Elevated nitrogen isotopic ratios of tropical Indian aerosols from Chennai:
Implication for the origins of aerosol nitrogen in South and Southeast Asia

Chandra Mouli Pavuluria, Kimitaka Kawamuraa,\textdagger, Eri Tachibanaa, T. Swaminathanb

aInstitute of Low Temperature Science, Hokkaido University, N19 W08, Kita-ku, Sapporo 060-0819, Japan

bDepartment of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600 036, India

\textdagger Corresponding author. Fax: +81 11 706 7142; E-mail addresses:

cmpavuluri@pop.lowtem.hokudai.ac.jp (C.M. Pavuluri), kawamura@lowtem.hokudai.ac.jp (K. Kawamura)

Atmos. Environ. 44, 3597-3604, 2010
Abstract

To better understand the origins of aerosol nitrogen, we measured concentrations of total nitrogen (TN) and its isotopic ratios (δ^{15}N) in tropical Indian aerosols (PM_{10}) collected from Chennai (13.04° N; 80.17° E) on day- and night-time basis in winter and summer 2007. We found high δ^{15}N values (+15.7 to +31.2‰) of aerosol N (0.3 - 3.8 µg m$^{-3}$), in which NH_4^+ is the major species (78%) with lesser contribution from NO_3^- (6%). Based on the comparison of δ^{15}N in Chennai aerosols with those reported for atmospheric aerosols from mid-latitudes and for the particles emitted from point sources (including a laboratory study), as well as the δ^{15}N ratios of cow-dung samples (this study), we found that the atmospheric aerosol N in Chennai has two major sources; animal excreta and bio-fuel/biomass burning from South and Southeast Asia. We demonstrate that a gas-to-particle conversion of NH_3 to NH_4HSO_4 and $(NH_4)_2SO_4$ and the subsequent exchange reaction between NH_3 and NH_4^+ are responsible for the isotopic enrichment of 15N in aerosol nitrogen.

Keywords: Nitrogen isotopic ratio, Tropical Indian aerosol, aerosol nitrogen origin, South Asia, Southeast Asia.
1. Introduction

Global biogeochemical cycles of nitrogen (N) have been modified by industrial, agricultural and other anthropogenic activities. The important N species, such as nitrogen oxides (NO$_2$ and NO$_3$, together denoted as NO$_x$) and ammonia (NH$_3$) are short-lived and are involved in several chemical reactions once they enter into the atmosphere (Olivier et al., 1998). NO$_x$ acts as an ozone (O$_3$) precursor, affecting the atmospheric oxidizing capability. NH$_3$ serves as a neutralizing agent in the atmosphere, influencing the pH of aerosols, cloud droplets and rainfalls (Olivier et al., 1998). Those gases and their reaction products can be transported long distances in the atmosphere. After the deposition, N species may enhance the productivity of lake and coastal/remote ocean waters and raise soil acidity; almost all open surface areas are now being affected by anthropogenic atmospheric N deposition (Duce et al., 2008). Thus the increased N loadings likely cause severe damage to the atmospheric environment on local, regional, and global scales (Rodhe et al., 2002; Vitousek et al., 1997), including human health effects (Townsend et al., 2003).

The emission of N species from human activities into the atmosphere continues to increase every year (Galloway et al., 2008). Fossil fuel combustion, biomass burning and animal excreta play an important role in N emission (Bouwman et al., 1997; Lee et al., 1997), and the extensive use of bio-fuels adds a new and rapidly changing dimension (Galloway et al., 2008; Oenema, 2006; Streets et al., 2003). Global anthropogenic emissions of N have significantly increased by a factor of three from 34 Tg N yr$^{-1}$ in mid-1800s (1860) to 100 Tg N yr$^{-1}$ in 1990 and are predicted to be further doubled (200 Tg N yr$^{-1}$) by 2050 (Galloway et al., 2004]. Predictions for 2030 indicate similar deposition patterns, but with a further increase over the open ocean (Dentener et al., 2006]. In particular, the N deposition of 2030 is projected to be twice that of 2000 in Southeast Asia, the Bay of Bengal, and the Arabian Sea (Duce et al., 2008).
In South and Southeast Asia, the consumption of fossil energy is highly increasing due to growing economies, and most of cooking energy (85-90%) comes from bio-fuels (dung cake, wood, and agricultural waste) and hence the potential for growing pollutant emissions in this region is large (Lelieveld et al., 2001). Notably in India, bio-fuels account for 47% of the total energy consumption (Ravindranath and Hall, 1995; TEDDY, 1997). Forest burning and the field burning of crop residues are also more intensive in this region (Heald et al., 2003; Streets et al., 2003) and they emit significant amounts of N species to the atmosphere (Levine et al., 1995; Streets et al., 2003). In addition, India’s livestock (~4% of the global livestock; Bandyopadhyay et al., 1996) is an important source of N species to the atmosphere (Misselbrook et al., 2001; Oenema and Tamminga, 2005; Yamaji et al., 2004). Conversely, an enhanced concentration of NH$_3$ has been reported over India by satellite observation (Clarisse et al., 2009). However, the sources of N in atmospheric aerosols in South and Southeast Asia are not well understood.

