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A Uniqueness Theorem and the Myrberg

Phenomenon for a Zalcman Domain

Mikihiro HAYASHI, Yasuyuki KOBAYASHI and Mitsuru NAKAI∗

Abstract

Let R = ∆0 \ ∪n∆n be a Zalcman domain (or L-domain), where ∆0 :
0 < |z| < 1, ∆n : |z − cn| ≤ rn, cn ↘ 0, ∆n ⊂ ∆0 and ∆n ∩ ∆m =

φ (n ̸= m). For an unlimited two-sheeted covering ϕ : ∆̃0 → ∆0 with the

branch points {ϕ−1(cn)}, set R̃ = ϕ−1(R). In the case cn = 2−n, it was
proved that if a uniqueness theorem is valid for H∞(R) at z = 0, then the

Myrberg phenomenon H∞(R) ◦ ϕ = H∞(R̃) occurs. One might suspect
that the converse also holds. In this paper, contrary to this intuition, we
show that the converse of this previous result is not true. In addition, we
generalize the previous result for more general sequences {cn}. By this
generalization we can even partly simplify the previous proof.

1 Introduction

Let ∆(c, r) denote the open disc in the complex plane C with radius r > 0
centered at c, and set ∆ = ∆(0, 1) and ∆0 = ∆ \ {0}. For a strictly decreasing
sequence {cn}∞n=1 with 0 < cn < 1 converging to 0 and a sequence {rn}∞n=1 of
positive numbers satisfying

cn+1 + rn+1 < cn − rn (n ∈ N), c1 + r1 < 1, (1.1)

where N is the set of positive integers, we consider the domain

R := R(cn, rn) := ∆0 \
∞⋃

n=1

∆(cn, rn) . (1.2)

A domain of this form is called a Zalcman domain (or L-domain according to
[7]). The condition (1.1) says that the closed discs ∆(cn, rn) are contained in
∆0 and mutually disjoint.

∗To complete the present work the first and second (third, resp.) named authors were
supported in part by Grant-in-Aid for Scientific Reseach, No. 10304010 (10640190, 11640187,
resp.), Japanese Ministry of Education, Science and Culture.
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We denote by H∞(R) the Banach space of bounded holomorphic functions
f on R equipped with the supremum norm ∥f∥∞. Following [3], we say that
the uniqueness theorem is valid for H∞(R(cn, rn)) at z = 0 when the following
implication holds; if f ∈ H∞(R(cn, rn)) satisfies the condition

lim
z→0,z<0

f (m)(z) = 0 (m = 0, 1, · · ·) ,

then f ≡ 0.
We consider an unlimited two-sheeted covering ϕ : ∆̃0 → ∆0 with the branch

points {ϕ−1(cn)}, and write W̃ = ϕ−1(W ) for W ⊂ ∆0. We say that the
Myrberg phenomenon occurs for the covering surface (W̃ ,W,ϕ) if we have

H∞(W̃ ) = H∞(W ) ◦ ϕ . (1.3)

In his celebrated paper [6], Myrberg showed that (1.3) holds for (∆̃0,∆0, ϕ). His
proof goes as follows. For each f ∈ H∞(∆̃0), define bounded analytic functions
g and h by g(z) = (f(z+) − f(z−))2 and h(z) = (f(z+) + f(z−))/2, where
ϕ−1(z) = {z+, z−}. Since z+ = z− at a branch point of ϕ, g(cn) = 0 for all n.
Then, g ≡ 0 by the classical uniqueness theorem, and hence, h ◦ ϕ = f .

We are particularly interested in the case R = R(cn, rn), which gives the
simplest example of plane domains of infinite connectivity. Although the cover-
ing surface (R̃, R, ϕ) has no branch points, the uniqueness theorem is valid for
H∞(R) at z = 0 and the Myrberg phenomenon occurs for (R̃, R, ϕ) for a kind
of Zalcman domains R (cf. [2], [3]; also, [4], [5]).

In this paper we are concerned with the following result [3](Proposition 3.1,
Theorem 4.1).

Theorem Let R = R(2−n, 2−nN(n)). Suppose that the uniqueness theorem is
valid for H∞(R) at z = 0. Then,

(A) lim
n→∞

N(n) = ∞; and

(B) the Myrberg phenomenon H∞(R) ◦ ϕ = H∞(R̃) occurs.

We shall generalize this theorem for Zalcman domains R = R(cn, c
N(n)
n )

under the condition
lim sup

n→∞

cn+1

cn
< 1 . (1.4)

With this generalization, we can simplify an argument in the previous proof
of the part (A). There naturally occured a guess when the above theorem was
obtained that the uniqueness theorem and the Myrberg phenomenon are in fact
equivalent. Contrary to this expectation, we shall show that the converse of the
part (B), including in the case of the above generalization, is not true; namely,
the Myrberg phenomenon unfortunately does not imply the uniqueness theorem.
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In § 2, the next section, we shall give a necessary and sufficient condition in
order that a particular holomorphic function on a Zalcman domain R(cn, rn) is
bounded. In § 3, we shall examine this necessary and sufficient condition from
the point of view how a sequence {rn} depends on a sequence {cn}. In § 4, we
shall generalize the part (A) of the above theorem. In § 5, the final section, we
shall prove that the converse of the part (B) is false by constructing an example.
The method used in this construction can be applied to any unlimited two-
sheeted covering (ϕ, D̃,D) of an arbitrary plane domain D with a nonconstant
bounded holomolphic function, which we shall mention at the end of the section.

