<table>
<thead>
<tr>
<th>Title</th>
<th>Forest ecology of the islands of the north pacific ocean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Tatewaki, Misao</td>
</tr>
<tr>
<td>Citation</td>
<td>Journal of the Faculty of Agriculture, Hokkaido University = 北海道大學農學部紀要, 50(4): 371-486</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1958-11</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/44083</td>
</tr>
<tr>
<td>Type</td>
<td>bulletin (article)</td>
</tr>
<tr>
<td>File Information</td>
<td>50_4.pdf</td>
</tr>
</tbody>
</table>
FOREST ECOLOGY OF THE ISLANDS OF THE NORTH PACIFIC OCEAN

By

MISAO TATEWAKI

Preface

The area of the present study includes Hokkaido, Sakhalin, the Kurile Islands, the Commander and Aleutian Islands. They extend from the northwestern to the northern part of the Pacific Ocean. Hokkaido and Sakhalin are the northernmost islands of the Japanese Archipelago; Hokkaido is the northernmost island of the present Japan, from which Sakhalin is separated on the north by the Soya Strait 24 miles wide. The Kurile Islands form a long chain of the islands between the southern tip of Kamtchatka and the northeastern coast of Hokkaido, separated by the Sea of Okhotsk from the Pacific Ocean. They possess a flora between that of Hokkaido, rich in species and especially characterised by the presence of the Temperate Eastern Asiatic elements including the Japanese and Chinese elements, and that of Kamtchatka poor in species and in the phytogeographical respect as if it were an outlying island of the boreal Siberia as Prof. Hultén described. The Commander Islands and the Aleutian Islands from a beautiful arc between the Bering Sea and the North Pacific Ocean, showing many interesting floristic relationships between Asia and America.

During the last 40 years or so, while working in the Hokkaido University at Sapporo, the writer has mainly studied the forest ecology of Hokkaido, Sakhalin and the Kurile Islands. In 1929 the writer was privileged to make a botanical exploration of the Aleutian Islands. For a comparative study of the forest ecology, he has on several occasions explored Manchuria, Inner Mongolia and also North China.

In this report, the species were treated in the narrow sense so as to stress geographical distribution.

From the point of view of floristic phytogeography, the area of
the present study ranges from the Temperate Eastern Asiatic to the
Subarctic region, and the physiognomy of the forests is very interesting
and rather complex. Therefore it is worth while to explain here their
importance and characteristics.

The writer wishes to express his sincere gratitude to late Prof.
K. Miyabe for his kind direction, to Prof. S. Ito and Dr. H. Takeda
for their kind encouragement, to Prof. E. Hultén at Stockholm, Prof.
Du Rietz at Uppsala, Prof. B. Lindquist at Göteborg, Prof. R. Nord-
hagen at Oslo, Prof. K. Faegri at Bergen, Prof. W. Luedi at Zuerich,
Prof. R. Heim at Paris, and Profs. L. Emsberger and Braun-Blanquet
at Montpellier for their valuable advice and assistance, and also to the
members of the Forest Offices of the national forest and the Forest
Section of Hokkaido Government for their kind patronage.

PART I. FOREST COMMUNITIES OF THE ISLANDS OF
THE NORTH PACIFIC OCEAN

I. The Important Phytogeographical Lines of Demarcation
in the Islands of the North Pacific Ocean (Fig. 1)

In the Islands of the North Pacific Ocean, there are important
phytogeographical lines of demarcation as follows:

1) Schmidt's Line in Sakhalin.
2) Miyabe's Line in the Kurile Islands.
3) Kuromatsunai Depression in Hokkaido.

1. SCHMIDT'S LINE

In his Flora Sachalinensis (1868), Friedrich Schmidt\(^2\) divided the
island of Sakhalin into two natural botanical districts by a line extending
from the north of Dui on the coast of the Sea of Japan. After botanical
exploration, Schmidt and P. Glehn arrived at the conclusion that the
floral character of the southwestern part of Sakhalin is essentially that
of a northern extension of the flora of Japan. On the other hand,
they found an extensive area of tundra, so-called Sakhalin tundra by
Prof. Y. Okada\(^3\) and hills covered mostly with the larch (Larix kam-

38. 76-83. (1924)

Bot. Zeits. 76-5. 307-311. (1927)
tschatica) in the north-eastern part. In 1927, Prof. Y. Kudo as result of his two years of field experience in Northern Sakhalin during 1922–1923, came to indorse Schmidt’s view, and proposed to call this line of demarcation Schmidt’s Line. In 1937, Prof. K. Miyabe and Tatewaki discussed the significance of Schmidt’s Line after a detailed study of striking examples of the eastern part of the alpine zone of the pre-Tertiary rocks, and strengthen the significance of Schmidt’s Line in the plant distribution in Sakhalin. According to our studies up to the present, the characteristics of the area northwards from the line of demarcation are summarized as follows:—

i) Extensive development of the forest of Larix kamtschatica.

ii) Predominance of Picea jezoensis in the Picea jezoensis-Abies sachalinensis forest of which the percentage relationship between the Yezo spruce and Sakhalin fir is usually larger

iii) The sudden decrease in the species of the temperate broad-leaved trees.

iv) The absence of the strata of Sasa spp.

v) The lack of the climbing plants except Clematis ochotensis.

vi) The presence of some characteristic plants distributed in the districts of Ajan and Okhotsk, or more widely distributed in the subarctic or arctic regions.

2. MIYABE’s Line

For the geobotanist, the most interesting problem in the islands of the North Pacific Ocean is surely the plant-distribution of the Kurile Islands. References have already been made to the phytogeography, especially to the migration of the plants in this area. In the important classic papers on the phytogeography, Prof. K. MIYABE and A. ENGLE
r first discussed the question of distribution. The former7) in 1892, stated that Sakhalin had a more important role than the Kuriles for the migration of the rich flora of Japan proper. The latter8) put forward his opinion in 1899 that the Kuriles form an important archipelago as the migratory route of plants in the Neozoic Era. The study by Dr. H. TAKEDA9) in 1913 led him to agree with ENGEL’S opinion that the Kurile Archipelago was an important route for the migration of plants. He called attention to the presence of widespread arctic-alpine elements in the Kuriles which are common to those of the alpine regions of the main island of Japan. After TAKEDA’S paper, Prof. Y. KUDO10) in 1922 demonstrated with respect to the remarkable difference in the flora and plant-communities between the Southern and the Northern Kuriles that the Southern Kuriles belong to ENGEL’S11) “Temperate East Asiatic Region” and should form the northern limit of his “Provinz des mittleren und noerdlichen Japan”, while the Northern Kuriles should be placed in ENGEL’S “Subarctic Region” next to the

8) ENGEL, A.: Die Entwicklung der Pflanzengeographie. (1899)
Subprovince of "Nordostsibirien mit Kamtschatka". Kudo\(^{12}\) rendered great service to the establishment of definite criteria for the phytogeography of the Kuriles. In 1933, Prof. E. Hulten\(^{13}\) presented a discussion on the origin and distribution of the flora in the Kurile Islands. He stated that a gradual transition takes place and that the line of demarcation can not be a sharp one. He came to the conclusion that the line of demarcation between Japanese and Kamtchatkan floral regions can be drawn between the Islands of Ketoi and Ushishir as a very important physiognomical change takes place, especially citing the example of community of *Sasa kurilensis*.

After a detailed study of the flora and the plant-communities in the Central Kuriles in 1927~1930, the writer\(^{12}\) proposed the name "MIYABE's Line" in 1933 for the Etorof Strait as the most important boundary line between the Temperate Eastern Asiatic Region of Engler and the Subarctic Region. The elements of the flora of the Central Kuriles are represented by those of which are the prevailing ones with some range into the circumpolar, subarctic or arctic-alpine ranges. There is a conspicuous absence of *Abies, Picea, Populus, Ulmus, Quercus* etc. which are widely distributed in the forests of Hokkaido and the Southern Kuriles. On the other hand, such genera as *Taxus, Acer, Sasa*, etc. having an undisrupted range in Japan, exhibit some northward extension to the Central Kuriles, disappearing gradually towards the north. It indicates that the chain of the islands may be considered to play the present role of a floral bridge introducing the northern elements to the south and the southern to the north. He\(^{13}\) had a chance again to discuss MIYABE's Line in 1947 when the 88th birthday of Prof. K. MIYABE was celebrated. In that paper, a detailed statistical analysis of the floral elements was presented and the plant-communities were also taken into consideration. According to the studies up to the present, the characteristics of the north from this line of demarcation are briefly summarized as follows:

i) The lack of the fir-spruce- and the larch forest.

ii) The lack of the broad-leaved forests belonging to the Temperate Eastern Asia.

iii) The lack of climbing plants.

v) The dominance of the subarctic elements.

3. Kuromatsunai Depression (Fig. 2)

From the geobotanical point of view, the demarcation line in Hokkaido is represented by a depression, namely the Kuromatsunai Depression. It is situated in the southwestern part of Hokkaido, extending between Oshamanbe on the Pacific side to near Suttsu on the side of the Sea of Japan through Kuromatsunai. It is the most important depression in Hokkaido for the plant distribution of the present age. The importance of this depression from the geobotanical side was pointed out for the first time in 1935 by Prof. K. Miyabe in a preliminary report. The phytogeographical characteristics of this depression are summarized as follows:

i) It forms the northern limit of many important Japanese or Japanese-Chinese elements of the typical temperate zone restricted in the parts to the south of this depression including the Island of Okushiri. Some of these elements show interesting disjunctive distribution.

ii) The representative forests of temperate Japan, are also restricted to the parts southward of this depression. For example there are the Fagus crenata- (Pl. XXII), Thujopsis dolabrata var. Hondai-, Pinus parviflora var. pentaphylla- and Pterocarya rhoifolia- Aesculus turbinata forests.

iii) Picea jezoensis, the important element of the needle-leaved forest in Hokkaido and Sakhalin, does not reach as far as this depression; Picea Glehni has a similar distribution, but two restricted localities beyond this depression somewhat southward are known.

Ishikari Depression (Fig. 2): Another depression of the demarcation line is known as the Ishikari Depression, a broad depression of post-Tertiary date, extending between Tomakomai on the Pacific side to Ishikari on the side of the Sea of Japan through Sapporo. By this depression in Hokkaido is geologically divided into two distinct parts, viz. southwestern Hokkaido and eastern Hokkaido. The former is only an extension of northern Honshu, the main island of Japan, while the latter occupies the main part of Hokkaido and is itself divided into two parts, viz. the central and the eastern (in narrow sense). In central Hokkaido, a complete succession of rocks ranging from Paleozoic to recent is found. In the eastern part of Hokkaido, the Chishima (Kuriles) Range, a volcanic group, is situated from the north-eastern end to the westward. On the phytogeographical side the significance of these three parts is as follows:

i) In the south-western part, lying to the south of this depression, some of direct continuations of northern Honshu. There are prominent Japanese and Japanese-Chinese elements distributed in the Temperate Eastern Asia.

ii) In the central part are found the Japanese-Chinese elements of Temperate Eastern Asia especially in its southern province. Some Japanese elements of the alpine plants occur in the mountains of the backbone of Hokkaido. It is worth while to note the presence of the disjunctive distribution of the alpine plants belonging to the Circumpolar, the Eurasiatic and the Northern Pacific elements, most of which occur in the middle part. These plants are found in the pre-Tertiary districts.

iii) In the eastern part of this depression are found relics of the
continental elements of Eastern Asia. *Chosenia bracteosa*, *Betula davurica* and *Rhododendron parvifolium* are enumerated as remarkable examples.

iv) The flora of the low land of the eastern district of the eastern part was influenced by the volcanic activity of the Mashu group, forests of the oaks (*Quercus crispa* and *Quercus dentata*) and the birches (*Betula Ermani* and *Betula platyphylla*) are well developed.

4. **Intermediate Zone between the Temperate Eastern Asiatic and the Subarctic Siberian Regions**

From the Kuromatsunai Depression in Hokkaido to Schmidt's Line in Sakhalin and Miyabe's Line in the Kurile Islands, the forest shows an intermediate character between the Temperate Eastern Asiatic and the Subarctic Siberian regions, not only based on the floristic composition but also the sociological construction. The same condition is found in northern Korea, eastern Manchuria and the south-eastern part of the Far East of the USSR including Ussuri, the lower Amur and southern Maritime province. In other words the area under consideration is around the northern part of the Sea of Japan. The important characters of the forest in the present area are briefly explained as follows:

The spruce-fir-forests (in wide sense) composed of the subarctic elements and the broad-leaved forests composed of the Temperate Eastern Asiatic elements stand side by side, and the mixed forest composed of those elements above mentioned are often found in the low land. In any case, all those forests show the mosaic arrangement of the intermixture in the Temperate Eastern Asiatic and the Subarctic phytogeographic character. The precise direction of the intermediate zone is shown in the later part "Pan Mixed Forest Zone".

5. **Subdivisions of the Subarctic Zone** (Fig. 3)

It is noticeable that the forests of the Central and the Northern Kuriles and the Aleutian Islands including the Commander Islands have quite different vegetation in spite of belonging to the needle-leaved forest zone. They are characterized by the absence of the forest composed of the needle-leaved trees. Among them, the forest vegetation of the Central and the Northern Kuriles is only represented by the shrubby thickets influenced by the strong wind in winter and the cool summer. The former are mainly composed of *Pinus pumila*, *Alnus Maximowiczi* and *Betula Ermani* while the latter *Pinus pumila* and *Alnus Maximowiczi*. The Aleutian and the Commander Islands show the
arctic-like vegetation with no forest nor thicket. (Pl. I. a, b) According to Prof. Hulten*, the Vaccinium uliginosum-Empetrum nigrum-moss association or the Empetrum nigrum-lichen association are well developed, owing to a large extent regulated by the wind. But the analysis of the floristic composition of the whole chain prove that they must belong to the subarctic zone.

On the other hand, the needle-leaved forest of Northern Sakhalin is characterized by the dominant presence of Larix kamtschatica forest, while that of the intermediate zone in vertical distribution by the Picea jezoensis-Abies sachalinensis forest.

The differences of the vegetation between the horizontal and the vertical needle-leaved forests are characterized in the latter by the presence of Sasa strata as well as that of the small trees and shrubs such as Acer Tschonoskii, Acer ukurunduense, Ilex Sugeroki, Ilex rugosa, Euonymus macropterus, Euonymus sachalinensis var. tricarpus and Menziesia pentandra, etc. and also sometimes by that of the climbers such as Rhus ambigua and Actinidia Kolomikta. These genera never belong to the subarctic elements.

From the geobotanical distribution of the forest vegetation of the

subarctic zone of the islands of the Northern Pacific Ocean are divided into the following table.

<table>
<thead>
<tr>
<th>Forest Vegetation</th>
<th>Climax forest</th>
<th>District</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deciduous needle-leaved forest</td>
<td>Larix kamtschatica forest</td>
<td>Northern Sakhalien</td>
</tr>
<tr>
<td>Needle-leaved forest Evergreen needle-leaved forest</td>
<td>Picea jezoensis</td>
<td>Hokkaido Proper, Southern Sakhalien and the Southern Kuriles (mountain distribution)</td>
</tr>
<tr>
<td>Shrubby thicket</td>
<td>Pinus pumila thicket</td>
<td>the Central and the Northern Kuriles Islands and the Aleutian Islands</td>
</tr>
<tr>
<td>None</td>
<td>Heath</td>
<td></td>
</tr>
</tbody>
</table>

II. Forest Communities

1. Shrubby Thickets

i. Thicket of *Pinus pumila*

The dwarf Siberian pine (*Pinus pumila*) is widely distributed in arctic-alpine zone in the northern part of Eastern Asia, but not yet found in the Commander Islands and the Aleutian Islands. This pine is characterised by the following features:

i) It forms a dense and entirely pure community in general, forming often impenetrable thickets.

ii) The under-growth is not well developed and sometimes entirely absent.

iii) It is usually dwarf and has no distinct main trunk; the branches, which exceed a length of 10 m, are prostrate and creeping.

In the alpine belt of Japan, dense thickets of this pine are very commonly found, except on easily disintegrated slopes, steep cliffs and excessively damp places. In the middle part of central Hokkaido it occurs above 1400–1500 m (Pl. II. a), and in the southern part of the Hidaka Range over 1600–1800 m. But if one goes to the Kurile Islands, north of the Island of Urup, one will find it coming down to the level of the sea (Pl. II. b). It shows the climate climax. It is likely to be

influenced by the special insular climate, especially by the frequently
dense fog in summer and severe wind in winter. The same physiognomy
will be seen in the SCHMIDT Peninsula of the northernmost part of
Sakhalin. The main associations of this thicket are as follows:

a) Pinus pumila-Rhododendron aureum-Empetrum nigrum association
b) Pinus pumila-Arctous japonica-Vaccinium uliginosum association
c) Pinus pumila-Ledum palustre association
d) Pinus pumila-Sorbus Matsumurana association
e) Pinus pumila-Sasa kurilensis association
f) Pinus pumila-non plant cover association

Univ. 9-2. 33-35. (1922)

ii. Thicket of Sabina Sargentii

In only one locality, the north-western corner of the Island of
Shikotan, Southern Kuriles, is the pure thicket of Sabina Sargentii found,
developed on the upper parts of hilly mountains (160-200 m). It has
no under-growth and the prostrate aspect like the physiognomy of the
low thicket of Pinus pumila developed in the high mountain. (Pl. III. b)

iii. Thicket of Alnus Maximowiczii

Alnus Maximowiczii, the Eastern Asiatic species related to Alnus
fruticosa, shows an interesting ecological distribution. In the Kurile
Islands, the thickets of Pinus pumila are well developed throughout the
Islands. But it is worthy of notice that on a few of the islands there
is a complete absence of this pine. Alaid, the northernmost island
of the Kuriles and the Island of Matua in the Central part afford good
eamples. They are of recent volcanic eruption and of a graceful
conical form. On Mt. Alaid (2339 m), only the alder thickets are found
as high as 500-700 m above sea-level (Pl. IV. a) while on Mt. Matua
they are found as high as 400 m. (Pl. IV. b) They clothe the ranges
from the bottom of the gullies to the ridge of the mountain, showing
the physiognomy of an edaphic climax. The development of the alder
thickets depends upon the volcanic conditions. The height of the tree
varies with the localities. In the upland exposed to the wind, the alder
is merely small-shrubs lying flat on the ground, but in the sheltered
gully it attains a height of 3-5 m.

A similar edaphic aspect is found on such mountains in Hokkaido as Mt. Komagatake and Mt. Tarumai, both of which are still active. Mt. Tarumai is a famous triple volcano of which the dome was formed in the central cone in 1909. Traceable patch of *Pinus pumila* is found very locally on Mt. Tarumai. Generally speaking the alder thickets are found along the valley of the mountains of Hokkaido, often forming a narrow pure belt. Such thickets are developed from the upper part of the mountain and come as far down as the zone of the needle forest. (Pl. V. a) Sometimes they appear along the coast of the Pacific side in eastern Hokkaido where sea-fogs are frequent in summer.

The under-layer of the forest under consideration seems very considerable in different places but sometimes it is completely absent. The communities of this forest are as follows:

a) *Alnus Maximowiczii-Calamagrostis Langsdorffii* association
b) *Alnus Maximowiczii-Dryopteris austriaca* association (Pl. V. b)
c) *Alnus Maximowiczii-Filipendula kamtschatica* association
d) *Alnus Maximowiczii-Sasa kurilensis* association
e) *Alnus Maximowiczii-non plant cover association*

" : The primary survey of the vegetation of the Middle Kuriles.
" : Forest botany of Mt. Tarumai. Goryorin, No. 165. 18~19. (1942)

(in Japanese)

iv. Forest of Betula Ermani

In Hokkaido, the forest of *Betula Ermani* forms often in the intermediate zone (Pl. VI. a, b) making rather a narrow belt between the thicket of the dwarf Siberian pine (*Pinus pumila*) in the alpine zone and the needle-leaved forest composed of *Picea jezoensis* and *Abies sachalinensis* in the subalpine zone. (Pl. VI.) The analysis of the elements composing its flora shows an over-all character of the needle-leaved
forest in spite of there being some intermixture of arctic-alpine or alpine elements. The height and form of the birch tree vary with the localities. In central Hokkaido, it is developed at the altitudes between 1300 m and 1800 m. The mixed shrubs in this forest are Acer Tschonoskii, Acer ukurunduense, Weigela Middendorfiana, Sorbus Matsumurana, etc. In the Kurile Islands such forest is found at sea-level and it is distributed as far north as the Island of Rashua, showing an uninterrupted range of distribution. It is very interesting that it is entirely absent between the Island of Matua and of Alaid, the northernmost of the Kuriles, but that it again appears in Kamtchatka. The typical community is the Betula Ermani-Sasa kurilensis association. Besides this there are the following associations.

a) Betula Ermani-Calamagrostis Langedorffii association
b) Betula Ermani-Sorbus Matsumurana association
c) Betula Ermani-Vaccinium axillare association
d) Betula Ermani-Acer ukurunduense association

2. Needle-Leaved Forest

i. Forest of Picea jezoensis-Abies sachalinensis

The subarctic or needle-leaved forests in the islands of the Far East are represented by the forests of the spruces and the firs except Northern Sakhalin. They are often codominated by Picea jezoensis-Abies sachalinensis, and sometimes dominated respectively by Picea jezoensis, Abies sachalinensis or Abies Mayriana. The percentage respectively between Picea jezoensis and Abies sachalinensis are not constant as already stated. If one goes up to the mountain or to the north, Picea jezoensis increases. At the present day, spruce-fir forests are still in existence in Hokkaido, Sakhalin and also the Southern Kuriles as far as the middle part of the Island of Etorofu (the fir forest). (Fig. 4) In the area of the distribution of this needle-leaved forest, they are frequently seen and gradually increase towards the north and the east, but are scarce in the southwestern part.

In the southwestern part of Hokkaido, the forest of Abies Mayriana, a species closely related to Abies sachalinensis, is scattered among the forests of the Japanese beech, while in its central part, the forest
dominated by *Picea jezoensis* and *Abies sachalinensis* is well developed at altitudes from 800 m to 1200 m. Along the upper Ishikari, very fine forests of the spruce and fir called "Japanese Taiga" were developed. (Pl VII. a) But it is very regrettable that they were destroyed by the terrible storm in the autumn of 1949. (Pl. VII. b) As shown by the results of the studies up to the present, the spruce-fir forests under consideration were researched most precisely by the Japanese botanists. The forest types and the associations are as follows:

1) **Sasa Type**
Picea jezoensis-Abies sachalinensis-Sasa association (Pl. VIII. a)

2) **Fern Type**
Picea jezoensis-Abies sachalinensis-Dryopteris austriaca association
Picea jezoensis-Abies sachalinensis-Dryopteris austriaca sociation
Picea jezoensis-Abies sachalinensis-Dryopteris amurensis sociati­on (Pl. IX. a)
Picea jezoensis-Abies sachalinensis-Dryopteris crassirhiza­ma association

3) **Shrub Type**
Picea jezoensis-Abies sachalinensis-Rhododendron Fauriae association
Picea jezoensis-Abies sachalinensis-Menziesia pentandra association
Picea jezoensis-Abies sachalinensis-Vaccinium axillare association

4) **Carex Type**
Picea jezoensis-Abies sachalinensis-Carex sachalinensis association (Pl. IX. b)

5) **Moss Type**
Picea jezoensis-Abies sachalinensis-moss association

6) **Non plant-cover Type** (Pl. VIII. b)
The *Sasa* type is the climax while the *Carex* type occurs in rather
an initial stage. The latter is mostly found in Sakhalin and also locally in central and eastern Hokkaido. The area of the fern type is not large; it occurs in humid climate. The dominance of *Dryopteris amurensis* in the forest floor occurs in Sakhalin and very locally in central Hokkaido. Among the shrub types, *Picea jezoensis-Abies sachalinensis-Rhododendron Fauriae* association (sometimes codominated or dominated by *Rhododendron Albrechtii*) found on the rocky slopes is common. The moss type is rarely found on only rocky slopes, covering not so large area. It occurs mainly in the eastern part of Hokkaido and also in Sakhalin. In the ground flora, *Lycopodium* and *Cornus canadensis* are characteristic.

ii. Forest of *Abies sachalinensis*

Abies sachalinensis is distributed in Sakhalin, Southern Kuriles and Hokkaido except the southwestern part where it is substituted by *Abies Mayriana*. In the Southern Kuriles it reaches as far as the middle part of Etorof Island. (Fig. 4) The pure Sakhalin fir forest is commonly found on the low land in the area under consideration, but sometimes in the mountain district as seen on Mt. Meakan. The *Abies Mayriana* (including *Abies sachalinensis*-*Cephalotaxus nana* sociation is developed in the southwestern part of Hokkaido. The following associations and sociations are found:

a) *Abies sachalinensis (Mayriana)*-Sasa association
 Abies sachalinensis-Sasa *amphitricha* sociation
 Abies sachalinensis-Sasa *apumensis* sociation
 Abies sachalinensis (Mayriana)-Sasa *kurilensis* sociation
 Abies sachalinensis (Mayriana)-Sasa *paniculata* sociation (Pl. X. a)
 Abies sachalinensis-Sasamorpha *puerparascens* sociation

b) *Abies sachalinensis (Mayriana)*-fern association
Abies sachalinensis (Mayriana)-Dryopteris crassirhizoma association
(Pl. X. b)
Abies sachalinensis-Dryopteris austriaca association
e) Abies sachalinensis-Carex sachalinensis association
Abies sachalinensis-Carex sachalinensis association
d) Abies sachalinensis-Daphniphyllum humile association
Abies Mayriana-Cephalotaxus nana association
Abies Mayriana-Cephalotaxus nana-Daphniphyllum humile association
Abies sachalinensis (Mayriana)-Daphniphyllum humile association
e) Abies sachalinensis-Rhododendron Fauriae association
Abies sachalinensis-Rhododendron Fauriae association
f) Abies sachalinensis-Ribes sachalinensis association
Abies sachalinensis-Ribes sachalinensis association

iii. Forest of Picea jezoensis (Pl. XI. a)

Picea jezoensis is distributed in north-eastern Asia, especially influenced by the oceanic climate. It shows an interesting interrupted distribution in Japan occurring in the mountain district of central Honshu and also in the area northwards from the Kuromatsunai Depression in Hokkaido. In Sakhalin it commonly grows throughout the island except in the northernmost part of the Schmidt Peninsula. In the Kurile Islands it reaches only as far as the Southern Kuriles, where the eastern extreme is the southwestern part of the Island of Etorofu.

The pure forests of Picea jezoensis occur rather rarely in the area under consideration. Such as found in the cool and moist climate in summer. In keeping with this character, stands are restricted to the
basins or to the flat areas at the heads of valleys influenced by the frequent fogs in summer. The upper valley of the River Ishikari affords an excellent example. The *Picea jezoensis-Sasa* association is representative of its community. (Pl. XI. b) It is composed of overmatured uniform forest of which the undergrowth is exclusively dominated by *Sasa*.

There is another remarkable forest of *Picea jezoensis* on Mt. Tarumai, a triple volcano situated on the Pacific-side already mentioned in the paragraph on the forest of *Alnus Maximowiczii*. Its prominent physiognomy is characterised by the complete absence of the *Sasa* stratum. The forest of the Yezo spruce on Mt. Tarumai is a result of the volcanic activity and the frequent fogs in summer. The communities of the edaphic climax are represented by the *Picea jezoensis*-moss associations. Among the mosses of this association are found *Lycopodium annotinum*, *Lycopodium obscurum*, *Chimaphila umbellata*, *Pyrola renifolia*, etc. It is a great pity that most of these excellent forests were cut during the last period of the 2nd World War for the paper industry of the newspapers of Japan and also influenced by the terrible storm in 1954. The following associations and sociations we found on Mt. Tarumai.

a) *Picea jezoensis*-moss association
 - *Picea jezoensis-Lycopodium annotinum* sociation
 - *Picea jezoensis-Pyrola* sociation

b) *Picea jezoensis-Dryopteris* association
 - *Picea jezoensis-Dryopteris austriaca* sociation
 - *Picea jezoensis-Dryopteris crassirhizoma* sociation

c) *Picea jezoensis-Ledum palustre* association
 - *Picea jezoensis-Ledum palustre* sociation
 - *Picea jezoensis-Leucothoe Grayana* sociation

TATEWAKI, M. & TAKAHASHI, K.: Plant communities.- A memoir of the scien-
scientific investigations of the primaeval forests in the head waters of the River Ishikari, Hokkaido, Japan. 16~21, 31~153. (1955) (in Japanese)

iv. Forest of *Picea Glehni* (Fig. 5)

Picea Glehni is one of the most important needle-leaved trees of Hokkaido. It is mainly distributed in Hokkaido, especially in its eastern as well as northern part. Very locally it is found along the Aniwa Bay in Sakhalin (Pl. XII. a) and also in some limited localities of the Southern Kuriles. (Pl. XII. b) It often forms a fine, pure, uniform forest ranging from the wet bogs to such dry soils as sand dunes. Even from a glimpse of the forests of *Picea Glehni*, it is immediately seen that they are entirely different from any of other forests. These spruce forests afford an excellent subject for the study of phytosociology, supporting a definite vegetation. In them there are, therefore, represented remarkable forest-communities which must be considered as the edaphic climax.

