Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds

Norio Miyaura* and Akira Suzuki*†

Division of Molecular Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060, Japan

Received January 31, 1995 (Revised Manuscript Received August 17, 1995)

Contents

I. Introduction 2457

II. Synthesis of Organoboron Reagents 2458
 A. Synthesis from Organolithium or Magnesium Reagents 2458
 B. Hydroboration of Alkenes and Alkynes 2458
 C. Haloboration of Terminal Alkynes 2459
 D. Miscellaneous Methods 2459

III. Palladium-Catalyzed Reactions of Organoboron Compounds and Their Mechanism 2460
 A. Cross-Coupling Reaction 2460
 B. Other Catalytic Process by Transition-Metal Complexes 2464

IV. Cross-Coupling Reaction 2465
 A. Coupling of 1-Alkenylboron Derivatives: Synthesis of Conjugated Dienes 2465
 B. Coupling of Arylboron Derivatives: Synthesis of Biaryls 2465
 C. Coupling of Alkylboron Derivatives 2471
 D. Coupling with Triflates 2473
 E. Synthesis of Vinylc Sulfides 2473
 F. Coupling with Iodoalkanes: Alkyl-Alkyl Coupling 2475
 G. Coupling with Other Organic Halides and Boron Reagents 2475

V. Head-to-Tail Coupling 2476

VI. Carbonylative Coupling 2476

VII. Alkoxycarbonylation and Dimerization 2478

VIII. Conclusion 2478

I. Introduction

The cross-coupling reaction now accessible via a variety of organometallic reagents may provide a fundamentally common synthetic methodology (eq 1).

\[
\text{R-M} + \text{R'-X} \xrightarrow{\text{Pd-catalyst}} \text{R-R'}
\]

(1)

In 1972, Kumada and Tamao† and Corriu‡ reported independently that the reaction of organomagnesium reagents with alkynyl or aryl halides could be markedly catalyzed by Ni(II) complex. Kochi‡ found the efficiency of Fe(III) catalyst for the cross-coupling of Grignard reagents with 1-halo-1-alkenes and LiZn-CuCl₂ catalyst for haloalkanes. The palladium-catalyzed reaction of Grignard reagents was first reported by Murahashi,§ the synthetic utility of which was then amply demonstrated by Negishi∥ on the reactions of organoaluminum, zinc, and zirconium reagents. After those discoveries, many other organometallic reagents have proven to be highly useful as nucleophiles for the cross-coupling reaction, e.g., organolithiums by Murahashi,§ organostannans by Migita∥ and Stille,¶ 1-alkenylcopper(I) by Normant,¶ organosilicon compounds by Hiyama.|| These reac-

1 Present address: Kurashiki University of Science and the Arts, Kurashiki 712, Japan.

© 1995 American Chemical Society
Organoboron compounds are highly electrophilic, but the organic groups on boron are weakly nucleophilic, thus limiting the use of organoboron reagents for the ionic reactions. The coordination of a negatively charged base to the boron atom has been recognized to be an efficient method of increasing its nucleophilicity to transfer the organic group on boron to the adjacent positive center (1,2-migration reaction). However, intermolecular transfer reaction such as the Grignard-like reaction are relatively rare. Fortunately, organoboron compounds, even organoboronic acids and esters, have sufficiently enough reactivity for the transmetalation to other metals. Transmetalations to silver(I), magnesium(II), aluminum(II), tin(IV), copper(I), and mercury(II) halides have been extensively studied. In 1978, Negishi reported that iodobenzene selectively couples with the 1-alkynyl group on lithium 1-hexynyl(tributyl)borate through a palladium-catalyzed addition–elimination sequence (Heck-type process), however, the cross-coupling reaction of organoboron compounds, which involves the transmetalation to palladium(II) halides as a key step, was found to proceed smoothly when these were activated with suitable bases and have proven to be a quite general technique for a wide range of selective carbon–carbon bond formation.

Many organometallic reagents undergo similar cross-coupling reactions, but much attention has recently been focused on the use of organoboronic acids in laboratories and industries since they are convenient reagents, which are generally thermally stable and inert to water and oxygen, thus allow their handling without special precautions. This review summarizes the palladium-catalyzed cross-coupling reaction of organoboron compounds with organic halides or triflates, the reaction mechanism, the scope of synthetic applications, and other related catalytic processes with transition-metal complexes are discussed.

II. Synthesis of Organoboron Reagents

A. Synthesis from Organolithium or Magnesium Reagents

The classical synthesis of aryl- and 1-alkenylboronic acids or their esters from Grignard reagents or lithium reagents and trialkyl borates is an efficient method for making relatively simple boron compounds in large quantities (eqs 2 and 3). The first stereocontrolled synthesis of alkylboronic acids and esters involves the reaction of a (Z)- or (E)-2-buten-2-ylmagnesium bromide with trimethyl borate (eq 4).

However, the application of these classical procedures for organoboronic acid or ester synthesis may suffer from the contamination of small mount of the opposite stereoisomers, or bis-alkylation leading to the boronic acid derivatives and the formation of trialkylboranes. A recent useful variant utilizes organolithium reagents and triisopropyl borate, followed by acidification with HCl to give directly alkyl-,

\[
\text{ArMgX} + \text{B(OEt)}_3 \rightarrow \text{ArB(OH)}_2 + \text{H}_2\text{O}^+ \tag{2}
\]

\[
\text{CH}_3\text{C}={\text{CHMgBr}} + \text{B(OMe)}_3 \rightarrow \text{CH}_3\text{C}={\text{CHB(O)}}\text{OR}_2 \tag{3}
\]

\[
\text{CH}_3\text{Br} \quad \underset{\text{Mg}}{\text{1. B(OC)}\text{H}_3} \quad \text{2. H}_2\text{O}^+ \rightarrow \text{CH}_3\text{B(O)}\text{OH}_2 \tag{4}
\]

aryl-, 1-alkynyl-, and 1-alkenylboronic esters in high yields, often over 90% (eq 5). Trisopropyl borate is shown to be the best of available alkyl borates to avoid such multiple alkylation of the borates.

\[
\text{RLi} + \text{B(OPr)}_3 \rightarrow \text{R-B(OPr)}_2 \quad \text{HCl} \rightarrow \text{R-B(OPr)}_2 \tag{5}
\]

Very recently, arylboronic esters have been directly obtained from aryl halides via the cross-coupling reaction of (alkoxy)diboron (eq 6). The reaction tolerates various functional groups such as ester, nitrile, nitro, and acyl groups.

\[
\begin{array}{c}
\text{ArB(OR)}_2 \\
\text{X}
\end{array} \quad \begin{array}{c}
\text{PdCl}_2(dppf) \\
\text{KOC\text{A}}\text{}_{\text{2}} \quad \text{DMF} \quad 80^\circ\text{C}
\end{array} \rightarrow \begin{array}{c}
\text{B(OR)}_2 \\
\text{X}
\end{array} \tag{6}
\]

B. Hydroboration of Alkenes and Alkynes

The addition of dialkylboronanes such as 9-borabicyclo[3.3.1]nonane (9-BBN), disiamylborane, or dicyclobutylborane to 1-alkenes gives mixed alkylboron compounds. The reaction is essentially quantitative, proceeds through cis anti-Markovnikov addition from the less hindered side of double bond, and can tolerate various functional groups. The 9-alkyl-9-BBN derivatives thus obtained are particularly useful for the transfer of primary alkyl groups by the palladium-catalyzed cross-coupling reaction since the 9-alkyl group exclusively participates in a catalytic reaction cycle (eq 7).

\[
\text{R'CH_2CH}_2 \rightarrow \text{R'CH_2CH}_2\text{B(OR)}_2 \tag{7}
\]

The use of the hydroboration reaction is especially valuable for the synthesis of stereodefined or functionalized arylboronic acids and their esters. The general and most convenient method is the hydroboration of a terminal alkylene with catecholborane (2a) to produce 1-alkenylboronic ester (eq 8). The hydroboration with 2a can also be carried out under milder conditions by using palladium, rhodium, or nickel catalysts. The hydroboration of alkynes with dihaloboranes (HBCl2·SMgBr or HBBF2·SMgBr), followed by hydrolysis to vinylboronic acids or alcoholysis to boronic esters (3b) have been used for the same purpose. However, a recent and more convenient variant is the in situ preparation of HBCl2 in a hydrocarbon solvent from BCl3 and HSIET3. The reagent exhibits extremely high reactivity to alkynes and alkynes allowing the hydroboration to proceed at -78 °C. Disiamylborane (2c) is also one of the mildest and selective hydroboration reagents for
functionalized alkynes, but their use for the cross-coupling can be more difficult than that of boronic acids or their esters. Hydroboration of terminal alkynes with 9-BBN leads to the formation of significant quantities of dihydroboration products. However, dihydroboration of 1-alkynes, followed by deboration with benzaldehyde provides \(\text{(E)}-1\)-alkenyl-9-BBN derivatives \((3\text{d})\) in high yields with high trans selectivity.\(^{30}\)

These reactions work well with terminal and symmetrical internal alkynes, but the difficulties are often encountered by the lack of regiochemistry or chemoselectivity (e.g., reduction of functional groups) upon addition to general internal alkynes or functionalized alkynes. Disopinocamphylborane has been used as a reagent for asymmetric hydroboration, and additionally it has attractive features as a hydroboration reagent for alkynes, e.g., the inertness to many functional groups except aldehyde and ketone carbonyls, the high regioselectivity resulting from its bulkiness, and ease of dealkylation to boronic esters under neutral conditions.\(^{31}\) The hydroboration of propargyl chloride and ethyl propiolate provides terminal boron derivatives with excellent regiochemistry,\(^{32}\) whereas the hydroboration with catecholborane or disiamylborane \((2\text{c})\) gives an inseparable mixture of internal and terminal boron adducts (eq 9).

C. Haloboration of Terminal Alkynes

Terminal 2,2-diorgano-1-alkenylboronates \((9)\) are made by bromoboration of a terminal alkyne to \(\beta\)-bromo-1-alkenylboronic ester \((8)\) (eq 14),\(^{37}\) followed by the palladium-catalyzed displacement of the \(\beta\)-halogen with organozinc reagents which proceeds strictly with retention of configuration (eq 15).\(^{38}\)

Haloboranes add to terminal alkynes via a cis anti-Markovnikov manner; however, the bromoboration of acetylene itself exceptionally provides a trans-adduct which gives the corresponding \(\text{(E)}\)-1-alkenylboronates \((10)\) by the reaction with organozinc halides (eq 16).\(^{39}\) The addition of tribromoborane to acetylene first gives a cis-adduct, which then isomerizes to the trans-isomer during its isolation.\(^{40}\)

These two-step procedures are useful to achieve a formal carboboration of alkynes with a variety of organic groups.