2 A bounded holomorphic function on R(cn, rn)

2.1

In this section we give a necessary and sufficient condition in order that the
following function

p(z) =
∞∏

n=1

z

z − cn
=

∞∏
n=1

(
1 +

cn

z − cn

)
(2.1)

is bounded on a Zalcman domain R = R(cn, rn) satisfying (1.4).
Suppose n ≥ m and |z| ≥ cm−1. We have∣∣∣∣ cn

z − cn

∣∣∣∣ ≤ cn

cm−1 − cm
.

Assumption (1.4) implies that
∑∞

n=m cn < ∞. Thus, p is meromorphic on
C \ {0} and holomorphic on R \ {0}, where C = C∪{∞} denotes the Riemann
sphere.

Now, we estimate the bound of |p| on R(cn, rn). For simplicity, we denote
∆n = ∆(cn, rn) and R = R(cn, rn). Since p is holomorphic on R \ {0},

Mn := max
z∈∂∆n

|p(z)| (2.2)

is finite for each n ∈ N. We will describe supz∈R |p(z)| with respect to the
sequence {Mn}∞n=1. Consider the maximum value of |p| on the circle γn = {z ∈
C : |z| = cn − rn}. Setting qm(z) = cm/(z − cm), p(z) =

∏
m∈N(1 + qm(z)).

For each factor 1 + qm(z) we see that

max
z∈γn

|1 + qm(z)| = max
z∈γn

∣∣∣∣ z

z − cm

∣∣∣∣ =
cn − rn

minz∈γn
|z − cm|

=
cn − rn

|cn − rn − cm|
= |1 + qm(cn − rn)| .
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Since γn ∩ ∂∆n = {cn − rn} (one point set), we have

max
z∈γn

|p(z)| = |p(cn − rn)| ≤ Mn = max
z∈∂∆n

|p(z)| . (2.3)

Set
Rn = R ∩ {z ∈ C : |z| > cn − rn} ,

R′
n = {z ∈ C : |z| > cn − rn} \

n⋃
k=1

∆k .

Then, Rn ⊂ R′
n and the function p is holomorphic on R′

n. By (2.2) and (2.3),
it follows that

sup
z∈Rn

|p(z)| = sup
z∈R′

n

|p(z)| = max{M1, . . . ,Mn} .

Hence we have

sup
z∈R

|p(z)| = sup
n∈N

Mn . (2.4)

2.2

Also, we need the follwing simple lemma.

Lemma 2.1 Let {En}n∈N be a family of subsets of N and {δm,n : n ∈ N,m ∈
En} be a set of positive numbers. If supn∈N

∑
m∈En

δm,n < ∞, then

sup
n∈N

∏
m∈En

(1 + δm,n) < ∞ .

Proof. Since log(1 + x) < x for x > 0, we have∑
m∈En

log(1 + δm,n) ≤
∑

m∈En

δm,n .

Therefore
sup
n∈N

∏
m∈En

(1 + δm,n) ≤ exp( sup
n∈N

∑
m∈En

δm,n) < ∞ .

2

2.3

We now prove the main theorem of this section.
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Theorem 2.1 Let {cn}∞n=1 and {rn}∞n=1 be sequences satisfying (1.1) and (1.4).
The holomorphic function p is bounded on R(cn, rn) if and only if

sup
n∈N

cn
n

c1 · · · cn−1rn
< ∞ . (2.5)

Proof. (The “only if” part) Set ∆n = ∆(cn, rn). For z ∈ ∂∆n

log |p(z)| =
∑

m∈N\{n}

log
∣∣∣∣ z

z − cm

∣∣∣∣ + log |z| − log rn .

Since
1
2π

∫
∂∆n

log |p(z)|d arg z ≤ log Mn ,

applying the Gauss mean value theorem to the left hand side of the last inequal-
ity, we have ∑

m∈N\{n}

log
∣∣∣∣ cn

cn − cm

∣∣∣∣ + log cn − log rn ≤ log Mn ,

or equivalently (
n−1∏
m=1

cn

cm − cn

)( ∞∏
m=n+1

cn

cn − cm

)
cn

rn
≤ Mn . (2.6)

Note

n−1∏
m=1

cn

cm − cn
=

n−1∏
m=1

(
cn

cm

1
1 − cnc−1

m

)

>
n−1∏
m=1

cn

cm
=

cn−1
n

c1 · · · cn−1
(2.7)

and
∞∏

m=n+1

cn

cn − cm
> 1 . (2.8)

By (2.6), (2.7) and (2.8), it follows that

cn
n

c1 · · · cn−1rn
≤ Mn .