![Geographical area of Picea Glehni](https://example.com/geo_area.png)

Fig. 5. Geographical area of *Picea Glehni.*

- : Experimental plot; ▲ : Researched plot
The author has continued his researches about the associations of the forests under consideration for about the past 25 years. After the result of the investigations, the following seven series of the edaphic categories are distinguished.

a. Swamp and bog; b. Serpentine district; c. Sand dune;
d. Area burned-over by forest fires; e. Volcanic sand and gravel;
f. The neighbourhood of the hot-springs; g. Rocky slope.

a. Bog and Swamp

In the northern part along the Ochotsk Sea as well as the eastern part along the Pacific coast of Hokkaido, the forest of GLEHN's spruce prevails on the bog and swamp. It is interesting that, in respect to average heights of the trees, there are three types correlated with the development of the bogs. In the center of the bog composed of the Sphagnum stratum, occurs the dwarf forest of 0.5-1 m in height. The communities existing there, are represented by the Picea Glehni-Carex Middendorffii association. Around it, there is an intermediate forest 2-5 m in height on the intermediate bogs of which the strata are dominated by Ledum palustre or Osmunda cinnamomea. The dwarf and intermediate forests occur on very wet lands. On the margin of the bog, the tall forest over 10 m in height is found in which the undergrowth is often dominated by Menziesia pentandra and by Vaccinium axillare in the alpine belt. In the swamps, the GLEHN's spruce attains a considerable height; there the undergrowth is dominated by Phragmites communis or Lysichiton camtschatcense. The main associations of the GLEHN's spruce forest on the bogs and swamps are as follows:

a) Picea Glehni-Sphagnum association
 Picea Glehni-Carex Middendorffii association (Pl. XIII. a)
 Picea Glehni-Phragmites communis-Oxycoccus quadripetalus association
b) Picea Glehni-Ledum palustre association
 Picea Glehni-Ledum palustre association
 Picea Glehni-Eriophorum vaginatum association
 Picea Glehni-Moliniopsis japonica association
 Picea Glehni-Osmunda cinnamomea association (Pl. XV. a)
 Picea Glehni-Carex caespitosa association (Pl. XIII. b)
c) Picea Glehni-Phragmites communis association
 Picea Glehni-Phragmites communis association (Pl. XIV. a)
 Picea Glehni-Lysichiton camtschatcense association
Picea Glehni-Equisetum palustre sociation (Pl. XIV. b)

b. Serpentine District

The characteristic forests of *Picea Glehni* are found in the serpentine district of the central and the northern part of Hokkaido. (Pl. XVII. a) One of the largest forests is found in the Teshio Experiment Forest of Hokkaido University situated in the northwestern part of central Hokkaido. The edaphic climax is represented by *Picea Glehni-Sasa* association.

c. Sand Dune

Forests of this spruce developed on the sand dunes are very rarely found. Only two localities were investigated. One of them is located on the sand bar along Lake Furen, situated in eastern Hokkaido, and the other in the central part of Kunashiri Island of the Southern Kuriles on the Pacific side. These localities are influenced by the frequent sea-fog in summer. The *Picea Glehni-Majanthemum dilatatum* association is the representative.

d. Areas burned over by Forest Fires

As secondary vegetation following forest fires, the forest of *Picea Glehni* can be found in Hokkaido only in the mountain district in eastern Hokkaido. The representative of this series is developed on Mt. Kikin in the eastern part of Prov. Kitami. There one finds *Picea Glehni-Sasa* association. Another example can be seen in the national forest at Oketo, Prov. Kitami. (Pl. XVI. b) The Glehn's spruce is associated with *Betula platyphylla*.

e. Volcanic Sand and Gravel

One of the characteristic communities of Glehn's spruce is found in the forest developed on volcanic sand and gravel. Such occurs on recent volcanoes, for example, on Mt. Meakan, Mt. Tarumai, etc. Sometimes the moss-layer is well developed and sometimes *Ledum palustre* var. yesoense covers the ground forming a continuous mat. There are found the associations and sociations as follows:

- a) *Picea Glehni-moss association*
 - *Picea Glehni-moss sociation*
 - *Picea Glehni-Lycopodium sociation*
 - *Picea Glehni-Coruns canadensis sociation* (Pl. XV. b)
b) *Picea Glehni-Ledum palustre* association

Picea Glehni-Ledum palustre sociation

Picea Glehni-Leucothoe Grayana sociation

f. Neighbourhood of Hot-springs

In the eastern part of Hokkaido, Glehn's spruce stands are often found in the neighbourhood of hot springs. They occur on soil of strong acidity. Remarkable examples are found in the Akan National Park, among which the representative is that of Kawayu hot-spring. The spruce at Kawayu attains a height of 5–7 m, occasionally attaining 10 m or slightly more. The forest floor is partly dominated by *Cornus canadensis* and partly by *Osmunda cinnamomea*. (Pl. XVII. b) The *Picea Glehni-Sasa amphíthricha* sociation is developed along the borders of this forest.

g. Rocky Slope

Stands of *Picea Glehni* are commonly found on rocky slopes of the mountain district in Hokkaido and the southern Kuriles. In this case, the kind of the rocks is not so important, but the layers of soil are always thin. The communities of the forest are characterised by the good development of the moss layers (Pl. XVI. b), the shrub layers often associated with predominant moss on the ground floor. Representative shrubs are *Rhododendron Albrechtii* in the southern part associated often with *Viburnum furcatum, Rhododendron Fauriae* (Pl. XVIII. a) in the northern and eastern parts, sometimes *Rhododendron dauricum* in the eastern part (Pl. XVIII. b) and *Ilex Sugeroki* in the upper zone of the needle-leaved forest.

" : Vegetation along the axis of the meteorological observation of the screen forest for the sea-fog at Ochiishi, Prov. Nemuro, Hokkaido. Studies on fog-prevention forest. 1. 35–46. (1951) (in Japanese)

v. Forest of *Larix kamtschatica* (Fig. 6)

Larix kamtschatica is distributed in the northeastern part of Eastern Asia. In the islands of the North Pacific Ocean, Sakhalin and the Southern Kuriles only are known to have this forest.

In the Southern Kuriles, the distribution is limited to the Islands of Shikotan (Pl. XXIX. a, b) and Etorof showing a distinct disjunctive distribution. In the Islands of Shikotan it is found only along the southern coast on the Pacific side. There may be seen the *Larix kamtschatica-Sphagnum* and the *Larix kamtschatica-Sasa* (depauperata) association. If comparison is made to that of the Island of Etorof, the distribution of the latter is wider. Its forest ranges from R. Saruya in the east to Guya in the west while its individuals are distributed from Moyoro in the east to Nokka in the west. As the communities, there are the *Larix kamtschatica-Sphagnum*, *Larix kamtschatica-Leedum*

![Fig. 6. Distribution of the *Larix kamtschatica* forest on the islands of the North Pacific Ocean](image-url)
palustre-, and Larix kamtschatica-Sasa ('kurilensis) associations.

Forests of this larch are well developed in Sakhalin. Towards the north beyond Schmidt's Line, it increases especially in number of separate forest, and the forests occur commonly on hills as well as on bogs. Among them larch forests developed along the R. Poronai were studied in most detail. The communities of the larch under consideration are found as follows:—

a) Larix kamtschatica-Sphagnum association
 Larix kamtschatica-Carex Middendorffii association (Pl. XX. a)
 Larix kamtschatica-Vaccinium axillare association

b) Larix kamtschatica-Ledum palustre association
 Larix kamtschatica-Ledum palustre association (Pl. XX. b)
 Larix kamtschatica-Eriophorum vaginatum association
 Larix kamtschatica-Osmunda cinnamomea association

c) Larix kamtschatica-Calamagrostis Langsdorffii association

d) Larix kamtschatica-Sasa association
 Larix kamtschatica-Sasa kurilensis association
 Larix kamtschatica-Sasa depauperata association

Yamazaki, T.: Distribution and associations of Larix dahurica var. japonica.
 Bull. Kyoto Univ. For. 7. (1934) (in Japanese)

: Plant communities in the middle part of Etorof Island. I.

vi. Forest of Thujopsis dolabrata var. Hondai (Fig. 7)

Thujopsis dolabrata var. Hondai ('Hiba' in Japanese), one of the finest conifers occurs in the northern mountain district of the temperate Japan. It is found on the side of the Sea of Japan of the southwestern part of Hokkaido. The tree in this district grows to a great size attaining a height of 25 m and 70 cm in breast-high diameter. It forms a pure forest or a mixed forest with many other broad-leaved trees. In Hokkaido, the distribution of this tree is mostly limited to the Paleozoic district. Taking the distribution of the present species in northernmost Honshu (the main island of Japan) into consideration, it shows a remarkable example of the continuous distribution though the Tsugaru Strait divides them at present. The presence of this forest
in Hokkaido is considered to have been composed before the separation of the Tsugaru Strait. The forest floor is characterized by sparse vegetation or sometimes it is entirely absent owing to the insufficient light. The main associations of this forest are as follows:

a) *Thujopsis dolabrata* var. *Hondai*-Spicanthopsis nipponica-Plagiogyria Matsumuraeana association

b) *Thujopsis dolabrata* var. *Hondai*-Carex conica association

c) *Thujopsis dolabrata* var. *Hondai*-Dryopteris crassirhizoma association

d) *Thujopsis dolabrata* var. *Hondai*-non plant cover association.

vii. Grove of *Pinus parviflora* var. *pentaphylla*

Pinus parviflora var. *pentaphylla* shows an interesting distribution in Hokkaido, forming two groups:— one of them is restricted in the southwestern part including Okushiri Island, and the other in the Hidaka Range. (Fig. 8) The largest forest existed in Samani District
in Prov. Hidaka, (Pl. XXVII. a) but it was cut during the War. At present, the groves of this pine were found only in scattered places. The main sociations of this forest are as follows:

- *Pinus parviflora* var. *pentaphylla-Rhododendron Fauriae sociation*
- *Pinus parviflora* var. *pentaphylla-Ilex Sugeroki sociation*
- *Pinus parviflora* var. *pentaphylla-Menziesia pentandra sociation*
- *Pinus parviflora* var. *pentaphylla-Carex blepharicarpa sociation*

viii. Grove of *Taxus cuspidata*

The Japanese yew (*Taxus cuspidata*), the Eastern Asiatic element, has close relation to the European yew (*Taxus baccata*). Groves of Japanese yew in the area under consideration have been hitherto known very rarely in Honshu and Hokkaido. As the representative of the
former, the only one grove in the province of Hida of central Honshu was famous. It had been protected as a national monument, but it was destroyed before 1945 during the recent war. Groves in Hokkaido have fortunately survived up to the present. They are found in only three localities of the eastern part of Hokkaido as follows (Fig. 9):

i) Chanai, Prov. Kushiro (Prefectural forest) (Pl. XXI. a)
ii) Kamioboro, Prov. Kushiro (National forest) (Pl. XXI. b)
iii) Near the lake-side of Kutcharo, Prov. Kushiro (National forest)

The areas of these groves are about 1-5 hectares, forming the secondary layer of 5-12 m in height. However the yew trees near the lake-side of Kutcharo are higher, being 11-17 m in height. *Abies sachalinensis*, *Picea jezoensis*, *Acer mono*, *Magnolia obovata*, *Kalopanax pictus*, etc. are scattered in the first layer of 20-26 m in height. They are distributed in the environment of rather cool and frequently foggy summer, not very cold winter and the stand on the comparatively level land near the head of a valley.

The ground flora is characterised by the absence of *Sasa* spp. *Dryopteris crassirhizoma* and *Dryopteris austriaca* (both cover-degree about
3) are predominant associated with several shade- and humous-plants such as Lycopodium serratum var. Thunbergii, Tiarella polyphylla, Oxalis Acetosella, Viola Selkirkii, Circaea alpina, Pyrola renifolia, Galium kamtschaticum, Clintonia udensis, Listera nipponica, etc.

The climax community of these forests is represented by "the Taxus cuspidata-Dryopteris association", having few or no seedlings and young trees of the yew. It is a very remarkable forest type in our district.

3. Summer Green Forest

i. Forest of Fagus crenata

The forest of the cold temperate zone in Japan is well represented by the Japanese-beech (Fagus crenata) one. It is well known as the climax forest. It is distributed from the mountains of Kyushu in the south to as far as near the Kuromatsunai Depression (42°47'44" N.L.; 140°23'47" E.L.) of Hokkaido in the north. (Fig. 10) In the southwestern part of Hokkaido, the present forest is well developed from the sea-level to the limit of the timber-line (Pl. XXII. a) and the tree attains a height of 28 m and breast-high diameter of 1.5 m. The climax of the beech forest shows the Fagus crenata-Sasa association, the aspect of which is monotonous. Sometimes it is associated with Acer japonicum or Acer Tschonoskii in the shrub layer. In dampy lower slopes, the Fagus crenata-Viburnum Wrightii association is found, while on upper slopes of the rather dry ridges is found the Fagus crenata-ericaceous shrubs association, in which sometimes Vaccinium Smalii and Hugeria japonica are codominate, sometimes Rhododendron Kaempferi as dominant or Leucothoe Grayana is abundant. After the selective cutting or the partly clear cutting, Lindera membranacea usually occurs, and in such places, the Fagus crenata-Lindera membranacea association is often found.

The main associations and sociations of the beech forests are as follows:
Fig. 10. Northern limit of *Fagus crenata*

- : forest; O: sparse distribution; △: natural conservation

Fagus crenata-Sasa association
 - *Fagus crenata-Sasa cernua* association (Pl. XXII. b)
 - *Fagus crenata-Sasa paniculata* association

Fagus crenata-Acer association
 - *Fagus crenata-Acer japonicum-Sasa* association
 - *Fagus crenata-Acer Tschonoskii-Sasa* association

Fagus crenata-Viburnum Wrightii association
 - *Fagus crenata-Viburnum Wrightii* association
 - *Fagus crenata-Carex folisissima* association
 - *Fagus crenata-Cephalotaxus nana* association
ii. Forest of *Pterocarya rhoifolia-Aesculus turbinata*

The communities mentioned above are to be found in the southwestern part of Hokkaido in the area under consideration. Along the valleys of this forest zone are found the *Pterocarya rhoifolia-Aesculus turbinata*, *Pterocarya rhoifolia-Cercidiphyllum japonicum*, *Pterocarya rhoifolia* (Pl. XXIII. a) or *Aesculus* (Pl. XXIII. b) forests on rich soils. Such forests in their primaev words can hardly be found at present, owing to the development of the agriculture and forestry. Only a few localities situated near Hakodate, namely Nanae and Ohnuma, were used for the ecological analysis. The under growth of these forests is generally dominated by the tall herbage and often by the ferns. They are represented by the associations and the sociations as follows:

- *Pterocarya rhoifolia-Aesculus turbinata-fern association*
- *Pterocarya rhoifolia-Aesculus turbinata-fern sociation*
- *Pterocarya rhoifolia-Mattenezia Struthiopteris sociation*
- *Pterocarya rhoifolia-Aesculus turbinata-tall herbage association*
- *Pterocarya rhoifolia-tall herbage sociation*
- *Pterocarya rhoifolia-Aesculus turbinata-Sasa association*
- *Pterocarya rhoifolia-Aesculus turbinata-Sasa cernua sociation*
- *Pterocarya rhoifolia-Sasa cernua sociation*
- *Pterocarya rhoifolia-Sasa paniculata sociation*
- *Aesculus turbinata-Sasa paniculata sociation*

iii. Forest of *Ulmus propinqua-Acer Mono*

On rich alluvial soils in the plain or flat moist places along the valley were found the *Ulmus propinqua-Acer Mono* forest in the intermediate zone of northern temperate Eastern Asia. *Ulmus propinqua* is
an outstanding tree attaining a height of 30 m and breast-high diameter of over 1 m, and sometimes only this tree becomes dominant. It affords a prominent feature of the landscape with its broad heads of graceful pendant branches. But such a forest as this one under consideration having the primitive aspect can be hardly found owing to the developments of cultivation. *Alnus hirsuta*, *Cercidiphyllum japonicum*, *Kalopanax pictus* and *Fraxinus mandshurica* are mixed. The undergrowth is dominated by *Sasa* or herbs such as *Cacalia hastata* subsp. *orientalis*, *Cirsium kamtschaticum*, and *Petasites japonicus* subsp. *giganteus*. *Anemone flaccida*, *Corydalis ambigua*, *Trillium Smallii*, *Trillium kamtschaticum*, etc. are also found. The associations of this forest are as follows:

Ulmus propinqua-Acer Mono-herbage association

Ulmus propinqua-Acer Mono-Sasa paniculata association

iv. Forest of *Acer Mono-Tilia japonica*

The forest of *Acer Mono-Tilia japonica* is developed on the hill-slope in the intermediate zone. *Tilia japonica* (Pl. XXIX. a) is often associated with *Tilia Maximowicziana*. The present forest is rich in the species of trees; they are *Ostrya japonica* *Quercus crispula*, *Ulmus laciniata*, *Prunus Sargentii*, *Prunus Ssiori*, *Phellodendron amurense* var. *sachalinense*, *Acer Mayri*, *Acer ornatum*, ssp., *Acanthopanax sciadophylloides*, *Kalopanax pictus*, etc. The undergrowth is often dominated by *Sasa* or the tall herbage. Maruyama, a hill attaining a height of 226 m, is situated in the western part of Sapporo City, the capital of Hokkaido. The forest of this hill has been kept under the law of the state natural conservation. According to the analysis of the forest composition in 1949, it was well represented by the forest of *Acer Mono-Tilia japonica*.

v. Forest of *Quercus c-ispula*

Quercus crisula is one of the most essential forest trees in northern Japan. It is a very difficult species, especially in its relation to *Quercus mongolica*. In Japan at present, some taxonomists treat it as an entirely separate species, and others as a variety of *Quercus mongolica*. The writer will treat it here as an autonomous species. This oak is tall
and can attain a height of 20–24 m and 50–80 cm in diameter at breast height. The forest of *Quercus crispula* found on rather dry soil is developed in Hokkaido and Southern Sakhalin and also in the Southern Kuriles as far as the Island of Etorof. The trees mixed in this oak forest are *Betula Ermani*, *Ostrya japonica*, *Ulmus propinquua*, *Acer Mono*, *Acer ornatum*, *spp.*, *Tilia japonica*, *Kalopanax pictus*, etc. The felling of this oak was suddenly increased from 1935. Up to that time, the pure forests composed of excellent trees over 20 m high and 70 cm in diameter at breast height were seen here and there, especially in the low-land of the eastern part of Hokkaido. Owing to the over-felling toward the close and after the World War II, the fine primaeval forest of this oak have almost disappeared. The communities of this oak forest are represented by the *Quercus crispula-Sasa* association, of which the undergrowth is exclusively dominated by *Sasa*. The culms of *Sasa* attain a height of 60–80 cm. The characteristics of this association are *Thalictrum Thunbergii*, *Angelica anomala*, *Calamagrostis Langsdorffii*, *Carex siderosticta*, *Polygonatum Maximowiczii*. The cover-degree of these species is not over 1. The *Quercus crispula-Sasa* association has been used very commonly as the fine natural meadow for horse-grazing. If over-grazing occurs *Sasa* is often replaced by such ferns as *Osmunda cinnamomea*, *Pteridium aquilinum*, *Dryopteris crassirhizoma*, etc.

A characteristic association of this oak forest was found in the experiment forest of Kyushu University in the province of Tokachi. It is the *Quercus crispula-Rhododendron dauricum* association developed on a rocky slope. The oak trees are about 20 m in height, 40 cm at breast-high diameter and *Rhododendron dauricum* is 1.5–2 (~4) m high, having the cover degree 3.

Along the coastal district of the province of Hidaka, *Quercus crispula* is sometimes replaced by *Quercus serrata*.

vi. Forest of *Quercus dentata*

As the edaphic climax, the forest of *Quercus dentata* occurs on restricted soils such as the sandy soils along the coastal line or the terraces covered by volcanic ashes in Prov. Tokachi. The former is commonly found on the sand dune or the sandy hill-side along the coast in Hokkaido (Pl. XXIV. a) and extends to the Okhotsk-side of Kunashiri, the southernmost island of the Kuriles. The pure stands is developed in the distance of 100–150 m from the shore along the beach. The height of the tree is 1–1.5 m in the front belt, characterized often by the shrubby form or small tree with crooked gnarled stems. The tree-crown in such places seems to be evenly cut by a hair-clipper. As going inward, the height of tree increases, and is sparsely mixed with such trees as *Acer Mono*, *Kalopanax pictus*, *Salix Bakko* or *Salix Hultenii* var. *angustifolia*, and then *Quercus dentata* is often replaced by *Quercus crispula*. The representative communities is represented by *Quercus dentata-Sasa paniculata* sociation.

Along the Sea of Okhotsk the small groves of *Malus baccata* var. *mandshurica* occur here and there on the sand dune in the eastern part of Hokkaido.

In the flatty places on the terraces in Prov. Tokachi, were found the very fine forests *Quercus dentata* which had been almost cut by the reclamation. The tree often attained a height of over 25 m, and the breast-high diameter of over 90 cm. (Pl. XXIV. b) The *Quercus dentata-Sasa* association is the representative community and sometimes associated with the shrubby stratum of *Lespedeza bicolor* in forest floor.

MATSUI, Y.: Research of the forest on the sand dune in the northern part of Hokkaido and the consideration for its treatment. (Asahigawa Forest Office) (1952) (in Japanese)

vii. Forest of *Betula platyphylla*

One of the remarkable forests of the birches will be represented by the *Betula platyphylla* (Pl. XXVIII. a) one which corresponds to that of *Betula verrucosa* in Europe. At present there is hardly found the pure forest composed of the big trees. But the young or moderate-aged forests accompanied by the underlayer of *Sasa* found in the low
land or lower place of the mountain. They are characterised by the beautiful white birk. In general they are developed after forest fires forming the pure stands. They are replaced by *Betula Ermani* forest in the mountain district in Hokkaido. Rarely the forests of the giant *Betula Maximowicziana* were found in the same district (commonly lower), but at the present, the younger forests are locally found. In the eastern part of Tokachi Province and very rarely in Kitami Province (Pl. XXVIII. b) in Eastern Hokkaido, the interesting forests of *Betula davurica* are found.

viii. Forest of *Acer Mono*

An another forest developed along the sea-coast is the forest of *Acer Mono*. It is usually found on hill-slopes. According to the population, it has been mostly lost the primaeval physiognomy, except rather low forests on windy slopes. The representatives of them are found in the Island of Kojima and Esashi, Prov. Oshima. Sometimes it occurs in the inland district. The remarkable example shall be seen in Wakoto Peninsula, Lake Kutcharo, Prov. Kushiro. The associations of this maple forest is represented by the *Acer Mono-Sasa* (*S. paniculata*) association, but occasionally by the *Acer Mono-tall herbage association*.

ix. Forest of *Alnus japonica* var. *arguta*

The pure forest of *Alnus japonica* var. *arguta* reaches its development in swampy places. It is considered to be the edaphic climax of the low moor. It was well developed in the plains of Hokkaido forming extensive woods. But these forests have gradually disappeared according to the advancement of reclamation. The associations of this alder forest are as follows:

Alnus japonica var. *arguta-Phragmites communis* association

Alnus japonica var. *arguta-Phragmites communis* sociation

Alnus japonica var. *arguta-Carex Augustinowiczii* sociation

Alnus japonica var. *arguta-Lysichton camtschaticense* sociation

(Pl. XXVI. a)

Alnus japonica var. *arguta-Calamagrostis Langsdorffii* sociation

Only one locality along the railway is fortunately preserved near Lake Abashiri, Prov. Kitami in Hokkaido. The prominent *Alnus japonica* var. *arguta-Lysichton camtschaticense* sociation is there well developed.

Another very characteristic association is locally found in the eastern part of Hokkaido. It is the *Alnus japonica* var. *arguta-Sasa (amphitricha)* association.
x. Forest of *Alnus hirsuta*

This forest is often found on wet ground along the valley of the mountain districts in rather small area. It shows the physiognomy of the edaphic forest in the mixed zone as well as the subarctic zone of the vertical distribution. The undergrowth is dominated by *Cacalia hastata subsp. orientalis* or *Urtica platyphylla* or both codominated by them. The community is represented by the *Alnus hirsuta-Cacalia hastata subsp. orientalis* association. Another special association is locally found in the eastern part on the Pacific side of Hokkaido, namely in Prov. Nemuro. It is the *Alnus hirsuta-Sasa* (often by *S. amphitricha*) association found on the flatty land on the terraces and gives the best meadow for horse grazing in winter.

xi. Forest of *Fraxinus mandshurica*

The ash forests are found on three different habitats: the first on rich soils along the valley, the second also on rich soils on flatty places on the mountain district and the third on the intermediate place from the swampy forest to the mesophytic one, for an example from the *Alnus japonica* forest to the *Ulmus propinqua* forest. But the former two forests represented by *Fraxinus mandshurica-Sasa* association have been mostly cut by the development of the forestry and most of the last one had been cut by the development of the agriculture. At present, they are hardly found in the primaeval condition. But in only one locality in Hokkaido the natural forest is well preserved along the eastern side of Lake Abashiri. On wet grounds, *Fraxinus mandshurica-Lysichiton camtschatcense* association is found forming the monotonous physiognomy.

Along the lake-sides of Chimikeppu and Abashiri Prov. Kitami, the *Fraxinus mandshurica-tall herbage association* were enumerated, including the *Fraxinus mandshurica-Urtica platyphylla* sociation (Pl. XXVI. b) and *Fraxinus mandshurica-Petasites japonicus subsp. giganteus* sociations.

xii. Forest of *Cercidiphyllum japonicum*

"Katsura" *Cercidiphyllum japonicum* is one of the most important and the largest broad-leaved trees in Hokkaido. Usually it forms the elegant forest along the valley or the gentle slope of the hill.
It attains a height of 30 m and a breast-height of diameter over 1.8 m. The Katsura forests have been mostly cut for the development of the agriculture owing to its rich stand. The undergrowth was often dominated by Sasa, or partly by the ferns such as Dryopteris crassirhizoma, Rumohra Standishii, etc. or the tall herbage such as Cacalia hastata subsp. orientalis, Urtica platyphylla, etc. Fortunately, the Katsura forest has been preserved on Maruyama Hill, Sapporo, under the special protection of the national conservation. (Pl. XXVII. b)

xiii. Forest of Salix

The forests of Salix are well developed along the rivers. On the wet and muddy alluvial soils, are most commonly found the Salix sachalinensis-Salix Petsusu forests forming an almost exclusive community. The forest-floors are mainly composed of Artemisia montana, Petasites japonicus subsp. giganteus, Senecio cannabifolius, etc. The association is represented by the Salix sachalinensis-Salix Petsusu-tall herbage association. If the river-bed becomes more sandy or gravelly, Salix rorida often occurs. It is a handsome tree and sometimes becomes the dominant species from the mid-course to the upper part of the rivers.

xiv. Forest of Populus Maximowiczii-Toisusu Urbaniana

Along the upper part of the rivers, there is the Populus Maximowiczii-Toisusu Urbaniana forest in rich alluvial soil along the banks of rivers or in the vicinity of the stream. They are the giant trees attaining a height of 30 m and over 1 m breast-high diameter and sometimes form respectively each forest. (Pl. XXIX. b. Pl. XXX. a.) The underlayer are often dominated by the tall herbage such as Cacalia hastata subsp. orientalis, Urtica platyphylla or Petasites japonicus subsp. giganteus and sometimes by Sasa paniculata.

xv. Forest of Chosenia bracteosa (Fig. 11)

Chosenia, a monotypic genus of Salicaceae, is placed between Populus and Salix. It is distributed to the eastward from Baikal and extends as far as Kamtchatka, Sakhalin (Pl. XXX. b) and Japan. In Japan it shows a distinctly disjunctive distribution known at present only from two localities. One of them is found along the upper reaches of the R. Azusa, Kamikochi, Prov. Shinano in the mountainous district of central Japan, and the other along the certain rivers in the province
Fig. 11. Distribution of Chosenia bracteosa in Hokkaido

of Tokachi in central Hokkaido which originate from the mountains of pre-Tertiary rocks. The origin of these forests seems to be ancient, and Chosenia is considered to be a relic. Chosenia occurs only along the river-side especially on wide and dry river-bed. Sometimes it forms a pure forest but it is often associated with Toisusu Urbaniana and Populus Maximoviczii. It reaches as much as 30 m in height and 1 m diameter at breast height. The young trees are found on gravelly places of the sunny river-side, not on muddy nor shady places. When a young tree is established, it grows steadily, owing to the character of its deeper root. So the forests are often found on the old river-bed, been after the river has changed its course. Depending upon the environment, there is no definite dominant species of the undergrowth. Sometimes Petasites japonicus subsp. giganteus is abundant, and sometimes Carex pilosa, or Matteucia Struthiopteris and Pachysandra terminalis are respectively abundant.