D. Miscellaneous Methods

An efficient route to \((\text{E})\)-1-alkenylboronates from carbonyl compounds is achieved by the reaction with lithio(boryl)methanes. The \((\text{E})/(\text{Z})\) isomeric ratio is

\[\text{R'C} + \text{HBr} \rightarrow \text{R'C} + \text{BH}_\text{Br} \]

\[\text{R'C} + \text{ZnCl} \rightarrow \text{R'C} + \text{ZnCl} \]

\[\text{R'C} + \text{HCl} \rightarrow \text{R'C} + \text{HCl} \]

\[\text{R'C} + \text{ZnCl} \rightarrow \text{R'C} + \text{ZnCl} \]
reported to be \(20:1\) (eq 17).\(^{41}\) On the other hand, a trimethylsilyl analog gives a cis-rich isomer (\(\sim 70:30\)) on reaction with aldehydes (eq 18).\(^{42}\) The reaction of lithiotriborylmethane with aldehydes or ketones yields 1,1-alkenyldiborates (eq 19).\(^{43}\)

Miyaura and Suzuki esters of boronic acids are reported to be isolated by flash chromatography on silica gel.\(^{50}\)

III. Palladium-Catalyzed Reactions of Organoboron Compounds and Their Mechanism

A. Cross-Coupling Reaction

A general catalytic cycle for the cross-coupling reaction of organometallics, which involves oxidative addition--transmetalation--reductive elimination sequences, is depicted in Figure 1. Although each step involves further knotty processes including ligand exchanges, there is no doubt about the presence of those intermediates (11 and 12) which have been characterized by isolation or spectroscopic analyses.\(^{11,51}\) It is significant that the great majority of cross-coupling reactions catalyzed by Ni(0), Pd(0), and Fe(I) are rationalized in terms of this common catalytic cycle.

Oxidative addition\(^{11,52}\) of 1-alkenyl, 1-alkynyl, allyl, benzyl, and aryl halides to a palladium(0) complex affords a stable trans-\(\sigma\)-palladium(II) complex (11). The reaction proceeds with complete retention of configuration for alkyl halides and with inversion for allylic and benzyl halides. Alkyl halides having \(\beta\)-hydrogen are rarely useful because the oxidative addition step is very slow and may compete with \(\beta\)-hydride elimination from the \(\sigma\)-organopalladium(II) species. However, it has been recently shown that iodoalkanes undergo the cross-coupling reaction with organoboron compounds (sections IV.F and VI).\(^{53}\)

Oxidative addition is often the rate-determining step in a catalytic cycle. The relative reactivity decreases in the order of I > OTf > Br > Cl. Aryl and 1-alkenyl halides activated by the proximity of electron-drawing groups are more reactive to the oxidative addition than those with donating groups, thus allowing the use of chlorides such as 3-chloroenone for the cross-coupling reaction. A very wide range of palladium(0) catalysts or precursors can be used for cross-coupling reaction. Pd(PPh\(_3\))\(_4\) is most commonly used, but PdCl\(_2\)(PPh\(_3\))\(_2\) and Pd(OAc)\(_2\) plus PPh\(_3\) or other phosphine ligands are also efficient since they are stable to air and readily reduced to the active Pd(0) complexes with organometallics or phosphines used for the cross-coupling.\(^{54}\)

Palladium complexes that contain fewer than four phosphine ligands or bulky phosphines such as tris(2,4,6-tri-

![Figure 1. A general catalytic cycle for cross-coupling.](image-url)
methoxyphenyl)phosphine are, in general, highly reactive for the oxidative addition because of the ready formation of coordinate unsaturated palladium species.55

Reductive elimination of organic partners from 12 reproduces the palladium(0) complex.56-58 The reaction takes place directly from \textit{cis}-12, and the \textit{trans}-12 reacts after its isomerization to the corresponding \textit{cis}-complex (eqs 24 and 25). The order of reactivity is diaryl- > (alkyl)aryl- > dipropyl- > diethyl- > dimethylpalladium(II), suggesting participation by the \(\pi \)-orbital of aryl group during the bond formation (eq 24).58a Although the step of 1-alkenyl- or 1-alkynylpalladium(II) complexes is not studied, the similar effect is observed in the reductive elimination of related platinum(II) complexes.59

\begin{equation}
\text{Ph-Pd-Ph} \Leftrightarrow \text{Ph-Pd-P} \Leftrightarrow \text{Ph-Ph + Pd(0)H}_2 \quad (24)
\end{equation}

The thermolysis of \textit{cis}-diallylpalladium(II)-L\(_2\), which is an intermediate on the alkyl-alkyl coupling, is inhibited by excess phosphine (L), hence it is considered to be initiated by the rate-determining dissociation of phosphine ligand (L) producing a three-coordinated \textit{cis}-diallylpalladium(II)-L complex (dissociative mechanism, eq 25).67 Thus, the effect of phosphine ligands is comparable to the order of ease of their dissociation: dppe < PEt\(_3\) < PEt\(_2\)Ph < PMePh\(_2\) < PEtPh\(_2\) < PPh\(_3\).

\begin{equation}
\text{Me-Pd-Me} \Leftrightarrow \text{Me-Pd-L} \Leftrightarrow \text{Me-Me + Pd(0)H}_2 \quad (25)
\end{equation}

On the other hand, \textit{cis}-alkenyl- and \textit{cis}-aryl palladium(II) complexes, which are intermediates in most of cross-coupling reactions discussed here, directly eliminate organic partners from the four-coordinated complex (nondissociative-nonassociative mechanism, eq 24).58

Although the mechanism of oxidative addition and reductive elimination sequences are reasonably well understood and are presumably fundamentally common processes for all cross-coupling reactions of organometallics, less is known about the transmetallation step because the mechanism is highly dependent on organometallics or reaction conditions used for the couplings.

The transmetallation between 1-hexynylboronic acid and palladium(II) acetate was first reported by Heck.60 The \textit{in situ} preparation of (\textit{E})- or (\textit{Z})-1-alkenylpalladium(II) species and its addition to ethyl acrylate readily proceeds at room temperature while retaining their original configurations (eq 26).58c Before this observation, Davidson and Triggs reported the dimerization of phenylboronic acid with \textit{Na}_2PdCl\(_4\) catalyst (eq 27).61 although it still remains obscure whether the reaction indeed proceeds through the transmetallation or other processes.

\begin{equation}
\text{BuCH=CH(B(OH))}_2 + \text{Pd(OAc)}_2 + \text{CH}_2=\text{CHCO}_2\text{Et} \quad \rightarrow \quad \text{BuCH=CHCH=CHCO}_2\text{Et} \quad (26)
\end{equation}

\begin{equation}
2 \text{PhB(OH)}_2 + \text{Na}_2\text{PdCl}_4 \rightarrow \text{Ph-Ph} \quad (27)
\end{equation}

In spite of these previous reports, organoboron compounds are quite unlikely to participate in the catalytic cycle of cross-coupling reaction since they are inert to the organopalladium(II) halides (11) such as PdCl\(_2\), PdCl\(_2\)(PPh\(_3\))\(_2\), or PhPd\(_1\)(PPh\(_3\))\(_2\).62 There is some experimental evidence for the transmetallation to the transition metals. The reaction of organoboranes with organomercurials proceeds under neutral conditions when Hg(OAc)$_2$, Hg(OR)$_2$, or HgO is used.52 It has also been reported that the addition of sodium hydroxide or other bases exerts a remarkable effect on the transmetallation rate of organoboron reagents with metallic halides, such as mercuric,19,63 silver,13 auroic,64 and platinitic halides.54 Thus, the transmetallation with transition-metal complexes appears to proceed well indeed, but the choice of suitable bases and ligands on transition-metal complexes is essential.

Preliminary successful results have reported that (\textit{E})-1-hexenyl-1,3,2-benzodioxaborole couples with iodobenzene in the presence of Pd(PPh\(_3\))\(_4\) and bases to produce a mixture of desired and undesired coupling products depending on the base and the catalyst used (eq 28).65

\begin{equation}
3a (R'=Bu) + \text{Ph-I} \rightarrow \text{Bu-C} + \text{Ph-C} \quad (28)
\end{equation}

The formation of normal coupling product 13 predominates when sodium hydroxide or alkoxides are used, whereas a combination of triethylamine and a palladium catalyst without phosphine ligands leads almost exclusively to an abnormal head-to-tail coupling product 14 (Table 1).52b

The formation of the abnormal coupling product 14 can be best understood by the mechanism of Heck reaction66 for vinylc metal compounds, that often predominates on the cross-coupling reaction of weakly

| Table 1. Reaction Conditions for Head-to-Head and Head-to-Tail Cross-Coupling (Eq 28)* |
|---|----------|---------|----------|------------------|
| catalyst | solvent | base (equiv) | time, h | yield, % (13/14) |
| Pd(PPh\(_3\))\(_4\) | benzene | none | 6 | 0 (100) |
| Pd(PPh\(_3\))\(_4\) | benzene | NaOEt (2) | 2 | 99 (100) |
| Pd(PPh\(_3\))\(_4\) | benzene | NaOH (2) | 2 | 99 (100) |
| Pd(PPh\(_3\))\(_4\) | DMF | Et\(_2\)N (5) | 20 | 54 (90) |
| PdCl\(_2\)(PPh\(_3\))\(_2\) | DMF | Et\(_2\)N (5) | 20 | 66 (82) |
| Pd Pd black | DMF | none | 20 | 94 (96) |
| Pd Pd black | DMF | NaOH (2) | 6 | 86 (64/4) |

* All reactions were carried out at 80 °C by using Pd catalyst (3 mol %), PhI (1 equiv), base, and 3a (1.1 equiv).
nucleophilic organometallics, such as 1-alkenylmercuryals,67 -silanes,68 and -tin compounds.69

Organopalladium(II) halides add mainly to the electron-deficient carbon of unsymmetrical alkenes66 to give 15, which readily isomerizes to 16 via a sequence of elimination and readdition of the hydridopalladium(II) iodide. Finally, the elimination of iodoborane with the aid of triethylamine gives the head-to-tail cross-coupling product. A deuterium-labeling study proves the addition–elimination mechanism where a P-hydrogen transfers to the terminal carbon (Figure 2).70

The cross-coupling reaction of organoboron compounds with organic halides or triflates selectively reacts in the presence of a negatively charged base, such as sodium or potassium carbonate, phosphate, hydroxide, and alkoxide.65,71 The bases can be used as aqueous solution, or as suspension in dioxane or DMF. In contrast, the cross-coupling reaction with certain electrophiles, such as allylic acetates,65b 1,3-butadiene monoxide,71 and propargyl carbonate5b occurs under neutral conditions without any assistance of base. The transmetalation of organoboron compounds with palladium halides under basic or neutral conditions can be considered to involve the following three processes: eqs 29, 32, and 39.