Therefore

sup
n∈N

cn
n

c1 · · · cn−1rn
≤ sup

n∈N
Mn = sup

z∈R
|p(z)| < ∞.
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(The “if” part) Condition (2.5) implies that there exists ρ0 > 0 such that

rn ≥ ρ0
cn
n

c1 · · · cn−1
=: r′n

for any n ∈ N. Since R(cn, rn) ⊂ R(cn, r′n), it sufficies to show that p is bounded
on R(cn, r′n). For the proof, we use this r′n in place of rn and write r′n as rn

for simplicity. By (1.4), there exist constants 0 < δ0 < 1 and n0 ∈ N such that
cn/cn−1 ≤ δ0 for all n ≥ n0. Since the function p is meromorphic on C\{0}, Mn

is finite for each n ∈ N. By (2.4), we have only to show that supn>n0
Mn < ∞.

Set D0 = ∆ \ ∪n0
k=1∆k and

M0 = sup
z∈D0

∣∣∣∣∣
n0∏

m=1

1
z − cm

∣∣∣∣∣ .

Suppose n > n0. Noting

p(z) =

(
n0∏

m=1

1
z − cm

)
· zn0 ·

( ∞∏
m=n0+1

z

z − cm

)
,

we have

Mn = sup
z∈∂∆n

∣∣∣∣∣
(

n0∏
m=1

1
z − cm

)
· zn0 ·

( ∞∏
m=n0+1

z

z − cm

)∣∣∣∣∣
≤ M0(cn + rn)n0

∞∏
m=n0+1

sup
z∈∂∆n

∣∣∣∣1 +
cm

z − cm

∣∣∣∣
≤ M0(cn + rn)n0

(
n−1∏

m=n0+1

cn + rn

cm − (cn + rn)

)

×cn + rn

rn
·

∞∏
m=n+1

(
1 +

cm

cn − rn − cm

)

= M0
(cn + rn)n

rn

n−1∏
m=n0+1

(
1

cm
· 1
1 − (1 + rnc−1

n )cnc−1
m

)

×
∞∏

m=n+1

(
1 +

cmc−1
n

(1 − rnc−1
n ) − cmc−1

n

)
.

Set εn = rnc−1
n . Then, we have

Mn ≤ M0(1 + εn)n cn
n

c1 · · · cn−1rn

n−1∏
m=n0+1

(
1 +

(1 + εn)cnc−1
m

1 − (1 + εn)cnc−1
m

)

×
∞∏

m=n+1

(
1 +

cmc−1
n

(1 − εn) − cmc−1
n

)
. (2.9)
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Now, it sufficies to show the following three assertions (2.10), (2.11) and (2.12).

sup
n>n0

(1 + εn)n < ∞ . (2.10)

sup
n>n0

n−1∏
m=n0+1

(
1 +

(1 + εn)cnc−1
m

1 − (1 + εn)cnc−1
m

)
< ∞ . (2.11)

sup
n>n0

∞∏
m=n+1

(
1 +

cmc−1
n

(1 − εn) − cmc−1
n

)
< ∞ . (2.12)

Proof of (2.10): Since n > n0, we see that

εn = rnc−1
n = ρ0

cn−1
n

c1 · · · cn−1
≤ ρ0

(
cn

cn−1

)n−1

≤ ρ0δ
n−1
0 .

Since δ0 < 1, we have εn < 1/n for sufficiently large n. This implies (2.10).
Proof of (2.11): Since εn → 0 as n → ∞, ε0 = maxn>n0 εn exists. We have

δm,n :=
(1 + εn)cnc−1

m

1 − (1 + εn)cnc−1
m

≤ (1 + ε0)δn−m
0

1 − (1 + ε0)δ0
.

Therefore,

sup
n>n0

n−1∑
m=n0+1

δm,n < ∞

and (2.11) follows by Lemma 2.1.
Proof of (2.12): Since εn → 0 as n → ∞, replacing n0 by a larger one if

necessary, we may assume that there is a constant δ1 with εn < δ1 < 1 − δ0 for
n > n0. Since

δ′m,n :=
cmc−1

n

(1 − εn) − cmc−1
n

≤ δm−n
0

1 − δ1 − δ0
,

we have

sup
n>n0

∞∑
m=n+1

δ′m,n < ∞

and hence, (2.12) follows by Lemma 2.1. 2

3 Dependence of a sequence {rn} on a sequence
{cn}

3.1

Corresponding to a pair of sequences {ck}∞k=1 and {rk}∞k=1 , let us consider
two sequences {νn}∞n=1 and {N(n)}∞n=1 determined by the relations cn = 2−νn
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and rn = 2−νnN(n). Since {cn}∞n=1 is strictly decreasing and converging to 0,
{νn}∞n=1 is strictly increasing and lim

n→∞
νn = ∞. Then, conditions (1.4) and

(2.5) are equivalent to the conditions

lim inf
n→∞

(νn+1 − νn) > 0 (3.1)

and

sup
n∈N

νn

{
N(n) −

(
n − ν1 + · · · + νn−1

νn

)}
< ∞ , (3.2)

respectively. In the case cn = 2−n and rn = 2−nN(n), (3.2) is writen as

sup
n∈N

n

(
N(n) − n + 1

2

)
< ∞ (3.3)

(cf. [3]).

