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The mutual relationship among Markov partitions is investigated for one-dimensional piecewise
monotonic map. It is shown that if a Markov partition is regarded as a map-refinement of the other
Markov partition, that is, a concept we newly introduce in this article, one can uniquely translate a
set of symbolic sequences by one Markov partition to those by the other or vice versa. However, the
set of symbolic sequences constructed using Markov partitions is not necessarily translated with
each other if there exists no map-refinement relation among them. By using a roof map we dem-
onstrate how the resultant symbolic sequences depend on the choice of Markov partitions.
© 2010 American Institute of Physics. �doi:10.1063/1.3491097�

Given a scalar time series, what can one learn from it
concerning the underlying dynamical system? The ques-
tion of whether it is possible to symbolize the time series,
resulting in a symbolic dynamics, hopefully unique in
some sense, still remains as one of the most challenging
subjects in contemporary sciences. We address this ques-
tion by taking a one-dimensional roof map as an example
and show that, even though we restrict ourselves to Mar-
kov partition, which is regarded as the most natural
mean to symbolize the dynamical system, the ways of the
symbolization in the Markov partition and, hence, its re-
sultant symbolic dynamics are not unique. We also dis-
cuss in what condition two different Markov partitions
generate the same symbolic dynamics.

I. INTRODUCTION

The question of how one can symbolize a given dynami-
cal system without losing any information of complexity in
dynamics is one of the most intriguing subjects in analyzing
information processing in dynamical systems. Once the dy-
namical system can be symbolized properly, various tech-
niques such as �-machine1 can be applied to reveal the pro-
cess of information in the underlying dynamical system.
Among several symbolization schemes, Markov partition
provides one of the most natural means to symbolize the
dynamical system. The concept of Markov partition is dated
back to Sinai.2 By constructing the Markov partition, one can
symbolize the original dynamical system and construct its
shift space, that is, a set of all possible symbolic sequences
constructed from a given Markov partition. The shift space
enables us to extract several important properties of the dy-
namical system such as Kolmogorov–Sinai entropy3 and to-
pological entropy;4 Kolmogorov–Sinai entropy provides a

lower bound of the sum of all the positive Lyapunov
exponents5 and positive topological entropy implies Li–
Yorke chaos6 �note that there exists a system which exhibits
Li–Yorke chaos while it has zero topological entropy7�.

However, the general properties of Markov partition
have not been fully understood yet. For instance, Bowen8

showed that the boundaries of Markov partition for Anosov
automorphisms of three-dimensional tori cannot be smooth.
In case of four- or higher-dimensional systems, Cawley9

showed that the boundaries cannot be smooth for Anosov
automorphisms on odd-dimensional tori, while for those on
even-dimensional tori, the boundary can be smooth in some
limited cases. The properties of shift space constructed from
non-Markov partition are also highly nontrivial even for one-
dimensional map.10 Reference 10 demonstrated how the
symbolic dynamics changes by choosing different positions
of the partition �not Markovian� in the case of two symbols
by using a tent map, and provided an algorithm to construct
the corresponding sofic-shift. The question of whether dy-
namical systems that admit Markov partition exist generi-
cally is also one of the nontrivial subjects, except some fami-
lies of one-dimensional maps to admit Markov partition exist
densely in the system parameter space.11–13

The definition for Markov partition for Anosov systems
of arbitrary dimension is presented in Ref. 8. Systems that
admit only finite types of Markov partition must have zero
topological entropy �as can be proved by using Theorem 2.2
in Ref. 14 and the definition of topological entropy4�. Since
most dynamical systems in interest are chaotic, they can
have infinitely many Markov partitions. However, the mutual
relationship among different Markov partitions has not been
well-revealed.15 In this article, for one-dimensional piece-
wise monotonic map, we investigate the properties of mutual
relationship among Markov partitions. We show that if a
Markov partition has a certain relationship we call “map-
refinement of the other Markov partition,” the shift spaces
corresponding to these two Markov partitions are topologi-
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cally the same. If this relationship does not hold, the Markov
partitions are not necessarily the case. By using a roof map
as an illustrative, typical example of one-dimensional piece-
wise linear map, we demonstrate how the choice of Markov
partitions affects the resultant shift space.