It is apparent that the transmetalation between organopalladium(II) halides and organoboron compounds does not occur readily due to the low nucleophilicity of organic group on boron atom. However, the nucleophilicity of organic group on boron atom can be enhanced by quaternization of the boron with negatively charged bases giving the corresponding "ate" complexes.12 In fact, it is reported that such ate complexes undergo a clean coupling reaction with organic halides.51 The reaction of iodobenzene with representative ate complexes prepared from tributylborane and butyl-, 1-propenyl-, 1-hexynyl-, or phenyllithium is summarized in eq 30 and Table 2.73

During such a transmetalation, it is conceivable that the coordination of palladium(II) species to the carbon–carbon multiple bond constitutes the initial step for the interaction of both species and probably this π-interaction serves to accelerate the ligand exchanges.74 Thus, the 1-hexynyl group exclusively couples with iodobenzene, but it is surprising that the transfer of primary alkyl group occurs quite smoothly compared with 1-alkenyl or phenyl groups.

Thus, the quaternization of trialkylboranes accelerates indeed the transmetalation to the palladium(II) halides. Although there is no direct evidence that the boronate anions, such as RB(OH)\textsubscript{3} -, are capable of effecting the transmetalation, it is quite reasonable to assume the similar effect of base for the transmetalation of organoboronic acids. The cross-coupling reaction of arylboronic acids with aryl halides at pH = 7–8.5 is retarded relative to the reaction at pH = 9.5–11.75 The pK\textsubscript{a} of phenylboronic acid is 8.8, thus suggesting the formation of the hydroxyboronate anion [RB(OH)\textsubscript{3} -] at pH > pK\textsubscript{a} and its transmetalation to the palladium(II) halides. The formation of ArB(OH)\textsubscript{3} - at pH = 11–12 has been recently reported.76

Recently, fluoride salts have been found to effect the cross-coupling reactions of 1-alkenyl- and arylboronic acids (eq 31).77 The species that undergoes transmetalation is assumed to be organo(trifluoro)borate ion.

An alternative transmetalation process found during our investigations is that organoboron compounds readily transfer their organic groups to (alkoxo)palladium(II) complexes under neutral conditions (eq 32).

Although the cross-coupling reaction with organic halides generally requires the assistance of bases, allylic phenoxides and cinnamyl acetate react with 1-alkenylborates under neutral conditions to yield the corresponding 1,4-dienes, 75% and 12%, respectively (eq 33).65a,78 Thus, the (τ-allylphenoxo)- and (τ-
Reactions of Organoboron Compounds

allylacetoxy)palladium(II) intermediates generated by oxidative addition may undergo transmetalation without bases. The isolated complexes of (η⁵-C₅H₅)PdX react with 1-alkenylborates to give the coupling products when the ligand X is OAc or acetylacetonato (aca). The another piece of evidence for this unique ligand effect of the Pd–O bond is also observed on the alkenyl–alkenyl coupling reaction (eq 34). The (alkoxo)palladium(II) complexes are stable enough to be isolated if substituted with electron-withdrawing groups (21b), otherwise 1,3-elimination occurs very quickly to give the hydriodopalladium(I) species and carbonyls. The isolated 21b easily reacts with 1-alkenylborates precipitating palladium black, whereas the corresponding chloro complex (21a) is quite inert even at the refluxing temperature of THF. The (hydroxo)palladium complex recently reported by Alper also gives a cross-coupling product (70%) together with biphenyl (eq 35).

Tsuji and co-workers have shown that propargylic carbonate 22 oxidatively adds to the palladium(0) complex to provide an (alkoxo)palladium intermediate with elimination of carbon dioxide (eq 36). Thus, the reaction of 22 with alkylboranes, 1-alkenyl-, 1-alkynyl and arylboronic acids or their esters gives in high yields under neutral conditions.

The reaction offers other direct evidence for such a boron–palladium transmetalation process through an (alkoxo)palladium(II) species. The reaction of the phenylboronate with various carbonates indicates that less hindered and more nucleophilic alkoxy groups accelerate the cross-coupling (eq 37). A series of the competitive reaction rate between para-substituted phenylboronate and 22 (R = Me) gives a slightly positive ρ value (+0.73), demonstrating that electron-withdrawing substituents accelerate the reaction (eq 38 and Figure 3).

These electronic effects are consistent with the S₆2 (coord) mechanism involving a coordination of the alkoxy ligand to the boron atom at the rate-determining step. As a result of complex formation, the transfer of an activated organic group from boron to palladium then takes place (eq 39). Such complexity prior to migration is one of the crucial steps essential in all ionic reactions of organoboron compounds; namely, the well-known intramolecular 1,2-migration from the organoborane/electrophile complex.

For the transmetalation between optically active (1-phenylethyl)oxalate or -tinate and palladium(II) halides, the S₆2 (cyclic) or S₆2 (open) mechanism which takes place with retention or inversion of the configuration at benzylic carbon atom is proposed. Unfortunately, these stereochemical features have not yet been established for organoboron compounds because their coupling reactions are still limited to primary alkylboranes.

Finally, it is of interest to note the possibility of involvement of the (alkoxo)palladium intermediate 20 in the palladium/base-induced cross-coupling reaction (eq 39).

It is known that the halogen ligand on organopalladium(II) halide is readily displaced by alkoxy, hydroxy, or acetoxy anion to provide the reactive Pd–OR complexes (20), which have been postulated as

![Figure 3](Image)

Figure 3. Linear free energy relationship for the cross-coupling reaction of para-substituted phenylboronate with 22 (R = Me).

![Figure 4](Image)

Figure 4. S₆2 (coord) transition state.
reaction intermediates55 or isolated78,60 from the reaction of organopalladium(II) halides with sodium hydroxide or methoxide. It is not yet obvious in many reactions which process shown in eq 29 or 39 is predominant; however, the formation of alkoxo-, hydroxo-, or acetatopalladium(II) intermediate should be considered to be one of the crucial transmetalation processes in the base/palladium-induced cross-coupling reactions.

The reaction of 1-alkenylboronates with haloenones shows a characteristic feature for the (alkoxo)palladium mechanism (eq 40).66 The cross-coupling reaction with haloenones is accelerated by exceptionally weak bases such as NaOAc or even Et\textsubscript{3}N, when methanol is used as a solvent. The results cannot be explained by the ate-complex mechanism shown in eq 27, and can be best understood by the formation of (alkoxo)palladium(II) intermediate (28) since 27 readily exchanges the halogen ligand with methanol due to its strong trans effect of the electron-poor alkenyl group (eq 41).

The palladium-catalyzed cross-coupling reaction of (alkoxy)diboron derivatives provides the first one-step procedure for aryloboronic esters from aryl halides (eq 6).67 Potassium acetate is one of the best bases to achieve a selective cross-coupling, and stronger bases such as potassium carbonate or phosphate give biaryl byproducts arising from further coupling of the product with aryl halides.

The treatment of the phenylpalladium(I) bromide with KOAc gives a trans-PhPdOAc(PPh\textsubscript{3})\textsubscript{2} (29)37,88 which exhibits high reactivity toward (alkoxy)diboron derivatives selectively giving the phenylboronate at room temperature (Figure 5). Thus, the transmetalation involving formation of 29 and its reaction with the diboron is proposed as a key step. The acetoxy anions do not act as a base to coordinate with boron atom under the given reaction conditions. The catalytic cycle is shown in the Figure 6.

A similar (methoxo)platinum intermediate has been recently reported for the transmetalation between a cationic platinum(II) complex and potassium terphenylborate (eq 42).68

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure6.png}
\caption{Cross-coupling with (alkoxy)diboron (eq 6).}
\end{figure}

\textbf{B. Other Catalytic Process by Transition-Metal Complexes}

Recently, transition-metal complexes have been reported as efficient catalysts for the addition of metal reagents, including magnesium, aluminum, silicone, zinc, germanium, and tin compounds to alkenes and alkynes.90 Although the related reactions of boron compounds are not yet well developed, the Rh-, Pd-, or Ni-catalyzed hydroboration of alkenes27 and alkynes27 (eqs 43-46) has been extensively studied since the catalyst allows the reaction under very mild conditions and often can direct the course of the addition of borane to a different selectivity than the uncatalyzed reaction (eq 43).91m Asymmetric hydroboration of styrene is achieved using a bidentate chiral ligand (eq 44).91l Hydroboration of 1,3-butadiene stereoselectively affords a (Z)-crotylboronate with a palladium(0) complex (eq 45).91k The PdCl\textsubscript{2}(dppe) and NiCl\textsubscript{2}(dppe) or -(dpdp) complexes afford good results for the hydroboration of alkynes (eq 46).27b The Pd(0)-catalyzed addition of the B-S bond to terminal alkynes regio- and stereoselectively produces (Z)-2-(organothio)-1-alkenylboron reagents (eq 47).92 The addition of (alkoxy)diboron to alkynes to give cis-bis(allyl)alkenes (diboration) is catalyzed by a platinum(0) catalyst47 (eq 23).

The additions proceed regioselectively in favor of terminal boron adducts to produce (Z)-1-alkenylboron compounds through a syn addition of the X-B bond to 1-alkynes. The mechanism is fundamentally different from the uncatalyzed process and is postulated to proceed through the oxidative addition of the X-B bonds (X= H, RS, Y2B) to the transition-metal complex [M(0)] to form X-M-BY\textsubscript{2} species (32), followed by the migratory cis insertion of alkenes or alkynes into the X-M bond, and finally the reductive...
Reactions of Organoboron Compounds

Chemical Reviews, 1995, Vol. 95, No. 7

OSi(Bu)Ph, EnO* B2X2 PI

OSi('Bu)Ph, OSi(Bu)Ph, BnO*OH + BnO+OH

HE& = 9-BEN

35:65

RhCl(PPh&

PhCH=CH2, + 2I3

Rh(BINAP)* - Ph-z?B:n *o

96%ee

Pd(PPh& MedEin

CHz=CHCH=CH2 + 81

F?