3.2

As we have seen, (3.2) is a necessary and sufficient condition in order that the
function p(z) is bounded on the domain R(cn, rn). We are interested in how
small rn’s (or, how large N(n)’s) can be chosen depending on {cn}. From (3.2),
we see that an approximate size of N(n) is given by

ν∗
n = n − ν1 + · · · + νn−1

νn
. (3.4)

In order that p(z) ∈ H∞(R(cn, rn)), the next proposition shows that the
sequence {N(n)}∞n=1 can be chosen always as N(n) → ∞ (n → ∞); and that
N(n) can be chosen almost equal to n (the maximum order) for a sequence
{cn}∞n=1, while N(n) should increase very slowly for another sequence {cn}∞n=1.
Note that (3.1) is obvious when {νn} is a strictly increasing sequence of positive
integers, which is the case we shall consider in the proof of parts (b) and (c)
below.

Proposition 3.1 (a) For any strictly increasing sequence {νn}∞n=1 with νn > 0
and lim

n→∞
νn = ∞, the sequence {ν∗

n}∞n=1 is strictly increasing, ν∗
n ≤ n and

lim
n→∞

ν∗
n = ∞.

(b) For any sequence {σn}∞n=1 with 0 < σn < 1, there exists a strictly in-
creasing sequence {νn}∞n=1 of positive integers such that ν∗

n ≥ σnn (n ∈ N).
(c) For any increasing sequence {βn}∞n=1 no matter how slowly increasing it

may be as far as lim
n→∞

βn = ∞, there exist a strictly increasing sequence {νn}∞n=1

of positive integers and a subsequence {ni}∞i=1 ⊂ N such that ν∗
ni

< βni
(i ∈ N).
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Proof. (a) Since

ν∗
n+1 − ν∗

n = n + 1 − ν1 + · · · + νn

νn+1
− n +

ν1 + · · · + νn−1

νn

= 1 − νn

νn+1
+ (ν1 + · · · + νn−1)

(
1
νn

− 1
νn+1

)
> 0 ,

{ν∗
n}∞n=1 is a strictly increasing sequence. For any m ∈ N there exists an

n(m) ∈ N such that νn > 2νm−1 for all n ≥ n(m). Then, νj/νn < 1/2 for
n ≥ n(m) and j = 1, · · · ,m − 1. Hence,

ν∗
n = 1 +

(
1 − ν1

νn

)
+ · · · +

(
1 − νm−1

νn

)
+ · · · +

(
1 − νn−1

νn

)
≥ 1

2
m .

Thus, lim
n→∞

ν∗
n = ∞.

(b) Set ν1 = 1. Then, ν∗
1 = 1 > σ11. Suppose that we have already chosen

{νℓ}n
ℓ=1 so that ν∗

ℓ ≥ σℓℓ. We can choose a positive integer νn+1 such that
νn/νn+1 < 1 − σn+1. Then,

ν∗
n+1 = 1 +

(
1 − ν1

νn+1

)
+ · · · +

(
1 − νn

νn+1

)
≥ (n + 1)

(
1 − νn

νn+1

)
> (n + 1)σn+1 .

(c) Suppose that we have already chosen nℓ−1 and {νn}
nℓ−1
n=1 . We are going

to choose an nℓ (> nℓ−1) and {νn}nℓ
n=nℓ−1+1. Fix an ε > 0. Since lim

n→∞
βn = ∞,

there exists an nℓ ∈ N such that

nℓ > nℓ−1 and βnℓ
> 1 + nℓ−1 + ε .

For m = nℓ − nℓ−1 − 1 there exists ν ∈ N such that

ν > max
{

m,
m2

ε

}
.

We have (
1 − ν − m

ν

)
+ · · · +

(
1 − ν − 2

ν

)
+

(
1 − ν − 1

ν

)
< m

(
1 − ν − m

ν

)
=

m2

ν
< ε .
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Now we define νn = ν − (nℓ − n) for n (nℓ−1 < n ≤ nℓ). Then,

ν∗
nℓ

= 1 +
(

1 − ν1

νnℓ

)
+ · · · +

(
1 −

νnℓ−1

νnℓ

)
+

(
1 −

νnℓ−1+1

νnℓ

)
+ · · · +

(
1 − νnℓ−1

νnℓ

)
< 1 + nℓ−1 + ε .

Therefore, it follows that ν∗
nℓ

≤ 1 + nℓ−1 + ε < βnℓ
. 2

4 A necessary condition for the uniqueness the-
orem

4.1

First we show the next lemma.