The outline of this paper is as follows. In Sec. II, we
briefly introduce the concept of Markov partition in case of
one-dimensional piecewise monotonic map. In Sec. III, we
introduce a concept of “map-refinement” to classify Markov
partitions. We prove that if a Markov partition is the map-
refinement of another Markov partition, the two shift spaces
are topologically the same. In Sec. IV we discuss the case
that two Markov partitions do not have the map-refinement
relation. Finally, we give the conclusion in Sec. V.

II. MARKOV PARTITION

We briefly introduce the definition of Markov partition
in the case of one-dimensional piecewise monotonic map.15

Let I= �0,1� and a piecewise monotonic map � be � : �0,1�
→ �0,1�. Let P be a partition of I given by points �ai� such
that a0�a1� ¯ �ai� ¯ �an−1�an, where a0=0 and a1

=1. Hereinafter, we denote such a point set as �a0�a1

� ¯ �ai� ¯ �an−1�an� and Ii= �ai−1 ,ai� �i=1, . . . ,n�.
Suppose that �i is the restriction of � to Ii, that is, a map
whose domain of the definition is restricted to Ii, satisfying
∀x� Ii ,�i�x�=��x�. If all �i are homeomorphism from Ii onto
a connected union of intervals of P, we call � “Markov with
respect to P” and P “Markov partition.”

The incidence matrix A is useful to characterize the to-
pology of the shift space, which is defined by

Aij = �1 if Ij � ��Ii�
0 otherwise

	 �i, j = 1,2, . . . ,n� .

In order to visualize the matrix, we introduce a directed
graph GP= �V ,E� which has n vertices V= �v1 , . . . ,vn�, corre-
sponding to the n intervals �I1 , . . . , In�, and directed edges
emanating from vi to v j when Aij =1 �denoted by �vi→v j�
�E�. Here we regard a graph whose vertices and edges are
denoted by �V� ,E�� as essentially equivalent to �V ,E� when
there is a bijection g :V→V� and �vi→v j��E if and only if
�g�vi�→g�v j���E� for all i and j �i , j=1, . . . ,n�.

Suppose that the inverse image of P, �−1�P�, is given by

�−1�P� = �a0 � a0
1 � ¯ � a0

k1−1 � a1 � a1
1 � ¯

� a1
k2−1 � a2 � ¯ � ai−1 � ai−1

1 � ¯ � ai−1
ki−1

� ai � ¯ � an−1 � an−1
1 � ¯ � an−1

kn−1 � an� ,

�1�

where ki−1 means the number of all elements of the set
Ii��−1�P�. By using the notations of ki and ai

j �j=0, . . . ,ki�
with ai

0=ai�i=0, . . . ,n−1� and ai−1
ki =ai�i=1, . . . ,n�, we can

express the corresponding graph GP more explicitly as fol-

lows: let Ii
j = �ai−1

j−1 ,ai−1
j � and then Ii=� j=1

ki Ii
j holds, where Ī

denotes the closure of the set I. Under these settings, for each
Ii

j, there exists a positive integer �i
j satisfying

��Ii
j� = I�i

j , �2�

where 1��i
j �n. One can prove this as follows: if ��Ii

j� is a
connected union of several intervals of Ii, there must be an
element of a�P such that a���Ii

j�. Since P is a Markov
partition, �i and its restriction to Ii

j should be homeomor-
phism, and, thus, there exists b� Ii

j such that ��b�=a. How-
ever, it contradicts the condition that �−1�P� does not contain
any other elements besides the points defined by Eq. �1�.
Therefore, Eq. �2� holds and

��Ii� � ���
j=1

ki

Ii
j� = �

j=1

ki

I�i
j , �3�

implying E= ��vi→v�i
j� 
1� i�n ,1� j�ki�.