R'SC=CR~ + 2a N'Cb(dppe)

RISABYD

elimination of alkenylboron compounds from 33 regenerates the M(0) complex, as shown in Figure 7.27d,47,92

The oxidative adducts such as B–Rh–H and B–Ir–H intermediates27d in the catalytic hydroboration, and the B–Pt–B intermediate53 in the diboration have been isolated and fully characterized by X-ray analyses, and by observing its insertion reaction to alkynes. Since the catalytic cycle is a very powerful and fundamentally common process with a group 10 transition metal, the further uses of this type of reaction will certainly be exploited in the future.

The oxidative addition of the C–Hg bond to Pd(0) complex is involved in the catalytic carbonylation and the homo coupling of aryl- or vinylmercurials.44 Similar reaction type such as dimerization,95 proto-nolysis of the C–B bonds (eq 48),96 and Heck-type addition (eq 49)97 of aryl- or alkenylboronic acids take place in moderate yields. The reactions can be catalyzed by palladium(0) catalysts without phosphine ligands. The mechanism has not yet been elucidated in detail, but it is reasonable to speculate the oxidative addition of the C–B bond to palladium(0) complex.

Figure 7. A general catalytic cycle for additions.

IV. Cross-Coupling Reaction

A. Coupling of 1-Alkenylboron Derivatives: Synthesis of Conjugated Dienes

The stereo- and regioselective syntheses of conjugated alkadienes are of great importance in organic chemistry by themselves, as well as their utilization in other reactions such as the Diels–Alder reaction. A number of new methods for the preparation of conjugated dienes and polyenes have been developed by utilizing various organometallic reagents. Among these procedures, the most promising ones are perhaps those based on the direct cross-coupling reaction of stereodefined alkenylmetals with stereodefined haloalkenes in the presence of a catalytic amount of a transition-metal complex.5,8,10 Although the representative 1-alkenylmetal reagents undergo a similar type of coupling reactions with haloalkenes, there are several limitations when one wishes to obtain unsymmetrical dienes without homocoupling, highly functionalized dienes, or stoichiometric conditions relative to metal reagents and halides. Thus, much attention has been recently been focused on the use of 1-alkenylboronic acids or their esters,20 because a variety of 1-alkenylboron derivatives are now readily available, as discussed in the section II.

The first observation to prepare conjugated dienes is shown in eq 50.65,98-100 The high yield of diene is obtained when relatively strong bases such as sodium ethoxide and hydroxide are used together with a phosphine-based Pd complex, e.g., Pd(PPh3)4 and PdCl2(PPh3)2. In general, a combination of Pd(PPh3)4 and sodium ethoxide works satisfactorily for the coupling with 1-bromo-1-alkenes, and PdCl2(PPh3)2 and aqueous sodium hydroxide for 1-iodo-1-alkenes. The use of palladium catalyst without phosphine ligand or weak bases (KOAc or Et3N) has a tendency to be contaminated by undesired head-to-tail coupling product (36).70 The reaction can be carried out in aqueous media by using water-soluble phosphine palladium catalyst.101
Although disiamyl- or dicyclohexylborane is a selective and efficient hydroboration reagent of alkenes, 1-alkenyldialkylboranes thus obtained give relatively poor yields of coupling products (~50%) with low stereoselectivity.103 The difficulty appears to be due to side reactions arising from the protodeboronation with water or alcohols and the transfer of secondary alkyl group to the palladium(II) halide. Some loss of the reagent decreases the yields of coupling products and the transfer of secondary alkyl group forms an undesirable palladium(II) hydride species which induces isomerization of the double bond. The protodeboronation of 1-alkenylboron compounds with alcohols is faster than with water, and it decreases in the following order: 9-BBN > B(cyclohexyl)\textsubscript{2} > B(Sia)\textsubscript{2} > B(OR)\textsubscript{2}.103 Thus, the high yields and high isomeric purity exceeding 99% can be achieved by using 1-alkenylboronic acids or their esters. Yields and stereoselectivity on the cross-coupling of (Z)-1-hexenylboron reagents with iodo-benzene are shown in Table 3.99

Thus, the oxidation of the two boron-sp3 carbon bonds with triethylamine N-oxide prior to the coupling solves the difficulty arising from the B-C bond protonolysis and the contamination of the coupling product with alkyl group (eq 51).104,105

The absence of a convenient route to 9-vinyl-9-BBN has severely limited the use of 9-BBN derivatives in this coupling. However, the reagents are now available under very mild conditions by a sequence of dihydroboration of terminal alkynes and dehydroboration with an aromatic aldehyde. The cross-coupling with organic halides readily undergoes in the refluxing THF in the presence of Pd(PPh\textsubscript{3})\textsubscript{4} and an aqueous NaOH (eq 52).30,106

\begin{itemize}
 \item \textbf{Pd-catalyst/base}
 \begin{align*}
 \text{3a} (R'=\text{Bu}) + \text{Br} &\xrightarrow{\text{Pd-catalyst/base}} \text{Ph} + \text{Bu} \xrightarrow{\text{Pd-catalyst/base}} \text{Ph} \\
 \text{35} &\xrightarrow{\text{(Z)-BuCH-CHBXz + PhP\textsubscript{2}BX\textsubscript{2}}} \text{Bu} \xrightarrow{\text{Pd-catalyst/base}} \text{Ph} \\
 \text{36} &\xrightarrow{\text{(Z)-BuCH-CHBXz + PhP\textsubscript{2}BX\textsubscript{2}}} \text{Bu} \xrightarrow{\text{Pd-catalyst/base}} \text{Ph}
 \end{align*}
\end{itemize}

\textbf{Table 3. Reaction of (Z)-BuCH=CHBXz with Ph}a

<table>
<thead>
<tr>
<th>BX\textsubscript{2}</th>
<th>yield, %</th>
<th>isomeric purity, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>-B(Sia)\textsubscript{2}</td>
<td>58</td>
<td>>94</td>
</tr>
<tr>
<td>-B(Pr)\textsubscript{2}</td>
<td>49</td>
<td>>83</td>
</tr>
<tr>
<td>-B(Or)\textsubscript{2}</td>
<td>98</td>
<td>>97</td>
</tr>
</tbody>
</table>

a A mixture of Pd(PPh\textsubscript{3})\textsubscript{4} (3 mol %), 2 M NaOEt in EtOH (2 equiv), PhI (1 equiv), and (Z)-BuCH=CHBX\textsubscript{2} (1.1 equiv) in benzene was refluxed for 3 h. 3 Yields of (Z)-BuCH=CHPh.

\begin{itemize}
 \item Bombykol is a well-known pheromone, first isolated from Bombyx mori L. Bombykol and the related three isomers were synthesized by the cross-coupling reaction. Three alkenylboronates or boronic acids (37–39) and two vinylic halides (40 and 41) required for the coupling are prepared by starting from two alkynes. The stereoselective syntheses of (E)- and (Z)-1-alkenylboronic acids or esters are discussed in the previous section (eqs 8 and 11). Halogenation of the corresponding alkylboronic acids with iodine or bromine provides (E)- and (Z)-haloalkenes from the same starting material (eqs 56 and 57).107 The palladium and base-assisted coupling of each five and 11 units stereoselectively provides bombykol and its three geometrical isomers (eqs 58–61).108

\begin{align*}
 \text{C}_2H_3C\text{=CH} &\xrightarrow{\text{Eq. 8}} \text{C}_2H_3C\text{=CH} \\
 \text{C}_2H_2C\text{=CHBr} &\xrightarrow{\text{Eq. 10 and 11}} \text{C}_2H_2C\text{=CHBr} \\
 \text{HO(CH}_2)_3\text{C}\text{=CH} &\xrightarrow{1.\text{Br}_2, 2.\text{H}_2}\text{O} \text{HO(CH}_2)_3\text{C}\text{=CHBr} \\
 \text{HO(CH}_2)_3\text{C}\text{=CHBr} &\xrightarrow{1.\text{Br}_2, 2.\text{NaOMe}} \text{HO(CH}_2)_3\text{C}\text{=CHBr} \\
 \text{37} + \text{40} &\xrightarrow{80\%} \text{C}_2H_2\text{C}(\text{CH}_2)_3\text{OH} \\
 \text{37} + \text{41} &\xrightarrow{91\%} \text{C}_2H_2\text{C}(\text{CH}_2)_3\text{OH} \\
 \text{38} + \text{40} &\xrightarrow{82\%} \text{C}_2H_2\text{C}(\text{CH}_2)_3\text{OH} \\
 \text{38} + \text{41} &\xrightarrow{69\%} \text{C}_2H_2\text{C}(\text{CH}_2)_3\text{OH}
\end{align*}

(Z,E)- and (E,Z)-dienic structures are rather common in the sex pheromones of insects. The procedure has been successfully applied to the syntheses of European grape wine moth,109,110 red bollworm moth,109 and Egyptian cotton leafworm109,111 sex pheromones.

Since a variety of 1-alkenylboron reagents including (E)- and (Z)-isomers are now available, their cross-coupling with 1-halo-1-alkenes affords various stereodefined alkenes and trienes.86–100 Many syntheses of alkenes and trienes such as unsaturated fatty acid amides,112 alkenylsilanes,106,113 gem-
Table 4. Synthesis of Dienes and Trienes