Lemma 4.1 Suppose that {νn}∞n=1 is a strictly increasing sequence of positive
numbers satisfying the property (3.1). Let R = R(2−νn , 2−νnN(n)) be a Zalcman
domain. If {N(n)}∞n=1 satisfies lim

n→∞
(ν∗

n − N(n)) = ∞, then the uniqueness

theorem is not valid for H∞(R) at z = 0, i.e., there exists an f ∈ H∞(R) such
that

f ̸≡ 0, lim
z→0,z<0

f (m)(z) = 0 (m = 0, 1, 2, · · ·) .

Proof. We set

f(z) =
∞∏

n=1

z

z − cn
, gk(z) =

∞∏
n=k+1

z

z − cn
(k ∈ N) .

Applying Theorem 2.1, we have f ∈ H∞(R) and gk ∈ H∞(R). In fact, for
n > k

νn

{
N(n) −

(
n − k − νk+1 + · · · + νn−1

νn

)}
= νn

{
N(n) − ν∗

n + k − ν1 + · · · + νk

νn

}
.

Since lim
n→∞

(ν1 + · · ·+νk)/νn = 0, the assumption lim
n→∞

(ν∗
n −N(n)) = ∞ implies

sup
n>k

νn

{
N(n) −

(
n − k − νk+1 + · · · + νn−1

νn

)}
< ∞ k = 0, 1, 2, · · · .
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This shows that gk ∈ H∞(R(cn, rn)n>k). In particular, we have f, gk ∈ H∞(R).
Setting

fk(z) = gk(z)
k∏

n=1

1
z − cn

,

we have fk ∈ H∞(R(cn, rn)), and f(z) = zkfk(z) (k = 0, 1, 2, · · ·). Also,

f (m)(z) =
dm

dzm
{zm+1fm+1(z)} =

m∑
k=0

mCk
(m + 1)!
(k + 1)!

zk+1f
(k)
m+1(z) , (4.1)

where mCk denote the binomial coefficients. If we show that f
(m)
k (z) is bounded

on [−1/2, 0) for any m, k ∈ N ∪ {0}, then it follows from (4.1) that

lim
z→0,z<0

f (m)(z) = 0 (m = 0, 1, 2, · · ·) .

Set D = {z ∈ C : |z + 1/2| < 1/2}. Since fk ∈ H∞(D), we have, for z ∈
[−1/2, 0) and k,m ∈ N ∪ {0},

|f (m)
k (z)| =

∣∣∣∣ m!
2πi

∫
∂D

fk(ζ)
(ζ − z)m+1

dζ

∣∣∣∣
=

∣∣∣∣ m!
2πi

∫
∂D

ζm+1fk+m+1(ζ)
(ζ − z)m+1

dζ

∣∣∣∣
≤ m!

2π
sup
ζ∈D

|fk+m+1(ζ)|
∫

∂D

∣∣∣∣ ζ

ζ − z

∣∣∣∣m+1

|dζ| .

Set ψz(ζ) = ζ/(ζ − z). Since ψz maps ∂D onto the circle with radius 1/2(1+ z)
centered at 1/2(1 + z), we have

sup
ζ∈∂D,z∈[−1/2,0)

∣∣∣∣ ζ

ζ − z

∣∣∣∣ = 2 .

Thus f
(m)
k (z) is bounded on [−1/2, 0). 2

Theorem 4.1 Let {cn}∞n=1 and {rn}∞n=1 be any sequences satisfying (1.1) and
(1.4) with rn = c

N(n)
n . If the uniqueness theorem is valid for H∞(R(cn, rn)) at

z = 0, then lim
n→∞

N(n) = ∞.

Proof. To the contrary, we assume that lim inf
n→∞

N(n) < ∞. This implies that

there exist a positive constant µ and a strictly increasing sequence {nk}∞k=1 of
positive integers with N(nk) ≤ µ for all k ∈ N. We set c′k := cnk

= 2−ν′
k , and

N ′(k) := µ. By Proposition 3.1 (a), we see that lim
k→∞

(ν′∗
k − N ′(k)) = ∞ and

N ′(k) = µ ≥ N(nk) . (4.2)
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Applying Lemma 4.1, we find a function f ∈ H∞(R(c′k, c′k
N ′(k))) such that

lim
z→0,z<0

f (m)(z) = 0 for all m ∈ N ∪ {0} and f ̸≡ 0. From (4.2), it follows that

R(cn, rn) ⊂ R(c′k, c′k
N ′(k)). Thus f belongs to H∞(R(cn, rn)). This contradicts

the assumption that the uniqueness theorem is valid for H∞(R(cn, rn)) at z = 0.
2

5 The Myrberg phenomenon

5.1

Let ϕ : ∆̃0 → ∆0 be an unlimited two-sheeted covering with the branch points
{ϕ−1(cn)}. From Theorem 4.1, we have the following theorem.

Theorem 5.1 Let {cn}∞n=1 and {rn}∞n=1 be a pair of sequences satisfying (1.1)
and (1.4), and let R = R(cn, rn) and R̃ = ϕ−1(R). If the uniqueness theorem
holds for H∞(R) at z = 0, then the Myrberg phenomenon H∞(R)◦ϕ = H∞(R̃)
occurs.

