexanol but does retard the hydrogenation of cyclohexanone to cyclohexanol, resulting in the improved selectivity to cyclohexanone. It is confirmed that, during the hydrogenation reactions with Rh/C and Rh/Al$_2$O$_3$, CO is formed and adsorbed on the surface of these catalysts. This is one of important factors responsible for the retardation of the hydrogenation rate in the presence of CO$_2$. This CO adsorption is crucial for Rh/Al$_2$O$_3$; namely, the adsorption of CO on this catalyst is strong and so this causes the complete loss of its activity. The influence of CO$_2$ pressurization on the rates of hydrogenation of either phenol or cyclohexanone could be explained by several factors including volume expansion of liquid substrate phase, phase transition from gas-liquid-solid to gas-solid, and dilution of reacting species in either the liquid phase or the gas phase.

Acknowledgement

This work was supported in part by the Japan Society for the Promotion of Science (JSPS) with Grant-in-Aid for Scientific Research (B) 18360378 and also by JSPS and CAS (Chinese Academy of Sciences) under the Japan - China Research Cooperative Program. The authors are thankful to Ms. M. Furuyuki, Mr. M. Hasegawa, and Dr. T. Akashi of Hokkaido University for their help in reaction, phase behavior, and XPS measurements.

References

[16] H. Li, J. Liu, H. Li, Liquid-phase selective hydrogenation of phenol to cyclohexanone over

[50] V. Nehasil, I. Stara, V. Matolin, Study of CO desorption and dissociation on Rh surfaces,

Captions of Table, Figures and Scheme

Table 1 Adsorption bands observed and possible assignments

Table 2 Rate constants used in the simulation of reaction kinetics

Table 3 Comparison of the activity and the selectivity between Rh/C and Rh/Al₂O₃ for phenol hydrogenation in the absence of CO₂.

Fig. 1. Variations of phenol conversion (□) and yields of cyclohexanone (●) and cyclohexanol (○) with time over Rh/C (a) in the absence of CO₂ and (b) in the presence of 16 MPa CO₂. Reaction conditions: Rh/C, 10 mg for (a) and 20 mg for (b); phenol, 10.6 mmol; H₂, 4 MPa; temperature, 323 K.

Fig. 2. Influence of CO₂ on the relationship between selectivity to cyclohexanone and phenol conversion over Rh/C. CO₂ pressure = 0 (●), 4 (▲), 8 (■), 11 (○), 14 (◊) and 16 MPa (□).

Fig. 3. Influence of CO₂ pressure on the initial rate of hydrogenation of (a) phenol and (b) cyclohexanone over Rh/C. Reaction conditions: Rh/C, 2.5 mg; phenol, 10.6 mmol; H₂, 4 MPa; temperature, 323 K; time, 5 min for phenol and 10 min for cyclohexanone.

Fig. 4. Variations of phenol conversion (□) and yields of cyclohexanone (●) and cyclohexanol (○) with time over Rh/Al₂O₃ in the absence of CO₂. Reaction conditions: Rh/Al₂O₃, 10 mg; phenol, 10.6 mmol; H₂, 4 MPa; temperature, 323 K.

Fig. 5. Variations of phenol conversion (□) and yields of cyclohexanone (●) and cyclohexanol (○) with time over Rh/Al₂O₃ in the presence of CO₂ at (a) 14 MPa and (b) 8 MPa. Reaction conditions: Rh/Al₂O₃, 50 mg; phenol, 10.6 mmol; H₂, 4 MPa; temperature, 323 K.

Fig. 6. Influence of CO₂ on the relationship between selectivity to cyclohexanone and phenol conversion over Rh/Al₂O₃. CO₂ pressure = 0 (●), 4 (▲), 8 (■) and 14 (◊) MPa.

Fig. 7. Solubility of phenol (□), cyclohexanone (●) and cyclohexanol (○) into scCO₂ in the presence of 4 MPa H₂ at 323 K.