4. Sasa Communities

In addition to what has been above explained, the Sasa community
must be here explained. In the wood lands, on the hillsides, and even on the fairly high mountains, Sasa, is frequently found, which adds a special feature to the vegetation of Hokkaido and Southern Sakhalin and also to that of the Southern and Central Kuriles as far as the Island of Ketoi. The different kinds of Sasa are now confused, for they have not yet been perfectly arranged from the systematical side. Most of them, however, are represented by the Sasamorpha-, the Sasa kurilensis-, the Sasa paniculata- and the Sasa nipponica groups. The first and the last groups are mostly limited to the Pacific side of Hokkaido, the latter of which is mostly restricted to the land of volcanic ash and small amount of snow through the year. Sasa are very numerous and vary in height and density according to local conditions. The largest species of Sasa is represented by Sasa kurilensis which attains a height over 2.5 m. They often form continuous and almost impenetrable thickets, extending for several miles and giving very monotonous aspect to the vegetation. Sometimes it is almost exclusively dominant on the forest floor which shows the climax as already explained.

5. Woody Climbers

From the phytogeographical and phytosociological point of view, it is a very interesting fact that there are climbers giving, especially in Hokkaido, warmer aspect to the forest.

The climbers occurring in the area under consideration number 25 species belonging to 11 families as follows; the table shows also the geographical distribution.

* occur mainly in the forests.

<table>
<thead>
<tr>
<th>Species</th>
<th>Hokkaido</th>
<th>Sakhalin</th>
<th>Kuriles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SW</td>
<td>E</td>
<td>S</td>
</tr>
<tr>
<td>Clematis fusca</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Clematis Maximovicziana</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>*Clematis ochotensis</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Clematis serratifolia</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>
A perusal of the above list show that the number of different species of climbing plants decreases gradually from south to north and suddenly disappears from the north of the MIYABE and the SCiDHDT lines except Clematis ochotensis in the latter area. In the forest, Hydrangea petiolaris, Rhus ambigua and Actinidia Kolomikta are common in general.

Fourteen species are restricted to Hokkaido among which 9 species are distributed to the southwestern Hokkaido and 6 species of them are limited to the area southward from the Kuromatsunai Depression including Okushiri Island. Clematis fusca and Schizophragma hydrangeoides occur in the Southern Kuriles. From the distribution of the climbers, the Southern Kuriles would seen to have closer relation than Sakhalin to Hokkaido.
PART II. DISTRIBUTION OF THE LIGNEOUS PLANTS

The zone of the mixed forest lying between the temperate and the subarctic zones includes the very interesting problem of plant distribution. Here, the writer will try to mainly analyse the distributional character of the ligneous plants indigenous to the mixed forest zone of Eurasia.

1. Ligneous Plants Distributed as Far as the Beech Forest Zone

Special attention must be paid to be restricted distribution of ligneous plants in the northern part of the forest zone of Fagus. The climax forest of the cold temperate zone is represented by the *Fagus crenata* forest in Japan while in Scandinavia it is represented by the *Fagus sylvatica* forest. It is worth to note that *Fagus* forest is completely absent from continental Eastern Asia. The comparison of the construction of the ligneous flora between the *Fagus crenata* forest in Hokkaido (Fig. 12) and the *Fagus sylvatica* forest in Sweden (Fig. 14) will be discussed as follows.

Fig. 12. Forest zones of Hokkaido

- : Subarctic zone;
- : Japanese beech zone
- : Intermediate zone
The ligneous plants not found northward from the Kuromatsunai Depression are as follows:

a. Families:
 - Cupressaceae (narrow sense), Hamamelidaceae, Stachyuraceae, Clethraceae, Myrsinaceae.

b. Genera:
 - Thujaopsis, Pterocarya, Fagus, Cocculus, Deutzia, Hamamelis, Hovenia, Stachyurus, Hedera, Aucuba, Helwingia, Tritomodon, Clethra, Bladhia.

c. Species:
 - The species are enumerated in the following list with the distribution of the neighbourhood.

<table>
<thead>
<tr>
<th>Variety, * Hara, H.</th>
<th>Enumeratio Spermatophytarum Japonicarum III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Japan</td>
</tr>
<tr>
<td></td>
<td>Honshu</td>
</tr>
<tr>
<td>Cupressaceae</td>
<td></td>
</tr>
<tr>
<td>Thujaopsis dolabrata Sieb. et Zucc. var. Hondai Makino</td>
<td>+</td>
</tr>
<tr>
<td>Salicaceae</td>
<td></td>
</tr>
<tr>
<td>Salix Gilgiana Seemen</td>
<td>+</td>
</tr>
<tr>
<td>Juglandaceae</td>
<td></td>
</tr>
<tr>
<td>Pterocarya rhoifolia Sieb. et Zucc.</td>
<td>+</td>
</tr>
<tr>
<td>Fagaceae</td>
<td></td>
</tr>
<tr>
<td>Fagus crenata Blume</td>
<td>+</td>
</tr>
<tr>
<td>Menispermaceae</td>
<td></td>
</tr>
<tr>
<td>Cocculus trilobus DC.</td>
<td>+</td>
</tr>
<tr>
<td>Magnoliaceae</td>
<td></td>
</tr>
<tr>
<td>Schisandra nigra Maxim.</td>
<td>+</td>
</tr>
<tr>
<td>Saxifragaceae</td>
<td></td>
</tr>
<tr>
<td>Deutzia scabra Thunb.</td>
<td>+</td>
</tr>
<tr>
<td>Hamamelidaceae</td>
<td></td>
</tr>
<tr>
<td>Hamamelis japonica Sieb. et Zucc.</td>
<td>+</td>
</tr>
<tr>
<td>Aceraceae</td>
<td></td>
</tr>
<tr>
<td>* Acer carpinifolium Sieb. et Zucc.</td>
<td>+</td>
</tr>
<tr>
<td>* A. diabolicum Blume</td>
<td>+</td>
</tr>
<tr>
<td>Family</td>
<td>[Japan]</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Rhamnaceae</td>
<td></td>
</tr>
<tr>
<td>Hovenia dulcis</td>
<td>+</td>
</tr>
<tr>
<td>Vitaceae</td>
<td></td>
</tr>
<tr>
<td>Vita flexuosa</td>
<td>+</td>
</tr>
<tr>
<td>Stachyurus praecox</td>
<td>+</td>
</tr>
<tr>
<td>Elaeagnaceae</td>
<td></td>
</tr>
<tr>
<td>Elaeagnus multiformis</td>
<td>+</td>
</tr>
<tr>
<td>Araliaceae</td>
<td></td>
</tr>
<tr>
<td>Acanthopanax innovans*</td>
<td>+</td>
</tr>
<tr>
<td>A. spinosus MIQ.</td>
<td>+</td>
</tr>
<tr>
<td>Hedera rhombea</td>
<td>+</td>
</tr>
<tr>
<td>Cornaceae</td>
<td></td>
</tr>
<tr>
<td>Aucuba japonica*</td>
<td>+</td>
</tr>
<tr>
<td>var. borealis MIYABE et KUDO</td>
<td>+</td>
</tr>
<tr>
<td>Helwingia japonica F. G. DIETR.</td>
<td>+</td>
</tr>
<tr>
<td>Ericaceae</td>
<td></td>
</tr>
<tr>
<td>Menziesia ciliata MAXIM.</td>
<td>+</td>
</tr>
<tr>
<td>Rhododendron japonicum SURINGER</td>
<td>+</td>
</tr>
<tr>
<td>R. semibarbatum MAXIM.</td>
<td>+</td>
</tr>
<tr>
<td>Tritomodon campanulatus F. MAEKAWA</td>
<td>+</td>
</tr>
<tr>
<td>Clethraceae</td>
<td></td>
</tr>
<tr>
<td>Cathara barbigemmis SIEB. et ZUCC.</td>
<td>+</td>
</tr>
<tr>
<td>Myrsinaceae</td>
<td></td>
</tr>
<tr>
<td>Bladhia japonica THUNB.</td>
<td>+</td>
</tr>
<tr>
<td>Styracaceae</td>
<td></td>
</tr>
<tr>
<td>Styax japonica</td>
<td>+</td>
</tr>
<tr>
<td>Oleaceae</td>
<td></td>
</tr>
<tr>
<td>Ligustrum obtusifolium SIEB. et ZUCC.</td>
<td>+</td>
</tr>
<tr>
<td>L. Yukiikum KOZD. var. glabracens TATEWAKI</td>
<td>+</td>
</tr>
<tr>
<td>Caprifoliaceae</td>
<td></td>
</tr>
<tr>
<td>Lonicera gracilipes MIQ.</td>
<td>+</td>
</tr>
<tr>
<td>L. japonica THUNB.</td>
<td>+</td>
</tr>
<tr>
<td>L. strophioptera FRANCH.</td>
<td>+</td>
</tr>
<tr>
<td>Weigela coraeensis THUNB.</td>
<td>+</td>
</tr>
<tr>
<td>Total</td>
<td>32+(1)</td>
</tr>
<tr>
<td>%</td>
<td>100</td>
</tr>
</tbody>
</table>
All the species found in this category occur in Honshu. Shikoku and Kyushu maintain the subordinate rank from the phytogeographical relationship. The Japanese element plays the important role as shown in the above table.

ii. Scandinavia

In northwestern Europe, mainly Scandinavia, the ligneous plants not found north of the forest zone of *Fagus sylvatica* are enumerated in the following entries. The poverty in genera and species as compared with those of Japan are attributed to the influence of the ice age.

a. Family

Aquifoliaceae.

b. Genera

Fagus, Genista, Ulex, Euonymus, Ligustrum.

c. Species

- *found as far as a little north of the forest zone of Fagus sylvatica*

 Fagaceae: *Fagus sylvatica, Quercus petraea.*

 Ulmaceae: *Ulmus carpinifolia.* *U. laevis.*

 Malaceae: *Sorbus Meinichii, S. obtusifolia, S. subpinnata.*

 Rosaceae: *Rosa pimpinellifolia, Rubus dissimulans, R. fissus, R. insularis, R. radula.*

 Leguminosae: *Genista pilosa, Ulex europaeus.*

 Aquifoliaceae: *Ilex Aquifolium.*

 Celastraceae: *Euonymus europaeus.*

 Aceraceae: *Acer campestre.*

 Tiliaceae: *Tilia platyphylla.*

 Oleaceae: *Ligustrum vulgare.*

 Caprifoliaceae: *Lonicera Periclymenum.*

1) The geographical distributions are mostly followed the maps of HULTEN, Atlas över växternas utbredning i Norden. (1950)
2. The Ligneous Plants not Found North of the Mixed Forest Zone

i. Japanese Archipelago including the Southern Kuriles

The area among the Kuromatsunai Depression and Schmidt's Line and Southern Kuriles lying the southwest of Miyabe's Line has mainly the floristic character of Japan. The following families, genera and species are not found north of the mixed forest zone.

a. Families

a) Not north of the Ishikari Depression.
 * Lardizabalaceae, Lauraceae, Hippocastanaceae, Elaeagnaceae.

b) Not east of the west coast of Hokkaido.
 * Cephalotaxaceae, Menispermaceae, Coriariaceae, Symplocaceae.

c) Not east of the Hidaka Range.
 * Verbenaceae.

d) Not in Southern Sakhalin.
 * Cercidiphyllaceae, Daphniphyllaceae.

e) Not in the Southern Kuriles.
 * Juglandaceae, Buxaceae.

f) Widely distributed in Hokkaido, but not in S. Sakhalin nor the Southern Kuriles.
 * Loranthaceae, Simaroubaceae, Staphyleaceae, Rhamnaceae,
 Alangiaceae.

If one of the above-mentioned families found in Southern Sakhalin and the Southern Kuriles, it is also found in Hokkaido.

In the mixed forest zone of the northern Japanese Archipelago including the Southern Kuriles, the following families are widely distributed and not found of the subarctic forest zone.

* Rarely found in the subarctic zone.

b. Genera

a) Not north of the Ishikari Depression.
 * Celtis, Akebia, Lindera, Aesculus, Berchemia, Parthenocissus,
 Elaeagnus, Oplopanax, Hugeria, Smilax.
b) Not east of the west coast of Hokkaido.
Cephalotaxus, Corylus, Menispermum, Coriaria, Symplocos, Weigela.

c) Not east of the Hidaka Range.
Castanea, Berberis, Pourthiaeae, Zanthoxylum, Callicarpa, Clerodendron.

d) Not found in Southern Sakhalin.
Cercidiphyllum, Magnolia, Schizophragma, Maackia, Daphniphyllum, Leucothoe.

e) Not found in the Southern Kuriles.
Juglans, Pachysandra, Acanthopanax.

f) Widely distributed in Hokkaido, but not found in Southern Sakhalin nor the Southern Kuriles.
Carpinus, Ostrya, Viscum, Picrasma, Staphylea, Rhamnus, Marlea, Styx, Sasamorpha.

If one of the above-mentioned genera is found in Southern Sakhalin and the Southern Kuriles, it is also found in Hokkaido. The southern genera widely distributed in the mixed forest zone in the area under consideration are as follows:

* Sometimes found in the subartic zone (mountain district).

Taxus is distributed as far as Rashua Island and Prunus and Acer as far as Urup Island in the Central Kuriles. Tilia has been reported from Hokkaido, but rarely in Kunashiri Island, the Southern Kuriles and Southern Sakhalin. Sasa is distributed as far as Ketoi Island in the Central Kuriles forming an unbroken distributional chain.

c. Species

The species of the ligneous plants distributed as far as the mixed forest zone of the area under consideration are as follows:

a) Not east of the Hidaka Ranges.
Pinus parviflora var. pentaphylla, Castanea crenata, Berberis amurensis var. japonica, Pourthiaeae villosa, Zanthoxylum piperitum, Ilex macropoda, Callicarpa japonica, Clerodendron trichotomum, Viburnum dilatatum.

b) Not north of the Ishikari Depression
Salix jessoensis, S. Miyabeana, Corylus heterophylla var. Thunbergii, Celtis jessoensis, Clematis Maximowicziana, Akebia trifoliata, Lindera membranacea, Ribes japonicum, Rosa multiflora, Rubus vernus, Prunus Grayana, Ilex leucocladia, Euonymus Fortunei, Acer Sieboldianum var. yezoense, Aesculus turbinata, Berchemia racemosa, Parthenocissus tricuspidata, Elaeagnus umbellata, Oplopanax japonicus, Hugeria japonica, Smilax China.

c) Only along the west coast of Hokkaido.
 Cephalotaxus nana, Alnus pendula, Corylus Sieboldiana var. brevirostris, Menispernum dauricum, Coriaria japonica, Symphoceros chinensis, Weigela hortensis.

d) Only along the Pacific coast of Hokkaido.
 Quercus serrata, Prunus verecunda, Acer cissifolium, A. Miyabei.

e) Not found in the Southern Kuriles.
 Juniperus conferta, Salix subfragilis, Juglans ailandthifolia, Cra-taegus jozana, C. Maximowiczii, Pachysandra terminalis, Tilia japonica, Acanthopanax senticosus.

f) Not found in Southern Sakhalin.

g) Widely distributed in Hokkaido, but not found in Sakhalin nor the Kurile Islands.
h) Not found in Honshu.

*Populus jessoensis, Ribes latifolium, Crataegus jozana, C. Maximowiczii, Acanthopanax senticosus, Lonicera chrysantha, L. sachalinensis.

i) Disjunctive distribution

* Hokkaido

Pinus densiflora (seminatural), Mt. Tarumai, Prov. Iburi.
Clematis serratifolia at Wakkanai, Prov. Kitami.
Stephanandra incisa in Southern Hidaka.
Epigaea asiatica in Oshima and Teshio.

** Sakhalin

Salix subfragilis near Amiba along the Horonai.
Tilia japonica along the Naibuchi.

Exception: In the Central Kuriles, *Taxus cuspidata* is distributed as far as Rashua Island, *Prunus nipponica* var. *kurilensis* as far as Urup Island and *Sasa kurilensis* as far as Ketoi Island.

The ligneous plants found as far as the mixed forest zone of the Japanese Archipelago including the Southern Kuriles, are shown in the following table with their distribution in the neighbouring regions. (x variety or subspecies)

<table>
<thead>
<tr>
<th>Name of Plants</th>
<th>Japan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taxaceae</td>
<td></td>
</tr>
<tr>
<td>Taxus cuspidata SIEB. et ZUCC.</td>
<td>+ + + + + +</td>
</tr>
<tr>
<td>Cephalotaxaceae</td>
<td></td>
</tr>
<tr>
<td>Cephalotaxus nana NAKAI</td>
<td>- - + + + + +</td>
</tr>
<tr>
<td>Pinaceae</td>
<td></td>
</tr>
<tr>
<td>Pinus densiflora SIEB. et ZUCC.</td>
<td>- - + + + + +</td>
</tr>
<tr>
<td>P. paretflora SIEB. et ZUCC. var. pentaphylla HENRY</td>
<td>- - + + + + +</td>
</tr>
<tr>
<td>Juniperaceae</td>
<td></td>
</tr>
<tr>
<td>Juniperus conferta PARLAT.</td>
<td>+ + + + + + +</td>
</tr>
<tr>
<td>Sabina Sargentii MIYABE et TATEWAKI</td>
<td>+ + + + + + +</td>
</tr>
<tr>
<td>Salicaceae</td>
<td></td>
</tr>
<tr>
<td>Populus jessoensis NAKAI</td>
<td>+ + + + + + +</td>
</tr>
<tr>
<td>Name of Plants</td>
<td>Japan</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td>S. Sakhalin</td>
</tr>
<tr>
<td>P. sieboldii Miq.</td>
<td>. . + + + + + + + + + + + +</td>
</tr>
<tr>
<td>Salix Bakko KUMURA</td>
<td>. . + + + + + + + + + + + +</td>
</tr>
<tr>
<td>S. gracilistyla Miq.</td>
<td>. . + + + + + + + + + + + +</td>
</tr>
<tr>
<td>S. integrifolia THUNB.</td>
<td>. + + + + + + + + + + + + +</td>
</tr>
<tr>
<td>S. jessoensis SEMEN</td>
<td>. . + + + + + + + + + + + +</td>
</tr>
<tr>
<td>S. Miyabeana SEMEN</td>
<td>. . + + + + + + + + + + + +</td>
</tr>
<tr>
<td>S. subfragilis ANDERS.</td>
<td>+ + + + + + + + + + + + + +</td>
</tr>
<tr>
<td>Toisus Urbaniana KIMURA</td>
<td>. + + + + + + + + + + + + +</td>
</tr>
<tr>
<td>Joglandaceae</td>
<td></td>
</tr>
<tr>
<td>Juglans ailanthifolia Carr.</td>
<td>+ + + + + + + + + + + + + +</td>
</tr>
<tr>
<td>Betulaceae</td>
<td></td>
</tr>
<tr>
<td>Alnus japonica STEUD.</td>
<td>. + + + + + + + + + + + + +</td>
</tr>
<tr>
<td>A. Mayrith Carr.</td>
<td>. + + + + + + + + + + + + +</td>
</tr>
<tr>
<td>A. pendula MATSUM.</td>
<td>. + + + + + + + + + + + + +</td>
</tr>
<tr>
<td>Betula Maximowicziana REGEL</td>
<td>+ + + + + + + + + + + + + +</td>
</tr>
<tr>
<td>Carpinus cordata BLUME</td>
<td>. + + + + + + + + + + + + +</td>
</tr>
<tr>
<td>C. laxiflora BLUME</td>
<td>. + + + + + + + + + + + + +</td>
</tr>
<tr>
<td>Corylus heterophylla FISCHER var. Thunbergii BL.</td>
<td>. + + + + + + + + + + + + +</td>
</tr>
<tr>
<td>C. Sieboldiana BLUMBE var. brevirostris C. K. SCHN.</td>
<td>. + + + + + + + + + + + + +</td>
</tr>
<tr>
<td>Ostrya japonica SARG.</td>
<td>. + + + + + + + + + + + + +</td>
</tr>
<tr>
<td>Fagaceae</td>
<td></td>
</tr>
<tr>
<td>Castanea crenata Sieb. et Zucc.</td>
<td>. + + + + + + + + + + + + +</td>
</tr>
<tr>
<td>Quercus dentata THUNE.</td>
<td>. + + + + + + + + + + + + +</td>
</tr>
<tr>
<td>Q. crispula BL.</td>
<td>+ + + + + + + + + + + + + +</td>
</tr>
<tr>
<td>Q. serrata THUNB.</td>
<td>. + + + + + + + + + + + + +</td>
</tr>
<tr>
<td>Ulmaceae</td>
<td></td>
</tr>
<tr>
<td>Celtis jessoensis KOIDZ.</td>
<td>. + + + + + + + + + + + + +</td>
</tr>
<tr>
<td>Ulmus laciniata MAYR</td>
<td>+ + + + + + + + + + + + + +</td>
</tr>
<tr>
<td>U. propinqua KOIDZ.</td>
<td>+ + + + + + + + + + + + + +</td>
</tr>
<tr>
<td>Moraceae</td>
<td></td>
</tr>
<tr>
<td>Morus bombycis KOIDZ.</td>
<td>+ + + + + + + + + + + + + +</td>
</tr>
<tr>
<td>Loranthaceae</td>
<td></td>
</tr>
<tr>
<td>Viscum coloratum NAKAI</td>
<td>. + + + + + + + + + + + + +</td>
</tr>
</tbody>
</table>

Note: The table shows the distribution of various plant species across different regions, with symbols indicating presence or absence in each region.
<table>
<thead>
<tr>
<th>Name of Plants</th>
<th>S. Sakhalin</th>
<th>S. Kuriles</th>
<th>Hokkaido</th>
<th>Honshu</th>
<th>Shikoku</th>
<th>Kyushu</th>
<th>Korea</th>
<th>S. Manchuria</th>
<th>E. N. China</th>
<th>Far East USSR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cercidiphyllaceae</td>
<td></td>
</tr>
<tr>
<td>Cercidiphyllum japonicum</td>
<td>+ + + + + + +</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ranunculaceae</td>
<td></td>
</tr>
<tr>
<td>Clematis Maximowicziana</td>
<td></td>
</tr>
<tr>
<td>C. serratifolia REHD.</td>
<td></td>
</tr>
<tr>
<td>Lardizabalaceae</td>
<td></td>
</tr>
<tr>
<td>Akebia trifoliata KOIDZ.</td>
<td></td>
</tr>
<tr>
<td>Berberidaceae</td>
<td></td>
</tr>
<tr>
<td>Berberis amurensis ROPR.</td>
<td></td>
</tr>
<tr>
<td>Menispermaceae</td>
<td></td>
</tr>
<tr>
<td>Menispermum dauricum DC.</td>
<td></td>
</tr>
<tr>
<td>Magnoliaceae</td>
<td></td>
</tr>
<tr>
<td>Magnolia Kobus DC.</td>
<td></td>
</tr>
<tr>
<td>var. borealis SARG.</td>
<td></td>
</tr>
<tr>
<td>M. obovata THUNBERG</td>
<td></td>
</tr>
<tr>
<td>Schisandra chinensis BAILL.</td>
<td></td>
</tr>
<tr>
<td>Lauraceae</td>
<td></td>
</tr>
<tr>
<td>Lindera membranacea MAXIM.</td>
<td></td>
</tr>
<tr>
<td>Saxifragaceae</td>
<td></td>
</tr>
<tr>
<td>Hydrangea macrophylla SERINGE</td>
<td></td>
</tr>
<tr>
<td>var. acuminata* MAKINO</td>
<td></td>
</tr>
<tr>
<td>H. paniculata SIEBOLD</td>
<td></td>
</tr>
<tr>
<td>H. petiolaris SIEB. et ZUCC.</td>
<td></td>
</tr>
<tr>
<td>Ribes latifolium JANCZ.</td>
<td></td>
</tr>
<tr>
<td>R. japonicum MAXIM.</td>
<td></td>
</tr>
<tr>
<td>Schizophragma hydrangeoides SIEB. et ZUCC.</td>
<td></td>
</tr>
<tr>
<td>Spiraceae</td>
<td></td>
</tr>
<tr>
<td>Spiraea media SCHMIDT</td>
<td></td>
</tr>
<tr>
<td>Stephanandra incisa ZABEL</td>
<td></td>
</tr>
<tr>
<td>Malaceae</td>
<td></td>
</tr>
<tr>
<td>Crataegus joxana C. K. SCHN.</td>
<td></td>
</tr>
<tr>
<td>*C. Maximowiczi SCHN.</td>
<td></td>
</tr>
<tr>
<td>Pourthiaea villosa DECNE.</td>
<td></td>
</tr>
<tr>
<td>Sorbus alnifolia K. KOCH.</td>
<td></td>
</tr>
</tbody>
</table>
Name of Plants

<table>
<thead>
<tr>
<th>Rosaceae</th>
<th>Japan</th>
</tr>
</thead>
</table>
| *Rosa multiflora Thunb.* | S. Sakhalin
| | S. Kuriles
| | Hokkaido
| | Honshu
| | Shikoku
| | Kyushu
| | Korea
| | S. Manchuria
| | E
| | N. China
| | Far East U.S.S.R. |
| *Rubus crataegifolius Bunge* | + |
| *R. mesogaeus Focke* | + |
| *R. parvifolius Linn.* | + |
| *R. phoenicolasius Maxim.* | + |
| *R. vernus Focke* | + |

Amygdalaceae

Prunus Grayana Maxim.	+
P. Maximowiczii Rupr.	+
P. nipponica Matsum.	+
P. Sargentii Rehder	+
P. Ssiori Fr. Schn.	+
P. verecunda Koehne	+

Leguminosae

Lespedeza bicolor Turcz.	+
Maaaeria amurense Rupr. et Maxim.	+
Pueraria lobata Ohwi	+

Rutaceae

Phellodendron amurense Rupr.	+
Shimmia japonica Thunb. var. repens Ohwi*	+
Zanthoxylum piperitum DC.	+