The atmospheric aerosol N contains both inorganic (NH_4^+ and NO_3^- are major species) and organic N produced in the atmosphere by several secondary processes (Ottley and Harrison 1992; Utsunomiya and Wakamatsu, 1996) from gaseous N species emitted from different sources. Hence, it is difficult to understand the origins of aerosol N from distributions of N species and/or chemical measurements of specific markers. However, the measurements of nitrogen isotopic ratios ($\delta^{15}\text{N}$) are helpful in assessing the origin of aerosol N, because the isotopic ratio in a particular chemical species in the atmosphere is due to the source or combination of sources from which it originates and is altered by chemical and physical processes which occur in the atmosphere (Freyer, 1978; Moore, 1977). The use of $\delta^{15}\text{N}$ as a potential tracer to investigate the origin and atmospheric processing mechanisms of N species in the atmosphere is well documented and has been used in several studies (Heaton...
et al., 1997; Kawamura et al., 2004; Kelly et al., 2005; Martinelli et al., 2002; Moore, 1977; Russell et al., 1998; Turekian et al., 1998; Widory, 2007; Yeatman et al., 2001a, 2001b).

In this study, we analyzed tropical Indian aerosols (PM$_{10}$) and cow-dung samples collected from Chennai for total nitrogen (TN) contents and nitrogen isotopic ratios (δ^{15}N) to better understand the origins of aerosol N in South and Southeast Asia, where no baseline study is available for δ^{15}N values so far. Here, we report TN and δ^{15}N values in tropical Indian aerosols and their temporal and seasonal variations. Major ionic nitrogen species were also measured in the aerosols. We discuss the origins of aerosol N in South and Southeast Asian region by comparing the δ^{15}N values in Chennai aerosols with those reported for atmospheric particles from mid-latitudes and for the particles emitted from point sources, including a laboratory study as well as the δ^{15}N found in cow-dung samples. Further, we also attempt to assess the plausible atmospheric processes responsible for the elevated δ^{15}N ratios that we found in Chennai aerosols.

2. Methods

2.1. Sampling site

The geographical features of the sampling site are described in Pavuluri et al. (2010). Briefly, the tropical mega-city Chennai is located on the southeast coast of India (13.04° N; 80.17° E) (see Figure 2). About 18.6% of the population (total: 7 million, including suburban area) are living below the standard poverty line (http://en.wikipedia.org/wiki/chennai), using bio-fuel as cooking energy that may emit significant amount of N species.

2.2. Aerosol and cow-dung sampling

The details of the aerosol (PM$_{10}$) sampling are described in Pavuluri et al. (2010). Briefly, a day- (~6:00-18:00 IST) and night-time (~18:00-6:00 IST) series of aerosol (PM$_{10}$) samples...
were collected during winter (January 23 to February 6; n=29) and summer (May 22-31; n=20) 2007 on a rooftop of the Mechanical Sciences building (~18 m above ground level) on the Indian Institute of Technology Madras (IITM) campus, Chennai, using a high volume air sampler and pre-combusted (450 °C, 4 h) quartz fiber filters. The sample filter was placed in a clean glass jar with a Teflon-lined screw cap and stored in a dark room at -20 °C prior to analysis.

Three cow-dung samples were also collected in May 2009 from Chennai; (1) dung in cow barnyard, (2) commercially available dung cake containing rice straw residue, and (3) dung pellets on roadside that were exposed to sunlight and traffic emissions for several days. The samples were packed in aluminum foil and stored in a dark room at -20 °C prior to analysis.

During the period of sampling, no rainfall event occurred, and details of the meteorology observed at the sampling site has been detailed elsewhere (Pavuluri et al., 2010).

2.3. Chemical analysis

TN contents and N isotope ratios of samples were determined using elemental analyzer (EA) (Carlo Erba NA 1500) and EA/isotope ratio mass spectrometer (IRMS) (Finnigan MAT Delta Plus), respectively (Kawamura et al. 2004; Narukawa et al., 1999). An aliquot of sample (1.4 cm diameter disc for filter sample and ca. 1 mg cow-dung) was placed in a tin cup, introduced into EA and then oxidized in a combustion column packed with CuO at 1020 °C. The derived NOx (and CO2) was introduced into the reduction column to reduce to N2 at 650 °C. The resulting gasses were then isolated on a gas chromatograph installed in the EA system and their amounts were measured with a thermal conductivity detector. N2 and CO2 gases were transferred to EA/IRMS via an interface (ConFlo II) for isotopic ratio measurement. The isotopic composition of N is calculated using the equation; $\delta^{15}N = \left[\frac{^{15}N/^{14}N_{\text{sample}}}{^{15}N/^{14}N_{\text{standard}}} - 1\right] \times 1000$. Acetanilide was used as standard to calculate TN
and δ^{15}N ratio. The analytical errors for TN and its δ^{15}N measurements based on repeated
duplicate analysis are 4% and 0.4‰, respectively.

For the analyses of ion species of interest (NH$_4^+$, NO$_3^-$ and SO$_4^{2-}$), an aliquot of filter
sample was extracted with Milli Q water under ultrasonication. The extracts were filtered
using a syringe filter (Millex-GV, 0.22 µm, Millipore), and then injected into ion
chromatograph (761 Compact IC, Metrohm) for measuring ionic species. A calibration curve
was evaluated for each sequence by the analyses of a set of authentic standards, and the
precision fell within 6%.

All the data reported here were corrected for field blanks.