<table>
<thead>
<tr>
<th>Entry</th>
<th>Alkenylboron Reagent</th>
<th>Alkenyl Halide</th>
<th>Reaction Conditions, solvent</th>
<th>Product</th>
<th>Yield/%</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\text{C}_3\text{H}_5\text{B})</td>
<td>(\text{Br} \rightarrow \text{Ph})</td>
<td>(\text{Pd(PPh}_3\text{)}_4 / \text{NaOEt} / \text{benzene} / \text{reflux})</td>
<td>(\text{C}_4\text{H}_8\text{C}_6\text{H}_5)</td>
<td>86 (>98)</td>
<td>98</td>
</tr>
<tr>
<td>2</td>
<td>(\text{C}_3\text{H}_5\text{B})</td>
<td>(\text{Br} \rightarrow \text{C}6\text{H}{13})</td>
<td>(\text{Pd(PPh}_3\text{)}_4 / \text{NaOEt} / \text{benzene} / \text{reflux})</td>
<td>(\text{X} = \text{Si})</td>
<td>49 (>98)</td>
<td>102</td>
</tr>
<tr>
<td>3</td>
<td>(\text{C}_3\text{H}_5\text{B})</td>
<td>(\text{Br} \rightarrow \text{C}6\text{H}{13})</td>
<td>(\text{Pd(PPh}_3\text{)}_4 / \text{aq. KOH} / \text{benzene} / \text{reflux})</td>
<td>(\text{X} = \text{OPr})</td>
<td>97 (>99)</td>
<td>99</td>
</tr>
<tr>
<td>4</td>
<td>(\text{C}_3\text{H}_5\text{B(OPh)}_3)</td>
<td>(\text{Br} \rightarrow \text{OH})</td>
<td>(\text{Pd(PPh}_3\text{)}_4 / \text{aq. KOH} / \text{THF} / \text{reflux})</td>
<td>(\text{C}_4\text{H}_8\text{O})</td>
<td>70 (>99)</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>(\text{Bu}^\prime \text{B(Bu}^\prime)_2)</td>
<td>(\text{CH}_3)</td>
<td>(\text{Pd(PPh}_3\text{)}_4 / \text{aq. NaOH} / \text{THF} / \text{reflux})</td>
<td>(\text{Bu}^\prime \text{C}6\text{H}{13})</td>
<td>87 (>99)</td>
<td>105</td>
</tr>
<tr>
<td>6</td>
<td>(\text{(Pr}^\prime\text{)}_2\text{Si} \rightarrow \text{B})</td>
<td>(\text{CH}_3)</td>
<td>(\text{Pd(PPh}_3\text{)}_4 / \text{aq. NaOH} / \text{THF} / \text{reflux})</td>
<td>(\text{(Pr}^\prime\text{)}_2\text{Si} \rightarrow \text{C}6\text{H}{13})</td>
<td>85 (-)</td>
<td>106a</td>
</tr>
<tr>
<td>7</td>
<td>(\text{C}_3\text{H}_5\text{SiMe}_3)</td>
<td>(\text{Br} \rightarrow \text{CH}_3)</td>
<td>(\text{Pd(PPh}_3\text{)}_4 / \text{aq. NaOH} / \text{THF} / \text{reflux})</td>
<td>(\text{C}_3\text{H}_5\text{SiMe}_3)</td>
<td>40 (-)</td>
<td>113a,b</td>
</tr>
<tr>
<td>8</td>
<td>(\text{C}_3\text{H}_5\text{Ph})</td>
<td>(\text{Br} \rightarrow \text{CH}_3)</td>
<td>(\text{Pd(PPh}_3\text{)}_4 / \text{NaOEt} / \text{benzene} / \text{reflux})</td>
<td>(\text{C}_3\text{H}_5\text{Ph})</td>
<td>87 (-)</td>
<td>117</td>
</tr>
<tr>
<td>9</td>
<td>(\text{C}_3\text{H}_5\text{B})</td>
<td>(\text{Br} \rightarrow \text{SPh})</td>
<td>(\text{Pd(PPh}_3\text{)}_4 / \text{aq. NaOH} / \text{benzene} / \text{reflux})</td>
<td>(\text{C}_3\text{H}_5\text{SPh})</td>
<td>91 (>98)</td>
<td>118</td>
</tr>
<tr>
<td>10</td>
<td>(\text{C}_3\text{H}_5\text{B})</td>
<td>(\text{Br} \rightarrow \text{Ph})</td>
<td>(\text{Pd(PPh}_3\text{)}_4 / \text{NaOEt} / \text{benzene} / \text{reflux})</td>
<td>(\text{C}_3\text{H}_5\text{Ph})</td>
<td>89 (>94)</td>
<td>115</td>
</tr>
<tr>
<td>11</td>
<td>(\text{C}_3\text{H}_5\text{B(SiMe}_2\text{)}_2)</td>
<td>(\text{Br} \rightarrow \text{Ph})</td>
<td>(\text{Pd(PPh}_3\text{)}_4 / \text{NaOEt} / \text{benzene} / \text{reflux})</td>
<td>(\text{C}_3\text{H}_5\text{B(SiMe}_2\text{)}_2)</td>
<td>52 (-)</td>
<td>116</td>
</tr>
</tbody>
</table>

The coupling rate enhancement was realized by Kishi by using an aqueous TIOH in place of sodium or potassium alkoxide or hydroxide. The cross-coupling between (E)-1-alkenylboronic acid and (Z)-iodoalkene stereoselectively furnished the C75-C76 bond formation of palytoxin at room temperature (Figure 8). Roush, Nicolaou, and Evans have also demonstrated the efficiency of thallium hydroxide on the synthesis of an aglycone of antibiotic kijanimicin, chlorothricolide (5Z,8Z,10E,12R,14Z)-12-hydroxy-5,8,10,14-icosatetraenoic acid [(12R)-HETE], and a macroclide antibiotic rutamycin B (Figure 9). This modification of base has been realized on the assumption that the transmetalation involves a palladium(II) alkoxide or hydroxide intermediate (20 in eq 39); namely, thallium base may accelerate the formation of 20 by forming water-insoluble thallium salts instead of NaX. However, another process, i.e., the transmetalation of alkynylboronic acids to thallium salts giving an alkynylthallium(1) or -(III) species, has not yet been investigated.

Hydroboration of enynes provides 1,3-alkadienylboron derivatives. The coupling of dienylboron compounds with haloalkenes allows a short-step synthesis of conjugated trienes; for example, the synthesis of leukotriene B4 shown in eq 62. Due to the

difluoroalkenes, cyclic alkenes, (C10)-allofarnesene, trisporol B, and vinylsulfides are reported by application of Pd-catalyzed cross-coupling. The representative syntheses and reaction conditions are summarized in Table 4.
difficulty of purification of a geometrical mixture, the stereodefined syntheses might be essential for such trienes. As discussed previously, the coupling reaction is carried out more efficiently by 1-alkenylboronic acids or esters; however, 1-alkenyl(disiamyl)boranes have been often used as a coupling reagent since hydroboration of alkynes having allylic or propargylic hydroxy functional groups does not afford good results with catecholborane. Aqueous lithium hydroxide is shown to be one of the best bases that avoids the C–B bond breaking during the cross-coupling (eq 62).126

A reverse combination of 1-alkenylboronates and l-halo-1,3-alkadienes is expected to lead to the same trienes, but this combination is generally not recommended because of the synthetic problems of unstable dieny1 halides and the side reaction eliminating hydrogen halides with bases to produce the corresponding enyne. However, the thallium base allows this combination for synthesis of the conjugated pentaene (eq 63).127

β-Halo-α,β-unsaturated ketones and esters are highly susceptible to S$_2$2 displacement at the carbon attached to halogen, thus strong bases are undesirable for such substrates.86,128–131 However, relatively weak bases, such as sodium acetate and even triethylamine, are effective when the reaction is conducted in alcohol solvents (eqs 40 and 64).86 Sodium acetate suspended in methanol, and aqueous or solid carbonate in ethanol give best results for haloenone and halo ester, respectively. PdCl$_2$ (PPh$_3$)$_2$ or a combination of Pd(OAc)$_2$ plus PPh$_3$ (4 equiv) is desirable to achieve high yields. The cis/trans isomerization is rarely observed in the palladium-catalyzed cross-coupling, but the reaction with (Z)-β-bromoacrylate gives a mixture of stereoisomers. PdCl$_2$(dppe) is effective for carrying out the reaction at room temperature in order to depress the isomerization during the coupling (eq 65).129

Conjugated enynes are of importance in themselves, as well as in their utilization for synthesis of conjugated dienes. The cross-coupling reaction of 1-alkenyl(disiamyl)boranes (3c) with 1-bromo-1-
Reactions of Organoboron Compounds

alkynes provides conjugated enynes in high yields (eq 66). The enynes thus obtained can be readily converted into the corresponding dienes by hydroboration—protonolysis sequence.132

The cross-coupling reaction of 1-alkenylboronates is useful for alkenylation of haloarenes (eq 67).133,134

The relative reactivity appears to be PhI > p-ClC6H4Br > PhBr > o-MeC6H5Br > o-MeOC6H4I-Br,133 The order of reactivity is in good agreement with substituent effect in the oxidative addition of aryl halides to the palladium(0) complex,62 and presumably the substituents accelerate the transmetalation rate in the same order. The procedure, involving a hydroboration-coupling sequence, gives a new access to HGM-CoA reductase inhibitor NK-104 (eq 68).135

Cyclodehydration of 2-hydroxy- or 2-aminobenzeneethanal derivatives is known as a general procedure for the synthesis of benzo-fused heteroaromatic compounds.136 Although numerous modifications of this general method have been studied, the major difficulty seems to be the lack of a general method for the required ortho-functionalized areneethanal.

The cross-coupling reaction of tris(2-ethoxyethenyl)borane (42)137 or 2-(2-ethoxy-1-alkenyl)-1,3,2-benzodioxaboroles (43) with iodoarenes produces styryl ethers in high yields in the presence of Pd(PPh3)4 and powdered NaOH suspended in THF.138,139 Since 42 and 43 have a tendency to undergo base-induced decomposition on prolonged heating, it is desirable to use iodoarene derivatives as a substrate or an excess boron reagent for relatively unreactive haloarenes. Removal of the MOM protecting group, followed by cyclization gives benzo[b]furan in high yields by treatment with HCl in methanol (presumably to give cyclic acetals first), followed by dealkoxylation with polyphosphoric acid (PPA) at 100 °C (eq 71).138

Conversion of haloarenes to areneethenal precursors also can be carried out by the cross-coupling reaction of (2-organothio-1-alkenyl)boron derivatives which will be discussed in the section IV.E.

B. Coupling of Arylboron Derivatives: Synthesis of Biaryls

The first observed method to prepare biaryls is shown in eq 72.140 After this discovery, various modifications have been made for the reaction conditions. A combination of Pd(PPh3)4 or PdCl2(PPh3)2 and aqueous Na2CO3 in dimethoxyethane (DME) works satisfactorily in most cases.141,142 The combination with other bases such as Et3N,143 NaHCO3,144 Cs2CO3,144 Tl2CO3,145 and K2PO4146 with or without Bu4NCl147 and 18-crown-6144 also have been used. The reaction is successful for aryl triflates and iodo- and bromoarenes. Chlorobenzene derivatives are generally quite inert to oxidative addition, but some of π-deficient heteroaryl chlorides gives coupling products.148 The reaction proceeds more readily in homogeneous conditions (aqueous base in DME), but the reasonable yields are also obtained under heterogeneous conditions. For example, K2-
Phosphine-based palladium catalysts are generally used since they are stable on prolonged heating; however, extremely high coupling reaction rate can be sometimes achieved by using palladium catalysts without a phosphine ligand such as Pd(OAc)₂, [(η⁵-C₅H₅)PdCl₂]₂, and Pd₂[dba]₂-C₆H₆. Phosphine-free palladiums are approximately 1 order of magnitude more active than ArPd(η²-PPh₃)₂, both of which are in turn markedly more active than Pd(PPh₃)₄ (eq 74).