Given a Markov partition P, we can symbolize a trajec-
tory �a successive sequence of �-mapping� ¯x−1x0x1¯,
where xi� I�i�Z� and xi+1=��xi��i�Z� as ¯s−1s0s1¯,
where si� �1, . . . ,n��i�Z�. The set of all possible symbolic
sequences can be characterized by using the set of forbidden
blocks F defined by F= �sisi+1 
Asi,si+1

=0�: all possible sym-
bolic sequences constitute a set of all blocks excluding such
forbidden blocks. Here, we regard this set as “the shift space
constructed from P” �see the rigorous definition of the shift
space in Appendix A�. Shift space can be classified in terms
of conjugacy.16 Suppose that we have two symbolic se-
quences. If and only if one can uniquely translate symbolic
sequences in one shift space to those in the other shift space
or vice versa, without referring the infinite past and future,
we regard such two shift spaces as being “conjugate with
each other.” �In Appendix A, we define the concept more
precisely.�

III. CLASSIFICATION OF MARKOV PARTITIONS
OF ONE-DIMENSIONAL PIECEWISE MONOTONIC
MAP

At first, in order to classify the Markov partitions of a
piecewise monotonic map, we prove that if P is a Markov
partition that consists of finite elements, P has at least one
periodic orbit. We prove this statement using “proof by con-
tradiction.” Suppose that a Markov partition P that consists
of finite elements has no any periodic orbit. Since P is a
Markov partition, ��P��P because the boundary of Markov
partition maps into the boundary. If a�P, �n�a��P for all
n�N. Since we assume that P does not have periodic orbit,
�n�a���m�a� for all n�m�N but it contradicts to the con-
dition that P consists of finite elements.

The above fact allows us to divide a Markov partition of
a certain finite number of elements P into two parts, one part
that consists of periodic orbits and the other part that consists
of all the rest.17 We denote the subset of P that consists of
periodic orbits as Q and the other as R. By adding new
element�s� to a given partition P�=Q�R�, in most cases
�see Appendix B�, it is possible to create a new Markov
partition P�, i.e., P�P�, which consists of periodic orbits
and the rest, denoted Q� and R�, respectively �i.e., P�
=Q��R�, Q�Q�, R�R��. One can see that P� is also a
Markov partition as far as P is Markov and ��P���P� is
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satisfied �see Appendix B�. In this section, we focus on the
case of adding new element�s� to R �in Sec. IV, we discuss
the case of adding element�s� to Q�.

In the following, first, we introduce a concept of map-
refinement and describe the concept of outsplitting graph by
following Ref. 16. Next, by using these two concepts, we

prove that if the partition P̂ is the map���-refinement of P,
the shift space constructed by using these two different par-

titions P and P̂ is conjugate with each other, irrespective of
how many elements are added to R.

A. map„�…-refinement

Suppose that there exist two Markov partitions P and P̂.

We call P̂ as � refinement of P if P� P̂ and ��P̂�=P.

B. Outsplitting graph

Let G be a graph with a vertex set V= �v1 , . . . ,vn� and an
edge set E, which is a subset of ��vi→v j� 
1� i , j�n�, i.e.,
G= �V ,E�. We denote a set of edges that emanates from vi by
Ei. Suppose that we have a mutually exclusive decomposi-
tion of Ei defined by Ei=� j=1

ki Ei
j �ki is the total number of the

decomposition of Ei�, where Ei
j are a subset of Ei satisfying

Ei
j �Ei

j�=� �j� j� , j , j�=1,2 , . . . ,ki�.
Associated with each decomposition of Ei, let each ver-

tex vi divide into �vi
1 ,vi

2 , . . . ,vi
ki�. One can then construct a

graph whose vertices V� are defined by V�
= �v1

1 ,v1
2 , . . . ,v1

k1�� �v2
1 , . . . ,v2

k2�� ¯ � �vn
1 , . . . ,vn

kn� and
edges E� are by

E� = ��vi
j → vi�

j��
�vi → vi�� � Ei
j,1 � i,i� � n,1 � j

� ki,1 � j� � ki�� . �4�

All possible graphs that are essentially the same as this graph
are called “outsplitting graph” of G with respect to the de-
composition Ei=� j=1

ki Ei
j, which is here denoted by G�.