The proof of Theorem 5.1 is the same as in [3]. Here we only sketch its
outline. Let g ∈ H∞(R̃). Set f(z) = (g(z+)−g(z−))2, where ϕ−1(z) = {z+, z−}
for z ∈ R. By Theorem 4.1, N(n) → ∞ (n → ∞). Using this fact, we can prove

lim
z→0,z<0

f (m)(z) = 0

for every m ∈ N ∪ {0} in the same way as [3]. The uniqueness theorem implies
f ≡ 0. This implies that g = G ◦ ϕ for G(z) = (g(z+) + g(z−))/2 ∈ H∞(R).

5.2

Now we prove, as one of our main purpose of this paper, that the converse of
Theorem 5.1 is false. More generally, the following theorem holds.

Theorem 5.2 Let {cn}∞n=1 be any strictly decreasing sequence with 0 < cn < 1
satisfying (1.4). Then, there exists a Zalcman domain R = R(cn, rn) such that
the Myrberg phenomenon occurs for (R̃, R, ϕ) but the uniqueness theorem fails
for H∞(R) at z = 0.

Proof. For simplicity, we only prove the case cn = 2−n. (The general case can
be proved in the same way.) For any strictly increasing sequence {nk}∞k=1 of
positive integers, we set

N(n) =
{

nk for nk−1 < n < nk

4 for n = nk .
(5.1)
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Then, lim inf
n→∞

N(n) = 4 < ∞. Therefore, the uniqueness theorem is not valid for

H∞(R(2−n, 2−nN(n))) at z = 0 by Theorem 4.1. In what follows, we inductive-
ly choose such a sequence {nk}∞k=1 that the Myrberg phenomenon occurs for
(R̃(2−n, 2−nN(n)), R(2−n, 2−nN(n)), ϕ). Set

∆n = ∆(2−n, 2−nN(n)), ∆∗
m = ∆(0, 2−m − 2−mN(m))

and
Rk = ∆0 \

(
∪nk

n=1∆n ∪ ∆∗
nk

)
.

Fixing a point a with −1 < a < −1/2, we denote ϕ−1(a) = {a+, a−}. For a
subdomain W of ∆0 with a ∈ W , we define

α(W,a) = sup{|f(a+) − f(a−)| : f ∈ H∞(W̃ ), ∥f∥∞ ≤ 1} .

Set αk = α(Rk, a). By a normal family argument, we see that there exists a
fk ∈ H∞(R̃k) such that ∥f∥∞ = 1 and αk = |fk(a+) − fk(a−)|. Set n1 = 1.
Note that α1 ≤ 2 = 2/1. Suppose that n1 < · · · < nk have been chosen so
that αj ≤ 2/j (1 ≤ j ≤ k) and {N(n)}nk

n=1 is defined by (5.1). For an integer
m (> nk), we define N(n) = m (nk < n < m), N(m) = 4, and set

R
(m)
k+1 = ∆0 \

(
m⋃

n=1

∆n ∪ ∆∗
m

)

and
α

(m)
k+1 = α(R(m)

k+1, a).

There exists gm ∈ H∞(R̃(m)
k+1) such that ∥gm∥∞ = 1 and

α
(m)
k+1 = |gm(a+) − gm(a−)|.

From the definition of R
(m)
k+1, it follows that as m → ∞,

R
(m)
k+1 ↗ R′

k := ∆0 \

((
nk⋃

n=1

∆n

)
∪ {2−n : n > nk}

)
.

Thus, we can find a subsequence {gmℓ
}∞ℓ=1 and a function g0 ∈ H∞(R̃′

k) such
that {gmℓ

}∞ℓ=1 converges to g0 uniformly on every compact subset of R̃′
k. In

particular,

α
(mℓ)
k+1 = |gmℓ

(a+) − gmℓ
(a−)| → |g0(a+) − g0(a−)| (ℓ → ∞).

Since (R̃′
k, R′

k, ϕ) have branch points {2−n}n>nk
, the classical Myrberg ar-

gument implies that the Myrberg phenomenon occurs for (R̃′
k, R′

k, ϕ). That
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is, g0(a+) = g0(a−). Therefore there exists an m such that m > nk and
α

(m)
k+1 ≤ 2/(k + 1). We set nk+1 = m, N(n) = m (nk < n < m = nk+1)

and N(nk+1) = 4. In this way, we define {nk}∞k=1 and {N(n)}∞n=1. As above,
we now find functions fk ∈ H∞(R̃k) such that ∥fk∥∞ = 1 and

|fk(a+) − fk(a−)| = α(Rk, a) ≤ 2
k

for k ∈ N. Since Rk ⊂ R = R(2−n, 2−nN(n)), H∞(R̃)|Rk
⊂ H∞(R̃k) and

α(R, a) ≤ αk ≤ 2
k

for all k. Therefore, α(R, a) = 0 and we obtain f(a+) = f(a−) for all f ∈
H∞(R̃). By Forelli’s theorem ([1], cf. also [4]), this implies that f(z+) ≡ f(z−)
for all z ∈ R, ϕ−1(z) = {z+, z−}. Hence, the Myrberg phenomenon occurs for
(R̃, R, ϕ). 2

5.3

One may see from the proof of Theorem 5.2 that the order of rn with respect
to cn is not so restrictive for the Myrberg phenomenon, comparing with the
uniqueness theorem. The next theorem may also emphasizes this fact in a
slightly different flavor.