3. Results and Discussion

3.1. Temporal variations in TN content and N isotopic composition

Concentrations of TN ranged from 0.3 - 3.8 µg m$^{-3}$ (av. 1.7 µg m$^{-3}$, n=49). The statistical
summary of TN is given in Table 1 for day- and night-time winter and summer aerosols and
their temporal variations are depicted in Fig. 1a. The unpaired two-tailed t-test has also been
performed to check the significance in temporal variations. TN contents were found to be
higher in winter (av. 2.1) than in summer (av. 1.1) with the exception of lower values from
January 27 to 29, except for January 29 night (Fig. 1a) and are significant (p = 1.1×10$^{-5}$).
Whilst the average TN in nighttime (2.4 µg m$^{-3}$) was higher than in daytime (1.9 µg m$^{-3}$) in
winter, and in summer it was opposite: higher in daytime (1.2 µg m$^{-3}$) than in nighttime (0.9
µg m$^{-3}$) but not significant (p >0.1). In fact, the diurnal variations were found in winter with
higher concentrations in nighttime, but an opposite trend was generally obtained in summer
(Fig. 1a).

δ^{15}N ratios were found to range from +15.7‰ to +31.2‰ (av. 23.9‰, n=49). Average
δ^{15}N was higher in daytime (25.5‰) than nighttime (23.0‰) in winter (p = 0.01). In summer,
an opposite trend was observed; higher in nighttime (av. 24.3‰) than daytime (22.2‰) although the difference is not significant (p = 0.24). As seen in Figure 1b, a clear diurnal trend of δ^{15}N was observed with higher values in daytime during winter, however, during summer higher δ^{15}N values were often obtained in nighttime. In particular, we detected a clear diurnal trend in January 23 to 27 and February 1-6 (Fig. 1b). These temporal variations in δ^{15}N suggest that they are controlled by several parameters including changes in air mass origins, their transport, contribution of local source and diurnal photochemical transformations.

3.2. Backward air mass trajectory analysis

In order to identify the source regions, 10-day backward air mass trajectories were computed during the sampling period using HYSPLIT model of NOAA as described in Pavuluri et al. (2010). Briefly, the results showed three major pathways (see Fig. 2). In winter, the air masses that arrived in Chennai originated mostly from the Middle East and/or the Indian mainland in January and from Southeast Asia in February passing through the Bay of Bengal, except for few cases. However, in summer the air masses mostly originated from the Arabian Sea and/or the Northern Indian Ocean passing over South India. Hence, hereafter we classify the results into three categories of season; early winter (January 23-28), late winter (January 29 to February 6) and summer (May 22-31). However, the results of January 31 night and February 1 fall in the category of early winter. Meanwhile, the results of January 29 day, 30 night and 31 day and February 2 day were not included in either categories and handled as such, because their air masses originated from mixed regions.

3.3. Seasonal variation in TN and δ^{15}N
Fig. 3a and b show the box-and-whisker plots of TN and δ^{15}N values, respectively, for three seasons. The average of TN found to be higher in late winter (av. 2.5 µg m⁻³) followed by early winter (av. 2.0 µg m⁻³) and summer (av. 1.1 µg m⁻³), although the ranges (0.6-3.8 µg m⁻³, 1.7-3.5 µg m⁻³, and 0.3-2.8 µg m⁻³ in early- and late-winter, and summer, respectively) are similar in the three seasons. Interestingly, the quartiles of TN were also found to be higher in late winter followed by early winter and summer (Fig. 3a). However, the day- and nighttime variations in any season are not significant (p ≥ 0.35).

The seasonal changes in TN are highly consistent with the shifts observed in the region of air masses origin from season to season (Fig. 2). The air masses originated from the Middle East and the North Indian subcontinent in early winter and Southeast Asia in late winter might have been enriched with reactive N species emitted from biomass burning, livestock and agricultural activity (Oenema, 2006; Olivier et al., 1998). The air masses that originated from the North Indian Ocean and the Arabian Sea over the South Indian subcontinent in summer probably did not become enriched with reactive N species because the major source region is only the South Indian subcontinent, and the atmospheric N input from ocean is minute (Quinn et al., 1988), except from ship exhausts (Sinha et al., 2003; Večeřa et al., 2008).

Whereas, the range and average of δ^{15}N in early winter (range: 18.0-27.8‰; av. 24.1‰) and late winter (range: 22.6-26.6‰; av. 24.8‰) are comparable although their quartiles and whiskers are slightly differ with each other (Fig. 3b). The average δ^{15}N in summer (23.2‰) was also close to those observed in early- and late-winter, and interestingly, the quartiles are highly comparable to early winter (Fig. 3b). But, a significant diversity was detected in the range of δ^{15}N during summer (15.7-31.2‰) compared to early- and late-winter. Moreover, δ^{15}N found to be higher in daytime than nighttime during both early- (IQR 25.6-27.6‰; av. 25.6‰ and IQR 20.0-25.3‰; av. 22.8‰, respectively) and late-winter (IQR 25.9-26.5‰; av.
26.0‰ and IQR 23.1-24.2‰; av. 23.7, respectively), but they are significant (p = 0.00) only in late winter. As stated earlier, an opposite trend; higher in nighttime and lower in daytime, was observed in summer (Table 1).