Fig. 8. Photographs of (a) phenol and (b) cyclohexanone liquid phases taken under various pressures of CO₂ at 323 K in the presence of 4 MPa H₂.

Fig. 9. Variation of the volume of cyclohexanone with CO₂ pressure at 323 K in the presence of 4
MPa H₂.

Fig. 10. FT-IR spectra of cyclohexanone. (a), liquid; (b), gas; (c) in 4 MPa CO₂; (d), in 8 MPa CO₂; (e), in 16 MPa CO₂. Spectra c, d and e were measured in the presence of 4 MPa H₂.

Fig. 11. In situ high-pressure FTIR spectra collected at 50°C for Rh/Al₂O₃ sample in the presence of 4 MPa H₂ and 4 MPa CO₂ (a-d) or 16 MPa CO₂ (e-h). The spectra were collected shortly after introduction of CO₂ (a, e) and after different times of 1 h (b, f), 2 h (c, g) and 4 h (d, h).

Fig. 12. In situ high-pressure FTIR spectra collected at 50°C for Rh/C sample in the presence of 4 MPa H₂ and 4 MPa CO₂ (a-d) or 16 MPa CO₂ (e-h). The spectra were collected shortly after introduction of CO₂ (a, e) and after different times of 1 h (b, f), 2 h (c, g) and 4 h (d, h).

Fig. 13. In situ high-pressure FTIR spectra collected at 50°C for Rh/Al₂O₃ (a-c) and Rh/C (d-f) samples in the presence of 4 MPa H₂ and 16 MPa CO₂ (a, d), after depressurization (b, e) and after purging with H₂ (c, f).

Fig. 14. Variations of phenol conversion (□) and yields of cyclohexanone (●) and cyclohexanol (○) with time over Rh/C (a) in the absence of CO₂ and in the presence of CO₂ at 4 MPa (b) and (c) 16 MPa. Solid lines were determined by simulation for which k₂, k₃, and k₄ values listed in Table 2 were used. Reaction conditions were the same as those for Fig. 1.

Fig. 15. Variations of phenol conversion (□) and yields of cyclohexanone (●) and cyclohexanol (○) with time over Rh/Al₂O₃ in the absence of CO₂. Solid lines were determined by simulation for which k₂, k₃, and k₄ values listed in Table 2 were used. Reaction conditions were the same as those for Fig. 4.

Fig. 16. Influence of CO₂ on the relationship between selectivity to cyclohexanone and phenol conversion over (a) Rh/C and (b) Rh/Al₂O₃. Circles and squares represent experimental values observed in the absence and the presence of 16MPa CO₂, respectively. Solid and broken lines were obtained by simulation with the rate constants listed in Table 2.

Fig. 17. XPS spectra of (a) Rh/C and (b) Rh/Al₂O₃.