Theorem 5.3 Let D be an arbitrary plane domain such that H∞(D) contains
a nonconstant function. Let ϕ : D̃ → D be any unlimited (branched) two-sheeted
covering for which the Myrberg phenomenon H∞(D) ◦ ϕ = H∞(D̃) occurs. Let
{Kn}∞n=1 be a family of mutually disjoint compact subsets of D such that

(a) {Kn}∞n=1 clusters to the boundary of D, that is, only a finite number of
Kn intersect with each compact subset of D;

(b) D \ ∪∞
n=1Kn is connected.

Then, there exists a subsequence {Knk
}∞k=1 such that the Myrberg phenomenon

occurs for (D̃ \ ∪∞
k=1K̃nk

, D \ ∪∞
k=1Knk

, ϕ), where K̃n = ϕ−1(Kn).

If we apply this theorem to the case ϕ : ∆̃0 → ∆0 with the branch points
{ϕ−1(2−n)}, then we may choose, for instance,

Kn = {2−n + iy : y ∈ [ 0 , 2− log n]}.

The diameter of Kn is 2− log n = 2−nN(n), where N(n) = log n
n → 0 (n → ∞).

In a sense, this shows that a part of, because only a subsequence remains in the
sequel, Kn’s can be chosen very large for the Myrberg phenomenon.
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Before the proof of Theorem 5.3, we remark about the compact sets Kn

mentioned in the theorem. By the assumptions, we can find, on considering
an exhaution of D \ ∪∞

n=1Kn by relatively compact smooth domains, relatively
compact connected open subsets Em of D such that Km ⊂ Em ⊂ Em ⊂ D and
Em ∩ Kn = φ (m ̸= n). Thus, each point z ∈ Km can be joined with a point
in Em \ Km by an arc in Em (⊂ D \ Kn for m ̸= n). Therefore, D \ Kn is
connected for every n. This further implies that C \ Kn is connected for every
n, or equivalently, that C \ Kn has no bounded components.

Looking at the proof of Theorem 5.2, it may be obvious that Theorem 5.3
follows from the next proposition by a similar argument.

Proposition 5.1 Let D be an arbitrary plane domain such that H∞(D) con-
tains a nonconstant function. Let ϕ : D̃ → D be any unlimited (branched)
two-sheeted covering. Let K be any compact subset of D. For a connected com-
ponent D0 of D \ K, write D̃0 = ϕ−1(D0). Then, Myrberg phenomenon occurs
for (D̃,D, ϕ) if and only if so does for some of (D̃0, D0, ϕ).

Proof. (The “if” part) Suppose that the Myrberg phenomenon H∞(D0) ◦ϕ =
H∞(D̃0) occurs for a connected component D0 of D \ K. Let a be a point in
D0 such that a is not the projection of a branch point of ϕ. Then, a+ ̸= a−,
where ϕ−1(a) = {a+, a−}. Since the points a+ and a− are not separated by
H∞(D̃0), by the assumption, f(a+) = f(a−) for every f ∈ H∞(D̃0). Since
H∞(D̃)|

D̃0
⊂ H∞(D̃0), the points a+ and a− are not separated by H∞(D̃).

For f ∈ H∞(D̃), g(z) = (f(z+)− f(z−))2 defines an element in H∞(D), where
z ∈ D and ϕ−1(z) = {z+, z−}. Now, we have g(a) = 0 for any points a ∈ D0

such that a is not the projection of a branch point of ϕ. Since such points a
are dense in D0, we have g ≡ 0. This shows that H∞(D) ◦ ϕ = H∞(D̃), the
Myrberg phenomenon for (D̃,D, ϕ).

(The “only if” part) We shall prove the contraposition. Namely, we assume
that the Myrberg phenomenon does not occur for any (D̃0, D0, ϕ). By Forelli’s
theorem ([1]), this implies that H∞(D̃ \ K̃) is point separating, where K̃ =
ϕ−1(K). Thus, for any pair of distinct points p, q in D̃ \ K̃, there exists a
function f in H∞(D̃ \ K̃) such that f(p) ̸= f(q). We find a relatively compact
open set Ω such that

K ⊂ Ω ⊂ Ω ⊂ D

and such that the boundary ∂Ω consists of a finite number of mutually disjoint
closed Jordan curves Γ1, · · · ,Γℓ. For the proof, we may replace K by a larger
compact subset if necessary. Replacing K by Ω and Ω by a larger one, we may
assume that K and D \K consists of a finite number of connected components.
Then, connecting the components of K by arcs in D, we may assume that K is
connected. In addition, attaching all relatively compact components of D \ K
with respect to D to K, we may assume that D \ K has no relatively compact
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components in D. It can be also assumed that D \ K consists of ℓ components
each of which contains only one Γj (j = 1, · · · , ℓ). Now we may assume that
Γℓ, renumbering Γj ’s if necessary, surrounds all other curves Γ1, · · ·Γℓ−1. (For
the proof of Theorem 5.3, we only need the case when C \ K is connected. In
this case, the proof becames a little simpler by setting ℓ = 1 below. Because
the proposition may have its own interest, we shall prove this proposition in the
present form.) Next, we choose an annular neighborhood Aj of each Γj such
that