The comparable seasonal distributions of δ^{15}N indicate that the major source(s) of N in Chennai aerosols might be the same or similar in all seasons. Whilst, the day- and nighttime variations observed in δ^{15}N during each season can be attributed to local meteorology impact; land-sea breeze circulation (Pavuluri et al., 2010). In early- and late-winter, daytime, the aged aerosols those enriched with 15N by atmospheric processes during long-range transport might contributed significantly. But in nighttime, local air masses aloft by land breeze might cause a decrease in δ^{15}N values by mixing with aged air masses. Whereas in summer, it is opposite; in daytime, the contribution of aged but clean air masses arrived from Oceanic region is high, those are not enriched well with 15N. But in nighttime, again the contribution of local air masses (enriched with biomass/biofuel burning and/or other emissions), those enriched with 15N compared to oceanic air masses, might be significant and cause to increase the δ^{15}N values.

Thus the seasonal distributions of TN and δ^{15}N are highly consistent with the type of source regions from where the air masses arrived in Chennai during each season. The diurnal distributions of δ^{15}N in each season clearly indicate the influence of mixing of local and aged air masses due to local meteorological conditions. In addition, the significance observed in δ^{15}N day- and night-time variations, in particular, during late winter may give further insights on the influence of meteorological conditions, may be effect of temperature, on atmospheric processes of N species as discussed in section 3.6.

Interestingly, δ^{15}N and TN showed a weak positive ($r^2 = 0.20$) and negative ($r^2 = 0.14$) correlation in early- and late winter, respectively, but no correlation ($r^2 = 0.02$) was found in summer (see Fig. 4). Moreover, minimum (15.7‰) and maximum (31.2‰) δ^{15}N values were
observed only when TN loading was <1 µg m$^{-3}$ (Fig. 1). These results suggest that δ^{15}N depends mainly on type of source(s) and atmospheric processes (Freyer, 1978; Moore, 1977) but not on atmospheric loading of aerosol N. In Chennai aerosols, NH$_4^+$ is the a major component of TN as discussed in section 3.6, atmospheric concentrations of NH$_4^+$ are associated with the δ^{15}N ratios of aerosol N. It is likely that the source of N species and their exchange reactions between gas (NH$_3$) and particle (NH$_4^+$) may play an important role in controlling the δ^{15}N ratios in atmospheric aerosol N.

3.4. Comparison of δ^{15}N ratios in Chennai aerosols with those from mid-latitudes

Table 2 presents the ranges and/or average of δ^{15}N ratios observed in Chennai aerosols, together with those reported previously for atmospheric aerosols from mid-latitudes and Brazil. Whilst, δ^{15}N ratios reported for the particles emitted from point sources, located in mid-latitudes, and a laboratory study of biomass burning as well as those observed in cow-dung samples collected from Chennai are depicted in Fig. 5. The particles collected from different kinds of animal barnyards were greatly enriched in 15N with the δ^{15}N ratios ranging from 10‰ to 21.0‰ (Fig. 5). The particles emitted during the controlled burning of biomass were also enriched in 15N, with variations of δ^{15}N between 2.0‰ and 22.7‰ for different C$_3$ and C$_4$ plant species (Fig. 5). In contrast, the particles emitted from the combustion of fossil fuels such as unleaded gasoline, diesel, fuel oil and coal showed a depletion in 15N with δ^{15}N ratios between -19.4‰ and +5.4‰. However, the δ^{15}N of particles emitted from natural gas combustion ranges from +3.0 to +15.4‰ (Fig. 5).

The aerosols from Piracicaba and the Amazon Basin, Brazil, showed δ^{15}N values ranging from 8.3‰ to 18.7‰ (Table 2), where a significant contribution from biomass (C$_3$ and C$_4$ plants) burning was expected (Martinelli et al., 2002). In other urban locations where fossil fuel combustion was expected as a dominant source, δ^{15}N ranged from -15‰ to +15.9‰.
In contrast, recent measurements of aerosols in Jeju Island, Korea, showed a significant enrichment in 15N with δ^{15}N values of 6.8‰ to 26.9‰ (Table 2), and attributed to significant atmospheric processing of N species, mainly emitted from China, during long-range transport (Kundu et al., 2009, submitted). As we expected, δ^{15}N values in Chennai aerosols are higher (av. 23.9‰) than those (-15.0‰ to 15.9‰) (Table 2) reported for urban locations from mid-latitudes where fossil fuel combustion was expected as a dominant source (Kelly et al., 2005; Widory, 2007; Yeatman et al., 2001a). But the lower ends observed in early winter (18.0‰) and summer (15.7‰) in Chennai aerosols are comparable to those (8.3-18.7‰) (Table 2) reported from Brazil where a significant contribution from biomass burning was expected (Martinelli et al., 2002).

Interestingly, the average values of δ^{15}N in all three seasons (24.1‰, 24.8‰, and 23.3‰) are comparable to those reported for point sources including particles emitted from animal barnyards (range 10.0-21.0‰) and biomass burning (different C$_3$ and C$_4$ plant species) (2.0-22.7‰) (Fig. 5), although a few samples from Chennai showed higher ratios (max. 31.2‰). Further, the comparison of δ^{15}N in Chennai aerosols with those reported for the particles emitted from animal barnyards is consistent, although temperature conditions are different, as seen from δ^{15}N found in cow-dung samples collected in Chennai (Fig. 5). In contrast, even the lowest δ^{15}N (15.7 ‰) observed in Chennai aerosols is higher than those (-19.4‰ to +15.4‰) for the particles emitted from the combustion of fossil fuels such as unleaded gasoline, diesel, fuel oil and coal, including natural gas (Fig. 5). These comparisons, together with air mass trajectories, clearly suggest that animal excreta and bio-fuel/biomass burning are two major sources of atmospheric N species in the South and Southeast Asian region.