Simaroubaceae

| *Pieris quassioides Benn.* | + |

Daphniphyllaceae

| *Daphniphyllum humile Maxim.* | + |

Buxaceae

| *Pachysandra terminalis Sieb. et Zucc.* | + |

Coriariaceae

| *Coriaria japonica A. Gray* | + |

Anacardiaceae

<p>| Rhus ambigua Lavallée | + |</p>
<table>
<thead>
<tr>
<th>Name of Plants</th>
<th>Japan</th>
<th>S. Sakhalin</th>
<th>S. Kuriles</th>
<th>Hokkaido</th>
<th>Honshu</th>
<th>Shikoku</th>
<th>Kyushu</th>
<th>Korea</th>
<th>S. Manchuria</th>
<th>E.</th>
<th>N. China</th>
<th>Far East U.S.S.R.</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. javanica Linn.</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>R. trichocarpa Miq.</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Aquifoliaceae</td>
<td></td>
</tr>
<tr>
<td>Ilex radicans Nakai</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I. leucocladana Makino</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I. Makinoi Hara</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I. macropoda Miq.</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I. rugosa Fr. Schm.</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Celastraceae</td>
<td></td>
</tr>
<tr>
<td>Celastrus orbiculatus Thunb.</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>var. strigilosus Nakai</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Euonymus alatus Sieb.</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. Fortunei Hand.</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. japonicus Thunb.</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. macropterus Rupr.</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. oxyphyllus Miq.</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. planipes Koehne</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. sachalinensis Fr. Schm. var. tricarpus Kudo</td>
<td></td>
<td>x</td>
<td>x</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. Sieboldianus Blume var. sanguineus Nakai</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staphyleaceae</td>
<td></td>
</tr>
<tr>
<td>Staphylea Bumalda DC.</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aceraceae</td>
<td></td>
</tr>
<tr>
<td>Acer aizuenso Nakai</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. cissifolium K. Koch</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. japonicum Thunb.</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. Mayrii G. V. Schw.</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. Miyabei Maxim.</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. Mono Maxim.</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. palmatum Thunb.</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>subsp. amoenum Hara</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. ornatum Carrier</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. Sieboldianum Miquel var. yezoense Miyabe et Tatewaki</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. ukurunduense Trautv. et Mey.</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name of Plants</td>
<td>S. Sakhalin</td>
<td>S. Kuril</td>
<td>Hokkaido</td>
<td>Honshu</td>
<td>Shikoku</td>
<td>Kyushu</td>
<td>Korea</td>
<td>S</td>
<td>E</td>
<td>N China</td>
<td>Far East USSR</td>
<td></td>
</tr>
<tr>
<td>------------------------------------</td>
<td>-------------</td>
<td>----------</td>
<td>----------</td>
<td>--------</td>
<td>---------</td>
<td>--------</td>
<td>-------</td>
<td>---</td>
<td>---</td>
<td>---------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>Hippocastanaceae</td>
<td></td>
</tr>
<tr>
<td>Aesculus turbinata Blume</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhamnaceae</td>
<td></td>
</tr>
<tr>
<td>Berchemia racemosa Sieb. et Zucc.</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhamnus japonica Maxim.</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitaceae</td>
<td></td>
</tr>
<tr>
<td>Ampelopsis brevipedunculata Trautv.</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parthenocissus tricuspidata Planch.</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitis Coignetiae Pull.</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tiliaceae</td>
<td></td>
</tr>
<tr>
<td>Tilia japonica Simonkai</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T. Maximowicziana Shirasawa</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actinidiaceae</td>
<td></td>
</tr>
<tr>
<td>Actinidia arguta Planch.</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. Kolomikta Maxim.</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. polygama Planch.</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thymeleaceae</td>
<td></td>
</tr>
<tr>
<td>Daphne jessoensis Maxim.</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. Miyabeana Makino</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elaeagnaceae</td>
<td></td>
</tr>
<tr>
<td>Elaeagnus umbellata Thunb.</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alangiaceae</td>
<td></td>
</tr>
<tr>
<td>Marlea platanioides Sieb. et Zucc. var. triloba Miquel</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Araliaceae</td>
<td></td>
</tr>
<tr>
<td>Acanthopanax diversicus Seem.</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. scolodaphyloides Franch. et Savat.</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. senticosus Harms</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aralia elata Seem.</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kalopanax pictus Nakai</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ophiopanax japonicus Nakai</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cornaceae</td>
<td></td>
</tr>
<tr>
<td>Cornus controversa Hemsl.</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name of Plants</td>
<td>Japan</td>
<td>S. Sikkalin</td>
<td>S. Kuriles</td>
<td>Hokkaido</td>
<td>Honshu</td>
<td>Shikoku</td>
<td>Kyushu</td>
<td>Korea</td>
<td>S. Manchuria</td>
<td>E</td>
<td>N. China</td>
<td>Far East USSR</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>----------</td>
<td>--------</td>
<td>---------</td>
<td>--------</td>
<td>-------</td>
<td>-------------</td>
<td>---</td>
<td>----------</td>
<td>--------------</td>
</tr>
<tr>
<td>Ericaceae</td>
<td></td>
</tr>
<tr>
<td>Epigaea asiatica Maxim.</td>
<td>* • + + + + + + + + + +</td>
<td></td>
</tr>
<tr>
<td>Hyptis japonica Nakai</td>
<td>* • + + + + + + + + + +</td>
<td></td>
</tr>
<tr>
<td>Leucothoe Grayana Maxim.</td>
<td>* • + + + + + + + + + +</td>
<td></td>
</tr>
<tr>
<td>Rhododendron Albrechtii Maxim.</td>
<td>* • + + + + + + + + + +</td>
<td></td>
</tr>
<tr>
<td>R. japonicum Suinger</td>
<td>* • + + + + + + + + + +</td>
<td></td>
</tr>
<tr>
<td>R. Thunbergii Maxim.</td>
<td>* + + + + + + + + + + + +</td>
<td></td>
</tr>
<tr>
<td>Tripetala paniculata Sieb. et Zucc. var. latifolia Maxim.</td>
<td>* • + + + + + + + + + +</td>
<td></td>
</tr>
<tr>
<td>Vaccinium hirtum Thunb.</td>
<td>* • + + + + + + + + + +</td>
<td></td>
</tr>
<tr>
<td>V. Oldhamii Miqel</td>
<td>* • + + + + + + + + + +</td>
<td></td>
</tr>
<tr>
<td>V. Smallii A. Gray</td>
<td>+ + + + + + + + + + + +</td>
<td></td>
</tr>
<tr>
<td>Symlocaceae</td>
<td></td>
</tr>
<tr>
<td>Symlocos chinensis Druce</td>
<td>* • + + + + + + + + + +</td>
<td></td>
</tr>
<tr>
<td>Styracaceae</td>
<td></td>
</tr>
<tr>
<td>Styrax Obassia Sieb. et Zucc.</td>
<td>* • + + + + + + + + + +</td>
<td></td>
</tr>
<tr>
<td>Oleaceae</td>
<td></td>
</tr>
<tr>
<td>Fraxinus mandshurica Rupr.</td>
<td>+ + + + + + + + + + + +</td>
<td></td>
</tr>
<tr>
<td>F. lanuginosa Koidz. var. serrata Hara</td>
<td>* + + + + + + + + + + + +</td>
<td></td>
</tr>
<tr>
<td>Ligustrum Thunbergii Dec.</td>
<td>+ + + + + + + + + + + +</td>
<td></td>
</tr>
<tr>
<td>Syringa reticulata Hara</td>
<td>+ + + + + + + + + + + +</td>
<td></td>
</tr>
<tr>
<td>Verbenaceae</td>
<td></td>
</tr>
<tr>
<td>Callicarpa japonica Thunb.</td>
<td>* • + + + + + + + + + +</td>
<td></td>
</tr>
<tr>
<td>Clerodendron trichotomum Thunb.</td>
<td>* • + + + + + + + + + +</td>
<td></td>
</tr>
<tr>
<td>Labiatae</td>
<td></td>
</tr>
<tr>
<td>Thymus japonicus Kitagawa</td>
<td>+ + + + + + + + + + + +</td>
<td></td>
</tr>
<tr>
<td>Caprifoliaceae</td>
<td></td>
</tr>
<tr>
<td>Lonicera chrysantha Thc.</td>
<td>+ + + + + + + + + + + +</td>
<td></td>
</tr>
<tr>
<td>L. Glehnii F. Schm.</td>
<td>+ + + + + + + + + + + +</td>
<td></td>
</tr>
<tr>
<td>L. Morrowii A. Gray</td>
<td>* • + + + + + + + + + +</td>
<td></td>
</tr>
<tr>
<td>L. sachalinensis Nakai</td>
<td>+ + + + + + + + + + + +</td>
<td></td>
</tr>
<tr>
<td>Sambucus Sieboldiana Blume var. Miqelii Hara</td>
<td>+ + + + x + + + + + x +</td>
<td></td>
</tr>
<tr>
<td>Viburnum dilatatum Thunb.</td>
<td>* • + + + + + + + + + +</td>
<td></td>
</tr>
<tr>
<td>Name of Plants</td>
<td>Japan</td>
<td></td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---------------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S. Sakhalin</td>
<td>S. Kuriles</td>
<td>Hokkaido</td>
<td>Honshu</td>
<td>Shikoku</td>
<td>Kyushu</td>
<td>Korea</td>
<td>S. Manchurica</td>
<td>E</td>
<td>N. China</td>
<td>Far East USSR</td>
<td></td>
</tr>
<tr>
<td>V. furcatum Blume</td>
<td>+ + + + + + + + + + +</td>
<td></td>
</tr>
<tr>
<td>V. Sargentii Koehne</td>
<td>+ + + + + + + + + + +</td>
<td></td>
</tr>
<tr>
<td>V. Wrightii Miq.</td>
<td>+ + + + + + + + + + +</td>
<td></td>
</tr>
<tr>
<td>Weigela hortensis K. Koch</td>
<td>+ + + + + + + + + + +</td>
<td></td>
</tr>
</tbody>
</table>

Gramineae

| Sasa spp. | + + + + + + + + + + + |
| **Sasamorpha purpurascens Nakai** | + + + + + + + + + + + |

Liliaceae

| Smilax China Linn. | + + + + + + + + + + + |

I) Not common to the Far Eastern Asiatic Continent.
 i) Common to Japan, Southern Sakhalin and the Southern Kuriles.
 a) Only Hokkaido in Japan.
 Ribes latifolium.
 b) Common to Hokkaido and Honshu.
 Prunus nipponica, P. Ssiori, Ilex radicans, Euonymus sachalinensis var. tricarpus, Vaccinium Smallii, Lonicera Glehni.
 c) Common to Hokkaido, Honshu, Shikoku and Kyushu.
 Skimia japonica var. repens, Ilex rugosa, Ligustrum Tshonoskii.
 ii) Common to Japan and Southern Sakhalin.
 a) Only Hokkaido in Japan.
 Crataegus jozana.
 b) Common to Hokkaido, Honshu and Kyushu.
 Juniperus conferta.
 iii) Common to Japan and the Southern Kuriles.
 a) Common to Hokkaido and Honshu.
 Toisusu Urbaniana, Betula Maximowicziana, Daphniphyllum humile, Acer japonicum, A. Mayrii, Tilia Maximowicziana, Leucothoe Grayana.
 iv) Only Japan.
 a) Hokkaido and Honshu.
 Cephalotaxus nana, Pinus parviflora var. pentaphylla, Salix Bakko, S. jessoensis, S. Miyabeana, Alnus pendula, Lindera
membranacea, Rubus vernus, Coriaria japonica, Ilex leucoclada,
I. Makinoi, Acer Miyabei, Daphne jezoensis, D. Miyabeana,
Epigaea asiatica, Rhododendron Albrechtii, Weigela hortensis.
b) Common to Hokkaido, Honshu and Shikoku.
Ribes japonicum, Oplopanax japonicus, Vaccinium hirtum, Lo-
nicera Morrowii.
c) Common to Hokkaido, Honshu, Shikoku and Kyushu.
Populus Sieboldi, Castanea crenata, Rosa multiflora, Prunus
Grayana, Acer aizumense, A. cissifolium, A. ornatum subsp.
Matsumurae, A. Sieboldiana var. yezoense. Aesculus turbinata,
Rhamnus japonica, Acanthopanax seiadophyloides. Rhododendron
janicicum, Tripetaleia paniculata var. latifolia.

II) Common to Japanese Archipelago including Southern Sakhalin and
the Southern Kuriles, Korea, Manchuria, China and the Far Eastern
region of the U.S.S.R.
I) Common to Japanese Archipelago, Korea, Manchuria, China and
the Far Eastern region of the U.S.S.R.
i) Common to Japan, Southern Sakhalin and the Southern Kuriles.
a) Only Hokkaido in Japan.

Lonicera chrysantha.
b) Common to Hokkaido and Honshu.
Schisandra chinensis, Actinidia Kolomikta, Fraxinus mochusurica.
c) Common to Hokkaido, Honshu and Shikoku.
Taxus cuspidata, Acer ukurunduense.
d) Common to Hokkaido, Honshu and Kyushu.
Ulmus laciniata.
e) Common to Hokkaido, Honshu, Shikoku and Kyushu.

Ulmus propinquua, Lespeziea bicolor, Phellodendron amurense.
Celastrus orbiculatus var. strigillosus, Euonymus alatus, Acer
mono, Ampelopsis brevipedunculata, Actinidia arguta, A. poly-
gana, Aralia elata, Kalopanax pictus, Syringa reticulata,
Sambucus Sieboldiana var. Miqueltii, Viburnum Sargentii.

ii) Common to Japan and Southern Sakhalin.
a) Only Hokkaido in Japan.

Acanthopanax senticosus.
b) Common to Hokkaido, Honshu, Shikoku and Kyushu.
Salix subfragilis.

iii) Common to Japan and the Southern Kuriles.
a) Common to Hokkaido and Honshu.
Maackia amurensis var. Buergeri.

b) Common to Hokkaido, Honshu, Shikoku and Kyushu.
 Alnus japonica, Quercus dentata, Sorbus alnifolia.

iv) Only Japan.
 a) Common to Hokkaido and Honshu.
 Berberis amurensis var. japonica.
 b) Common to Hokkaido, Honshu, Shikoku and Kyushu.
 Salix gracilistyla, Carpinus cordata, Corylus Sieboldiana var. brevirostris, Viscum colonatum, Menispermum dauricum, Rubus crataegifolius, Parthenocissus tricuspidata.

2) Common to Japanese Archipelago, Korea, Manchuria and the Far Eastern region of the U.S.S.R.
 i) Common to Japan, Southern Sakhalin and the Southern Kuriles.
 a) Common to Hokkaido and Honshu.
 Spiraea media.
 b) Common to Hokkaido, Honshu and Shikoku.
 Euonymus macropterus.
 c) Common to Hokkaido, Honshu and Kyushu.
 Prunus Maximowiczii.
 ii) Common to Hokkaido and Southern Sakhalin.
 a) Only Hokkaido in Japan.
 Crataegus Maximowiczii.
 iii) Common to Hokkaido and the Southern Kuriles.
 a) Common to Hokkaido and Honshu.
 Euonymus planipes.
 b) Common to Hokkaido, Honshu and Kyushu.
 Salix integra.
 iv) Only Japan.
 a) Only Hokkaido in Japan.
 Clematis serratifolia.
 b) Common to Hokkaido, Honshu, Shikoku and Kyushu.
 Pinus densiflora.

3) Common to Japanese Archipelago, Korea, Manchuria and China.
 i) Common to Japan, Southern Sakhalin and the Southern Kuriles.
 a) Common to Hokkaido, Honshu, Shikoku and Kyushu.
 Morus bombycis, Euonymus Sieboldianus var. sanguineus.
 ii) Common to Japan and the Southern Kuriles.
 a) Common to Hokkaido, Honshu, Shikoku and Kyushu.
 Rubus parvifolius, Cornus controversa.
iii) Only Japan.
 a) Common to Hokkaido, Honshu, Shikoku and Kyushu.
 _Pueraria lobata, Zanthoxylum piperitum, Picrasma quassioides,
 Rhus javonica, Staphylea Bumalda, Elaeagnus umbellata, Marathon
 plataniifolia var. triloba, Symlocos chinensis, Styrax Obassia,
 Callicarpa japonica, Clerodendron trichotomum._

4) Common to Japanese Archipelago, Korea and China.
 i) Common to Japan, Southern Sakhalin and the Southern Kuriles.
 a) Common to Hokkaido, Honshu, Shikoku and Kyushu.
 Viburnum Wrightii.
 ii) Common to Japan and the Southern Kuriles.
 a) Common to Hokkaido, Honshu, Shikoku and Kyushu.
 Rhus tricocarpa, Euonymus oxyphyllus.
 iii) Only Japan.
 a) Common to Hokkaido, Honshu, Shikoku and Kyushu.
 _Ostrya japonica, Quercus serrata, Clematis Maximowicziana,
 Poulsithia villosa, Rubus phoenicosius, Ilex macropoda, Eu-
 onymus Fortunei, E. japonicus, Berchemia racemosa, Vaccinium
 Oldhami, Viburnum dilatatum, Smilax China._

5) Common to Japanese Archipelago, Korea and Manchuria.
 i) Japan.
 a) Common to Hokkaido and Honshu.
 Corylus heterophylla var. Thunbergi.

 i) Common to Japan, Southern Sakhalin and the Southern Kuriles.
 a) Only Hokkaido in Japan.
 Populus jesoensis, Lonicera sachalinensis.
 b) Common to Hokkaido and Honshu.
 Prunus Sargentii.
 c) Common to Hokkaido, Honshu and Kyushu.
 Thymus japonicus.
 d) Common to Hokkaido, Honshu, Shikoku and Kyushu.
 _Sabina Sargentii, Quercus crispula, Hydrangea petiolaris, Vitis
 Coignetiae, Viburnum furcatum, Sasa spp._
 ii) Common to Japan and the Southern Kuriles.
 a) Common to Hokkaido, Honshu, Shikoku and Kyushu.
 _Schizophragma hydrangeoides, Rhododendron Tschonoskii, Fra-
 xinus lanuginosa var. serrata._
 iii) Only Japan.
a) Common to Hokkaido and Honshu.
Alnus Mayrii.

b) Common to Hokkaido, Honshu and Shikoku.
Prunus verecunda, Hugeria japonica.

c) Common to Hokkaido, Honshu, Shikoku and Kyushu.
Carpinus laxiflora, Celtis jessoensis, Magnolia Kobus var. borealis,
Hydrangea macrophylla var. acuminata, Stephanandra incisa,
Acer palmatum var. amoenum, Sasamorpha purpurascens.

7) Common to Japanese Archipelago and China.
i) Common to Japan, Southern Sakhalin and the Southern Kuriles.
a) Common to Hokkaido, Honshu, Shikoku and Kyushu.
Hydrangea paniculata, Rhus ambigua.

ii) Common to Japan and Southern Sakhalin.
a) Common to Hokkaido, Honshu, Shikoku and Kyushu.
Pachysandra terminalis, Tilia japonica.

iii) Common to Japan and the Southern Kuriles.
a) Common to Hokkaido, Honshu, Shikoku and Kyushu.
Cercidiphyllum japonicum, Magnolia obovata, Rubus mesogaeus.

iv) Only Japan.
a) Common to Hokkaido, Honshu, Shikoku and Kyushu.
Akebia trifoliata, Acanthopanax divaricatus.

The Japanese element here enumerated attains a number of 54 species, while that of the temperate asiatic element 106. From the distributional point of view of the former, Hokkaido occupies the most important situation among Hokkaido, Southern Kuriles and Southern Sakhalin. The species found in the Southern Kuriles and in Southern Sakhalin are all found in Hokkaido.

Among the main islands of Japan, Honshu maintains the closest relationship enumerating 52 species except only to 2 species, namely Ribes latifolia and Crataegus jozana. The common species to Shikoku and Kyushu are all found in Honshu.

The common species to the Japanese Archipelago including the Southern Kuriles and the temperate eastern asiatic continent attain a number of 106. Among them over 1/3 are widely distributed in the Northern Japanese Archipelago, Korea, Manchuria, China and the Far Eastern region of the U.S.S.R. These facts show that these districts should be grouped into one floristic region.

Among the regions of Far Eastern Asia, Korea has the strongest
affinity and the Eastern Manchuria maintains a subordinate rank. The common species to China and the Far Eastern region of the U.S.S.R. respectively gradually decrease the number.

As stated above, the mixed forest zone in the Japanese Archipelago displays the characteristics of the Pan-mixed forest zone and has a close relation to that of the Far East Continent. Hokkaido, with the exception of the Fagus crenata forest zone, is the representative of the mixed forest zone from the view-point of both forest-type and geographical character of the ligneous species. According to the analysis of the distribution, the species of the ligneous flora, and the presence of the dominance of the Temperate Eastern Asiatic elements, especially the Temperate Japanese elements are very noticeable. Moreover, the dominant physiognomy of Sasa in the undergrowth, and large number and many species of climbing plants are also characteristic of the mixed forest zone of Hokkaido, extending to the Southern Kuriles and Southern Sakhalin.

ii. Eastern Manchuria*)

The following families, genera and species are not found north of the mixed forest zone in Far Eastern Asia. The materials are mainly based on those of Eastern Manchuria owing to the research of the writer.

* Only found as far north as Eastern Manchuria.

a. Families

b. Genera

*) Prof. LIOU treated this area as the Changpei (Caochaku) District in his Illustrated Flora of Ligneous Plants of N.-E. China. (1955)

c. Species

The ligneous plants found as far as the mixed forest zone of the continent of the northeastern Far East, are shown in the following table with the distribution in the neighbouring regions. (× variety or subspecies)

<table>
<thead>
<tr>
<th>Name of Plants</th>
<th>Korea</th>
<th>N. China</th>
<th>Far East USSR</th>
<th>Hokkaido</th>
<th>Honshu</th>
<th>Shikoku</th>
<th>Kyushu</th>
<th>S. Sakhalin</th>
<th>S. Kuriles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taxaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taxus cuspidata Sieb. et Zucc.</td>
<td>+</td>
<td>×</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Pinaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pinus densiflora Sieb. et Zucc.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>P. koraiensis Sieb. et Zucc.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>P. tabulaeformis Carr.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Salicaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Populus koreana Rehd.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Salix Gilgiana Seemen</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>S. gracilisyla Miquel</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>S. integra Thunb.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>S. korensis Anders.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>S. subfragilis Anders.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Totsu cardophylla Kimura var. Maximowiczii Kimura</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Juglandaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juglans mandshurica Maxim.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Betulaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alnus japonica Steud.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Betula chinensis Maxim.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>B. costata Trautv.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>B. Schimidtii Regel</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Carpinus cordata Blume</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Corylus mandshurica Maxim. et Rupr.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Fagaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quercus dentata Thunb.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Name of Plants</td>
<td>Korea</td>
<td>N. China</td>
<td>Far East U.S.S.R.</td>
<td>Japan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-------</td>
<td>----------</td>
<td>-------------------</td>
<td>---------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ulmaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Celtis aurantiaca NAKAI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. Bungeana BLUME</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemiptera Davidii PLANCH.</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ulmus laciniata MAYA</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+ + + + +</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U. macrocarpa HANCE</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+ + +</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U. propinqua KOIDZ.</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+ + + + +</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moraceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morus bombycis KOIDZ.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+ + + + +</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. mongolica SCHN.</td>
<td>+</td>
<td></td>
<td></td>
<td>+ + + +</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loranthaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viscum coloratum NAKAI var. rubraaurantiacaum MAK.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+ + + + + x x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ranunculaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clematis brevicaudata DC.</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+ + + + + + +</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. koreana KOMAR.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. mandshurica RUPR.</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+ + +</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. patens MORR. et DEC.</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+ + + + +</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. serratifolia REHD.</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+ + +</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berberidaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berberis amurensis RUPR.</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+ + + x x +</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. Poireti SCHN.</td>
<td>+</td>
<td></td>
<td></td>
<td>+ + + + +</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Menispermaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Menispermum dauricum DC.</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+ + + + +</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnoliaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schisandra chinensis BAILL.</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+ + + + +</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saxifragaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deutzia g'abrata KOMAR.</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+ + + + + +</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. parvisflora BUNGE</td>
<td></td>
<td></td>
<td></td>
<td>+ +</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. prunifolia REHD.</td>
<td>+</td>
<td></td>
<td></td>
<td>+ + + + + +</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Philadelphus Schrenkii RUPR.</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+ + + + +</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. tenuifolius RUPR. et MAXIM.</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+ + + + +</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name of Plants</td>
<td>Korea</td>
<td>N. China</td>
<td>Far East, U.S.S.R.</td>
<td>Japan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-------</td>
<td>----------</td>
<td>--------------------</td>
<td>----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hokkaido</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Honshu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Shikoku</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Kyushu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S. Sakhalin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S. Kuriles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ribes burejense Fr. SCHM.</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R. Divisantha PALL.</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R. Komarovii A. POJARK.</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R. mandshuricum KOMAR.</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R. Maximovicziati KOMAR.</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R. pallidiflorum A. POJARK.</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R. ussuriensis JANCZ.</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spiraeaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physocarpus amurensis MAXIM.</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spiraea Fritschiana SCHN.</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. media SCHMIDT</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. pubescens TURCZ.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. trichocarpa NAKAI</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. trilobata LINN.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crataegus Maximovicziatii SCHN.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. pinnatifida BUNGE</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyrus ussuriensis MAXIM.</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sorbus alnifolia K. KOCH</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. amurensis KOEHNNE</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. poissonianensis HEDL.</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rosaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rosa Maximovicziatina REGEL</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rubus crataegifolius BUNGE</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R. parvifolius LINN.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amygdalaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prunus Leveileana KOEHNNE</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. Maackii RUPR.</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. mandshurica KOEHNNE</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. Maximovicziatii RUPR.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leguminosae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caragana chamagu LAMARCK</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. manshurica KOMAR.</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name of Plants</td>
<td>Korea</td>
<td>N. China</td>
<td>Far East USSR</td>
<td>Hokkaido</td>
<td>Honshu</td>
<td>Shikoku</td>
<td>Kyushu</td>
<td>Sakhalin</td>
<td>S. Kuriles</td>
</tr>
<tr>
<td>----------------</td>
<td>-------</td>
<td>----------</td>
<td>---------------</td>
<td>----------</td>
<td>--------</td>
<td>---------</td>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td>Lespedeza bicolor TURCZ.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>L. cyrtobotrya MIQUEL</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>L. tomentosa SIEB.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Maackia amurensis RUPR. et MAXIM.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Pueraria lobata OHWI</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Rutaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phellodendron amurense RUPR.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>x</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Simaroubaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piastras quassioides BENN.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Euhorbiaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Securinega suffruticosa REHDER</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Celastraceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Celastrus flagellaris RUPR.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>C. orbiculatus THUNB.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Euonymus alatus SIEB.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>E. Maackii RUPR.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>E. macropterus RUPR.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>E. pauciflorus MAXIM.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>E. planipes KOEH</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Tripterygium Regeli SPRAGUE et TAKEDA</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Staphyloceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staphylea Bumalda DE CONDOLLE</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Aceraceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acer barbinerve MAXIM.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>A. Ginnala MAXIM.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>A. mandshuricum MAXIM.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>A. Mono MAXIM.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>A. pseudo-Sieboldianum KOMAR.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>A. tegumentosum MAXIM.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>A. triflorum KOMAR.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>A. ukurunduense TRAUTV. et MEY.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>
Name of Plants

<table>
<thead>
<tr>
<th>Family</th>
<th>Species</th>
<th>Korea</th>
<th>N. China</th>
<th>Far East U.S.S.R.</th>
<th>Japan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhamnaceae</td>
<td>Rhamnus arguta Maxim.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>+ R. parviflora Bunge</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ R. Schneideri Lev. et Vnt. var. mandshurica Nakai</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitaceae</td>
<td>Ampelopsis brevipedunculata Trautv.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Parthenocissus tricuspidata Planch.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Vitis amurensis Rupr.</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tiliaceae</td>
<td>Tilia amurensis Rupr.</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T. mandshurica Rupr. et Maxim.</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actinidiaceae</td>
<td>Actinidia arguta Planch.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>A. kolornikta Maxim.</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A. polygama Planch.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Alangiaceae</td>
<td>Marleia platanifolia Sieb. et Zucc. var. triloba Miquel</td>
<td>+</td>
<td>×</td>
<td>+</td>
<td>×</td>
</tr>
<tr>
<td>Araliaceae</td>
<td>Acanthopanax sessiliflorus Seemann</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ A. senticosus Harms</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ Aralia elata Seemann</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Kalopanax pictus Nakai</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Cornaceae</td>
<td>Cornus controversa HemsL.</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ericaceae</td>
<td>Rhododendron micranthum Turcz.</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ R. mucronulatum Turcz.</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ R. Schlechenbaktii Maxim.</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symplocaceae</td>
<td>Symplocos chinensis Druce var. leucocarpa Ohwi form. pilosa Ohwi</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Styracaceae</td>
<td>Styraix Obassia Sieb. et Zucc.</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Styraix Obassia Sieb. et Zucc.
To compare the phytogeographical character, the elements mentioned in the above table are divided into three groups: i) Common to Japan and Eastern Manchuria, ii) Not common to Japan and Eastern

<table>
<thead>
<tr>
<th>Name of Plants</th>
<th>Korea</th>
<th>N. China</th>
<th>Far East</th>
<th>USSR</th>
<th>Hokkaido</th>
<th>Honshu</th>
<th>Shikoku</th>
<th>Kyushu</th>
<th>S. Sakhalin</th>
<th>S. Kuriles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oleaceae</td>
<td></td>
</tr>
<tr>
<td>Fraxinus mandshurica Rupr.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F. rhynchophylla Hance</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rangium mandshuricum Uyecki & Kitagawa</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Syringa oblata Lindl.</td>
<td>*</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. reticulata Hara var. mandshurica</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. Palibiniana Nakai</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. robusta Nakai</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. velutina Komar.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. Wolfi Schn.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verbenaceae</td>
<td></td>
</tr>
<tr>
<td>Chlorodendron trichotomum Thunb.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caprifoliaceae</td>
<td></td>
</tr>
<tr>
<td>Abelia coreana Nakai</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lonicera chrysantha Turcz.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. Maackii Maxim.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. Maximowicziei Maxim.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. praefloraens Batal.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. Ruprechtiana Regel</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. Tatarinowii Maxim.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. vesicaria Komar.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sambucus Steediana Blume var. Miqueli Hara</td>
<td>+</td>
<td>x</td>
<td>+</td>
<td>+</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. Williamsii Hance</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viburnum burejaeticicum Regel et Herder</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V. koreanum Nakai</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V. Sargentii Koehne</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weigela florida A. DC.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W. praecox Bailey</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Manchuria, iii) Endemic. In the first group, Japan are divided into four main islands, namely Hokkaido, Honshu, Shikoku and Kyushu while the temperate regions of the Far East into Korea, Northern China, Eastern Manchuria and the Far Eastern region of the U.S.S.R.