For example, let G= �V ,E� be a graph defined by V
= �v1 ,v2�, E=E1�E2, E1= ��v1→v2��, and E2= ��v2→v1� ,
�v2→v2�� depicted as

�������	v1 �������	v2� �
� �

� �
�

One of the outsplitting graphs with respect to a decomposi-
tion E1

1=E1, E2=E2
1�E2

2 where E2
1= ��v2→v2�� and

E2
2= ��v2→v1�� is, then, depicted as

�������	v1
1

�������	v2
2

�������	v1
2

� � � �
� �

� � 	 	
�

Note that, for example, a graph obtained by renaming
such as �v1

1 ,v2
1 ,v2

2�→ �a ,b ,c� is also G� with respect to the
decomposition of Ei.

In terms of these two concepts, we prove that the shift

space constructed by using P and P̂ is conjugate with each

other if the partition P̂ is the �-refinement of P. The outline
of the proof is as follows. First, we construct the graph GP̂,
and then we show that one can choose a decomposition of
the edges E of GP so that the outsplitting graph of GP with
respect to the decomposition is essentially the same as GP̂.

This means the two shift spaces constructed from P and P̂
are conjugate with each other, since the shift space corre-
sponding to the outsplitting graph GP� is conjugate to that
corresponding to GP, as shown in Ref. 16. The diagram of
their mutual relationship is shown below:

P τ -refinement 



graph

��

P̂
graph

��
GP

out-splitting ���
��

��
��

�
GP̂

the main claim of the theorem��
��

��
��

��
��

��
��

G′
P

�

First, we construct GP̂ as follows. Since P̂ is

�-refinement of P, P� P̂ and ��P̂�=P. Suppose that the el-

ements of P̂ partition Ii into pi intervals: P̂� Ii= �ai−1
ri
1

�ai−1
ri
2

� ¯ �ai−1
ri
pi−1

���−1�P�, where ri
j is a positive integer satisfy-

ing 1�ri
1�ri

2� ¯ �ri
pi−1�ki−1. For the sake of conve-

nience, we set ri
0=0 and ri

pi =ki. Let Îi
j = �ai−1

ri
j−1

,ai−1
ri

j

� for 1� i
�n and 1� j� pi.

Since Îi
j ��

l=ri
j−1+1

ri
j

�ai−1
l−1 ,ai−1

l �=�
l=ri

j−1+1
ri

j

Ii
l, we get

��Îi
j� � �� �

l=ri
j−1+1

ri
j

Ii
l� = �

l=ri
j−1+1

ri
j

I�i
l � �

l=ri
j−1+1

ri
j

�
m=1

p�i
l

Î
�i

l
m, �5�

where the second equality comes from Eq. �2� and the third

� is from I�i
l ��m=1

p�i
l

Î
�i

l
m. This means that the vertex v̂i

j corre-

sponding to Îi
j has outgoing edges bound for the vertices v̂

�i
j

m

corresponding to Î
�i

j
m. Here we denote the set of the vertices

and the edges as GP̂= �V̂ , Ê�.
Then, we show below that GP̂ is an outsplitting graph of

GP when one chooses the decomposition Ei as Ei=� j=1
pi Ei

j,
where Ei

j = ��vi→v�i
l� 
ri

j−1+1� l�ri
j�.