3.5. TN content and N isotopic composition of cow-dung cake and comparison to Chennai aerosols
As noted before, the use of bio-fuel (in particular dung cake) for cooking energy is very common in South and Southeast Asia, which may add a significant amount of N to the atmosphere. In order to confirm this idea, we measured the $\delta^{15}\text{N}$ in three cow-dung samples collected in Chennai. Their TN contents ranged from 1.1-2.2% and their $\delta^{15}\text{N}$ ratios were 13.4-15.5‰. The dung cake sample collected from the commercial vendor showed lower $\delta^{15}\text{N}$ (13.4‰) than that collected on the roadside (15.5‰). Another dung sample collected directly from a cow barnyard showed a medium (14.1‰), although it showed lower TN content (1.1 %) than in dung cake (1.5 %). These results suggest that the cow-dung is highly enriched in ^{15}N, probably due to microbial processes in the animal guts. The highest $\delta^{15}\text{N}$ value detected in the roadside sample may suggest that emission of NH$_3$ occurs during microbial degradation of the nitrogen compounds of cow dung in the environment, which can cause higher $\delta^{15}\text{N}$ ratios in the remaining cow dung.

The $\delta^{15}\text{N}$ values found in cow-dung samples (av. 14.3‰) are comparable to the lower limit obtained in the Chennai aerosols (Table 1). However, as evidenced from a laboratory study of biomass burning (Turekian et al., 1998), particles emitted from combustion could be enriched with the heavier isotope (^{15}N) compared to that of the source substance due to the partitioning between gas and particles, which may occur between emitted gaseous nitrogen (e.g., NH$_3$) and particulate organic-nitrogen compounds. Turekian et al. (1998) reported an average $\delta^{15}\text{N}$ increase of 6.6‰ (range, -1.3‰ to 13.1‰) for aerosol particles collected during the laboratory burning of plant leaves compared to the source vegetation. Hence if we assume that the $\delta^{15}\text{N}$ in particles emitted from the combustion of dung-cake may be enriched in ^{15}N by ~7‰ during combustion, then the resulting $\delta^{15}\text{N}$ (approximately 22‰) will become nearer to the average values of $\delta^{15}\text{N}$ (23.9‰) that we found in the Chennai aerosols.

In fact, the spatial distribution of dung-cake consumption and livestock emission (e.g. CH$_4$) are higher in Gangetic plains followed by southern India and southeast costal belt of
India (Garg et al., 2001; Reddy and Venkataraman, 2002). Interestingly, the expected δ^{15}N (ca. 22‰) in the particles emitted from dung-cake combustion is very close to the average δ^{15}N found in Chennai aerosols in summer (23.3‰) followed by early- (24.1‰) and late-winter (24.8‰), and the observed closure is highly consistent with strength of N species emission of source region from where the air masses were arrived in Chennai during each season (Fig. 2). Further a little enrichment of 15N in early- and late winter probably due to significant contribution of biomass burning emissions and/or atmospheric processing of N species during long-range transport.

3.6. Contributions of N species to TN, sources and interpretation of plausible atmospheric processes responsible for 15N enrichment in tropical Indian aerosols

The statistical summary of inorganic (NH$_4^+$-N plus NO$_3^-$-N) and organic (TN minus Inorg-N) N for day- and night-time in winter and summer was given in Table 1. Interestingly, the Org-N was observed only during winter but not in summer, and the average Org-N in early- (0.36±0.14 µg m$^{-3}$) and late-winter (0.31±0.12 µg m$^{-3}$) are comparable. As stated earlier, during early- and late-winter, air masses were come from the South and Southeast Asian region where biomass burning, including forest fires, are higher (Streets et al., 2003). During summer, the air masses were come from the oceanic region passing over southern part of Indian subcontinent where the consumption of biofuel, in particular cow-dung, is higher (Reddy and Venkataraman, 2002). These results indicate that Org-N might contribute from biomass burning emissions but not from cow-dung combustion, and could have influenced the δ^{15}N of TN in Chennai aerosols during winter.

Further it is clear from linear regression plot drawn between NH$_4^+$-N and TN and NO$_3^-$-N and TN that NH$_4^+$ is the main nitrogen species (78% of TN) in Chennai aerosols, whereas NO$_3^-$ contributes only 6% of TN (see Fig. 6). Oenema and Tamminga (2005) estimated that
The emitted NH$_3$ may be less enriched with 15N (Turekian et al., 1998) and should react with acids in the air to form aerosol particles, probably (NH$_4$)$_2$SO$_4$ (Ottley and Harrison, 1992). The reaction of NH$_3$ with H$_2$SO$_4$ is unidirectional (kinetic) at the onset, favoring lighter isotope (14N) in particles, but stoichiometric equilibrium is attained in several minutes (ca. 6 min), in which NH$_3$–NH$_4^+$ exchange (equilibrium) reaction occurs (Heaton et al., 1997). Under equilibrium conditions, NH$_4^+$ stabilizes rapidly with δ^{15}N values being higher than that of NH$_3$, where the isotopic enrichment factor ($\varepsilon_{\text{NH}_4-\text{NH}_3}$) was estimated to be $+33\%_o$ (Heaton et al., 1997). Hayasaka et al. (2004) also observed higher δ^{15}N values of aerosol NH$_4^+$ (av. $+22.1\%_o$) than that of gaseous NH$_3$ (av. $-8.3\%_o$) in the atmosphere at the Maki monitoring station, Niigata, Japan.