1) Common to Japan.
 i) Common to Japan, Korea, Eastern Manchuria, Northern China and the Far Eastern region of U.S.S.R.
 a) Common to Japan (Hokkaido, Honshu, Shikoku and Kyushu).
 *Salix gracilistyla, S. subfragilis, Alnus japonica, Carpinus cor-
 data, Quercus dentata, Ulmus propinqua, Viscum coloratum, Menispermum dauricum, Sorbus alnifolia, Rubus crataegifolius,
 Lespedeza bicolor, Maackia amurensis, Phellodendron amurense, Celastrus orbiculatus, Euonymus alatus, Acer Mono, Ampelopsis
 brevipedunculata, Parthenocissus tricuspidata, Actinidia arguta, A. polygama, Aralia elata, Kalopanax pictus, Sambucus Siebold-
 diana, Viburnum Sargentii.*
 b) Common to Hokkaido.
 Acanthopanax senticosus, Lonicera chrysantha.
 c) Common to Hokkaido and Honshu.
 Corylus mandshurica, Berberis amurensis, Schisandra chinensis, Actinidia Kolomikta, Fraxinus mandshurica.
 d) Common to Hokkaido, Honshu and Shikoku.
 Taxus cuspidata, Acer ukurunduense.
 e) Common to Hokkaido, Honshu and Kyushu.
 Ulmus laciniata, Syringa reticulata.
 f) Common to Honshu, Shikoku and Kyushu.
 Lespedeza cryptobotrya, Securinega suffruticosa.
 g) Common to Honshu and Kyushu.
 *Lespedeza tomentosa, Celastrus flagellaris, Rhododendron mucro-
 nulatum.*
 h) Common to Kyushu.
 Philadelphus Schrenkii.
 ii) Common to Japan, Korea, Eastern Manchuria and Northern China.
 a) Common to Hokkaido, Honshu, Shikoku and Kyushu.
 *Morus bombycis, Rubus parvifolius, Pueraria lobata, Pierasma
 quassioides, Staphylea Barnalda, Marlea plananifolia, Cornus
 controversa, Symplocos chinensis, Styrax Obassia, Clerodendron*
trichotomum.

b) Common to Honshu, Shikoku and Kyushu.
Tripterygium Regeli.

iii) Common to Japan, Korea, Eastern Manchuria and the Far Eastern region of the U.S.S.R.

a) Common to Hokkaido.
Clematis serratifolia, Crataegus Maximowiczii.
b) Common to Hokkaido and Honshu.
Spiraea media, Euonymus planipes.
c) Common to Hokkaido, Honshu and Shikoku.
Euonymus macropterus.
d) Common to Hokkaido, Honshu and Kyushu.
Salix integra, Prunus Maximowiczii.
e) Common to Hokkaido, Honshu, Shikoku and Kyushu.
Pinus densiflora.
f) Common to Honshu.
Pinus koraiensis, Betula Schmidtii, Ribes Maximowiczianum, Lonicera praeflorens, L. Maackii.
g) Common to Honshu and Shikoku.
Clematis patens.

iv) Common to Japan, Korea and Eastern Manchuria.

a) Common to Hokkaido, Honshu and Shikoku.
Salix Gilgiana.
b) Common to Honshu and Kyushu.
Salix koreensis.

2) Not common to Japan.

i) Common to Korea and Eastern Manchuria.

a) Common to Korea and Eastern Manchuria.
Celtis aurantiaca, Clematis koreana, Deutzia prunifolia, Spiraea trichocarpa, Prunus Leveilleana, Caragana mandshurica, Acer triflorum, Rhamnus Schneideri, Syringa Palibiniana, S. velutina, S. Wolji, Lonicera vesicaria, Viturnum koreanum, Weigela praecox.
b) Common to Korea, Eastern Manchuria and China.
Betula chinensis, Hemiptera Davidii, Morus mongolica, Spiraea Fritischiana, Rhododendron micranthum, Lonicera Tatarinovii, Sambucus Williamsii, Weigela florida.
c) Common to Korea, Manchuria and the Far Eastern region
of the U.S.S.R.

d) Common to Korea, Manchuria, Northern China and the Far Eastern region of the U.S.S.R.

Quercus mongolica, *Ulmus macrocarpa*, *Clematis mandshurica*, *Berberis Poireti*, *Deutzia glabrata*, *Ribes mandshuricum*, *Spiraea pubescens*, *S. trilobata*, *Crataegus pinnatifida*, *Acer Ginnala*, *Rhamnus parvijlorus*, *Tilia mandshunica*, *Acanthopanax sessili­florus*, *Fraxinus rhynchophylla*, *Lonicera Maximowiczii*, *Viburnum burejaticum*.

ii) Not common to Korea.

a) Common to Northern China and Eastern Manchuria.

Pinus tabulaeformis, *Celtis Bungeana*, *Sorbus pohuashanensis*, *Rhamnus arguta*, *Syringa oblata*.

b) Common to Northern China, Eastern Manchuria and the Far Eastern region of the U.S.S.R.

Deutzia parviflora, *Caragana chamlagu*.

3) Endemic.

Rangium mandshuricum UYEKI et KITAGAWA.

The elements enumerated above can be summarized as follows:

1) Common to Japan.

i) Common to Japan, Korea, Eastern Manchuria, Northern China and the Far Eastern region of the U.S.S.R.

a) Common to Hokkaido, Honshu, Shikoku and Kyushu. 24

b) Common to Hokkaido. 2

c) Common to Hokkaido and Honshu. 5

d) Common to Hokkaido, Honshu and Shikoku. 2

e) Common to Hokkaido, Honshu and Kyushu. 2

f) Common to Honshu, Shikoku and Kyushu. 2
g) Common to Honshu and Kyushu.

h) Common to Kyushu.

The species common to Japan, Korea, Eastern Manchuria, Northern China and the East of the U.S.S.R. are 41 in total and summed up as follows:

<table>
<thead>
<tr>
<th>Name of Islands</th>
<th>Number of Species</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Honshu</td>
<td>35</td>
<td>85.4</td>
</tr>
<tr>
<td>Hokkaido</td>
<td>34</td>
<td>82.9</td>
</tr>
<tr>
<td>Kyushu</td>
<td>30</td>
<td>73.2</td>
</tr>
<tr>
<td>Shikoku</td>
<td>26</td>
<td>63.4</td>
</tr>
</tbody>
</table>

In Japan, Hokkaido and Honshu show rather same relationships.

ii) Common to Japan, Korea, Eastern Manchuria and Northern China.

a) Common to Hokkaido, Honshu, Shikoku and Kyushu. 10

b) Common to Honshu, Shikoku and Kyushu. 1

iii) Common to Japan, Korea, Eastern Manchuria and the Far Eastern region of the U.S.S.R.

a) Common to Hokkaido. 2

b) Common to Hokkaido and Honshu. 2

c) Common to Hokkaido, Honshu and Shikoku. 1

d) Common to Hokkaido, Honshu and Kyushu. 2

e) Common to Hokkaido, Honshu, Shikoku and Kyushu. 1

f) Common to Honshu. 5

g) Common to Honshu and Shikoku. 1

The species common to Japan, Korea, Eastern Manchuria and the Far Eastern region of the U.S.S.R. are 14 in total and summed up as follows:

<table>
<thead>
<tr>
<th>Name of Islands</th>
<th>Number of Species</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Honshu</td>
<td>12</td>
<td>85.7</td>
</tr>
<tr>
<td>Hokkaido</td>
<td>8</td>
<td>57.1</td>
</tr>
<tr>
<td>Shikoku</td>
<td>3</td>
<td>21.4</td>
</tr>
<tr>
<td>Kyushu</td>
<td>3</td>
<td>21.4</td>
</tr>
</tbody>
</table>

The analysis of the group common to Japan and Eastern Manchuria is different among four main islands of Japan. Among them Honshu has the strongest affinity and includes the phytogeographically interesting species such as *Pinus koraiensis*, *Betula Schmidtii*, *Ribes Maximowiczianum*, *Lonicera praeflorens*, *L. Maackii* which are only restricted to
Honshu in Japan.

iv) Common to Japan, Korea and Eastern Manchuria.
 a) Common to Hokkaido, Honshu and Shikoku. 1
 b) Common to Honshu and Kyushu. 1

Common species to Japan and Eastern Manchuria amount to 68 in total. Their distributions in the main four islands of Japan are as follows:

<table>
<thead>
<tr>
<th>Name of Islands</th>
<th>Number of species</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Honshu</td>
<td>63</td>
<td>92.6</td>
</tr>
<tr>
<td>Hokkaido</td>
<td>54</td>
<td>79.4</td>
</tr>
<tr>
<td>Kyushu</td>
<td>48</td>
<td>70.6</td>
</tr>
<tr>
<td>Shikoku</td>
<td>44</td>
<td>64.7</td>
</tr>
</tbody>
</table>

From the relation of the distribution to the continent of the Far East, they are divided into four groups as shown in the following table.

<table>
<thead>
<tr>
<th>Name of regions</th>
<th>Number of species</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>J., K., M., C. and S.</td>
<td>41</td>
<td>60.3</td>
</tr>
<tr>
<td>J., K., M. and C.</td>
<td>11</td>
<td>16.2</td>
</tr>
<tr>
<td>J., K., M. and S.</td>
<td>14</td>
<td>20.6</td>
</tr>
<tr>
<td>J., K. and M.</td>
<td>2</td>
<td>2.9</td>
</tr>
</tbody>
</table>

J. = Japan; K. = Korea; M. = Eastern Manchuria; C. = Northern China; S. = The Far East region of the U.S.S.R.

All the species common to Japan and Eastern Manchuria are found in Korea. In this category, the wide ranging species from Japan, Korea, Northern China, Eastern Manchuria to the Far Eastern region of the U.S.S.R. are dominant. It is noteworthy that the species common to Japan, Korea and Eastern Manchuria attains only 2 species including *Salix*.

2) Not Common to Japan.

i) Common to Korea and Eastern Manchuria.
 a) Common to Korea and Eastern Manchuria. 14
 b) Common to Korea, Eastern Manchuria and Northern China. 8
 c) Common to Korea, Eastern Manchuria and the Far Eastern region of the U.S.S.R. 29
 d) Common to Korea, Eastern Manchuria, Northern China and the Far Eastern region of the U.S.S.R. 16

The species common to Korea and Eastern Manchuria are 69 in
total and summed up as follows:—

<table>
<thead>
<tr>
<th>Name of region</th>
<th>Number of species</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern China</td>
<td>24</td>
<td>35.8</td>
</tr>
<tr>
<td>Far Eastern region of U.S.S.R.</td>
<td>45</td>
<td>67.2</td>
</tr>
</tbody>
</table>

As shown in the above table, the Far Eastern region of the U.S.S.R. shows closer phytogeographical relationship than Northern China.

ii) Not Common to Korea.
 a) Common to Northern China and Eastern Manchuria. 5

The analysis of the group not common to Japan and Eastern Manchuria shows the remarkable difference between Korea and China. The latter can not attain half number of the former. The above table shows the close relationship among Eastern Manchuria, Korea and the Far Eastern region of the U.S.S.R.

3) Endemic.

Lastly it is noteworthy that there is only one endemic species restricted to Eastern Manchuria.

The total number of each region are as follows:—

<table>
<thead>
<tr>
<th>Name of region</th>
<th>Number</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Korea</td>
<td>135</td>
<td>94.4</td>
</tr>
<tr>
<td>Far Eastern region of the U.S.S.R.</td>
<td>101</td>
<td>70.6</td>
</tr>
<tr>
<td>China</td>
<td>84</td>
<td>58.7</td>
</tr>
<tr>
<td>Japan</td>
<td>68</td>
<td>47.6</td>
</tr>
</tbody>
</table>

From the phytogeographical point of view, the ligneous plants of the northern intermediate temperate zone or the mixed forest zone in Eastern Asia can be divided mainly into the following three groups; the elements of (1) the temperate, (2) the intermediate and (3) the subarctic zone. Among them, most of those elements of the mixed forest zone are not found in the subarctic zone. It is clear that the present elements except the last zone are not found so far to the north though they invade the subarctic zone and have a temperate character in their distribution.

iii. Scandinavia

The following families and genera are not found north of the mixed
forest zone.

a. Families

Taxaceae, Fagaceae, Ulmaceae, Loranthaceae, Celastraceae, Aceraceae, Rhamnaceae, Tiliaceae, Vitaceae, Oleaceae.

b. Genera

Taxus, Carpinus, Corylus, Fagus, Quercus, Ulmus, Viscum, Cotoneaster, Acer, Rhamnus, Tilia, Hedera, Fraxinus, Sambucus.

c. Species

The species of the ligneous plants distributed as far as the mixed forest zone of Scandinavia are as follows: (* invades the subarctic zone)

Taxaceae: *Taxus baccata Linn.
Salicaceae: Salix daphnoides Vill., S. fragilis Linn., S. triandra Linn.
Myricaceae: *Myrica Gale Linn.
Betulaceae: *Alnus glutinosa Gaertn., Carpinus Betulus Linn., Corylus Avellana Linn.
Fagaceae: Fagus sylvatica Linn., Quercus Robur Linn.
Ulmaceae: *Ulmus glabra Huds.
Loranthaceae: Viscum album Linn.
Celastraceae: Eumynus europaeus Linn.
Aceraceae: Acer platanoides Linn.
Rhamnaceae: Rhamnus cathartica Linn.
Tiliaceae: Tilia cordata Linn.
Vitaceae: Hedera Helix Linn.
Cornaceae: Cornus sanguinea Linn.
Ericaceae: Erica Tetralix Linn.
Oleaceae: Fraxinus excelsior Linn.
Labiatae: *Thymus pulegioides Linn.

3. Geographical Relationships of the Ligneous Flora of the Mixed Forest Zone in Eurasia

From the geobotanical viewpoint, it is noteworthy to analyse the relationship of the distribution of the ligneous flora of the mixed forest zone in Eurasia. Concerning with Eurasia, the northern Japanese Archipelago including Hokkaido, southern Sakhalin and the Southern Kuriles, eastern Manchuria and Scandinavia have been selected for criticism, since precise data are available.

i. Families

The following table shows the common distribution of the ligneous families indigenous to the mixed forest zone in the northern Japanese Archipelago, eastern Manchuria or Scandinavia.

<table>
<thead>
<tr>
<th>Name of Families</th>
<th>Distribution ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N. Japan</td>
</tr>
<tr>
<td>Taxaceae</td>
<td>+</td>
</tr>
<tr>
<td>Abietaceae</td>
<td>+</td>
</tr>
<tr>
<td>Pinaceae</td>
<td>+</td>
</tr>
<tr>
<td>Juniperaceae</td>
<td>+</td>
</tr>
<tr>
<td>Myricaceae</td>
<td>+</td>
</tr>
<tr>
<td>Juglandaceae</td>
<td>+</td>
</tr>
<tr>
<td>Salicaceae</td>
<td>+</td>
</tr>
<tr>
<td>Betulaceae</td>
<td>+</td>
</tr>
<tr>
<td>Ulmaceae</td>
<td>+</td>
</tr>
<tr>
<td>Moraceae</td>
<td>+</td>
</tr>
<tr>
<td>Loranthaceae</td>
<td>+</td>
</tr>
<tr>
<td>Ranunculaceae</td>
<td>+</td>
</tr>
<tr>
<td>Menispermaceae</td>
<td>+</td>
</tr>
<tr>
<td>Magnoliaceae</td>
<td>+</td>
</tr>
<tr>
<td>Saxifragaceae</td>
<td>+</td>
</tr>
<tr>
<td>Spiraeaceae</td>
<td>+</td>
</tr>
<tr>
<td>Malaceae</td>
<td>+</td>
</tr>
<tr>
<td>Rosaceae</td>
<td>+</td>
</tr>
<tr>
<td>Amygdalaceae</td>
<td>+</td>
</tr>
</tbody>
</table>
As shown in the above table, the following families are common to the northern Japanese Archipelago and to Eastern Manchuria but are not found in Scandinavia throughout the mixed forest zone.

Juglandaceae, Moraceae, Menispermaceae, Magnoliaceae, Rutaceae, Simaroubaceae, Anacardiaceae, Staphyleaceae, Alangiaceae, Actinidiaceae, Araliaceae, Symplocaceae, Styracaceae, Verbenaceae.

ii. Genera

From the geobotanical viewpoint, it is also noteworthy to analyse the relationship of the distribution of the genera. The following table shows the common distribution of the ligneous genera indigenous to the mixed forest zone in the northern Japanese Archipelago including
Hokkaido, Sakhalin and the Southern Kuriles, Eastern Manchuria or Scandinavia.

<table>
<thead>
<tr>
<th>Name of Genera</th>
<th>N. Japan</th>
<th>E. Manchuria</th>
<th>Scandinavia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taxus</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Abies</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Larix</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Picea</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Pinus</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Juniperus</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Sabina</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Populus</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Salix</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Tisosu</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Myrica</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Juglana</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Alnus</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Betula</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Carpinus</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Corylus</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Ostrya</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Fagus</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Quercus</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Celtis</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Ulmus</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Morus</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Viscum</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Clematis</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Berberis</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Menispermum</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Magnolia</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Schisandra</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Deutzia</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Hydrangea</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Ribes</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Spiraea</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Crataegus</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Malus</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Name of Genera</td>
<td>N. Japan</td>
<td>E. Manchuria</td>
<td>Scandinavia</td>
</tr>
<tr>
<td>---------------</td>
<td>----------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Sorbus</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Rosa</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Rubus</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Prunus</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Lespedeza</td>
<td>+</td>
<td>+</td>
<td>·</td>
</tr>
<tr>
<td>Maackia</td>
<td>+</td>
<td>+</td>
<td>·</td>
</tr>
<tr>
<td>Pueraria</td>
<td>+</td>
<td>+</td>
<td>·</td>
</tr>
<tr>
<td>Phellodendron</td>
<td>+</td>
<td>+</td>
<td>·</td>
</tr>
<tr>
<td>Pterocarpa</td>
<td>+</td>
<td>+</td>
<td>·</td>
</tr>
<tr>
<td>Rhus</td>
<td>+</td>
<td>+</td>
<td>·</td>
</tr>
<tr>
<td>Celastrus</td>
<td>+</td>
<td>+</td>
<td>·</td>
</tr>
<tr>
<td>Euonymus</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Staphylea</td>
<td>+</td>
<td>+</td>
<td>·</td>
</tr>
<tr>
<td>Acer</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Rhamnus</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Ampelopsis</td>
<td>+</td>
<td>+</td>
<td>·</td>
</tr>
<tr>
<td>Parthenocissus</td>
<td>+</td>
<td>+</td>
<td>·</td>
</tr>
<tr>
<td>Vitis</td>
<td>+</td>
<td>+</td>
<td>·</td>
</tr>
<tr>
<td>Tilia</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Actinidia</td>
<td>+</td>
<td>+</td>
<td>·</td>
</tr>
<tr>
<td>Daphne</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Morlea</td>
<td>+</td>
<td>+</td>
<td>·</td>
</tr>
<tr>
<td>Acanthopanax</td>
<td>+</td>
<td>+</td>
<td>·</td>
</tr>
<tr>
<td>Aralia</td>
<td>+</td>
<td>+</td>
<td>·</td>
</tr>
<tr>
<td>Hedera</td>
<td>·</td>
<td>·</td>
<td>+</td>
</tr>
<tr>
<td>Kalopanax</td>
<td>+</td>
<td>+</td>
<td>·</td>
</tr>
<tr>
<td>Cornus</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Empetrum</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Andromeda</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Chamaedaphne</td>
<td>+</td>
<td>·</td>
<td>+</td>
</tr>
<tr>
<td>Ledum</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Oxycoccos</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Rhododendron</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Vaccinium</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Symplocos</td>
<td>·</td>
<td>+</td>
<td>·</td>
</tr>
<tr>
<td>Styrax</td>
<td>+</td>
<td>+</td>
<td>·</td>
</tr>
<tr>
<td>Name of Genera</td>
<td>Distribution ranges</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>---------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N. Japan</td>
<td>E. Manchuria</td>
<td>Scandinavia</td>
</tr>
<tr>
<td>Fraxinus</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Ligustrum</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Syringa</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Clerodendron</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Thymus</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Lonicera</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Sambucus</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Viburnum</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Weigela</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

As shown in the above table, the following 33 genera are common to the northern Japanese Archipelago and Eastern Manchuria, but not found in Scandinavia throughout the mixed forest zone.

Abies, Larix, Sabina, Toisusu, Juglans, Ostrya, Celtis, Morus, Menispernum, Magnolia, Schisandra, Deutzia, Hydrangea, Pueraria, Lespedeza, Maackia, Phellodendron, Picrasma, Rhus, Celastrus, Staphylea, Ampelopsis, Parthenocissus, Vitis, Actinidia, Marlea, Acanthopanax, Aralia, Kalopanax, Symplocos, Styrax, Clerodendron, Weigela.

In the pan-mixed forest of Eurasia, the following 19 genera are found only in the northern Japanese Archipelago but not in Scandinavia nor in the Far East. Most of them are only found in Hokkaido.

Cephalotaxus, Castanea, Akebia, Lindera, Schizophragma, Stephanandra, Pourthiaea, Skimmia, Zanthoxyllum, Daphniphyllum, Coriaria, Aesculus, Berchemia, Elaeagnus, Oplopanax, Aucuba, Tripetaleia, Sasa, Sasamorphapha.

Among them the widely distributed genera in the northern Japanese Archipelago are *Skimmia, Tripetaleia* and *Sasa.*

On the other hand, in the same forest zone, two genera, namely *Philadelphus* and *Pyrus* are found in the continental East Asia but not found in the northern Japanese Archipelago. *Cotoneaster* occurs in the mixed forest zone of Scandinavia but not in the northern Japanese Archipelago nor in the mixed forest zone of the continental East Asia.

In the pan-mixed forest of Eurasia, the following 41 genera are common to the continental East Asia and Scandinavia.

Taxus, Picea, Pinus, Juniperus, Populus, Salix, Alnus, Betula, Carpinus, Corylus, Quercus, Ulmus, Viscum, Clematis, Berberis, Ribes, Spiraea,

iii. Species

It is an interesting problem that there are common and related species among the northern Japanese Archipelago including Southern Sakhalin and the Southern Kuriles, Eastern Manchuria or Scandinavia. The following table shows their geographical relation to each other.

<table>
<thead>
<tr>
<th>N. Japan</th>
<th>E. Manchuria</th>
<th>Scandinavia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taxus cuspidata</td>
<td>"</td>
<td>T. baccata</td>
</tr>
<tr>
<td>Larix kaempfeana</td>
<td>L. olgensis</td>
<td>"</td>
</tr>
<tr>
<td>Pinus densiflora</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>Pinus sylvestris</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>Pinus parviflora</td>
<td>P. koraiensis</td>
<td>"</td>
</tr>
<tr>
<td>var. pentaphylla</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chosenia bracteosa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Populus jessoensis</td>
<td>P. Davidiana</td>
<td>P. tremula</td>
</tr>
<tr>
<td>Populus Maximowiczii</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>Salix gracilistyla</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salix Halmenii</td>
<td>S. Caprea</td>
<td>"</td>
</tr>
<tr>
<td>Salix integra</td>
<td>"</td>
<td>S. multinervis</td>
</tr>
<tr>
<td>Salix Pet-nasu</td>
<td>S. viminalis</td>
<td>"</td>
</tr>
<tr>
<td>Salix rorida</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salix subfragilis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salix taraxacum</td>
<td>S. xerophila</td>
<td>"</td>
</tr>
<tr>
<td>Tiliae Utrauta *</td>
<td>T. cardiophylla</td>
<td>"</td>
</tr>
<tr>
<td>Juglas australinia</td>
<td>J. mandshurica</td>
<td>"</td>
</tr>
<tr>
<td>Alnus hirsuta</td>
<td>"</td>
<td>A. glutinosa</td>
</tr>
<tr>
<td>Alnus japonica</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>Alnus Maximowiczii</td>
<td>A. mandshurica</td>
<td>A. incana</td>
</tr>
<tr>
<td>Betula davurica</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>Betula Ermanii</td>
<td>B. tortuosa</td>
<td></td>
</tr>
<tr>
<td>Betula platyphylla</td>
<td>B. verrucosa</td>
<td></td>
</tr>
<tr>
<td>Carpinus cordata</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carpinus laxiflora</td>
<td>C. Turczaninovi</td>
<td>C. Betulus</td>
</tr>
<tr>
<td>Corylus mandshurica</td>
<td>C. mandshurica</td>
<td>C. Avellana</td>
</tr>
<tr>
<td>Quercus dentata</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>Quercus crispula</td>
<td>Q. mongolica</td>
<td>Q. Robur</td>
</tr>
<tr>
<td>Celtis jessoensis</td>
<td>C. Bungeana</td>
<td>"</td>
</tr>
<tr>
<td>Ulms laciniata</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>Ulmus propinqua</td>
<td>U. glabra</td>
<td>"</td>
</tr>
<tr>
<td>Morus bombycis</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>N. Japan</td>
<td>E. Manchuria</td>
<td>Scandinavia</td>
</tr>
<tr>
<td>----------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Viscum coloratum</td>
<td>"</td>
<td>V. album</td>
</tr>
<tr>
<td>Clematis fusca</td>
<td>"</td>
<td>-</td>
</tr>
<tr>
<td>Clematis ochotensis</td>
<td>"</td>
<td>C. sibirica</td>
</tr>
<tr>
<td>Clematis serratifolia</td>
<td>"</td>
<td>-</td>
</tr>
<tr>
<td>Menispermum dauricum</td>
<td>"</td>
<td>-</td>
</tr>
<tr>
<td>Schisandra chinensis</td>
<td>"</td>
<td>-</td>
</tr>
<tr>
<td>Sorbaria stellipila</td>
<td>"</td>
<td>S. sorbifolia</td>
</tr>
<tr>
<td>Spiraea media</td>
<td>"</td>
<td>-</td>
</tr>
<tr>
<td>Spiraea salicifolia</td>
<td>"</td>
<td>-</td>
</tr>
<tr>
<td>Malus baccata var. mandshurica</td>
<td>"</td>
<td>-</td>
</tr>
<tr>
<td>Sorbus alnifolia</td>
<td>"</td>
<td>S. intermedia</td>
</tr>
<tr>
<td>Sorbus commixta</td>
<td>S. amurensis</td>
<td>S. Aucuparia</td>
</tr>
<tr>
<td>Rosa acicularis</td>
<td>"</td>
<td>-</td>
</tr>
<tr>
<td>Rosa Marretii</td>
<td>R. davurica</td>
<td>R. cinnamomea</td>
</tr>
<tr>
<td>Rubus crataegifolia</td>
<td>"</td>
<td>-</td>
</tr>
<tr>
<td>Rubus Idaeus</td>
<td>"</td>
<td>-</td>
</tr>
<tr>
<td>Rubus parvifolius</td>
<td>"</td>
<td>-</td>
</tr>
<tr>
<td>Prunus Maximowiczii</td>
<td>"</td>
<td>-</td>
</tr>
<tr>
<td>Prunus Padus</td>
<td>"</td>
<td>-</td>
</tr>
<tr>
<td>Prunus Sargentii</td>
<td>P. Leveilleana</td>
<td>-</td>
</tr>
<tr>
<td>Lespedeza bicolor</td>
<td>"</td>
<td>-</td>
</tr>
<tr>
<td>Pierasam quassioidea</td>
<td>"</td>
<td>-</td>
</tr>
<tr>
<td>Rhus javanica</td>
<td>"</td>
<td>-</td>
</tr>
<tr>
<td>Celastrus orbiculatus</td>
<td>"</td>
<td>-</td>
</tr>
<tr>
<td>Euonymus alatus</td>
<td>"</td>
<td>-</td>
</tr>
<tr>
<td>Euonymus macropterus</td>
<td>"</td>
<td>-</td>
</tr>
<tr>
<td>Euonymus planipes</td>
<td>"</td>
<td>-</td>
</tr>
<tr>
<td>Euonymus Sieboldianus</td>
<td>"</td>
<td>E. europaeus</td>
</tr>
<tr>
<td>Staphylea Bumalda</td>
<td>"</td>
<td>-</td>
</tr>
<tr>
<td>Acer circinatum</td>
<td>A. triflorum</td>
<td>-</td>
</tr>
<tr>
<td>Acer Mono</td>
<td>"</td>
<td>A. platanoides</td>
</tr>
<tr>
<td>Acer ukurunduense</td>
<td>"</td>
<td>-</td>
</tr>
<tr>
<td>Rhamnus japonica</td>
<td>R. davurica</td>
<td>R. catharica</td>
</tr>
<tr>
<td>Ampelopsis brevipedunculata</td>
<td>"</td>
<td>-</td>
</tr>
<tr>
<td>Parthenocissus tricuspidata</td>
<td>"</td>
<td>-</td>
</tr>
<tr>
<td>Vitis Coignetiae</td>
<td>V. amurensis</td>
<td>-</td>
</tr>
<tr>
<td>Tilia japonica</td>
<td>T. amurensis</td>
<td>T. cordata</td>
</tr>
<tr>
<td>Tilia Maximowicziana</td>
<td>T. mandshurica</td>
<td>T. platyphylla</td>
</tr>
<tr>
<td>Actinidia arguta</td>
<td>"</td>
<td>-</td>
</tr>
<tr>
<td>Actinidia Kolomikta</td>
<td>"</td>
<td>-</td>
</tr>
<tr>
<td>Actinidia polygama</td>
<td>"</td>
<td>-</td>
</tr>
<tr>
<td>N. Japan</td>
<td>E. Manchuria</td>
<td>Scandinavia</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Daphne juzowskii</td>
<td>D. koreana</td>
<td>D. Mezereum</td>
</tr>
<tr>
<td>Marnea patanifolia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acanthopanax senticosus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aralia elata</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hedera rhombea</td>
<td></td>
<td>H. Helix</td>
</tr>
<tr>
<td>Kalopanax pictus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cornus alba</td>
<td></td>
<td>C. sanguinea</td>
</tr>
<tr>
<td>Cornus controversa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhododendron Albrechtii</td>
<td>R. Schlechtenbachii</td>
<td></td>
</tr>
<tr>
<td>Symplocos chinensis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Syringa obtusissima</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fraxinus mandshurica</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liguistrum Tschonoskii</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Syringa reticulata</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thymus japonicus</td>
<td>T. quinquecostatus</td>
<td>T. Serpyllum</td>
</tr>
<tr>
<td>Cleomedendron trichotomum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viburnum Sargentii</td>
<td></td>
<td>V. Opuluster</td>
</tr>
<tr>
<td>Viburnum dilatatum</td>
<td>V. koreana</td>
<td></td>
</tr>
<tr>
<td>Weigela hortensis</td>
<td>W. florida</td>
<td></td>
</tr>
</tbody>
</table>

The geographical character mentioned above is shown as follows:

i) Common to the northern Japanese Archipelago and Manchuria, but not in Scandinavia.