According to each decomposition Ei, each vertex vi is
divided into �vi

1 ,vi
2 , . . . ,vi

pi�. We denote the outsplitting
graph GP� as GP� = �V� ,E�� where V�
= �v1

1 ,v1
2 , . . . ,v1

p1�� �v2
1 , . . . ,v2

p2�� ¯ � �vn
1 , . . . ,vn

pn�, and

E� = ��vi
j → vi�

j��
�vi → vi��

� Ei
j,1 � i,i� � n,1 � j � pi,1 � j� � pi�� . �6�
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Let us suppose �vi
j→vi�

j���E� and ask to what they cor-

respond. The condition �vi
j→vi�

j���E� is equivalent to �vi

→vi���Ei
j and it holds if and only if i�� ��i

l 
ri
j−1+1� l

�ri
j� by the definition of Ei

j. Then,

Îi�
j� � �

l=ri
j−1+1

ri
j

Î
�i

l
j� � �

l=ri
j−1+1

ri
j

�
m=1

p�i
l

Î
�i

l
m

� ��Îi
j� , �7�

where the second � is due to the fact that 1� j�� p�i
l, and

the last equality comes from Eq. �5�. Equation �7� tells us

that �vi
j→vi�

j���E� corresponds to �v̂i
j→ v̂i�

j��� Ê for 1� i , i�
�n and 1� j� pi ,1� j�� pi�. �One can easily prove that

�v̂i
j→ v̂i�

j��� Ê also corresponds to �vi
j→vi�

j���E� since all
steps of this proof are equivalent transformation.� Therefore,
we can conclude that GP̂ has the same structure as an out-
splitting graph with respect to this chosen decomposition �a
simple illustration of this proof is given for a roof map in
Appendix C�.

IV. DEPENDENCIES OF GRAPH TOPOLOGY
ON MARKOV PARTITIONS

In this section, using a roof map as an illustrative ex-
ample, we discuss about how the resultant shift space
changes when we add new periodic orbits to a Markov par-
tition P. That is, how a shift space constructed from P�
=Q��R is different from a shift space constructed from
P=Q�R where Q�Q�. In this case, P� cannot be a
�-refinement of P and we show that the shift space con-
structed from P� is not necessarily conjugate to P. This
means that, depending on how we symbolize the dynamical
system, the structure of the resultant shift space such as num-
ber of periodic orbits can be different.

Here we consider a roof map,18 a one-dimensional piece-
wise linear map F : �0,1�→ �0,1� defined by

xn+1 = F�xn� = �
1 − �

�
xn + � if 0 � x � �

1 − xn

1 − �
otherwise, �

where 0���
1
2 , showing that all the periodic orbits are un-

stable. A schematic picture of F is shown in Fig. 1. The
topological entropy hF of this system and the number of the
root �x 
Fn�x�=x� �corresponding to the number of the peri-
odic orbits� �n are given, respectively, by hF=log � and

�n=�n+	n. Here �=1+5 /2 and 	=1−5 /2 �see Appen-
dix D for more details�.

One can see that the Markov partition composed of the
minimum number of elements is given by P3= �0,� ,1�,
where the subscript of P means the period of periodic orbits
used in the Markov partition. It is because, if we do not
choose � as a boundary, the restriction of F to an interval
that includes � cannot be injective, contradicting the defini-
tion of Markov partition. The boundary consists of a period-3
periodic orbit since F���=1 and F�1�=0, F�0�=�. The cor-
responding incidence matrix of this partition is � 0 1

1 1
� and the

number of period-n periodic symbolic sequences �n+	n co-
incides with �n.

Then, how about another Markov partition to symbolize
the piecewise linear map? As we showed in Sec. III, adding
new element�s� in the nonperiodic part does not change the
corresponding shift space topologically.