In fact, Chennai aerosols are rich in SO$_4^{2-}$ (av. 6.9 µg m$^{-3}$, n=49), and average molar ratios of SO$_4^{2-}$/ NH$_4^+$ were found to be 1.3, 0.7 and 0.6 in early- and late-winter and summer, respectively. The enrichment of 15N in TN was found to correlate positively with SO$_4^{2-}$, although it is weak in early- ($r^2 = 0.31$) and late winter (see Fig. 7a) and negligible in summer ($r^2 = 0.04$). As discussed in Heaton et al. (1997), enrichment of 15N may be enhanced when NH$_3$ is in stoichiometric equilibrium with (NH$_4$)$_2$SO$_4$. However, the lesser SO$_4^{2-}$/ NH$_4^+$ molar ratios and weak/negligible correlation between 15N of TN and SO$_4^{2-}$ suggest that an enrichment of 15N in aerosols in the stoichiometric equilibrium for the NH$_3$–NH$_4^+$ exchange
reaction may be more efficient with NH$_4$HSO$_4$ rather than \((\text{NH}_4)_2\text{SO}_4\). Alternatively, another acid group, i.e., organic acids, may involve with the stoichiometric equilibrium by forming RCOONH$_4$.

Because, sulfate aerosol become more acidic than NH$_4$HSO$_4$ and accumulate when the NH$_3$ source strength is insufficient to maintain an ambient NH$_3$ partial pressure greater than the equilibrium vapor pressure of NH$_3$ over the partially neutralized H$_2$SO$_4$ droplet (Huntzicker et al., 1980). On the other hand, the organic compounds such as fatty acids are known to form surface films and inhibit the neutralization of H$_2$SO$_4$ aerosol by NH$_3$ (Junge and Scheich, 1969), and thus suppress the stoichiometric equilibrium between NH$_3$–NH$_4^+$.

In fact, we found high concentrations (up to 1440 ng m$^{-3}$) of oxalic acid and other dicarboxylic acids in Chennai aerosol samples (Pavuluri et al., 2010). Our hypothesis is also corroborated by seasonal variations observed in correlations between δ^{15}N and molar ratios SO$_4^{2-}$/NH$_4^+$ and ambient temperature as discussed below.

First, we found that δ^{15}N values correlate well ($r^2 = 0.81$) with molar ratios of SO$_4^{2-}$/NH$_4^+$ in late winter (see Fig. 7b), but weak ($r^2 = 0.34$) in early winter and not in summer. In late winter, air masses arrived from Southeast Asian region, where biomass burning occurs more frequently than in South Asia (Streets et al., 2003). Streets et al. (2003) estimated that amounts of vegetation burned in Southeast Asia (331 Tg dry matter) are almost twice those of South Asia (178 Tg), and the subsequent emissions of NH$_3$ in Southeast Asia (416 Gg) are also twice those of South Asia (229 Gg). Further, biomass-burning emissions (e.g., CO) are more enhanced in February to April than in January and May (Streets et al., 2003). Conversely, a larger contribution of biomass burning emissions to Chennai aerosols in late winter is further confirmed by higher concentrations of levoglucosan (an excellent biomass burning tracer) in late winter (av. 0.17 µg m$^{-3}$) than early winter (av. 0.07 µg m$^{-3}$) and summer (av. 0.11 µg m$^{-3}$) (Fu et al., 2009).
Secondly, we found a good correlation between δ^{15}N values and ambient temperature in late winter (Figure 5c) although no correlation exists between these parameters in early winter and summer. This relation may suggest that the gas-to-particle ($\text{NH}_3 \rightarrow \text{NH}_4^+$) conversion is intensified with increasing temperature, and may reach to the equilibrium quickly causing a significant enrichment of 15N in the particles during long-range atmospheric transport. However, the effect of ambient temperature on atmospheric processing of aerosol N may be relatively weakened when the temperatures are high in early winter (range: 16.5-32.1; av. 24.8 °C) and summer (range: 25.3-36.1; av. 31.8 °C) compared to late winter (range: 18.4-24.5; av. 21.2 °C). In fact, the effective separation factors, which are defined by $(^{15}\text{N}/^{14}\text{N})_{\text{soln}}/(^{15}\text{N}/^{14}\text{N})_{\text{g}}$ for the ammonia-ammonium carbonate system from single stage equilibrations, were reported to be 1.015, 1.019, 1.021 and 1.022 for the temperatures of 15.6, 25.8, 35.9 and 44.3 °C under the atmospheric pressure, respectively (Begun et al., 1956).