Scheme 1. Reaction pathways of phenol hydrogenation.
Fig. 1. Variations of phenol conversion (□) and yields of cyclohexanone (●) and cyclohexanol (○) with time over Rh/C (a) in the absence of CO₂ and (b) in the presence of 16 MPa CO₂. Reaction conditions: Rh/C, 10 mg for (a) and 20 mg for (b); phenol, 10.6 mmol; H₂, 4 MPa; temperature, 323 K.
Fig. 2. Influence of CO₂ on the relationship between selectivity to cyclohexanone and phenol conversion over Rh/C. CO₂ pressure = 0 (●), 4 (▲), 8 (■), 11 (○), 14 (◊) and 16 MPa (□).
Fig. 3. Influence of CO₂ pressure on the initial rate of hydrogenation of (a) phenol and (b) cyclohexanone over Rh/C. Reaction conditions: Rh/C, 2.5 mg; phenol, 10.6 mmol; H₂, 4 MPa; temperature, 323 K; time, 5 min for phenol and 10 min for cyclohexanone.
Fig. 4. Variations of phenol conversion (□) and yields of cyclohexanone (●) and cyclohexanol (○) with time over Rh/Al₂O₃ in the absence of CO₂. Reaction conditions: Rh/Al₂O₃, 10 mg; phenol, 10.6 mmol; H₂, 4 MPa; temperature, 323 K.
Fig. 5. Variations of phenol conversion (□) and yields of cyclohexanone (●) and cyclohexanol (○) with time over Rh/Al₂O₃ in the presence of CO₂ at (a) 14 MPa and (b) 8 MPa. Reaction conditions: Rh/Al₂O₃, 50 mg; phenol, 10.6 mmol; H₂, 4 MPa; temperature, 323 K.
Fig. 6. Influence of CO$_2$ on the relationship between selectivity to cyclohexanone and phenol conversion over Rh/Al$_2$O$_3$. CO$_2$ pressure = 0 (●), 4 (▲), 8 (■) and 14 (◊) MPa.
Fig. 7. Solubility of phenol (□), cyclohexanone (●) and cyclohexanol (○) into scCO$_2$ in the presence of 4 MPa H$_2$ at 323 K.
Fig. 8. Photographs of (a) phenol and (b) cyclohexanone liquid phases taken under various pressures of CO$_2$ at 323 K in the presence of 4 MPa H$_2$.
Fig. 9. Variation of the volume of cyclohexanone with CO$_2$ pressure at 323 K in the presence of 4 MPa H$_2$.
Fig. 10. FT-IR spectra of cyclohexanone. (a), liquid; (b), gas; (c) in 4 MPa CO$_2$; (d), in 8 MPa CO$_2$; (e), in 16 MPa CO$_2$. Spectra c, d and e were measured in the presence of 4 MPa H$_2$.
Fig. 11. *In situ* high-pressure FTIR spectra collected at 50°C for Rh/Al₂O₃ sample in the presence of 4 MPa H₂ and 4 MPa CO₂ (a-d) or 16 MPa CO₂ (e-h). The spectra were collected shortly after introduction of CO₂ (a, e) and after different times of 1 h (b, f), 2 h (c, g) and 4 h (d, h).
Table 1 Adsorption bands observed and possible assignments

<table>
<thead>
<tr>
<th>Rh/Al₂O₃</th>
<th>Rh/C</th>
<th>Assignment a</th>
</tr>
</thead>
<tbody>
<tr>
<td>2069 cm⁻¹, 2020 cm⁻¹</td>
<td>2069 cm⁻¹</td>
<td>Linear</td>
</tr>
<tr>
<td>1970 cm⁻¹</td>
<td>1945 cm⁻¹</td>
<td>Linear or Dicarbonyl</td>
</tr>
<tr>
<td>1844 cm⁻¹</td>
<td>— b</td>
<td>Bridged or Triply bridged</td>
</tr>
<tr>
<td>1600 cm⁻¹ — 1200 cm⁻¹</td>
<td></td>
<td>Formate (and/or -COOH, -COO-) c</td>
</tr>
</tbody>
</table>

a. Ref. 42-45, 49.

b. No corresponding absorption bands were observed

c. νₐ(CO) appears at a larger wavenumber compared with νₐ(CO).
Fig. 12. *In situ* high-pressure FTIR spectra collected at 50°C for Rh/C sample in the presence of 4 MPa H₂ and 4 MPa CO₂ (a-d) or 16 MPa CO₂ (e-h). The spectra were collected shortly after introduction of CO₂ (a, e) and after different times of 1 h (b, f), 2 h (c, g) and 4 h (d, h).
Fig. 13. *In situ* high-pressure FTIR spectra collected at 50°C for Rh/Al₂O₃ (a-c) and Rh/C (d-f) samples in the presence of 4 MPa H₂ and 16 MPa CO₂ (a, d), after depressurization (b, e) and after purging with H₂ (c, f).
Scheme 1. Reaction pathways of phenol hydrogenation.
Fig. 14. Variations of phenol conversion (□) and yields of cyclohexanone (●) and cyclohexanol (○) with time over Rh/C (a) in the absence of CO₂ and in the presence of CO₂ at 4 MPa (b) and (c) 16 MPa. Solid lines were determined by simulation for which k₂, k₃, and k₄ values listed in Table 2 were used. Reaction conditions were the same as those for Fig. 1.
Table 2 Rate constants used in the simulation of reaction kinetics