Although steric hindrance of aryl halides not a major factor for the formation of substituted biaryls, low yields are resulted in when using ortho-disubstituted arylboronic acids. For example, the reaction with mesitylboronic acid proceeds only slowly because of steric hindrance during the transmetalation to palladium(II) halide. The addition of strong bases, e.g., aqueous NaOH or Ba(OH)₂, both in benzene and DME exerts a remarkable effect on the acceleration of the coupling rate (eq 75). Although weak bases give better results for less hindered arylboronic acids, the order of reactivity for mesitylboronic acids corresponds to the basic strength: Ba(OH)₂ > NaOH > K₂PO₄ > Na₂CO₃ > NaHCO₃. The cross-coupling reaction of arylboronic acids is largely unaffected by the presence of water, tolerating a broad range of functionality, and yielding nontoxic byproducts. The reaction offers an additional great advantage of being insensitive to the presence of ortho-functional groups or heteroaromatic rings. Gronowitz has shown that unsymmetrically substituted bithienyls and thienylpyridines can be regioselectively synthesized by the cross-coupling reaction of thienylboronic acids (eq 78). Arylation of 5-bromonicotinates is demonstrated by Thompson (eq 79). Diethyl(3-pyridyl)borane synthesized by Terashima is a unique air-stable reagent for the heteroarylation (eq 80).
The ready availability of ortho-functionalized arylboronic acids by directed ortho-metalation–boronation sequence provides a synthetic link to the cross-coupling protocol. Snieckus has amply demonstrated that the sequence has considerable scope for the synthesis of unsymmetrical biaryls, heterobiaryls, and terphenyls (eq 81). The utility of the sequence has recently shown by the industrial-scale synthesis of a nonpeptide angiotensin II receptor antagonist (eq 82).

As a consequence, the reaction has been used extensively in the synthesis of natural and unnatural products and pharmaceuticals such as saddle-shaped host compounds, ferrocene derivatives, bis-cyclooctatetraene N–C–N hexadentated ligands, helically chiral ligands, michellamine, biphenomycin A, vancomycin, receptor molecules for oxo acids, leukotriene B4 receptor antagonist, 1,1'-bi-2-naphthol, fascaplysin and streptonigrin alkaloids, ugerimine and hippadine alkaloids, and other biaryls. Some of examples are summarized in Figure 10.

Aromatic, rigid-rod polymers play an important role in a number of diverse technologies including high-performance engineering materials, conducting polymers, and nonlinear optical materials. The cross-coupling reaction of arylboronic acids and dihaloarenes for the synthesis of poly(p-phenylenes) was first reported by Schütter. The method has been extended to monodisperse aromatic dendrimers, water-soluble poly(p-phenylene), planar poly(p-phenylene) fixed with the ketoimine bonds, poly(phenylenes) fused with polycyclic aromatics, and nonlinear optical materials (Figure 11).

Arylboronic acids are also efficient reagents for arylation of 1-alkenyl halides and triflates. Arylation of various haloalkenes such as α-iodo-α,β-unsaturated lactams, 6-[(alkoxycarbonyl)aminol-l-bromocyclohexene, 1-iodo-3,4,6-tri-O-(triisopropylsilyl)-D-glucal, and the bromoalkene precursor for (Z)-tamoxifen synthesis are achieved by the cross-coupling reaction of arylboronic acids. Arylcycloalkenes are prepared by the cross-coupling with corresponding triflates (eq 84). For the arylation of triflates, higher yields can be obtained in the presence of LiCl or LiBr (see: section IV.D).

C. Coupling of Alkylboron Derivatives

Although alkylmagnesium, -zinc, -tin, and -aluminum reagents have been successfully used for the cross-coupling reaction with organic halides, the reaction of alkylborane derivatives is particularly useful when one wishes to start from alkenes via hydroboration. Also, the base as well as palladium catalyst is essential for the success of the coupling reaction. A combination of PdCl₂(dppf) and aqueous NaOH in THF works nicely for most cases. Although strong bases accelerate the coupling reaction, more weak bases and aprotic conditions are desirable for func-
tionalized alkylboranes or organic halides. The reaction can be carried out by powdered K$_2$CO$_3$ or Cs$_2$PO$_4$ suspended in DMF at 50 °C in the presence of PdCl$_2$-(dppf) catalyst. Pd[PPh$_3$)$_4$ catalyst works well when aqueous NaOH in benzene or Cs$_2$PO$_4$ in dioxane are used. The characteristic features of both catalysts are that PdCl$_2$(dppf) is used well in polar solvents (e.g., THF and DMF), but Pd[PPh$_3$)$_4$ gives good results in nonpolar solvents, such as benzene and dioxane.

One of primary alkyl groups in trialkylboranes participates in the coupling, and the reaction with secondary alkyl is very slow. Thus, representative hydroboration reagents, such as 9-BBN, disiamylborane, dicyclohexylborane, and borane, can be used as hydroboration reagents for terminal alkenes. However, 9-BBN is most accessible due to its ease of use, high selectivity on hydroboration, and high reactivity on the cross-coupling reaction.

The hydroboration coupling approach for the construction of carbon skeletons affords several advantages (eq 85). The high stereoselectivity of hydroboration provides a stereodefined alkyl center on boron. The hydroboration occurs chemoselectively at the less hindered C19–C20 double bond. In addition, the alkyl group thus constructed can be readily cross-coupled with alkenyl or aryl halides under mild conditions.

![Figure 12. Synthesis of dihydroxyserulatic acid.](image)

The procedure has been used in a variety of syntheses of natural products, for example, in the synthesis of dihydroxyserulatic acid (Figure 12), the aggregation pheromone of Cathartus quadricollis (quadrilure), and aza-C-disaccharides.

A three-step, three-component synthesis of PGE$_1$ is achieved by utilization of the cross-coupling reaction of 9-alkyl-9-BBN with α-iodoenones. It is recognized that cesium carbonate in the presence of water extremely accelerates the coupling reaction carried out at room temperature (eq 86).

9-Methyl and 9-[(trimethylsilyl)methyl]-9-BBN are easily synthesized by the reaction of the corresponding lithium reagents with 9-methoxy-9-BBN. Unfortunately, such derivatives are spontaneously flammable in air, making them particularly hazardous to handle for isolation. However, selective oxidation with anhydrous trimethylamine N-oxide converts them to air stable borinate esters (eq 87) which are efficient reagents for methylation of haloalkenes or syntheses of allylic and propargylic silanes (eq 88).

![Diagram](image)

The intramolecular cross-coupling proceeds especially smoothly when the cyclization results in the formation of either five- or six-membered rings. The hydroboration of the terminal double bond with 9-BBN is faster than that of the halogenated double bond, e.g., (the relative rate), 2-methyl-1-pentene (196); 1-hexene (100); (Z)-1-bromo-1-butene (0.011). Thus, hydroboration coupling approach provides a new route for stereodefined exocyclic alkenes (eq 89).

Although alkylboronic acids or their esters are quite inert under above conditions, the organoboronates are more convenient to use, since they are stable in air and are handled easily for isolation. The cross-coupling of alkylboronates with 1-alkenyl or aryl halides proceeds in moderate yields in the presence of T$_2$CO$_3$ and PdCl$_2$(dppf), although the reaction is limitedly used for activated halides having an electron-withdrawing group. A sequence of the Rh(I)-catalyzed hydroboration of allyl acetone and the cross-coupling with haloenones produces diketones in 62–69% yields (eq 90).
D. Coupling with Triflates

Although the cross-coupling reaction with organic halides has been studied predominantly, it has been most recently discovered that trifluoromethanesulfonates (triflates) undergo a clean coupling with organoboron compounds, similar to organostannanes\(^8,201\), aluminum\(^202\) and zinc\(^203\) compounds. The triflates are valuable partners for the cross-coupling reaction, in part due to the easy access from phenols or carbonyl enolates which allow the selective formation of aryl and 1-alkenyl electrophiles.\(^204\) The cross-coupling reaction of organic triflates is previously reviewed.\(^205\)

Although relatively strong bases such as aqueous NaOH and NaOEt in ethanol have been used for the reaction with halides, powdered K\(_2\)PO\(_4\) suspended in THF or dioxane is sufficient enough to accelerate the coupling of 9-alkyl-9-BBN, 1-alkenyl-, and arylboronates or boronic acids with the triflates.\(^206\) Pd(PPh\(_3\))\(_4\) in dioxane at 65 °C is less effective than PdCl\(_2\)(dppf) in refluxing THF, but it may give a comparable yield by carrying out the reaction at 80 °C (eqs 91 and 92). The choice of suitable boron reagents effects high yields of products. For arylation of triflates, boronic acids afford better results than the corresponding boronic esters (eq 92), and 9-alkyl-9-BBN derivatives are recommended as the best reagents for alkylation. The catechol esters of 1-alkenylboronic acids usually work more effectively than the corresponding boronic acids and disiamyl or dicyclohexyl derivatives (eq 91).\(^206\)

E. Synthesis of Vinylic Sulfides

1-Alkenyl sulfides are valuable intermediates for the synthesis of ketones or aldehydes by hydrolysis with mercury(II) chloride,\(^212\) the synthesis of 1-alkenyl sulfoxides\(^213\) which can serve as dienophiles in the Diels–Alder reaction or as Michael acceptors, and
the synthesis of a variety of alkenes and dienes via the nickel-catalyzed cross-coupling reaction of the C–S bond with Grignard reagents. However, there are only a few stereoselective syntheses of 1-alkenyl sulfides. The coupling reactions of 1-alkenyl halides with thioalkoxides in the presence of a transition-metal catalyst provide vinylic sulfides in excellent yields with high stereoselectivity. Another route to vinylic sulfides involves cross-coupling reactions between (β-alkylthio)alkenyl halides and alkyl, aryl, and 1-alkenylmagnesium halides. Wittig and related methods unfortunately provide a mixture of stereoisomers.

The cross-coupling reaction of 9-(organothio)-9-BBN derivatives (46) with 1-alkenyl and aryl halides proceeds in excellent yields (eq 98). The reaction can be carried out under milder conditions than those of analogous reactions using lithium or tin thioalkoxides.

$$\text{RSH + 9-BBN} \rightarrow \text{RS-B} \quad (97)$$

$$\text{46} + \text{PdCl}_2(\text{dppe}) \rightarrow \text{RS-Ph} \quad (98)$$

(E)- and (Z)-1-bromo-2-(phenylthio)alkenes (47) are efficient building blocks for the synthesis of stereo-defined 1-alkenyl sulfides by the cross-coupling reaction with organoboron compounds (eq 99). The sulfides 47 have several advantages in terms of their practical use for cross-coupling reaction. The rate of coupling with the carbon–bromine bond is reasonably faster than that with the carbon–sulfur bond, which completely avoids the formation of the symmetrical coupling product.