Taxus: Taxus cuspidata.
Chosenia: Chosenia bracteosa
Populus: Populus Maximoviczii.
Alnus: Alnus hirsuta, A. japonica.
Betula: Betula davurica, B. Ermani, B. platyphylia.
Carpinus: Carpinus cordata.
Corylus: Corylus mandshurica.
Quercus: Quercus dentata.
Morus: Morus bombycis.
Viscum: Viscum corolatum.
Clematis: Clematis fusca, C. ochotensis C. serratifolia.
Menispermum: Menispermum dauricum.
Schisandra: Schisandra chinensis.
Sorbaria: Sorbaria stellipila.
Spiraeae: Spiraea media, S. salicifolia.
Malus: *Malus baccata* var. *mandshurica*.
Sorbus: *Sorbus alnifolia*.
Rubus: *Rubus crataegifolius, R. parvifolius*.
Prunus: *Prunus Maximowiczii*.
Lespedeza: *Lespedeza bicolor*.
Piceas: *Piceas quassioideae*.
Rhus: *Rhus javanica*.
Celastrus: *Celastrus orbiculatus*.
Euonymus: *Euonymus alatus, E. pinnipes, E. macropterus, E. Sieboldianus*.
Staphylea: *Staphylea Bumalda*.
Acer: *Acer Mono, A. ukurunduense*.
Ampelopsis: *Ampelopsis brevipedunculata*.
Parthenocissus: *Parthenocissus tricuspidata*.
Actinidia: *Actinidia arguta, A. Kolomikta, A. polygama*.
Marlea: *Marlea platanifolia*.
Acanthopanax: *Acanthopanax senticosus*.
Aralia: *Aralia elata*.
Kalopanax: *Kalopanax pictus*.
Cornus: *Cornus alba, C. controversa*.
Symplocos: *Symplocos chinensis var. leucocarpa f. pilosa*.
Styrax: *Styrax Obassia*.
Fraxinus: *Fraxinus mandshurica*.
Syringa: *Syringa reticulata*.
Clerodendron: *Clerodendron trichotomum*.
Viburnum: *Viburnum Sargentii*.

ii) Found in Manchuria, but not in the northern Japanese Archipelago.

Spiraea: *Spiraea chamaedrifolia, S. Fritschiiana, S. pubescens*.
Rosa: *Rosa davurica, R. koreana, R. Maximowicziana, R. pimpinellifolia*.
Rubus: *Rubus saxatilis*.
Rhododendron: *Rhododendron Schlechtiian*.

iii) Common to Eastern Manchuria and Honshu, but not in Hokkaido. *Pinus koraiensis, Betula Schmitii, Philadelphus Schrenkii, Rhododendron mucronulatum*.

iv) Common to Eastern Manchuria and Sakhalin, but not in Hokkaido. *Ribes procumbens, Cornus alba*.

Wide ranging species: There are distinct wide ranging species distributed from Japan to Scandinavia in the mixed forest zone. They
are *Rosa acicularis*, *Prunus Padus*, *Andromeda polifolia*, *Chamaedaphne calyculata*, *Ledum palustre*, *Oxycoccus microcarpus*, *Oxycoccus quadripetalus* and *Rubus Idaeus*. Most of them belong to the bog plants. In the following table the subspecies and varieties commonly found in the northern Japanese Archipelago, Eastern Manchuria or Scandinavia are listed.

<table>
<thead>
<tr>
<th>N. Japan</th>
<th>E. Manchuria</th>
<th>Scandinavia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myrica Gale</td>
<td></td>
<td></td>
</tr>
<tr>
<td>var. tomenotsa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berberis amurensis</td>
<td>B. amurensis</td>
<td></td>
</tr>
<tr>
<td>var. japonica</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maackia amurensis</td>
<td>M. amurensis</td>
<td></td>
</tr>
<tr>
<td>var. Buergeri</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phecodendron amurensis</td>
<td>P. amurensis</td>
<td></td>
</tr>
<tr>
<td>var. sachalinse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acer Ginnala</td>
<td>A. Ginnala</td>
<td></td>
</tr>
<tr>
<td>var. aizueense</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acer Tschonoskii</td>
<td>A. Tschonoskii</td>
<td></td>
</tr>
<tr>
<td>var. rubripes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Empetrurn nigrum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>var. japonicum</td>
<td>E. nigrum</td>
<td></td>
</tr>
<tr>
<td>Lonicera coerulea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>subsp. edulis</td>
<td>L. coerulea</td>
<td></td>
</tr>
</tbody>
</table>

PART III. PAN-MIXED FOREST ZONE

1. Outline of the Pan-Mixed Forest in Eurasia

According to the general map of world vegetation, the needle-leaved forest of the subarctic zone is often directly in contact with the temperate zone. But this is found not to be true in fact, if a detailed analysis is carried out. The purpose of this part of the present paper is to describe and compare the forests in question as they are found among the islands of the northern Japanese Archipelago including the Southern Kuriles, in the northeastern Far East and in Scandinavia.

Islands of the Northern Pacific Ocean: The needle-leaved forests of the subarctic zone of the Japanese Archipelago are represented by the *Picea jezoensis-Abies sachalinensis* and *Lorix kamtschatica* forest: on the other hand, the typical temperate forest zone is represented by the *Fagus crenata* forest. As the boundary line of demarcation between the subarctic and the temperate zones in the present area, Prof. Y. Kudo indicated SCHMIDT's Line in Sakhalin and the writer MIYARE's Line in the Kurile Islands. These lines were previously cited. On the other hand, the *Fagus crenata* forest is only found as far northward as the Kuromatsunai Depression in Hokkaido. Speaking strictly, the
subarctic zone is restricted to the northward of those two lines.

There must therefore be some special zone lying among the Kuromatsunai Depression in Hokkaido, Schmidr's Line and Miyabe's Line, for the true temperate zone is developed to the southward from the Kuromatsunai Depression.

Northeastern part of the Far Eastern Continent: The subarctic needle-leaved forests of the northeastern part of the Far East portion of the Continent including Eastern Manchuria, Amur, Ussuri and the Maritime Province are represented by the Larix olgensis- and Picea jexoensis-Abies nephrolepis forest. From the geobotanical point of view, Eastern Manchuria cited here, is located to the east of the railway line of Shenyang-Changchun-Harbin as already mentioned. These forests of the larch, the fir and the spruce are reported from the mountain district and sometimes found in lower parts of E. Manchuria, but not cover its whole area. The Pinus densiflora forest is found in part. On the other hand, the rich flora of the Japanese-

Fig. 13. Phytogeographical Zones of the Northeastern Far East
A. Intermediate Zones; B. Temperate Eastern Asiatic Zone
C. Siberian Subarctic Zone; D. Central Asiatic Zone
FOREST ECOW13GY OF THE ISLANDS OF THE NORTH PACIFIC OCEAN

Chinese or the Eastern Asiatic Temperate zone (in a narrow sense) is well developed as far as Southern Manchuria and also partly found in E. Manchuria. As a result of researches there, it may be said that the northeastern part of Far East portion of the Continent resembles the northern islands of the Japanese Archipelago, having intermediate characters between the subarctic- and the temperate forest zone. Briefly speaking, the Amur basin including Eastern Manchuria and the northern parts of the Japanese Archipelago including the Southern Kuriles from the Kuromatsunai Depression to Schmidt's and Miyabe's Lines from a homogenous zone or "The Northern Intermediate Temperate Zone of the Far East" or in other words "The mixed forest zone of the Far East." (Fig. 13)

Scandinavia: The needle-leaved forests of the subarctic zone of Scandinavia are represented mostly by the Picea Abies forest and partly by the Pinus sylvestris forest in the northern part. On the other hand, the typical temperate forest zone is represented by the Fagus

1) OGA, I.: The vegetation on the plant distribution in Manchuria. (in Japanese) (1931)
3) KITAGAWA, M.: Lineamenta Florae Manshuricae. (1939)
4) TATEWAKI, M.: The outline of the vegetation in Manchuria, Inner Mongolia and North China, with special reference to the distribution of the trees. (in Japanese) (1943)
8) " : Phytogeographical Excursions to the Surroundings of Lake Tornetrask in Torne Lappmark, Northern Sweden. (1950)
10) LINDQUIST, B.: The main varieties of Picea Abies (L.) Karst. in Europe, with a contribution to the theory of a forest vegetation in Scandinavia during the last Pleistocene glaciation. Acta Horti Bergiani 14-7. (1948)
14) " : Phytogeographical Forest Excursion to North Sweden. (1950)
sylvatica forest\cite{9} in the southern part. But between the two zones, there is also an intermediate one as shown in the figure. (Fig. 14) It indeed coincides practically with the intermediate zone in the Far East. Swedish botanists\cite{2} have already pointed out the boundary between the southern and the northern conifer region. Prof. SERNANDER called it the "limes norrlandicus" or the ecological Norrland limit. This line was also called the oak line which separates South Sweden from North Sweden. In this sense, South Sweden is named "the South Sweden conifer forest region with oak" by Prof. Du RIETZ. Those scholars have explained the presence of the temperate forests and the deciduous trees such as Fraxinus excelsior, Quercus Robur, Acer platanoides, Tilia cordata, Ulmus glabra, etc. in the southern conifer zone. In 1955, TATEWAKI\cite{9} announced the mixed forest zone of Sweden and also in 1956 Dr. ZOLLER\cite{10} published the same opinion. The homogenous constructions and arrangements of the various forests of the southern conifers zone are like the mixed forest zone in

1) LINDQUIST, B.: The ecology of the Scandinavian beech-woods. Journ. of the Swedish Forestry Society. 3. 179～532 (1931)
2) " : Dalby Soderskog. (1938)
3) " : Phytogeographical forest excursion in South Sweden. (1950)
4) FÆGRI, K.: On age and origin of the beech forest (Fagus sylvatica L.) at Lygrefjorden near Bergen (Norway). Denmarks Geol. Unders. II. 89. 230～249. (1954)
the Far East.

The genera common to the mixed forest in the islands of the Northern Pacific Ocean, in the northeastern Far East part of the Continent and also in Sweden, are Quercus, Ulmus, Carpinus, Corylus, and Fraxinus as the prominent temperate elements. According to the above observations, the notion of "Pan-Mixed Forest" will be clearly understood. Such forests in the northern Japanese Archipelago including the Southern Kuriles are situated in the easternmost part of Northeastern Asia in this category, and they have rich Temperate Eastern Asiatic elements. The Scandinavian flora of the mixed forest zone having been greatly influenced by the ice age, is very poor in species as well as genera, compared with those of the Far East. Departing from the above considerations, the points of general homology of the mixed forest zone between the arctic and the temperate forest zones in Eurasia are as follows:

i) The needle-leaved or the deciduous broad-leaved forests belonging to the subarctic forest are not found in the whole area.

ii) Mosaic arrangements of the needle forests belonging to the subarctic zone and those of the deciduous forests belonging to the temperate zone.

iii) In the mixed forests, the mosaic mixture of the trees belonging to the subarctic and to the temperate element.

iv) Both in Eastern Asia and Northern Europe, the mixed forest have common genera of the ligneous flora.

But from the ecological point of view, the remarkable differences among the forests of the three parts of Eurasia are as follows:

<table>
<thead>
<tr>
<th></th>
<th>N. Japanese Archipelago</th>
<th>NE. Far East</th>
<th>Scandinavia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ligneous flora</td>
<td>rich</td>
<td>more or less rich</td>
<td>poor</td>
</tr>
<tr>
<td>Sasa strata</td>
<td>prominent</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Climbing plants</td>
<td>+</td>
<td>±</td>
<td>-</td>
</tr>
</tbody>
</table>

2. Forests of the Intermediate Zone of Hokkaido

Among the forests of the intermediate zone of the Far East, those of Hokkaido have been studied most precisely from the view-point of synecology. In Hokkaido, the district to the northward from the Kuro-
matsunai Depression, is not occupied only by the forests belonging to the subarctic zone. In other words, *Picea jezoensis-Abies sachalinensis, Alnus hirsuta- and Betula Ermani* forests do not entirely maintain their vegetation of the low-land. Only such a pure subarctic or taiga type vegetation is found from 800 to 1300~1600 m high in central Hokkaido, but in some localities in the same district, for example on a branch (Tomuraushi) of the R. Tokachi, the mixed forests are found even as high as 800 m.

Coastal forests: The forest bordering the coast line of Hokkaido have changed considerably from their original composition. As a result of the coming of a fishing population, man was certain to alter the natural forest along the coast to a large extent. If one goes near the northernmost end (Wakkanai), he can find the *Abies sachalinensis* forest on sand dunes, but he will see the *Quercus dentata* forest in the same locality. If one goes down a little southward along the Sea of Japan, he can find also the *Abies sachalinensis* forest on sand dunes near the lower Teshio River, but he will see the *Quercus dentata* forest in the same locality. Similar conditions are observed near Shari, on the northeastern coast of Hokkaido on the Okhotsk Sea. Generally speaking, the *Quercus dentata* forest is found on sand dunes; on the other hand on the hills along the sea-shore of Hokkaido the *Acer Mono* forest is often met with and on sandy hills the *Quercus dentata* forest. Such forests of *Quercus dentata* or *Acer Mono* do not express the subarctic character at all. Also similar conditions may be observed along the sea-coast in southeastern Hokkaido, he can often find forests of subarctic character, as the *Abies sachalinensis*, the *Picea Glehnii*, the *Alnus hirsuta- and the Betula Ermani* forest. But he will also surely note that the *Quercus crispula-*, the *Fraxinus mandshurica-*, the *Ulmus propinqua- and the *Acer Mono* forests belonging to the temperate forest zone stand side by side with the subarctic forest. (Fig. 15) A clear idea of the mixed forest zone will be gained by considering the above examples.

Inland broad-leaved forest: At present, in the low lands of Hokkaido, it is becoming almost impossible to study the natural condition of the sort of forests now under consideration, owing to the development of argriculture and forestry. But an excellent example has been well preserved on Maruyama Hill (226 m) at Sapporo under protection as a “State Natural Conservation”. It is clear that Maruyama Hill is covered mostly by forest of deciduous broad-leaved trees classified as *Tilia* (including *japonica* and *Maximowicziana*-Acer Mono (in-
Fig. 15. Characteristic forest stands in Hokkaido

- The Subarctic forest stand side by side with the temperate forests along the coast
- Special deciduous broad-leaved forests

cluding *A. Maruy*- and *Cercidiphyllum japonicum* forests after precise analysis of the forest composition.

On the rich soil of the inland plain in the area under consideration, the climax forest seems to be represented by the *Ulmus propinqua-Acer Mono* forest (sometimes *Ulmus propinqua* dominant). It is not usually found in natural stand at present, on account of the increased population and cultivation since World War II.

Along the valley, *Juglans ailanthifolia*, *Cercidiphyllum japonicum* and *Fraxinus mandshurica* are common on rich soils. They form pure forests, but they are often mixed with the needle-leaved trees such as *Abies sachalinensis* or *Picea jezoensis*.

The *Quercus crispula* forest is well developed on light soils. In Eastern Hokkaido such as in Provinces of Tokachi, Kushiro and Nemuro, such forest is commonly found on the inland plain or hilly place, characterised by the presence of a monotonous underlayer dominated
Kushiro-Nemuro: There is a very interesting district of broad-leaved forest developed on a wide area in the eastern part of Hokkaido. It is known as the Kushiro-Nemuro (Konsen) Plain. (Fig. 15) Here volcanic ashes form a thick horizon influenced by rather recent activity of Mashu Volcano. Needle-leaved or mixed forests are hardly found; only broad-leaved forests are met with. Previous to about 25 years ago, fine oak (Quercus crispula) forest was easily found, but it had been decreased by the felling of trees for the lumber industry. In addition to that, the development of agricultural reclamation has resulted in the almost entire destruction of the primaeval oak forest. So at present, the forests of the Kushiro-Nemuro Plain are usually in an unstable stage showing often the initial stage of the succession due to forestry and agricultural reclamation. As the broad-leaved trees composing the forests in this district, one can enumerate Quercus crispula, Quercus dentata, Alnus hirsuta, Alnus japonica, Betula Ermani, Betula platyphylla and Populus Davidiana. Especially Betula platyphylla, Quercus dentata and Populus Davidiana are common in burned-over area.

Mixed forests: True mixed forests are found very commonly in Hokkaido. They are composed of various combinations of needle- and broad-leaved trees. The composition of the general mixed forest in Hokkaido shows the character of the intermediate zone and affords a good example of the mixture of species belonging to the subarctic and the temperate elements. The examples of mixed forests can not be enumerated here. One of the most common ones is the Abies sachalinensis-Quercus crispula forest.

The same tendency of occurrence of the mixed zone is shown to the south of Scribner's Line in Sakhalin, and also in the Southern Kuriles from Miyake's Line. However, if one goes to the eastern side of Southern Sakhalin facing the Okhotsk Sea, the subarctic character will be noted to have often been caused to appear strongly by the influence of the cold current.

3. Vertical Distribution of the Forests of Hokkaido

The vertical distribution of the forest or the forest zonation of the mountain vegetation is one of the most conspicuous features in the temperate region. Among the islands of the Northern Pacific Ocean, that zonation in Hokkaido is remarkable. As already mentioned, the Central, the Northern Kuriles and also northernmost Sakhalin are
destitute of the needle-leaved forest. The Aleutian Islands are characterized by the absence of the forest, except only low willows found the valley. The districts mentioned above have a special physiognomy of vegetation in spite of belonging to the subarctic region from the viewpoint of phytogeography. So the vertical arrangements of the forest zone of the mountains in Hokkaido are explained here as representatives.

i. Forest zones

The forest zone in the area under consideration may be divided into four climatic type zones according to the altitude rising from the low land:- the temperate or deciduous broad-leaved forest zone and the intermediate or mixed forest zone, the subarctic (subalpine) or needle-leaved forest zone and the alpine or shrub zone.

Temperate forest zone: The temperate forest zone represented by the *Fagus crenata* forest occurs in Southwestern Hokkaido as already explained.

Mixed forest zone: Beyond and to the north of the Japanese beech forest, the temperate forest zone represented by *Ulmus propinquu-Acer Mono*, *Quercus crispula-* or *Tilia-Acer Mono* forests are often developed in the low land. The mixed forest zone occurs above or at the same level as the deciduous forest zone. The characteristic deciduous broad-leaved and the needle-leaved trees are already mentioned. Sometimes it extends up to an elevation of 800 m; special example has been cited along the upper Tomuraushi in Central Hokkaido. In this case, the uppermost mixed forest is represented by the *Picea jezoensis-Fraxinus mandshurica* forest. It is a good example of the character of the mixed forest of the Far East.

Needle-leaved forest zone: The present zone is divided into following three subzones:- the needle-leaved forest, the upper mixed forest zone and the *Betula Ermani* forest. The conifers which predominate in this zone are *Picea jezoensis*, *Abies sachalinensis* and sometimes *Picea Glehni*. *Picea jezoensis* increases in general with the higher elevation. Characteristic broad-leaved trees are *Betula Ermani*, *Prunus nipponica*, *Ilex Sugeroki*, *Euonymus macropterus*, *Acer urunduense*, *Acer Tschonoskii*, etc. The presence of such broad-leaved trees except *Betula Ermani* is very remarkable taking into consideration of the horizontal distribution of the subarctic forests.

Upper mixed forest: The upper mixed forest is often developed
between the needle-leaved and the Betula Ermani forest. It is usually represented by the Picea jezoensis-Betula Ermani forest and sometimes by Picea Glehni-Betula Ermani forest.

Betula Ermani forest: The zone above the needle-leaved forest represents by the Betula Ermani forest, which belongs to the subalpine zone in a wide sense, as shown as a result of floral analysis. The height of the trees gradually diminishes and at last they become dwarf and bushy in habit and clearly indicate the intermediate zone between the needle-leaved forest and the Pinus pumila (Siberian dwarf pine) thicket.

Alpine zone: The highest part of the mountains are generally occupied by Pinus pumila which often covers a considerable tract. Vegetation shows a luxuriant growth and forms a beautiful carpet of dark green. The other woody species of the alpine zone are all shrubby, while there are found also Alnus Maximowiczii, Sorbus sambucifolia, Sorbus Matsumurana, etc.

ii. Boundary Line of the Tree Limit

There are several kinds of forests along the boundary line on the mountains of Hokkaido. They shows one of the most interesting variabilities of forest physiognomy among the islands of the North Pacific Ocean.

Betula Ermani forest: Such forest is the commonest one forming the boundary line of the tree limit and showing the zonation. The width of this birch forest is variable according to the particular mountains.

Alnus Maximowiczii thicket: On Mt. Koma, Prov. Oshima, a recent volcano, this thicket forms the boundary line of the tree limit.

Picea Glehni forest: On Mt. Shiratori, a serpentinite mountain, situated in the central western part of Hokkaido, and also on the western slopes of the volcanic mountains Mt. Tokachi and Mt. Meakan (the Tokachi-side) may be seen the development of Picea Glehni forest in the boundary line of the tree limits. The underlayer of the former mountain is characterised by Sasa, but that of the latter is characterised by the presence of Pinus pumila in shrub stratum. There are special cases in the area under consideration.

Picea jezoensis forest: A special case observed on Mt. Tarumai, a recent volcanic mountain, has a characteristic boundary line of the tree limit represented by the Picea jezoensis forest.

Abies sachalinensis forest: An example is found on Mt. Meakan,
between the needle-leaved and the *Betula Ermani* forest. It is usually represented by the *Picea jezoensis-Betula Ermani* forest and sometimes by *Picea Glehni-Betula Ermani* forest.

Betula Ermani forest: The zone above the needle-leaved forest represents by the *Betula Ermani* forest, which belongs to the subalpine zone in a wide sense, as shown as a result of floral analysis. The height of the trees gradually diminishes and at last they become dwarf and bushy in habit and clearly indicate the intermediate zone between the needle-leaved forest and the *Pinus pumila (Siberian dwarf pine)* thicket.

Alpine zone: The highest part of the mountains are generally occupied by *Pinus pumila* which often covers a considerable tract. Vegetation shows a luxuriant growth and forms a beautiful carpet of dark green. The other woody species of the alpine zone are all shrubby, while there are found also *Alnus Maximowiczii, Sorbus sambucifolia, Sorbus Matsumurana*, etc.

ii. Boundary Line of the Tree Limit

There are several kinds of forests along the boundary line on the mountains of Hokkaido. They shows one of the most interesting variabilities of forest physiognomy among the islands of the North Pacific Ocean.

Betula Ermani forest: Such forest is the commonest one forming the boundary line of the tree limit and showing the zonation. The width of this birch forest is variable according to the particular mountains.

Alnus Maximowiczii thicket: On Mt. Koma, Prov. Oshima, a recent volcano, this thicket forms the boundary line of the tree limit.

Picea Glehni forest: On Mt. Shiratori, a serpentine mountain, situated in the central western part of Hokkaido, and also on the western slopes of the volcanic mountains Mt. Tokachi and Mt. Meakan (the Tokachi-side) may be seen the development of *Picea Glehni* forest in the boundary line of the tree limits. The underlayer of the former mountain is characterised by *Sasa*, but that of the latter is characterised by the presence of *Pinus pumila* in shrub stratum. There are special cases in the area under consideration.

Picea jezoensis forest: A special case observed on Mt. Tarumai, a recent volcanic mountain, has a characteristic boundary line of the tree limit represented by the *Picea jezoensis* forest.

Abies sachalinensis forest: An example is found on Mt. Meakan,
Akan National Park. There is a well developed Erman's birch forest on Mt. Oakan standing opposite to Mt. Meakan across the Lake Akan.

iii. Altitude of the Forest Zones

The altitude of each forest zone in the mountain of Hokkaido will be examined from the following three main axes:— The southwestern part, the central part and the eastern part.

Southwestern part: The mountains of the southwestern part ranges from Mt. Sengen situated in the southwestern part of Oshima Peninsula to Mt. Kariba in Prov. Shiribeshi, including Mt. Yurap, Mt. Oshamanbe, Mt. Ohira. The presence of *Fagus crenata* forest well developed from the lower places and the absence of the needle forest in the upper part of these mountains express the characteristic forest physiognomy as shown in the mountains of the northeastern part of Honshu (the main island of Japan) along the Sea of Japan. In the upper part, the Japanese beech forest is succeeded by the *Betula Ermani* forest and the highest part is occupied by *Pinus pumila* thicket. The following table shows the altitude of each forest zone in these mountains of the southwestern part of Hokkaido.

<table>
<thead>
<tr>
<th>Name of Mt.</th>
<th>Altitude</th>
<th>Pinus pumila thicket</th>
<th>Betula Ermani forest</th>
<th>Fagus crenata forest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mt. Kariba</td>
<td>1519 m</td>
<td>1500 (~1200) m</td>
<td>1300~800 m</td>
<td>800~ m</td>
</tr>
<tr>
<td>Mt. Ohira</td>
<td>1191</td>
<td>1000 (~800)</td>
<td>1100~900 (~750)</td>
<td>900 (~750) ~</td>
</tr>
<tr>
<td>Mt. Yurap</td>
<td>1275</td>
<td>1000</td>
<td>1000~800</td>
<td>800~</td>
</tr>
<tr>
<td>Mt. Oshamanbe</td>
<td>972</td>
<td>950</td>
<td>950 (~700)</td>
<td>700~</td>
</tr>
</tbody>
</table>

Central part: The mountains of the central part form the back bone of Hokkaido in the long axis ranging from the southern part of Prov. Hidaka to the northern part of Prov. Kitami. A complete succession of rocks ranging from Paleozoic to recent is found there as has been already mentioned in this paper.

The following table shows the altitude of each forest zone of the central part from south to north.