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>(P_{\text{CO}_2}) (MPa)</th>
<th>Phase (^a)</th>
<th>(C_0) (^b) (mol/L)</th>
<th>Rate constant ((\text{min}^{-1} \text{ g-cat}^{-1})) (^c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rh/C</td>
<td>0</td>
<td>G-L-S</td>
<td>11.2</td>
<td>3.0 1.5 2.4</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>G-L-S</td>
<td>11.2</td>
<td>0.9 0.6 0.2</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>G-S</td>
<td>0.21</td>
<td>1.4 0.9 0.3</td>
</tr>
<tr>
<td>Rh/Al(_2)O(_3)</td>
<td>0</td>
<td>G-L-S</td>
<td>11.2</td>
<td>4.7 1.0 1.8</td>
</tr>
</tbody>
</table>

\(^a\) Phases present in the reaction mixture: G, L, and S indicate gas (CO\(_2\), H\(_2\), and/or phenol), liquid substrate (phenol), and solid (catalyst) phases, respectively.

\(^b\) Initial concentration of phenol: For G-L-S system, concentration in pure liquid phenol; For G-S system, concentration in the gas phase (in the whole reactor volume).

\(^c\) at 323 K.
Fig. 15. Variations of phenol conversion (□) and yields of cyclohexanone (●) and cyclohexanol (○) with time over Rh/Al₂O₃ in the absence of CO₂. Solid lines were determined by simulation for which k₂, k₃, and k₄ values listed in Table 2 were used. Reaction conditions were the same as those for Fig. 4.
Fig. 16. Influence of CO\textsubscript{2} on the relationship between selectivity to cyclohexanone and phenol conversion over (a) Rh/C and (b) Rh/Al\textsubscript{2}O\textsubscript{3}. Circles and squares represent experimental values observed in the absence and the presence of 16MPa CO\textsubscript{2}, respectively. Solid and broken lines were obtained by simulation with the rate constants listed in Table 2.
Table 3

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Rh dispersion</th>
<th>Reaction rate</th>
<th>TOF</th>
<th>Selectivity to cyclohexanone</th>
<th>k_1/k_2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(%)</td>
<td>(mmol min$^{-1}$ g-cat.$^{-1}$)</td>
<td>(s$^{-1}$)</td>
<td>(%)</td>
<td>(-)</td>
</tr>
<tr>
<td>Rh/C</td>
<td>44.3</td>
<td>47.7</td>
<td>3.71</td>
<td>66.7</td>
<td>2.0</td>
</tr>
<tr>
<td>Rh/Al$_2$O$_3$</td>
<td>30.9</td>
<td>60.4</td>
<td>6.70</td>
<td>82.5</td>
<td>4.7</td>
</tr>
</tbody>
</table>

Reaction conditions: catalyst, 10 mg; phenol, 10.6 mmol; H$_2$, 4 MPa; temperature, 323 K; time 5 min.

- Determined by H$_2$ adsorption.
- Estimated from the rate constants listed in Table 1 and the initial amount of phenol.
- Turn-over frequency. Molecules of phenol consumed per an exposed Rh atom per unit time.
- Estimated from an equation of $k_1/(k_1 + k_2)$ and the rate constants listed in Table 1.
- Estimated from the rate constants listed in Table 1.
Fig. 17. XPS spectra of (a) Rh/C and (b) Rh/Al₂O₃.