The sequential double cross-coupling of vinylboronates and vinylmagnesium reagents provides an alternative method for synthesis of conjugated polyn- (eq 99). Unfortunately, a mixture of stereoisomers is given on the latter nickel-catalyzed reaction. The possibility of improving catalytic conditions has not yet been explored.

The ready availability of 2-(organothio)-1-alkeny1boron compounds obtained by catalytic hydroboration of 1-(organothio)-1-alkynes (eq 100) or thioboration of 1-alkynes (eq 102) now offers more flexible and reliable routes to such stereodefined alkenyl sulfides in combination with the cross-coupling reaction with organic halides.

The vinylborane 49 has unusually high nucleophilicity due to the activation by an electron-donating β-organothio group. Consequently, protodeborona- tion proceeds instantaneously with methanol to
F. Coupling with Iodoalkanes: Alkyl-Alkyl Coupling

Although a wide variety of organic electrophiles, such as aryl, 1-alkenyl, benzyl, allyl, and 1-alkynyl halides, have been utilized for the palladium-catalyzed cross-coupling reactions, it has been considered that such reactions cannot be extended to alkyl halides with sp³ carbon having β-hydrogens due to the slow rate of oxidative addition of alkyl halides to palladium(0) complexes and the fast β-hydride elimination from α-alkylpalladium intermediates in the catalytic cycle. Thus, the use of alkyl halides as coupling partners is a challenging problem in several recent publications. Although Castle and Widdowson had recently reported that Pd(dppe) formed in situ by the reduction of PdCl₂(dppe) with DIBAL, effectively catalyzes the cross-coupling reaction of iodoalkanes with Grignard reagents, this unique reaction has been denied most recently by Yuan and Scott.

Among the catalysts we examined for the cross-coupling reaction between 9-alkyl-9-BBN with primary iodoalkanes, the palladium complex with triphenylphosphine as ligand is recognized to be most effective (eq 106). The best yield is obtained when the reaction is conducted at 60 °C for 24 h by using 3 mol% of Pd(PPh₃)₄ and K₂PO₄ (3 equiv) in dioxane. Although PdCl₂(dppe) is reported as a selective catalyst to avoid β-hydride elimination for alkyl couplings, the complex does not act as an efficient catalyst in the present reaction. Other bidentate ligands such as dppe, dppp, and dppb also give low yields of coupling products. Such bidentate ligands may retard the step of reductive elimination because the reductive elimination from dialkylpalladium(I) proceeds from an unsaturated, three-coordinated species (eq 25), in contrast to the coupling with aryl or vinyl derivatives which can proceed through a four-coordinated saturated complex (eq 24).

The difficulty of alkyl-alkyl coupling reaction is mainly due to the formation of alkane at the step of oxidative addition of iodoalkane to Pd(0) complex. The β-elimination during the steps of transmetalation and reductive elimination is a minor process. The formation of reduction products (decane in eq 106) can be mainly due to the involving radical oxidative addition process (see section VI).

The available results indicate that the cross-coupling reaction of 9-alkyl-, 9-phenyl-, or 9,1-alkenyl-9-BBN gives 50–60% yields of products when using 50% excess of primary iodoalkanes and higher yields around 80% when using iodomethane (eqs 107 and 108).

G. Coupling with Other Organic Halides and Boron Reagents

Hydroboration of alkynes with disiamylborane, followed by cross-coupling with allylic or benzylic halides in the presence of Pd(PPh₃)₄ and aqueous NaOH produces 1,4-alkadienes or allylbenzenes in high yields. In the reaction with 1-bromo-2-butene, the bond formation occurs at two positions (the ratio of straight to branched is 72:28) in accordance with a mechanism involving α-allylpalladium intermediate. The reaction has been applied in a short step synthesis of humulene (eq 110). The cross-coupling reaction of 1,3-disubstituted allylic carbonates with aryl- and alkenylboronates are catalyzed by NiCl₂(dppe), and the reaction proceeds with inversion for the cyclic carbonate (eq 111). The stereochemistry indicates the process involving the oxidative addition with inversion and the arylation from the same face of the palladium.
complexes. The reaction proceeds under neutral conditions in good agreement with the mechanism through an (alkoxo)palladium(II) complex (20 in eq 32).

\[
\text{CH}_3\text{CH} = \text{CHCH}_2 \xrightarrow{\text{Pd(II)-catalyst}} \text{Pd}^* \text{O}^-
\]

As discussed in the previous section, propargylic carbonates couple with aryl, 1-alkenyl-, 1-alkynyl-, or alkylboron compounds under neutral conditions using palladium catalyst to provide allenes in high yields (eq 36). A similar coupling reaction of organoboron compounds with 2,3-alkadienyl carbonates produces 2-substituted 1,3-butadiene derivatives in the absence of base (eq 113). The coupling may occur through an (alkoxo)palladium(II) intermediate formed via oxidative addition by S_N^2 type displacement with Pd(0), thus allowing the reaction under neutral conditions.

\[
\begin{align*}
\text{COOMe} & \quad \text{1-naphthylB(OH)}_2 \quad \text{Pd(PPh)_4} \\
& \quad \text{benzene, Pd(PPh)_4 reflux}
\end{align*}
\]

Allylic, benzylic, and propargylic boron derivatives are considered to be not useful for the cross-coupling reaction because these reagents are highly sensitive to protodeboronation with water or alcohols. However, it is interesting to note that these boron reagents provide the coupling products in high yields even in an aqueous medium. The Pd(PPh$_3$)$_3$-catalyzed reaction of tri(crotyl)borane with iodobenzene in refluxing THF gives two coupling products in a 87% total yield (eq 114). The cross-coupling reaction of propargyloborates, prepared in situ from alkyl-1,3,2-benzodioxaboroles and (a-lithiomethoxy)-1,2,3-butatriene, produces the allene product through the 1,3-rearrangement, presumably at the step of transmetalation (eq 115).

\[
\begin{align*}
\text{(CH}_2\text{CH} = \text{CHCH}_2)_3\text{B} & \quad \text{Pd(PPh)_3} \\
& \quad \text{Ph-I, aq. NaOH, THF, reflux}
\end{align*}
\]

Only one example is reported for the cross-coupling reaction of 1-alkynylboron compounds. Methoxy(alkynyl)borates in situ prepared by addition of 9-methoxy-9-BBN to alkynyllithiums undergo efficient cross-coupling with aryl or 1-alkenyl halides to produce various alkynes (eq 116).

\[
\begin{align*}
\text{MeO-C-C} & \quad \text{C}_9\text{H}_{13} \\
& \quad \text{MeO, Pd(PPh)_3, THF, reflux}
\end{align*}
\]

V. Head-to-Tail Coupling

The reaction of phenyl or 1-alkenyl iodides with 1-alkynylboronic esters produces the unusual "head-to-tail" cross-coupling products in good yields (eqs 28 and 117) through the mechanism shown in Figure 2.

\[
\begin{align*}
\text{3a + CH}=\text{CHPh} & \quad \text{Pd(II)-catalyst} \\
& \quad \text{E} = \text{N, } \text{DMF, } 80^\circ \text{C}
\end{align*}
\]

The reaction is catalyzed by palladium black prepared in situ by the reduction of Pd(OAc)$_2$ in the presence of an excess of triethylamine in DMF. The use of phosphine-based palladium complexes and strong bases such as NaOEt, NaOH, and NaOAc may improve the formation of "head-to-head" coupling product (Table 1).

The intramolecular reaction affords a convenient method for the synthesis of (exomethylene)cycloalkenes (eqs 118 and 119).

\[
\begin{align*}
\text{OTBS} & \quad \text{Pd(OAc)_2 / BH}_3 \\
& \quad \text{E} = \text{N, } \text{DMF at 80^}\circ \text{C}
\end{align*}
\]

VI. Carbonylative Coupling

Carbonylative cross-coupling reactions of organic halides with organometallic compounds, such as organotin, boron, aluminum, and zinc reagents have been extensively studied and reported to provide excellent methods for the synthesis of unsymmetrical ketones or aldehydes. The general catalytic cycle for this carbonylative coupling reaction is analogous to the direct coupling except that carbon monoxide insertion takes place after the oxidative addition step and prior to the transmetalation step (Figure 13).

\[
\begin{align*}
\text{R-C-O-R'} & \quad \text{PdL}_2 \\
& \quad \text{R-C-Pd-X, R-M, R-R', path A}
\end{align*}
\]

Figure 13. Mechanism for carbonylative cross-coupling.
Among a variety of organometallics, organoboron compounds were first used by Kojima for the synthesis of alkyl aryl ketones (eq 120).\footnote{235} The action of Zn(acac)_2 in this reaction is ascribed to the formation of RCOPd[acac] species (eq 121) which undergoes transmetalation without assistance of bases (eq 32).

\begin{equation}
1 + \text{CO} + \text{ArX} \xrightarrow{\text{PdCl}_2(\text{PPh}_3)_2} \text{R-C-Ar} \quad (120)
\end{equation}

\begin{equation}
51 + \text{Zn(acac)}_2 \xrightarrow{\text{THF-HMPA}, 50 \, ^\circ\text{C}} \text{R-C-Pd} \quad (121)
\end{equation}

A general carbonylative cross-coupling can be readily carried out using K_2CO_3 or KHPO_4 as a base. Alkyl 1-alkenyl and alkyl aryl ketones are synthesized by the reaction of 9-alkyl-9-BBN with 1-alkenyl or aryl iodides in the presence of Pd(PPh_3)_4 and K_3PO_4 (eq 122).\footnote{239} For the synthesis of biaryl ketones, the cross-coupling reaction between arylboronic acids, carbon monoxide, and iodoarenes in anisole takes place at 80 \, ^\circ\text{C} in the presence of PdCl_2(PPh_3)_2 and K_3CO_3 (eq 123).\footnote{240} The hydroboration-carbonylative coupling sequence is extended to intramolecular reaction to afford cyclic ketones (eq 124).\footnote{239} The ate complexes obtained from \(\alpha\)-lithioindoles and triethylborane are carbonylated and coupled with aryl iodides, alkyl iodides, or cycloalkenyl triflates to provide a simple route to 2-indolyl ketones (eq 125).\footnote{241}

\begin{equation}
\begin{align}
\text{OMOM} & \quad \text{OMOM} \\
\text{Me} & \quad \text{Me}
\end{align}
\end{equation}

\begin{equation}
53 \xrightarrow{\text{Me-C}} \mathrm{C} \bigg\{ \begin{array}{c} \text{C} \quad \text{Ph} \\
54 \end{array} \bigg\}
\end{equation}

\begin{equation}
\text{Base} (53:64) = \text{K}_2\text{CO}_3 (88/12), \text{Cs}_2\text{CO}_3 (75/25), \text{K}_2\text{PO}_4 (65/35)
\end{equation}