Daisetsu Mountains Group situated in the center of Hokkaido is the highest point called “the roof of Hokkaido”. The lower limit of *Pinus pumila* thicket and the *Betula Ermani* forest of main peaks of this mountain group is as follows:
Lower limit of *Pinus pumila*- and *Betula Ermani* zone

<table>
<thead>
<tr>
<th>Name of Mt.</th>
<th>Altitude</th>
<th>Lower limit of Pinus pumila thicket</th>
<th>Lower limit of Betula Ermani forest</th>
<th>Lower Needle-leaved forest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mt. Yuni-ishikari</td>
<td>1755 m</td>
<td>1600 m</td>
<td>1600~1500 m</td>
<td>800 m</td>
</tr>
<tr>
<td>Mt. Otofuke</td>
<td>1932</td>
<td>1800~1600 m</td>
<td>1450~1400</td>
<td>"</td>
</tr>
<tr>
<td>Mt. Ishikari</td>
<td>1980</td>
<td>1800~1600 m</td>
<td>1450~1200</td>
<td>"</td>
</tr>
<tr>
<td>Numanokara</td>
<td>1450</td>
<td>1420</td>
<td>1480~1380</td>
<td>"</td>
</tr>
<tr>
<td>Goshikigahara</td>
<td>1882</td>
<td>1500</td>
<td>1650~1350 (~1200)</td>
<td>"</td>
</tr>
<tr>
<td>Mt. Chubetsu</td>
<td>1063</td>
<td>1700~1500 m</td>
<td>1600~1400</td>
<td>"</td>
</tr>
<tr>
<td>Mt. Hiragatake</td>
<td>1781</td>
<td>1600~1500 m</td>
<td>1600~1300</td>
<td>"</td>
</tr>
<tr>
<td>Mt. Akadake</td>
<td>2076</td>
<td>1800~1600 m</td>
<td>1700~1300 (~1200)</td>
<td>"</td>
</tr>
</tbody>
</table>

Northeastern part: The mountains of the northeastern part range from Mt. Meakan, Prov. Kushiro to Mt. Shiretoko, Shiretoko Peninsula which protrudes as the northeastern end of Hokkaido forming the backbone of a long-tailed peninsula. They are all volcanoes. The vertical arrangement of the forest zones are sometimes irregular owing to the volcanic action as well as the special maritime climate. The following table shows the altitude of each forest zone of the mountains of Akan National Park.

<table>
<thead>
<tr>
<th>Name of Mt.</th>
<th>Altitude</th>
<th>Lower limit of Pinus pumila thicket</th>
<th>Betula Ermani forest</th>
<th>Needle-leaved forest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mt. Oakan</td>
<td>1371 m</td>
<td>1200 (~1100) m</td>
<td>1200~1100 m</td>
<td>1000~600 m</td>
</tr>
<tr>
<td>Mt. Meakan</td>
<td>1503</td>
<td>1100 (~800) m</td>
<td>800~700 (~600)</td>
<td>1000~600 (~500)</td>
</tr>
<tr>
<td>Mt. Mokoto</td>
<td>1000</td>
<td>700 (~600) m</td>
<td>800~700 (~600)</td>
<td>900800500</td>
</tr>
</tbody>
</table>

4. Comparison of the Main Homologous Forests in Eurasia

The following table is based on the main forests of Hokkaido and the homologous forests in Eastern Manchuria and Sweden.

* Limited to the temperate forest zone.
** Restricted northerly as far as to the southern part of the mixed zone.
FOREST ECOLOGY OF THE ISLANDS OF THE NORTH PACIFIC OCEAN

Hokkaido

Needle-leaved forest
- Picea jezoensis-
- Abies sachalinensis forest
- Picea glehni forest
- *Thuja plicata dolabrata
 var. Hondai forest
- **Pinus parviflora
 var. pentaphylla forest

Broad-leaved forest
- *Fagus crenata forest
- Ulmus propinquua forest
- Acer Mono-
 Tilia japonica forest
- Quercus crispula forest
- Alnus hirsuta forest
- Fraxinus mandshurica forest
- **Pierocarya rhoifolia-
 Aesculus turbinata forest
- Salix forest
- Populus Maximowiczii-
 Toisu Urbantana forest
- Alnus japonica
 var. arguta forest
- Quercus dentata forest
- Betula platyphylla forest
- Betula davurica forest
- Populus Davidiana forest
- Betula Ermani forest
- Alnus Maximowiczii forest
- Pinus pumila thicket

E. Manchuria

Needle-leaved forest
- Picea jezoensis-
 Abies nephrolepis forest
- Pinus densiflora forest
- Larix olgensis forest
- *Thuja plicata dolabrata
 var. Hondai forest
- **Pinus parviflora
 var. pentaphylla forest

Broad-leaved forest
- *Fagus crenata forest
- Ulmus propinquua forest
- Acer Mono-
 Tilia amurensis forest
- Quercus mongolica forest
- Alnus hirsuta forest
- Fraxinus mandshurica forest
- **Pierocarya rhoifolia-
 Aesculus turbinata forest
- Salix forest
- Populus Maximowiczii-
 Toisu cardiophylla var.
 Maximowiczii forest
- Alnus japonica
 var. arguta forest
- Quercus dentata forest
- Betula platyphylla forest
- Betula davurica forest
- Populus Davidiana forest
- Betula Ermani forest
- Alnus Maximowiczii forest
- Pinus pumila thicket

Sweden

Needle-leaved forest
- Picea abies forest
- Pinus sylvestris forest
- *Fagus sylvatica forest
- Ulmus glabra forest
- Acer platanoides-
 Tilia cordata forest
- Quercus Robur forest
- Alnus glutinosa forest

Broad-leaved forest
- *Fagus crenata forest
- Ulmus propinquua forest
- Acer Mono-
 Tilia amurensis forest
- Quercus mongolica forest
- Alnus hirsuta forest
- Fraxinus mandshurica forest
- **Pierocarya rhoifolia-
 Aesculus turbinata forest
- Salix forest
- Populus Maximowiczii-
 Toisu cardiophylla var.
 Maximowiczii forest
- Alnus japonica
 var. arguta forest
- Quercus dentata forest
- Betula platyphylla forest
- Betula davurica forest
- Populus Davidiana forest
- Betula Ermani forest
- Alnus Maximowiczii forest
- Pinus pumila thicket

Conclusion

About 40 years have already passed since the author entered Hokkaido University as a student. Since then he has frequently had occasion to travel in the Kuriles, in Southern Sakhalin, and in Manchuria (N.-E. China). He also had the opportunity to visit the Maritime Province. The close relation of the flora and plant communities in these areas aroused his interest. The vegetation of Eastern Manchuria, especially, was very similar to that of Hokkaido although Sasa strata
were absent from the former. The intermediate zone between the subarctic zone of Eastern Asia and the Eastern Asiatic Temperate zone made a deep impression on the author and motivated him to begin and keep up the present study.

Certainly, Eastern Manchuria, a part of the Continent, exhibits the transitional phases of the flora and the vegetation of an intermediate character. A good chance was offered to the writer to visit Sweden, Norway and Denmark in 1954. There he remarked the homogeneous relation of the flora and vegetation of Scandinavia to that of the Far East. He recognized that the northern Japanese Archipelago is situated in the outmost position of the mixed forest zone of the Eurasian Continent. In short, the remarkable difference between Scandinavia and Far East is shown by the poor flora of the former influenced by the Ice Age and the rich flora of the latter undisturbed by the influence of the Ice Age.

Literature

2. BEISSNER, L.: Handbuch der Nadelholzkunde. Aufl. 1. (1891); Aufl. 2. (1909); Aufl. 3. (1930) (-FITSCHEN, J.)
3. BRAUN-BLANQUET: Pflanzensoziologie. (1951)
5. BRAUN, E.: Deciduous forests of eastern North America. (1950)
7. BROCKMANN-JEROSCH, H.: Baumgrenze und Klimacharakter. (1919)
11. CHOW, H.: The familiar trees of Hopei. (1934)
12. CLEMENTS, E.: Research methods in ecology. (1915)
13. " : Plant succession and indicators. (1928)
17. CLEMENTS, E. & WEAVER, J.: Experimental Vegetation. (1924)
18. CLEMENTS, E. & WEAVER, J.: Plant competition. (1929)
19. DAUBENMIRE, S. F.: Plants and environment. (1947)
20. DIELS, L.: Pflanzengeographie. (1945)
FOREST ECOLOGY OF THE ISLANDS OF THE NORTH PACIFIC OCEAN

22. DICE, L. R.: Natural communities. (1952)
23. DOUGLASS, A.: Climatic circles and tree-growth. (1919)
24. DRUDE, O.: Die Florenreich der Erde. (1884)
28. ENGELER-DIELS: Syllabus der Pflanzenfamilien, Aufl. 11. 374~386. (1886)
32. " : Specific segregations and identities in some floras of Eastern North America and the old world. Rhodora 33. 25~63. (1931)
34. FORBES, F. & HEMSLEY, W.: Enumeration of all the plants known from China proper, Formosa, Hainan, Corea, the Luchu Archipelago. I. Journ. Linn. Soc. Bot. (1886~1888); II. ibid. (1889~1903); III. ibid. (1903~1905).
35. FRIEHS, TH. C. E.: Botanische Untersuchungen im nordlichsten Schweden. (1913)
37. GRISSEBACH, A.: Die Vegetation der Erde. I~II. (1884)
40. " : Enumeratio Spermatophytarum Japonicarum. I. (1948); II. (1952); III. (1954)
44. HAYASHI, Y.: The natural distribution of important trees, indigenous to Japan. I. Bull. Gov. For. St. Jap. 48. (1951); II. ibid. 55. (1952); III. ibid. 75. (1954)
45. HAYATA, B.: General aspect of the flora of Japan. (1920)
46. " : The vegetation of Mt. Fuji. (1911)
47. HAYEK, A.: Allgemeine Pflanzengeographie. (1926)
54. " : Outline of the history of arctic and boreal Biota during the Quaternary Period. (1937)
57. ILVESSALO, J.: The forests of present day Finland. (1949)
60. ISHIDOYA, T. & TEL, D.: Key to the trees and shrubs in Korea. (1923) (in Japanese)
63. IVERSEN, J.: Biologische Pflanzentypen als Hilfsmittel Vegetationsforschung. (1936)
65. JUST, T.: Plant and animal communities. (1939)

76. KITAGAWA, M.: Lineamenta Florae Manshuricae. (1939)

77. KOEPPEL, W.: Die Klimate der Erde. (1923)

79. KOMAROV, V.: Flora Manshuricae I–III. (1901–1907)

80. KOMAROV, V. & KLOB.-ALIS. E.: Key for the Plants of the Far Eastern Region of USSR. I–II. (1931–1932)

84. LAVRENKO, E. M. & SOCZAVA, V. B.: Descriptio vegetationis USSR. I. (1956); II. (1956)

86. LINDQUIST, B.: The ecology of the Scandinavian beech-woods. (1931)

98. LIVINGSTON, B. & SHREVE, F.: The distribution of vegetation in the United States, as related to climatic conditions. (1921)

99. LUEDI, W.: Der Assoziationsbegriff in der Pflanzensoziologie. (1928)

100. : Aktuelle Probleme der Pflanzensoziologie. (1954)

101. LUNDEGÅRDH, H.: Klima und Boden in ihrer Wirkung auf das Pflanzenleben. (1925)

105. MATSUI, Y.: Research of the forest on the sand dune in the northern part of Hokkaido and the consideration for its treatment. Asahigawa Forest Office. (1952) (in Japanese)

111. MIYABE, K. & KUDO, Y.: Icones of the essential forest trees of Hokkaido. (1920~1931)

112. MIYABE, K. & KUDO, Y.: Flora of Hokkaido and Saghalien, I~IV. (1927~1934)

114. NAKAI, T.: Flora sylvatica koreana. 1.~22. (1915~1939)

120. : Bambuseae, in MIYABE & KUDO, Fl. II. 180~195. (1931)

125. NAKANO, M.: Experiment on the short growing of the pulp-wood forest. II. The stand composition of the natural forest in Hokkaido. Collection of the lectures, Sapporo Branch of Forest Experiment Station. (1953) (in Japanese)
130. OOSTING, H.: The study of plant community. (1948)
132. PAX, F.: Aceraceae. ENGL. Pfl.-reich. IV. 163. (1902)
133. PILGER, R.: Taxaceae. ENGL. Pfl.-reich. IV. 5. (1903)
135. RAUNKIÆR, C.: Die life forms of plants and statistical plant geography. (1934)
136. REGEL, E. & MAACK, R.: Tentamen florae Ussuriensis. (1862)
137. REGEL, E. & TILING, S.: Florula Ajanensis. (1859)
139. RÜBET, E.: Pflanzensoziologischer Aufbau. (1936)
140. " : Pflanzensoziologischer Aufbau. (1936)
141. " : Die Buchenwälder Europas. (1932)
142. " : Plant communities of the world. (1936)
144. SARGENT, C.: Forest flora of Japan. (1894)
146. SCHENCK, H.: Beitraege zur Biologie der Lianen. (1892)
147. SCHMIDT, F.: Pflanzengeographie auf physiologischer Grundlage. (1899)
149. SCHMUKER, T.: The tree species of the north temperate zone and their distribution. Silv. Orb. 4. 1~156. (1942)
150. SCHNEIDER, C. K.: Illustriertes Handbuch der Laubholzkunde. I. (1904~1907); II. (1907~1912)
151. SWAY, G.: The Genus Pinus. (1914)
152. SHIBATA, K.: Some recent investigation with flora and phytogeography of Japan and adjoining division. (1921)
156. TAKAHASHI, K.: Vorläufige Mitteilungen über die Vegetation Karafutos (Südsachalins), Bot. Jahrb. 73. (1937)
162. " : Alpine flowers of Japan. (1938)
164. " : The British Islands and their vegetation. (1939)
165. " : Introduction to plant ecology. (1946)
169. " : Distribution of the forest trees in Northern Japan. Lectures of the society of the investigation for the northern forestry. 1. 1~18. (1940) (in Japanese)
170. M. TATEWAKI

185. TATEWAKI, M.: The forest vegetation in the district of the northern limit of the Japanese beech forest. TATEWAKI’s Iconography of the vegetation of the Natural forest in Japan. IV. (1953) (in Japanese)

189. TATEWAKI, M. & MATSUE, K.: Report on the vegetation, Nopporo national forest, Hokkaido Forest Experiment Station, 84~93. (1934)

192. WARMING-GRAEBNER: Lehrbuch der oekologischen Pflanzengeographie. 3-Aufl. (1930)

INDEX

A

Abelia 429.
Abelia coracana 434, 437.
Abies 375, 385, 444, 446.
Abies Mayriana 383, 385, 386.
Abies Mayriana-Cephalotaxus nana association 385, 386.
Abies Mayriana-Cephalotaxus nana-Daphniphyllum humile association 386.
Abies sachalinensis 373, 382, 383, 384, 396, 457, 459.
Abies sachalinensis-Daphniphyllum humile association 386.
Abies sachalinensis (Mayriana)-Daphniphyllum humile association 386.
Abies sachalinensis-Carex sachalinensis association 386.
Abies sachalinensis-Carex sachalinensis association 386.
Abies sachalinensis-Dryopteris austriaca association 386.
Abies sachalinensis (Mayriana)-Dryopteris crassirhizoma association 386.
Abies sachalinensis (Mayriana)-fern association 386.
Abies sachalinensis forest 384, 385, 456, 460.
Abies sachalinensis-Quercus crispula forest 458.
Abies sachalinensis-Rhododendron Fauriae association 386.
Abies sachalinensis-Rhododendron Fauriae association 386.
Abies sachalinensis-Rubus sachalinensis association 386.
Abies sachalinensis-Rubus sachalinensis association 386.
Abies sachalinensis-Sasa amphitricha association 385.
Abies sachalinensis-Sasa apolinensis association 385.
Abies sachalinensis (Mayriana)-Sasa association 385.
Abies sachalinensis (Mayriana)-Sasa kurilensis association 385.
Abies sachalinensis (Mayriana)-Sasa paniculata association 385.
Abies sachalinensis-Sesamum purpurascens association 385, 386.
Abietaceae 442.
Acanthopanax 414, 428, 445, 446, 450.
Acanthopanax divaricatus 415, 421, 427.
Acanthopanax innovans 411.
Acanthopanax sciadopityoides 400, 415, 421, 424.
Acanthopanax senticosus 415, 416, 421, 424, 433, 435, 449, 450.
Acanthopanax sessiliflorus 433, 437.
Acanthopanax spinosus 411.
Acer aizuense 415, 420, 424.
Acer barbinerve 432, 437.
Acer campestre 412.
Acer carpinifolium 410.
Acer cimifolium 415, 420, 424, 448.
Acer diabolicum 410.
Acer Ginnala var. aizuense 451.
Acer japonicum 397, 415, 420, 423.
Acer mandshuricum 432, 437.
Acer Mayri 400, 415, 420, 423.
Acer Mifyabei 415, 420, 424.
Acer Mono forest 403, 456.
Acer Mono-Sasa association 403.
Acer Mono-tall herbage association 403.
Acer Mono-Tilia amurensis forest 463.
Acer Mono-Tilia japonica forest 400, 463.
Acer ornatum subsp. Matsumurae 400, 401, 415, 420, 424.
Acer palmatum subsp. amoenum 415, 420, 427.
Acer platanoides 441, 448, 454.
Acer platanoides-Tilia cordata forest 463.
Acer pseudo-Sieboldianum 432, 437.
Acer Sieboldianum var. yezoense 415, 420, 424.
Acer tegumentosum 432, 437.
Acer triflorum 432, 436, 447.
Acer tschonoskii 379, 383, 397, 451, 459.
Acer tschonoskii var. rubens 451.
Aceraceae 410, 412, 413, 420, 428, 432, 441, 443.
Actinidia 414, 428, 445, 446, 450.
Actinidia arguta 408, 421, 424, 433, 435, 448, 450.
Actinidia Kolomikta 379, 380, 421, 424, 433, 435, 448, 450.
Actinidia polystoma 408, 421, 424, 433, 435, 448, 450.
Actinidiaceae 413, 421, 428, 443.
Aesculus 413, 446.
Aesculus turbinata 415, 421, 424.
Aesculus turbinata forest 399.
Aesculus turbinata-Sasa paniculata association 399.
Akebia 413, 446.
Akebia trifolia 408, 415, 418, 427.
Alangiaceae 413, 421, 428, 433, 443.
Alnus 444, 446, 449.
Alnus fruticosa 381.
Alnus glutinosa 441, 447.
Alnus glutinosa forest 463.
Alnus hirsuta 400, 404, 447, 449, 458.
Alnus hirsuta-Cacalia hastata subsp. orientalis association 404.
Alnus hirsuta forest 456, 463.
Alnus hirsuta-Sasa association 404.
Alnus incana 447.
Alnus incana forest 463.
Alnus japonica var. arguta-Calamagrostis Langsdorffii association 403.
Alnus japonica var. arguta-Carex Augustinowiczii association 403.
Alnus japonica var. arguta forest 403, 404.
Alnus japonica var. arguta-Lysichiton camtschatcense association 403.
Alnus japonica var. arguta-Phragmites communis association 403.
Alnus japonica var. Phragmites communis association 403.
Alnus japonica var. arguta-Sasa association 403.
Alnus mandshurica 447.
Alnus Maximowiczii 378, 381, 387, 447, 460.
Alnus Maximowiczii-Calamagrostis Langsdorffii association 382.
Alnus Maximowiczii-Dryopteris austriaca association 382.
Alnus Maximowiczii-Filipendula kamtschatcica association 382.
Alnus Maximowiczii forest 463.
Alnus Maximowiczii-non plant cover association 382.
Alnus Maximowiczii-Sasa kurilensis association 382.
Alnus Maximowiczii-thicket 381, 460.
Alnus Mayri 415, 417, 427.
Alnus pendula 415, 417, 423.
Ampelopsis 414, 428, 445, 446, 450.
Ampelopsis brevipedunculata 408, 421, 424, 433, 435, 448, 450.
Amygdalaceae 419, 431, 442.
Anacardiaceae 413, 419, 443.
Andromeda 445, 447.
Andromeda polifolia 451.
Anemone flaccida 400.
Angelica anomala 401.
Aquifoliaceae 412, 413, 420.
Aralia 414, 429, 445, 446, 450.
INDEX

Araliaceae 411, 413, 421, 428, 433, 443.

Artemisia montana 405.

Aucuba 410, 446.

Aucuba japonica var. borealis 411.

Bambuseae 407.

Berberidaceae 418, 423, 430.

Berberis 414, 428, 444, 446.

Berberis amurensis var. japonica 418, 425, 451.

Berberis Poirreti 430, 437.

Berchemia 413, 446.

Berchemia racemosa 415, 421.

Betula 444, 446, 449.

Betula chinensis 429, 436.

Betula costata 429, 437.

Betula davurica 378, 403, 447, 449.

Betula davurica forest 463.

Betula Ermani 378, 447, 449, 458, 459.

Betula Ermani-Acer ukurunduense association 383.

Betula Ermani-Calamagrostis Langsdorffii association 383.

Betula Ermani forest 378, 382, 403, 456, 459, 460, 461, 462, 463.

Betula Ermani-Sasa kurilensis association 383.

Betula Ermani-Sorbus Matsumurana association 383.

Betula Ermani-Vaccinium axillare association 383.

Betula Ermani zone 462.

Betula Maximowicziana 403, 415, 417, 423.

Betula platyphylla 390, 447, 449, 458.

Betula platyphylla forest 378, 402, 463.

Betula Schmidii 429, 436, 439, 450.

Betula tortuosa 447.

Betula tortuosa forest 454, 463.

Betula verrucosa 402, 447.

Betula verrucosa forest 463.

Betulaceae 417, 429, 441, 442.

Bladhia 410.

Bladhia japonica 411.

Buxaceae 413, 419.

Camelina hastata subsp. orientalis 400, 404, 405.

Calamagrostis Langsdorffii 401.

Callicarpa 414.

Callicarpa japonica 414, 422, 426.

Caprifoliaceae 411, 412, 422, 434, 442, 443.

Caragana chamlagu 431, 437.

Caragana manshurica 431, 436.

Carex pilosa 406.

Carex siderosticta 461.

Carex type 384.

Carpinus 414, 428, 441, 444, 446, 449, 455.

Carpinus Betulus 441, 447.

Carpinus laxiflora 417, 427, 447.

Carpinus Turczaninovii 447.

Castanea 414, 446.

Castanea crenata 414, 417, 424.

Celastraceae 412, 413, 420, 428, 432, 441, 443.

Celastrus 414, 428, 445, 446, 450.

Celastrus flagellaris 432, 435.

Celastrus orbiculatus 408, 432, 435, 448, 450.

Celastrus orbiculatus var. strigillosus 420, 424.

Celtis 413, 428, 444, 446.

Celtis aurantiaca 430, 436.

Celtis Bungeana 430, 437.

Celtis jessoensis 415, 417, 427, 447.

Cephalotaxaceae 413, 416.

Cephalotaxus 414, 446.

Cephalotaxus nana 415, 416, 423.

Cercidiphyllaceae 413, 418.

Cercidiphyllum 414.

Cercidiphyllum japonicum 400, 404, 415, 418, 427, 457.

Cercidiphyllum japonicum forest 404, 457.
Chamaedaphne 445.
 Chamaedaphne calyculata 451.
Chimaphila umbellata 387.
Chosenia 405, 406, 449.
 Chosenia bracieosa 378, 405, 406, 447, 449.
Circaea alpina 397.
Cirsium kamtschaticum 400.
Clematis 444, 446, 449.
 Clematis brevicaudata 430, 437.
 Clematis fusca 407, 408, 448, 449.
 Clematis koreana 430, 436.
 Clematis mandshurica 430, 437.
 Clematis Maximowicziana 407, 415, 418, 426.
 Clematis ochotensis 374, 407, 408, 448, 449.
 Clematis patens 430, 436.
 Clematis sibirica 448.
Clerodendron 414, 429, 446, 450.
 Clerodendron trichotomum 414, 422, 426, 434, 435, 449, 450.
Clethra 410.
 Clethra barbinervis 411.
Clethraceae 410, 411.
Clintonia udensis 397.
Cocculus 410.
 Cocculus trilobus 408, 410.
Coriaria 414, 446.
 Coriaria japonica 415, 419, 424.
Coriariaceae 413, 419.
Cornaceae 411, 421, 433, 441, 443.
Cornus 445, 447, 450.
 Cornus alba 449, 450.
 Cornus canadensis 385, 391.
 Cornus sanguinea 441, 449.
Corydalis 410.
 Corydalis ambigua 400.
Corylus 414, 428, 441, 444, 446, 449, 455.
 Corylus Avellana 441, 447.
 Corylus heterophylla var. Thunbergii 415, 417, 425, 426.
Corylus mandshurica 429, 435, 447, 449.
 Corylus Sieboldiana var. brevirostris 415, 417.
Cotoneaster 441, 446.
 Cotoneaster integerrimus 441.
 Cotoneaster melanocarpus 441.
Crataegus 444, 447.
 Crataegus calycina 441.
 Crataegus jacea 415, 416, 418, 423, 427.
 Crataegus Maximowiczii 415, 416, 418, 425, 431, 436.
 Crataegus monogyna 441.
 Crataegus Ozycantha 441.
 Crataegus piennatifida 431, 437.
Cupressaceae 410.

D
Daphne 445, 447.
 Daphne jzezoensis 415, 421, 424, 449.
 Daphne koreana 449.
 Daphne Mezerereum 449.
 Daphne Miyabeana 415, 421, 424.
Daphniphyllaceae 413, 419.
Daphniphyllum 414, 446.
 Daphniphyllum humile 415, 419, 423.
Deutzia 410, 428, 444, 446.
 Deutzia gracilata 430, 437.
 Deutzia parviflora 430, 437.
 Deutzia prunifolia 430.
 Deutzia scabra 410.
Dryopteris amurenensis 385.
 Dryopteris austriaca 396.
 Dryopteris crassinervis 396, 401, 405.

E
Elaeagnaceae 411, 413, 421.
Elaeagnus 413, 446.
 Elaeagnus multiflora 411.
 Elaeagnus umbellata 415, 421, 426.
Empetraceae 443.
Empetrum 445, 447.
 Empetrum nigrum 451.
 Empetrum nigrum-lichen association 379.
Empetrum nigrum var. japonicum 451.
Epigaea asiatica 416, 422, 424.
Ericaceae 411, 422, 433, 441, 443.
Erica Tetralix 441.
Euonymus olatus 420, 424, 432, 435, 448, 450.
Euonymus europaeus 412, 441, 448.
Euonymus Fortunei 415, 420.
Euonymus japonicus 408, 420.
Euonymus Maackii 432, 437.
Euonymus macropterus 379, 420, 425, 432, 446, 448, 450, 459.
Euonymus oxyphyllus 415, 420, 426.
Euonymus planipes 415, 420, 425, 432, 436, 446, 450.
Euonymus sachalinensis var. tricarpus 379, 420, 423.
Euonymus Sieboldianus 448, 450.
Euonymus Sieboldianus var. sanguineus 420, 425.
Euphorbiaceae 428, 432.
Fagaceae 410, 412, 413, 417, 428, 429, 441.
Fagus 409, 410, 412, 441, 444.
Fagus crenata 395, 397, 398, 399, 419.
Fagus crenata-Acer association 398.
Fagus crenata-Acer japonicum-Sasa association 398.
Fagus crenata-Acer Tschonoskii-Sasa association 398.
Fagus crenata-Carex folisissima association 398.
Fagus crenata-Cephalotaxus nana association 398.
Fagus crenataericaceous shrubs association 397.
Fagus crenata forest 377, 397, 409, 428, 451, 459, 461, 463.
Fagus crenata-Lindera membranacea association 397.
Fagus crenata-Sasa association 397, 398.
Fagus crenata-Sasa cernua association 398.
Fagus crenata-Sasa paniculata association 398.
Fagus crenata-Viburnum Wrightii association 397, 398.
Fagus crenata-Viburnum Wrightii association 398.
Fagus forest 409.
Fagus sylvatica 412, 441.
Fagus sylvatica forest 409, 453, 454.
Fraxinus 414, 429, 441, 446, 447, 450, 455.
Fraxinus excelsior 441, 449, 454.
Fraxinus excelsior forest 463.
Fraxinus lanuginosa var. serrata 415, 422, 426.
Fraxinus mandshurica 400, 422, 424, 434, 435, 449, 450, 457.
Fraxinus mandshurica forest 404, 456, 463.
Fraxinus mandshurica-Lysichiton camtschaticum association 404.
Fraxinus mandshurica-Petales japonicus subsp. giganteus associations 404.
Fraxinus mandshurica-Sasa association 404.
Fraxinus mandshurica-tall herbage association 404.
Fraxinus mandshurica-Urtica platyphylla association 404.
Fraxinus rhynchophylla 434, 437.
G
Galium kamtschaticum 397.
Genista 412.
Genista pilosa 412.
Gramineae 423.
H
Hamamelidaceae 410.
Hamamelis 410.
Hamamelis japonica 410.
Hedera 410, 441, 445.
Hedera Helix 441, 449.
Hedera rhombea 408, 411, 449.
Helwingia 410.
Helwingia japonica 411.
Hemiptera 428.
Hemiptera Davidii 430, 436.
Hippocastanaceae 413, 421.
Hovenia 410.
Hovenia dulcis 411.
Hugeria 413.
Hugeria japonica 397, 415, 422, 427.
Hydrangea 414, 444, 446.
Hydrangea macrophylla var. acuminata 415, 418, 427.
Hydrangea paniculata 418, 427.
Hydrangea petiolaris 408, 418, 426.