Aj ∩ K = φ and Aj ⊂ D

and such that the boundary ∂Aj consists of two closed Jordan curves Γ+
j and

Γ−
j . Here we may assume that Γ+

ℓ surrounds Γ−
ℓ and that Γ−

j surrounds Γ+
j

for j = 1, · · · , ℓ − 1. Let Ω+ be the domain surrounded by Γ+ := ∪ℓ
j=1Γ

+
j . For

each j = 1, · · · , ℓ, let Ω∗
j (resp., Ω−

j ) be the component of D \K (resp., D \Γ−
j )

that contains Γj . Then, Ω−
j ⊂ Ω∗

j . Choose a point a0 from K and a point aj

from Ω−
j \ Aj for j = 1, · · · , ℓ. Let τ : D̃ → D̃ be the cover transformation of ϕ

defined by τ(z+) = z−, where ϕ−1(z) = {z+, z−} for z ∈ D. Since H∞(D̃ \ K̃)
separates the points a+

j and a−
j , there exists a function f ∈ H∞(D̃ \ K̃) such

that f(a+
j ) ̸= f(a−

j ) for all j = 1, · · · , ℓ. Replacing f by f − f ◦ τ , we may
assume that

f(z+) = −f(z−)

for all z ∈ D \ K. Since Ω̃+ = ϕ−1(Ω+) is a finite bordered Riemann surface,
we can find a function q ∈ H∞(Ω̃+) such that q(a+

0 ) ̸= q(a−
0 ). Replacing q by

q − q ◦ τ , we also assume
q(z+) = −q(z−)

for all z ∈ Ω+. Set A = ∪ℓ
j=1Aℓ. It follows that

f

q
(z+) =

f

q
(z−)

for all z ∈ A. If necessary, deforming Γ := ∪ℓ
j=1Γj slightly, we may assume that

both f and q have no zero on Γ̃ = ϕ−1(Γ). Thus, shrinking Aj ’s if necessary,

we may further assume that f and q have no zero on Ã = ϕ−1(A). Now, f/q is

holomorphic on a neighborhood of Ã, and hence, there is a holomorphic function
g on a neighborhood of A such that

f

q
= g ◦ ϕ. (5.2)

Now, |g| > 0 on A. Thus log g is a multi-valued holomorphic function on A.
The periods of log g along Γj is an integer multiple of 2πi. Note that Ω̃∗

j ’s are
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mutually disjoint and ∪ℓ
j=1Ω̃

∗
j = D̃ \ K̃. Choosing suitable integers nj , and

replacing f by the function defined by

((z − aj)nj ◦ ϕ)f
(

resp.,
((

z − a0

z − aℓ

)nℓ

◦ ϕ

)
f

)
on Ω̃∗

j for j = 1, · · · , ℓ − 1 (resp., on Ω̃∗
ℓ ), we can make the function log g to

be single-valued on A, while the function f may have poles at ϕ−1(aj) (j =
1, · · · , ℓ). Set h = log g and

h±(z) =
1

2πi

∫
Γ±

h(ζ)
ζ − z

dζ,

where Γ± = ∪ℓ
j=1Γ

±
j . Then,

h(z) = h+(z) − h−(z) (5.3)

for z ∈ A. By Cauchy’s integral theorem, the functions h+ and h− are un-
changed on A even if we move the integral paths slightly. Thus, we may assume
that h± belong to H∞(Ω±), where Ω− = ∪ℓ

j=1Ω
−
j . We define a function F on

D̃ by

F =

{
q exp(h+ ◦ ϕ) on Ω̃+

f exp(h− ◦ ϕ) on Ω̃− .
(5.4)

By (5.3) and (5.4), we have

f

q
= g ◦ ϕ = exp(h ◦ ϕ) = exp(h+ ◦ ϕ − h− ◦ ϕ)

on Ã. Hence, F is a well-defined meromorphic function on D̃. Since H∞(D)
contains a nonconstant element by the assumption on the domain D, we can
find nonconstant functions fj ∈ H∞(D) with fj(aj) = 0. Multiplying certain
powers of fj ◦ ϕ to F , we obtain a holomorphic function F0 on D̃. Since the
functions z−aj on Ω∗

j (j = 1, · · · , ℓ−1) and (z−a0)/(z−aℓ) on Ω∗
ℓ are bounded

on ∂D, the maximum principle yields F0 ∈ H∞(D̃). Note that F0 separates the
fiber ϕ−1(a) for some point a of D. Using Forelli’s theorem again, we conclude
that H∞(D̃) separates the points of D̃. 2
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