The use of organic iodides is essential to achieving high yields. Organic bromides provide appreciable amounts of direct coupling products since the transmetalation of 50 (X = Br) with organoboron reagents is faster than the corresponding iodides (path A in Figure 13). In all of these reactions, some of the carboxylic acid derivatives formed from path B can be commonly observed.\footnote{239,240}

The cross-coupling reaction has been currently developed; however, such reactions are limitedly applicable to 1-alkenyl, 1-alkynyl, aryl, alky, and benzylic halides and not being extended to alkyl halides with sp^3 carbon containing \(\beta\)-hydrogen, as discussed in the previous section. The problem of \(\beta\)-hydride elimination is not serious in the carbon-carbonylation reaction because the insertion of carbon monoxide converts them to the acylpalladium(II) halides. Thus, various iodoalkanes including primary, secondary, and tertiary iodides are carbonylated and coupled with 9-R-9-BBN in the presence of K_3PO_4 and a catalytic amount of Pd(PPh_3)_4 yielding unsymmetrical ketones in good yields (eq 127).\footnote{242} The reaction is extremely accelerated by irradiation of sunlight.

\begin{equation}
\begin{align}
\text{OMOM} & \quad \text{OMOM} \\
\text{Me} & \quad \text{Me}
\end{align}
\end{equation}

\begin{equation}
\text{OMOM} \xrightarrow{\text{CO (1 atm)} / \text{K}_2\text{PO}_4 / \text{benzene, rt}} \text{OMOM}
\end{equation}

\begin{equation}
\text{OMOM} \xrightarrow{\text{CO (1 atm)} / \text{K}_2\text{PO}_4 / \text{benzene, rt}} \text{OMOM}
\end{equation}

Although the reaction works well for iodoarenes and 1-iodo-1-alkenes having electron-donating groups, the application to the electron-deficient iodides is severely limited due to the side reaction forming direct coupling products without carbon monoxide insertion (Figure 13, path A). Namely, the presence of an electron-withdrawing group retards the insertion of carbon monoxide into the RPd[II]X intermediates, and it reversely accelerates the rate of transmetalation to generate the R-Pd[II]R' species. The use of carbon monoxide under high pressure is a general method for suppressing such a side reaction.\footnote{234} Another efficient procedure involves the control of the rate of transmetalation to be sufficiently slower than that of carbon monoxide insertion by changing the organometallic reagents. The reaction of organoboron reagents can be controlled by choosing an appropriate base and a solvent to permit the selective coupling even under an atmospheric pressure of carbon monoxide (eq 126).\footnote{240}

\begin{equation}
\begin{align}
\text{Me-C} & \quad \text{Ph} \\
\text{Me-C} & \quad \text{Me-C}
\end{align}
\end{equation}

\begin{equation}
\text{Base (53:64)} = \text{K}_2\text{CO}_3 (88/12), \text{Cs}_2\text{CO}_3 (75/25), \text{K}_2\text{PO}_4 (65/35)
\end{equation}

The use of organic iodides is essential to achieving high yields. Organic bromides provide appreciable amounts of direct coupling products since the transmetalation of 50 (X = Br) with organoboron reagents is faster than the corresponding iodides (path A in Figure 13). In all of these reactions, some of the carboxylic acid derivatives formed from path B can be commonly observed.\footnote{239,240}

The cross-coupling reaction has been currently developed; however, such reactions are limitedly applicable to 1-alkenyl, 1-alkynyl, aryl, alky, and benzylic halides and not being extended to alkyl halides with sp^3 carbon containing \(\beta\)-hydrogen, as discussed in the previous section. The problem of \(\beta\)-hydride elimination is not serious in the carbon-carbonylation reaction because the insertion of carbon monoxide converts them to the acylpalladium(II) halides. Thus, various iodoalkanes including primary, secondary, and tertiary iodides are carbonylated and coupled with 9-R-9-BBN in the presence of K_3PO_4 and a catalytic amount of Pd(PPh_3)_4 yielding unsymmetrical ketones in good yields (eq 127).\footnote{242} The reaction is extremely accelerated by irradiation of sunlight.

\begin{equation}
\begin{align}
\text{OMOM} & \quad \text{OMOM} \\
\text{Me} & \quad \text{Me}
\end{align}
\end{equation}

\begin{equation}
\text{OMOM} \xrightarrow{\text{CO (1 atm)} / \text{K}_2\text{PO}_4 / \text{benzene, rt}} \text{OMOM}
\end{equation}

A particularly interesting feature in this transformation is that oxidative addition proceeds through the radical process; presumably, it is initiated by an electron transfer from palladium(0) complex to iodoalkanes to form a radical pair (Pd'X + R).\footnote{55} Thus, the iodoalkanes provides cyclized ketones via a sequence of radical cyclization, carbon monoxide insertion, and the coupling with 9-R-9-BBN (eqs 128 and 129).\footnote{243} The cyclization is generally not stereoselective, but the reaction of 55 proceeds with high endo selectivity due to the anomeric effect which prefers the transition state (56) shown in eq 129.\footnote{244}

As isocyanides are isoelectronic with carbon monoxide, they might be expected to exhibit a similar insertion reaction. However, they have not been used for the cross-coupling reaction. The difficulty is mainly due to its tendency to cause multiple insertions to transition metal complexes leading to poly-
isocyanides. The 9-alkyl-9-BBN reacts with isocyanide to form a relatively stable 1:1 complexes which readily participates in the cross-coupling reaction catalyzed by palladium. The complexes are successfully used for the iminocarbonylative cross-coupling reaction of 9-alkyl-9-BBN derivatives with haloarenes (eq 130).246

\[
\text{R} \quad \text{ArX} + \text{Pd(PPh}_3\text{)}_4 \quad \text{K}_2\text{PO}_4 \quad \text{MeOH} \quad \text{50 °C} \quad \text{THF} \quad \text{R} \quad \text{C} \quad \text{Ar} \quad \text{MeBu} \quad \text{130}
\]

VII. Alkoxycarbonylation and Dimerization

Unlike the cross-coupling reaction discussed above, the palladium-catalyzed alkoxycarbonylation of organoboron compounds proceeds through the transmetalation of organic group on boron to palladium(II) atom, CO insertion into the C–Pd bond, and finally the reductive elimination to the products and Pd(0). Thus, suitable reoxidants of palladium(0) to palladium (II) are required to recycle the palladium catalyst (Figure 14). p-Benzoinone in the presence of LiCl selectively oxidizes the palladium(0) complex in the presence of aryl- or 1-alkenylboronic esters.246

Under atmospheric pressure of carbon monoxide, 1-alkenylboronates are carbonylated at 50 °C in the presence of PdCl\(_2\), NaOAc, p-benzoquinone, and LiCl in methanol (eqs 131 and 132).247 The stereochemistry of 1-alkenylboronates can be retained over 99%. The hydroboration–carbonylation sequence cleanly provides terminal esters in contrast to the direct alkoxycarbonylation of terminal alkynes with carbon monoxide and alcohol in the presence of transition-metal catalyst.

\[
\text{Pd(II)X}_2 + \text{RBY} \quad \text{RPd(II)X} \quad \text{CO} \quad \text{Pd(0)} \quad \text{reoxidant} \quad \text{RBY} \quad \text{RBY}_2 \quad \text{131}
\]

VIII. Conclusion

The cross-coupling reaction of organoboron reagents with organic halides or related electrophiles represents one of the most straightforward methods for carbon–carbon bond formation. The reaction proceeds under mild conditions, being largely unaffected by the presence of water, tolerating a broad range of functionality, and yielding nontoxic byproducts. Consequently, the cross-coupling reaction of organoboron reagents has been realized in significant and diverse applications not only in academic laboratories but also in industries. In view of retrosynthetic analysis, the reaction is conceptually basic and important for construction of carbon framework of target molecules. The scope of the palladium-catalyzed cross-coupling reaction of the representative organoboron compounds with organic halides are summarized in Figure 15.

A very wide range of aryl- and 1-alkenylboron reagents undergo the palladium(0)-catalyzed reactions with alkyl, allylic, 1-alkenyl, aryl, and 1-alkynyl substrates. Allylic halides react with aryl- and 1-alkenylboron reagents, but alkyl- and allyloboron reagents fail to give the corresponding coupling products; presumably because the reductive elimination from α-alkyl-α-allyl- or di-β-allylpalladium(II) complexes is very slow to develop the catalytic
cycle. Since the palladium-catalyzed cross-coupling reaction of alkylic metals or halides often suffers from poor regioselectivity, the corresponding cross-coupling reaction of organocopper reagents can be a more general alternative. Primary iodoalkanes couple with alkyl-, 1-alkenyl-, and arylalkynyl reagents, but secondary and tertiary iodoalkanes are limitedly used for the carbylative cross-coupling. The cross-coupling of 1-alkynylboron compounds has been used much less frequently as the direct cross-coupling reaction of terminal alkynes with aryl and alkynyl halides in the presence of a palladium catalyst, copper(II) iodide, and a secondary or tertiary amine (Sonogashira reaction) is more convenient in most cases.

References

The treatment of PPh$_3$Pb with AgOAc gave an authentic sample: Ishiyama, T.; Murata, M.; Miyaura, N. Unpublished results.

The present results can be interpreted by a mechanism where the coordination of boron to an alkoxy oxygen or the cleavage of the B–C bond after complexation is the rate-determining step: Bassindale, A. R.; Eaborn, C.; Taylor, R.; Thompson, A. R.; Walton, D. R. M.; Cretney, J.; Wright, G. J.; Tetrahedron Lett. \textbf{1981}, \textit{22}, 7687.
A mixture of alkyne and 2a (1.1 equiv) in benzene was heated for 5 h at 60 °C. After the solvent was evaporated, the residue was dissolved in DMF and then treated with Pd(OAc)$_2$ (5 mol %) and Et$_3$N (2.5 equiv) for 14 h at 80 °C: Miyaura, N. Suzuki, A.; unpublished results.