Further as discussed in Utsunomiya and Wakamatsu (1996), it is known to dissociate the particulate NH$_4$NO$_3$ into its precursor gases NH$_3$ and HNO$_3$ at high atmospheric temperature, but the fate of isotopic fractionation is not known. Based on our observations, we presume that 15N may preferably associate with HNO$_3$ and might have also been caused depletion in δ^{15}N of TN during high ambient temperature conditions, although the content of NO$_3^-$-N is minor in Chennai aerosols as noted before.

It is clear from these observations that amounts of the fine particles emitted and enriched with 15N (Turekian et al., 1998) may be enhanced in late winter compared to two other seasons. Potentially high δ^{15}N values of organic nitrogen in Chennai aerosols could also contribute to the higher ratios, although its fraction is rather minor (ca. 17% of TN). Further, we believe that NH$_3$–NH$_4^+$ exchange reactions are proportionally enhanced with an increase...
in the temperature when ambient temperatures (i.e., 15-25 °C) are moderate but such trend is not effective on further increase in the temperature.

Thus, this study becomes a piece of evidence for the origins of aerosol N in South and Southeast Asia, and also shows that availability of acid species (e.g., H₂SO₄) and the emission rate of NH₃ from animal barnyards, bio-fuel combustion and biomass burning play a vital role in ¹⁵N enrichment in the atmosphere.

However, very high δ¹⁵N values (29.8‰ and 31.2‰) observed in May 23 day- and nighttime samples, although TN was found to be only <1 µg m⁻³ in both the samples, are much higher than those of expected potential sources. It indicates that the contributions from other anthropogenic sources such as industrial activities cannot be ignored in this region. Because NH₃ is used as raw material for multiple products but the fate of reactive N in industrial activities is unclear (Galloway et al., 2008), and also the NH₃ emission from fertilizer manufacturing and other industrial units is significant (Sutton et al., 2000). Recently, Clarisse et al. (2009) reported elevated NH₃ column concentrations (up to 7 mg m⁻²) over India by satellite observations. Hence, it is a subject of further research in future.

Finally, lower δ¹⁵N values observed in nighttime particularly in winter (Fig. 1) are possibly caused by local NOₓ emissions from fossil fuel combustion whose δ¹⁵N values are significantly low as described above. Local or regional emissions from bio-fuel burning may contribute to lower the isotopic ratios of aerosols. In both cases, land breeze at night should enhance a transport of the anthropogenic particulate nitrogen over the coastal city Chennai.

4. Summary and Conclusion

The aerosol TN contents were determined to be high (up to 3.8 µg m⁻³) in the tropical Indian aerosols from Chennai, but they did not show a systematic diurnal variation. We found very high δ¹⁵N values in the aerosols (max. 31.2‰), which are comparable to those reported...
for particles emitted from animal barnyards and biomass burning. The measured δ^{15}N values in cow-dung samples were also equivalent to the lower range of δ^{15}N ratios of Chennai aerosols. The assumed δ^{15}N values from the combustion of dung-cake based on a laboratory study conducted for vegetation burning are close to the average δ^{15}N ratio in Chennai. We also found that NH$_4^+$ is the major species (78%) of TN, which is probably produced by gas-to-particle conversion of NH$_3$ in the atmosphere. The equilibrium NH$_3$-NH$_4^+$ exchange reaction probably play the most important role in the enrichment of 15N in TN. Hence, we conclude that animal excreta, bio-fuel and biomass burning are the important sources of aerosol N in South and Southeast Asia.

Acknowledgements. This study was in part supported by a Grant-in-Aid No. 19204055 from the Japan Society for the Promotion of Science (JSPS), and the Environment Research and Technology Development Fund (B-0903) of the Ministry of the Environment, Japan. C. M. Pavuluri appreciates the financial support of a JSPS Fellowship. We thank Rahul A. Damodar and K. Jagannathan for their help in sampling. P. M. Meyers and Y. Miyazaki are acknowledged for their critical reading and comments.
References

Fig. 1.
Fig. 2

![Graph showing winter and summer TN and δ^15N variations](image)

Winter

- TN (µg m^-3)
- δ^15N (‰)

Summer

Fig. 3.
Fig. 4.

- *Unleaded gasoline*
- *Diesel*
- *Natural gas*
- *Fuel oil*
- *Coal*
- *Waste incinerations*
- *C₃ plant (Eucalyptus)*
- *C₃ plant Colospherum*
- *C₄ plants*
- **Cow barnyard, UK**
- ***Cow barnyard, UK***
- **Pig barnyard, UK**
- ***Pig barnyard, UK***
- **Chicken poultry, UK**
- ***Chicken poultry, UK***
- *Cow dung (un-burnt)*
- Chennai aerosols
Fig. 5.

\[y = 0.78x + 0.02; \quad r^2 = 0.91 \]

\[y = 0.05x + 0.08; \quad r^2 = 0.24 \]
Fig. 6.
Figure captions

Fig. 1. A map of South and Southeast Asia with sampling location Chennai (13.04°N; 80.17°E) on the southeast coast of India together with plots of air mass back trajectories arriving at 500 m above Chennai in winter (January 23 to February 6) and summer (May 22-31) 2007, showing three major pathways reflecting early winter (January 23-29), late winter (January 30 to February 6) and summer (May 22-31).

Fig. 2. Temporal variations in the (a) concentration of total nitrogen (TN) and (b) its stable isotope ratios (δ15N) in tropical Indian aerosol (PM10) samples collected on day- (d; closed circle) and night-time (n; open circle) bases in winter and summer 2007 from Chennai.