I
Ilex 414.
Ilex Aquifolium 412.
Ilex leucoclada 415, 420, 424.
Ilex macropoda 414, 420, 426.
Ilex Makinoi 420, 424.
Ilex radicans 420, 423.
Ilex rugosa 379, 420, 423.
Ilex Sugeroki 379, 391, 459.

J
Juglandaceae 410, 413, 417, 428, 429, 442, 443.
Juglans 414, 428, 444, 446.
Juglans ailanthigolia 415, 417, 447, 457.
Juglans mandshurica 429, 437, 447.
Juniperaceae 416, 442.
Juniperus 444, 446.
Juniperus conferta 415, 416, 423.

K
Kalopanax 414, 429, 445, 446, 450.
Kalopanax pictus 396, 400, 401, 402, 421, 424, 433, 435, 449, 450.

L
Labiatae 422, 441, 443.
Lardizabalaceae 413, 418.

Larix 444, 446.
Larix dahurica var. japonica 393.
Larix kamtschatica 372, 373, 392, 447.
Larix kamtschatica-Calamagrostis Langsdorffii association 393.
Larix kamtschatica-Carex Middendorfii association 393.
Larix kamtschatica-Eriophorum vaginatum association 393.
Larix kamtschatica forest 379, 380, 392, 451.
Larix kamtschatica-Ledum palustre association 392, 393.
Larix kamtschatica-Ledum palustre association 393.
Larix kamtschatica-Osmunda cinnamomea association 393.
Larix kamtschatica-Sasa association 392, 393.
Larix kamtschatica-Sasa depauperata association 393.
Larix kamtschatica-Sasa kurilensis association 393.
Larix kamtschatica-Sphagnum association 392, 393.
Larix kamtschatica-Vaccinium axillare association 393.
Larix olgensis 447.
Larix olgensis forest 452, 463.
Lauraceae 413, 418.
Ledum 445, 447.
Ledum palustre 389, 451.
Ledum palustre var. yesoense 390.
Leguminosae 412, 419, 431, 443.
Lespedeza 414, 428, 445, 446, 450.
Lespedeza bicolor 402, 419, 424, 432, 435, 448, 450.
Lespedeza cyrtobotrya 432, 435.
Lespedeza tomentosa 432, 435.
Leucothoe 414.
Leucothoe Grayana 397, 415, 422, 423.
Ligustrum 412, 414, 446.
Ligustrum obtusifolium 411.
INDEX

Ligustrum Tschonoskii 422, 423, 449.
Ligustrum vulgare 412, 449.
Ligustrum Yuhiianum var. glabrescens 411.
Lilacae 423.
Lindera 413, 446.
Lindera membranacea 397, 415, 418, 423.
Listera nipponica 397.
Lonicera 446, 447.
Lonicera chrysantha 416, 422, 424, 434, 435.
Lonicera coerulea 442, 451.
Lonicera coerulea subsp. edulis 451.
Lonicera Glehni 422, 423.
Lonicera gracilipes 411.
Lonicera japonica 411.
Lonicera Maackii 434, 436, 438.
Lonicera Maximowiczii 434, 437.
Lonicera Morrowii 415, 422, 424.
Lonicera Periclymenum 412.
Lonicera praeflora 434, 436, 438.
Lonicera Repechiana 434.
Lonicera sachalinensis 416, 422, 426.
Lonicera strophiiophora 411.
Lonicera Tatariinovi 434, 436.
Lonicera vesicaria 434, 436.
Lonicera Xylosterum 442.
Loranthaceae 413, 417, 428, 430, 441, 442.
Lysichiton camtschatcense 389.
Lycopodium 385.
Lycopodium annotinum 387.
Lycopodium obscurum 387.
Lycopodium serratum var. Thunbergii 397.

Magnoia 414, 444, 446.
Magnolia Kous var. borealis 415, 418, 427.
Magnolia obovata 396, 415, 418, 427.
Magnoliaceae 410, 413, 418, 428, 430, 442, 443.
Malaceae 412, 418, 431, 441, 442.
Malus 444, 447, 450.
Malus baccata var. mandshurica 402, 450.
Marlea 414, 428, 445, 446, 450.
Marlea platanifolia 435, 449, 450.
Marlea platanifolia var. triloba 415, 421, 426, 433.
Matunusia Struthiopteris 406.
Menispermaceae 410, 413, 418, 428, 430, 442, 443.
Menispernum 414, 428, 444, 446, 449.
Menispernum dauricum 408, 415, 418, 425, 430, 435, 448, 449.
Menziesia citrialyz 411.
Menziesia pentandra 379.
Moraceae 413, 428, 430, 442, 443.
Morus 414, 428, 444, 446, 449.
Morus mongolica 430, 436.
Myrica 444.
Myrica Gale 441, 451.
Myrica Gale var. tomentosa 451.
Myricaceae 441, 442.
Myrsinaceae 410, 411.

O
Oleaceae 411, 412, 413, 422, 428, 434, 441, 443.
Oplopanax 413, 446.
Oplopanax japonicus 415, 421, 424.
Osmunda cinnamomea 389, 391, 401.
Ostrya 414, 444, 446.
Ostrya japonica 400, 415, 417, 426.
Oxalis Acetosella 317.
Oxyccoccus 445, 447.
Oxyccoccus microcarpus 451.
Oxyccoccus quadriplatalus 451.

P
Pachysandra 414.
Pachysandra terminalis 406, 415, 419, 427.
Parthenocissus 413, 445, 446, 450.
Parthenocissus tricuspidata 408, 415, 421, 425, 433, 448, 450.
Petasites japonicus subsp. giganteus 400.
INDEX

Phellodendron 414, 428, 445, 446.
Phellodendron amurense 432, 435, 451.
Phellodendron amurense var. sachalinense 460, 419, 424, 488, 446.
Phragmites communis 389.
Philadelphus 428, 446.
Philadelphus Schrenkii 430, 435, 450.
Philadelphus tenuifolius 430, 437.
Physocarpus 428.
Physocarpus amurensis 431, 437.
Picea 375, 444, 446.
Picea Abies forest 453, 463.
Picea Glehni 377, 388, 391, 459.
Picea Glehni-Betula Ermani forest 460.
Picea Glehni-Carex caespitosa association 389.
Picea Glehni-Carex Middendorfii association 389.
Picea Glehni-Coruns canadensis association 390.
Picea Glehni-Equisetum palustre association 390.
Picea Glehni-Eriophorum vaginatum association 389.
Picea Glehni-Ledum palustre association 389, 391.
Picea Glehni-Ledum palustre association 389, 391.
Picea Glehni-Leucothoe Grayana association 391.
Picea Glehni-Lewcothoe Grayana association 391.
Picea Glehni-Lycopus officinalis association 389.
Picea Glehni-Lycidothamnium cernuum association 389.
Picea Glehni-Majanthemum dilatatum association 390.
Picea Glehni-Molinopsis japonica association 389.
Picea Glehni-moss association 390.
Picea Glehni-moss association 390.
Picea Glehni-Osmunda cinnamomea association 389.
Picea Glehni-Phragmites communis association 389.
Picea Glehni-Phragmites communis-Oxyccus quadrifolius association 389.
Picea Glehni-Phragmites communis association 389.
Picea Glehni-Sasa association 390.
Picea Glehni-Sasa amphitricha association 391.
Picea Glehni-Sphagnum association 389.
Picea jezoensis-Abies nephrolepis forest 452, 463.
Picea jezoensis-Abies sachalinensis-Carex sachalinensis association 384.
Picea jezoensis-Abies sachalinensis-Dryopteris amurensis association 384.
Picea jezoensis-Abies sachalinensis-Dryopteris austriaca association 384.
Picea jezoensis-Abies sachalinensis-Rhodo dendron Fuurias association 384, 385.
Picea jezoensis-Abies sachalinensis-Sasa association 384.
Picea jezoensis-Abies sachalinensis-Vaccinium axillare association 384.
Picea jezoensis-Betula Ermani forest 460.
Picea jezoensis-Dryopteris association 387.
Picea jezoensis-Dryopteris austriaca association 387.
Picea jezoensis-Dryopteris austriaca association 387.
Picea jezoensis-Dryopteris austriaca association 387.
INDEX

Picea jezoensis-Fraxinus mandshurica forest 459.
Picea jezoensis forest 384, 386, 460.
Picea jezoensis-Ledum palustre association 387.
Picea jezoensis-Ledum palustre association 387.
Picea jezoensis-Leucothoe Grayana association 387.
Picea jezoensis-lichens association 387.
Picea jezoensis-moss associations 387.
Picea jezoensis-Pyrola association 387.
Picea jezoensis-Sasa association 387.

Picrasma 414, 445, 446, 450.
Picrasma quassioides 415, 419, 426, 432, 435, 448, 450.
Pinaceae 416, 429, 442.
Pinus 444, 446.
Pinus densiflora forest 452, 463.
Pinus koraiensis 429, 436, 447, 450.
Pinus koraiensis forest 463.
Pinus parviflora var. pentaphylla 394, 395, 414, 416, 423, 447.
Pinus parviflora var. pentaphylla-Carex blepharicarpa association 395.
Pinus parviflora var. pentaphylla forest 377, 394, 463.
Pinus parviflora var. pentaphylla-Ilex Sagerokii association 395.
Pinus parviflora var. pentaphylla-Menziessia pentandra association 395.
Pinus parviflora var. pentaphylla-Rhododendron Fauriae association 395.
Pinus pumila 378, 380, 381, 382, 460.
Pinus pumila-Arctous japonica-Vaccinium uliginosum association 381.
Pinus pumila-Ledum palustre association 381.
Pinus pumila-non plant cover association 381.
Pinus pumila-Rhododendron aureum-Empetrum nigrum association 381.
Pinus pumila-Sasa kurilensis association 381.
Pinus pumila-Sorbus Matsumuran association 381.
Pinus pumila thicket 380, 381, 460, 461, 462, 463.
Pinus pumila zone 462.
Pinus sylvestris 447.
Pinus sylvestris forest 453, 463.
Pinus tabulaeformis 429, 437.
Polygonatum Maximowiczii 401.
Populus 375, 405, 446, 449.
Populus Davidiana 447, 458.
Populus Davidiana forest 463.
Populus jezoensis 416, 426, 447.
Populus koraiana 429, 437.
Populus Maximowiczii 406, 447, 449.
Populus Maximowiczii-Toisusu cardiophylla var. Maximowiczii forest 463.
Populus Maximowiczii-Toisusu Urbaniana 405.
Populus Maximowiczii-Toisusu Urbaniana forest 405, 463.
Populus Sieboldii 415, 417, 424.
Populus tremula 447.
Populus tremula forest 463.
Poutrhiaea 414, 446.
Poutrhiaea villosa 414, 418, 426.
Prunus 414, 445, 447, 450.
Prunus Grayana 415, 419, 424.
Prunus Leveilleana 431, 436, 448.
Prunus Maackii 431, 437.
Prunus mandshurica 431, 437.
Prunus Maximowiczii 419, 425, 431, 436, 448, 450.
Prunus nipponica 419, 423, 459.
Prunus nipponica var. kurilensis 416.
Prunus Padus 448, 451.
Prunus Sargentii 400, 419, 426, 448.
Prunus Sziorti 400, 419, 423.
Prunus sargentii 415, 419, 427.
Pteridium aquilinum 401.
Pterocarya 410.
Pterocarya rhoifolia 410.
Pterocarya rhoifolia-Aesculus turbinata-fern association 399.
Pterocarya rhoifolia-Aesculus turbinata-fern association 399.
Pterocarya rhoifolia-Aesculus turbinata forest 377, 399, 463.
Pterocarya rhoifolia-Aesculus turbinata-Sasa association 399.
Pterocarya rhoifolia-Aesculus turbinata-Sasa cernua association 399.
Pterocarya rhoifolia-Matteuccia Struthiopteris association 399.
Pterocarya rhoifolia-Matteuccia Struthiopteris-Sasa cernua association 399.
Pterocarya rhoifolia-Sasa cernua association 399.
Pterocarya rhoifolia-Sasa paniculata association 399.
Pterocarya rhoifolia-tell herbage association 399.
Pueraria 428, 445, 446.
Pueraria lobata 408, 419, 426, 432, 435.
Pyrola renifolia 387, 397.
Pyrus 428, 446.
Pyrus ussuriensis 431, 437.

Quercus 375, 414, 428, 441, 444, 446, 449, 455.
Quercus crispula 400, 401, 402, 417, 426, 447, 458.
Quercus crispula forest 278, 400, 401, 456, 457, 458, 459, 463.
Quercus crispula-Rhododendron dauricum association 401.
Quercus crispula-Sasa association 401.
Quercus dentata forest 378, 402, 456.
Quercus dentata-Sasa association 402.
Quercus dentata-Sasa paniculata association 402.
Quercus mongolica 400, 430, 437, 447.
Quercus mongolica forest 463.
Quercus petraea 412.
Quercus Robur 441, 447, 454.
Quercus Robur forest 463.
Quercus serrata 401, 415, 417, 426.

Rangium mandshuricum 434.
Ranunculaceae 418, 430, 442.
Rhamnaeae 411, 413, 421, 428, 433, 441, 443.
Rhamnus 414, 428, 441, 445, 447.
Rhamnus arbutina 433, 437.
Rhamnus cathartica 441, 448.
Rhamnus davurica 448.
Rhamnus japonica 415, 421, 424, 443.
Rhamnus parviflora 433, 437.
Rhamnus Schneideri 436.
Rhamnus Schneideri var. mandshurica 433.
Rhododendron 445, 447, 450.
Rhododendron Albrechti 385, 391, 415, 422, 424, 449.
Rhododendron dauricum 391, 401.
Rhododendron Fauriae 391.
Rhododendron japonicum 411, 422, 424.
Rhododendron Kaempferi 397.
Rhododendron microanthum 433, 436.
Rhododendron mucronulatum 433, 435, 450.
Rhododendron parvifolium 378.
Rhododendron Schlechenbackii 433, 437, 449, 450.
Rhododendron semibarbatum 411.
Rhododendron tchonoskii 415, 422, 426.
Rhus 414, 445, 446, 450.
Rhus ambigua 379, 408, 419, 427.
Rhus javanica 420, 425, 448, 450.
Rhus triocarpa 415, 420, 426.
Ribes 444, 446.
Ribes alpinum 441.
INDEX

Ribes burejense 431, 437.
Ribes Diacantha 431, 437.
Ribes japonicum 415, 418, 424.
Ribes Komarovii 431, 437.
Ribes latifolium 416, 418, 423, 427.
Ribes mandshuricum 431, 437.
Ribes Maximowiczianum 431, 436, 438.
Ribes nigrum 441.
Ribes palidiflorum 431, 437.
Ribes procumbens 450.
Ribes ussuriense 431, 437.
Ribes 445, 447, 450.
Rosa acicularis 448, 451.
Rosa canina 441.
Rosa cinnamomea 448.
Rosa davurica 448, 450.
Rosa dumalis 441.
Rosa koreana 450.
Rosa Marretti 448.
Rosa Maximowicziana 431, 437, 450.
Rosa multijlora 441.
Rosa pimpinellifolia 415, 419, 425, 431, 435, 448, 450.
Rosa tomentosa 441.
Rosa villosa 441.
Rosencole 412, 419, 431, 441, 442.
Rubus 445, 447, 450.
Rubus acer 441.
Rubus cerasifolius 415, 419, 425, 431, 435, 448, 450.
Rubus dissimulans 412.
Rubus fuscus 412.
Rubus Idaeus 448, 451.
Rubus insularis 412.
Rubus mesogaeus 415, 419, 427.
Rubus nessen 441.
Rubus parvifolius 415, 419, 425, 431, 435, 448, 450.
Rubus phoenicolasius 415, 419, 426.
Rubus plicatus 441.
Rubus prununosus 441.
Rubus radula 412.
Rubus saxatilis 448, 450.
Rubus subcatus 441.
Rubus thyrsanthus 441.
Rubus vernus 415, 419, 424.
Rubus Wahlbergii 441.
Rubus Honohra 405.
Rutaceae 413, 419, 428, 432, 443.
Sabina 444, 446.
Sabina Sargentii 416, 426.
Sabina Sargentii thicket 381.
Salicaceae 405, 410, 429, 442.
Salix 405, 444, 446, 449.
Salix Bakko 402, 415, 417, 423.
Salix Cuprea 447.
Salix daphnoides 441.
Salix forest 405, 463.
Salix fragilis 441.
Salix Giliana 410, 424, 436.
Salix Hultenii 447.
Salix Hultenii var. angustifolia 402.
Salix jessoensis 415, 417, 423.
Salix koreensis 429, 436.
Salix Miyabeana 415, 417, 423.
Salix Potsusu 447.
Salix vorida 405, 447, 449.
Salix sachalinensis-Salix Potsusu forest 405.
Salix sachalinensis-Salix Potsusu-tall herbage association 405.
Salix triandra 441.
Salix viminalis 447.
Salix xerophila 447.
Sambucus 429, 441, 446, 447.
Sambucus nigra 442.
Sambucus racemosa 442.
Sambucus Sieboldiana 435.
Sambucus Sieboldiana var. Miquelii 422, 424, 434.
Sambucus Williamsii 434, 436.
Sasa (Sect. Crassinodi) 458.
Sasa amphitricha 403, 404.
Sasa communities 406.
Sasa kurilensis 375, 407, 416.
Sasa kurilensis group 407.
Sasa nipponica group 407.
Sasa paniculata 403, 405.
Sasa paniculata group 407.
Sasa strata 455.
Sasa type 384.
Sasamorpha 414, 446.
Sasamorpha group 407.
Sasamorpha purpurascens 415, 423, 427.
Schizofragaceae 410, 418, 430, 441, 442.
Schisandra 414, 428, 444, 446, 449.
Schisandra chinensis 408, 418, 424, 430, 435, 448, 449.
Schisandra nigra 408, 410.
Schizophragma 414, 446.
Schizophragma hydrangeoides 408, 415, 418, 425.
Securinega 428.
Securinega suffruticosa 432, 435.
Senecio cannabifolius 405.
Simaroubaceae 413, 419, 428, 432, 443.
Skimmia 414, 446.
Skimmia japonica var. repens 419, 423.
Smilax 413.
Smilax China 408, 415, 423, 426.
Sorbaria 449.
Sorbaria sorbifolia 448.
Sorbaria stellipta 448, 449.
Sorbus 445, 447, 450.
Sorbus alnifolia 415, 418, 424, 431, 435, 448, 450.
Sorbus amurensis 431, 437, 448.
Sorbus Aucuparia 448.
Sorbus commixta 448.
Sorbus hybridum 441.
Sorbus intermedia 441, 448.
Sorbus Matsumurae 383, 460.
Sorbus Meinichii 412.
Sorbus obtusifolia 412, 441.
Sorbus pohuashanensis 431, 437.
Sorbus salicifolia 441.
Sorbus sambucifolia 460.
Sorbus subpinnata 412.
Sphagnnum 389.
Spiraea 444, 446, 449, 450.
Spiraea chamaedrifolius 450.
Spiraea Pritissichiana 431, 436, 450.
Spiraea media 418, 425, 431, 436, 448, 449.
Spiraea pubescens 431, 437, 450.
Spiraea salicifolia 448, 449.
Spiraea triechocarpa 431, 436, 437.
Spiraea trilobata 431.
Staphyleaceae 418, 431, 442.
Stachyuraceae 410, 411, 414, 428.
Stachyurus 410.
Stephanandra 446.
Stephanandra incisa 416, 418, 427.
Styracaceae 411, 428, 433, 443.
Styrax 445, 446, 450.
Styrax japonica 411, 414, 429.
Styrax Obassia 415, 422, 426, 433, 435, 449, 450.
Stephanandra incisa 416, 418, 427.
Styeluraceae 413, 420, 432, 443.
Stephanandra 446.
Stephanandra incisa 416, 418, 427.
Styracaceae 411, 428, 433, 443.
Styrax 445, 446, 450.
Styrax japonica 411, 414, 429.
Styrax Obassia 415, 422, 426, 433, 435, 449, 450.
Styracaceae 413, 422, 428, 433, 443.
Styrax 414, 429, 444, 446, 450.
Styrax japonica 415, 422, 426, 435, 448, 449.
Styrax obassia 415, 422, 426, 433, 435, 449, 450.
Styrax reticulata 422, 424, 434, 435, 449,
INDEX

Tilia cordata 441, 448, 454.
Tilia japonica 400, 401, 415, 416, 421, 427, 448.
Tilia mandshurica 433, 437, 448.
Tilia Maximowicziana 400, 415, 421, 423, 448.
Tilia platyphylloides 412, 448.
Tiliaeae 412, 413, 428, 433, 441, 443.
Toisusu 444, 446.
Toisusu cardiophylla var. Maximowiczii 429, 437, 447.
Toisusu Urbaniana 406, 415, 417, 423, 447.
Trillium kamtschaticum 400.
Trillium Smallii 400.
Tripetalia 446.
Tripetalia paniculata var. latifolia 415, 422, 424.
Tripterygium 428.
Tripterygium Regeli 432, 436.
Tritomodon 410.
Tritomodon campanulatus 411.

U

Ulex 412.
Ulex europaeus 412.
Ulmaceae 412, 413, 417, 428, 430, 441, 442.
Ulmus 375, 414, 423, 430, 441, 446, 449, 455.
Ulmus carpinifolia 412.
Ulmus glabra 411, 447, 454.
Ulmus laciniata 400, 417, 435, 447, 449.
Ulmus laevis 412.
Ulmus macrocarpa 430, 437.
Ulmus propinqua-Acer Mono forest 399, 457, 459.
Ulmus propinqua-Acer Mono-Sasa paniculata association 400.
Ulmus propinqua-Acer Mono-monoherbaceous association 400.
Ulmus propinqua forest 404, 465.
Urtica pilosula 404, 405.
INDEX

Vaccinium 445, 447.
 Vaccinium axillare 389.
 Vaccinium hirtum 415, 422, 424.
 Vaccinium Oldhami 415, 422, 426.
 Vaccinium Smallii 397, 422, 423.
 Vaccinium uliginosum-Empetrum nigrum-moss association 379.
Verbenaceae 413, 422, 428, 434, 443.
Viburnum 414, 429, 446, 447, 450.
 Viburnum burejaeticum 434, 437.
 Viburnum dilatatum 414, 422, 426, 449.
 Viburnum furcatum 391, 423, 426.
 Viburnum koreanum 434, 436, 449.
 Viburnum Opulus 449.
 Viburnum Sargentii 423, 424, 434, 435, 449, 450.
 Viburnum Wrightii 423, 426.
Viola Selkirkii 397.
Viscum 414, 428, 441, 444, 446, 449.
 Viscum album 441.
 Viscum coloratum 415, 417, 425, 435, 448, 449.
 Viscum coloratum var. rubraaurantiacum 430.
Vitaceae 411, 413, 421, 428, 433, 441, 443.
Vitis 414, 428, 445, 446.
 Vitis amurensis 433, 448.
 Vitis Coignetiae 408, 421, 426, 448.
 Vitis ficifolia var. lobata 408, 411.
 Vitis flexuosa 403, 411.

W
Weigela 414, 429, 446.
 Weigela coraeensis 411.
 Weigela florida 434, 436, 449.
 Weigela hortensis 415, 423, 424, 449.
 Weigela Middendorffiana 383.
 Weigela praecox 434, 436.

Z
Zanthoxylum 414, 446.
 Zanthoxylum piperitum 414, 419, 426.
EXPLANATION OF PLATES
a. Heath, Isl. Attu, Aleutian Islands

b. Heath, Isl. Amchitka, Aleutian Islands

b. *Pinus pumila* thicket in the low land, Murakamiwan, Isl. Paramushir, N. Kuriles

b. Pure thicket of *Sabina Sargenti*, Osaki, Isl. Shikotan, S. Kuriles
a. The upper limit of the thicket of *Alnus Maximowiczii*, Mt. Alaid, N. Kuriles

b. The pure thicket of *Alnus Maximowiczii*, Mt. Matua, Central Kuriles
a. *Alnus Maximowiczii* forest along the gully, Mt. Rishiri, Prov. Kitami, N. Hokkaido

b. *Alnus Maximowiczii-Dyropteris austriaca* sociation, Isl. Shikotan, S. Kuriles
a. *Betula Ermani* forest, Mt. Rishiri, Prov. Kitami, N. Hokkaido

b. *Betula Ermani* forest near Mt. Esaomantottabetsu, Hidaka Range, Prov. Tokachi, E. Hokkaido
a. Needle-leaved forest, the Upper Ishikari, Prov. Ishikari, Central Hokkaido

b. Fallen trunks after the terrible typhoon in Sept. 1954, the Upper Ishikari, Prov. Ishikari, Central Hokkaido
a. *Picea jezoensis-Abies sachalinensis-Sasa paniculata* sociation, the Upper Ishikari, Prov. Ishikari, Central Hokkaido

b. *Picea jezoensis-Abies sachalinensis* non plant cover sociation, the Upper Ishikari, Prov. Ishikari, Central Hokkaido

b. *Picea jezoensis-Abies sachalinensis-Carex sachalinensis* association, the Upper Ishikari, Prov. Ishikari, Central Hokkaido

a. *Picea jezoensis*, the Upper Ishikari, Prov. Ishikari, Central Hokkaido

b. *Picea jezoensis-Sasa paniculata* society, the Upper Ishikari, Prov. Ishikari, Central Hokkaido
a. *Picea Glehni* forest along the Aniwa Bay, Enbuchi, S. Sakhalin

b. *Picea Glehni* forest in the atrio near Ponto, Isl. Kunashiri, S. Kuriles
a. *Picea Glehni-Carex Middendorffii* sociation, Teshio Experiment Forest (Hokkaido University), Prov. Teshio, N. Hokkaido

a. Young *Picea Glehni* forest after the forest-fire, Okedo, Prov. Kitami, E. Hokkaido

a. *Picea Glehni* forest. Serpentine district, Teshio Experiment Forest (Hokkaido University), Prov. Teshio, N. Hokkaido

b. *Picea Glehni* forest, Kawayu Spa, Prov. Kushiro, Hokkaido

a. *Larix kamtschatica* forest, Isl. Shikotan, S. Kuriles

b. *Larix kamtschatica* on windy slope, Isl. Shikotan, S. Kuriles
a. *Larix kamtschatica-Carex Middendorffii* sociation, Kurokawa, S. Sakhalin

b. *Larix kamtschatica-Ledum palustre* sociation, *(Pinus pumila* on the margin), Asase (near 50°N. L.), E. Sakhalin

a. *Fagus crenata* forest along the R. Tomari, Nishishimamaki, Prov. Shiribeshi, SW. Hokkaido

b. *Fagus crenata-Sasa cernua* sociation, Utasai, Kuromatsunai, Prov. Shiribeshi, SW. Hokkaido
a. *Pterocarya rhoifolia*-fern sociation, Moheji, Prov. Oshima, SW. Hokkaido

b. *Aesculus turbinata*, Nanae, Prov. Oshima, SW. Hokkaido
a. *Quercus dentata* forest, Cape Erimo, Prov. Hidaka, S. Hokkaido

b. *Quercus dentata* forest, Obihiro, Prov. Tokachi, E. Hokkaido

b. *Acer Mono* forest, Esashi, Prov. Cshima, SW. Hokkaido

b. *Fraxinus mandshuria-Urtica platyphylla* sociation,
 Chimikeppu, Prov. Kitami, E. Hokkaido
a. *Pinus parviflora* var. *pentaphylla* and *Betula Ermani*, Mt. Apoi, Prov. Hidaka, Hokkaido

b. *Cercidiphyllum japonicum*, Maruyama, Sapporo, Hokkaido
a. *Betula platyphylla-Sasa paniculata* sociation near Zenibako, Prov. Ishikari, W. Hokkaido

a. *Tilia japonica*, Teshio Experiment Forest (Hokkaido University), Prov. Teshio, N. Hokkaido

b. *Populus Maximowiczii* along the Upper Ishikari, Prov. Ishikari, Central Hokkaido

b. *Chosenia bracteosa*, Asase (near 50°N. L.), E. Sakhalin