Fig. 3. Box-and-whisker plot of seasonal variations in (a) total nitrogen (TN) and (b) its stable isotope ratios (δ15N) in tropical Indian aerosol (PM10) samples collected on day- and night-time basis in early winter, late winter and summer from Chennai. Lower and upper ends of box and the lower and upper bars show the quartiles at 25% and 75% and the whiskers at 10% and 90%, respectively, and the cross bar in the box and open circles show the median and outliers, respectively.

Fig. 4. Range or mean nitrogen isotope ratios (δ15N) in the particles emitted from point sources in different locations over the world, including a laboratory study, and in cow-dung (source substance) and aerosol samples collected at Chennai, India. *, ** and *** show form of nitrogen; TN, NH4+ and NO3−, respectively. aWidory, 2007; bTurekian et al., 1998; cYeatman et al., 2001a; dthis study.
Fig. 5. Linear relations of ammonium nitrogen (NH$_4^+$-N) and nitrate nitrogen (NO$_3^-$-N) to total aerosol nitrogen (TN) in tropical Indian aerosol (PM$_{10}$) samples collected from Chennai on day- and night-time bases during winter and summer 2007.

Fig. 6. Correlation plots of δ^{15}N values ($\%$) as a function of (a) SO$_4^{2-}$ (μg m$^{-3}$), (b) molar ratios of NH$_4^+$ to SO$_4^{2-}$, and (c) ambient temperature for the tropical Indian aerosol (PM$_{10}$) samples collected from Chennai during late winter 2007.
Table 1. Concentrations of total nitrogen (TN) and its isotope ratios (δ^{15}N) in tropical Indian aerosols (PM$_{10}$) collected from Chennai on day- and night-time basis in winter (January 23 to February 6) and in summer (May 22-31) 2007.

<table>
<thead>
<tr>
<th></th>
<th>Winter</th>
<th></th>
<th>Summer</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Daytime</td>
<td>Nighttime</td>
<td>Daytime</td>
<td>Nighttime</td>
</tr>
<tr>
<td>TN ($\mu g \text{ m}^{-3}$)</td>
<td>0.9–2.5</td>
<td>1.6–2.3</td>
<td>1.6</td>
<td>1.9</td>
</tr>
<tr>
<td>δ^{15}N (%)</td>
<td>18.0–27.8</td>
<td>25.0–26.9</td>
<td>25.0</td>
<td>25.5</td>
</tr>
<tr>
<td>Inorg-N ($\mu g \text{ m}^{-3}$)</td>
<td>0.58–1.3</td>
<td>1.3–</td>
<td>1.3</td>
<td>1.6</td>
</tr>
<tr>
<td>Org-N ($\mu g \text{ m}^{-3}$)</td>
<td>0.08–0.23</td>
<td>0.23–0.3</td>
<td>0.3</td>
<td>0.15</td>
</tr>
</tbody>
</table>

IQR = Inter Quartile Range; Med. = Median; Av. = Average; SD = Standard Deviation.
Table 2. Nitrogen isotope ratios (δ^{15}N) in atmospheric aerosols collected at different locations over the world.

<table>
<thead>
<tr>
<th>Location/Source</th>
<th>Form of N</th>
<th>δ^{15}N ratios (%)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Range</td>
<td>Av.±SD</td>
</tr>
<tr>
<td>Chennai, India</td>
<td>TN</td>
<td>15.7 to 31.2</td>
<td>23.9±3.3</td>
</tr>
<tr>
<td>Jeju Island, Korea</td>
<td>TN</td>
<td>-3.7 to 12.4</td>
<td></td>
</tr>
<tr>
<td>Jeju Island, Korea</td>
<td>TN</td>
<td>6.8 to 26.9</td>
<td></td>
</tr>
<tr>
<td>Piracicaba, Brazil</td>
<td>TN</td>
<td>9.0 to 18.7</td>
<td>10.6</td>
</tr>
<tr>
<td>Amazon Basin, Brazil</td>
<td>TN</td>
<td>8.37 to 15.45</td>
<td>11.5</td>
</tr>
<tr>
<td>Paris, France</td>
<td>TN</td>
<td>5.3 to 15.9</td>
<td></td>
</tr>
<tr>
<td>East Anglia, UK</td>
<td>Org. N</td>
<td>-15.0 to 12.5</td>
<td></td>
</tr>
<tr>
<td>Waybourne, UK</td>
<td>NH$_4^+$</td>
<td>6±6</td>
<td></td>
</tr>
<tr>
<td>"</td>
<td>NO$_3^-$</td>
<td>7±6</td>
<td></td>
</tr>
<tr>
<td>Mace Head, Ireland</td>
<td>NH$_4^+$</td>
<td>-9±8</td>
<td></td>
</tr>
<tr>
<td>"</td>
<td>NO$_3^-$</td>
<td>-1±3</td>
<td></td>
</tr>
<tr>
<td>Atlantic Ocean</td>
<td>NH$_4^+$</td>
<td>-11</td>
<td></td>
</tr>
<tr>
<td>"</td>
<td>NO$_3^-$</td>
<td>-1±3</td>
<td></td>
</tr>
</tbody>
</table>

Av. = Average; SD = Standard Deviation