Let us consider another Markov partition having the sec-
ond least number of elements composed of periodic orbits
defined by P1+3= �0,� ,1 / �2−�� ,1�, where the subscript 1
+3 means that the boundary of the Markov partition consists
of a period-1 periodic orbit and a period-3 periodic orbit.
One can easily see that this is not an F-refinement of P3 and
consists of a period-1 fixed point and a period-3 periodic
orbit. In this case, the corresponding incidence matrix is

�0 0 1

1 0 1

1 1 0
�

with eigenvalues �, 	, and 
1. The graph GP1+3
is not topo-

logically equivalent to GP3
since each corresponding inci-

dence matrix has different nonzero eigenvalues.16 In fact, the
number of the periodic orbits of the shift space constructed
from the partition P1+3 is given by �n+	n+ �−1�n, which is
different from the actual total number of periodic orbits �n

the original system F has. For example, F has one fixed point
but the shift space of P1+3 does not have a period-1 periodic
orbit.

Note that although the number of periodic orbits depends
on the way of Markov partitioning, all the Markov partitions
listed in Table I have the same topological entropy as that of
the original map F, as is expected from Theorem 2.2 in
Ref. 14.

V. SUMMARY

In this article, we revisited Markov partitions for the
case of one-dimensional piecewise monotonic map. Even in
this simplest case, the map can have several Markov parti-
tions whose shift spaces are not conjugate with each other. In
order to clarify the condition that two Markov partitions have
conjugate shift spaces, by introducing a new concept, map-
refinement, we proved that if one Markov partition is the
map-refinement of the other, the two corresponding shift
spaces are conjugate with each other. We investigated, by
using a roof map as an example, what happens when two
Markov partitions do not have this relation. The results show
that in general, the shift spaces corresponding to two Markov

x
n

x
n+1

0

1

1

α

α

FIG. 1. A roof map.
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partitions are not necessarily conjugate with each other, re-
sulting in various different shift spaces that cannot be trans-
lated with each other.
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APPENDIX A: SHIFT SPACE AND CONJUGACY

In this section, we introduce the concept of shift space,
following Ref. 16. Let A be a set of some symbols.

Definition 1: �full A-shift� A full A-shift is the collection
of all bi-infinite sequences of the symbols A.

We denote the full A-shift by AZ.
Definition 2: �shift map� The shift map � :AZ→AZ is a

map that maps a point ¯s−1s0s1s2s3¯ to ¯s0s1s2s3s4¯ ,
where si�A�i�Z�.

Definition 3: �shift space� The shift space is a subset X of
full A-shift in which sequences of X do not contain any
blocks of forbidden blocks over A.

Definition 4: �sliding block code� Suppose that there are

two sets of symbols A ,Â and shift spaces over them, that is,

X�AZ and X̂�ÂZ. A sliding block code from X to X̂ ,

�:s = ¯ s−1s0s1 ¯ � ��s� = ¯ ��s�−1��s�0��s�1¯

�A1�

[where sk and ��s�k denote the kth symbol of the symbolic
sequence s and ��s�, respectively], is a map that satisfies
� ��X=�X̂ �� and there is a certain positive integer N such
that ��s�i depends only on s−N+is−N+i+1¯si¯sN+ i, where
�X ,�X̂ are the shift operators of each shift space.

Definition 5: �conjugacy� Suppose that there are two
shift spaces X ,Y. A sliding block code � :X→Y is called
conjugacy if it is bijective. Two shift spaces X and Y are
called conjugate if there is conjugacy from X to Y .

APPENDIX B: EXTENDABILITY OF MARKOV
PARTITIONS AND THEIR PROPERTY

In this section, we show that if a partition P is a Markov
partition, any partition P� constructed by adding any ele-
ment�s� to P so as to satisfy ��P���P� is also a Markov
partition. We then show in which case there exists at least
one P� such that P�P�.

Let I� be an interval with respect to the partition P�.
Note that � restricted to I� is homeomorphism from I� onto
��I��: since there exists i� �1, . . . ,n� such that I�� Ii and the
restriction of � to Ii is homeomorphism ��Ii�, the restriction
of � to I� should be also homeomorphism onto ��I��. In ad-
dition, the restriction of � to I� should be monotonic, since,
otherwise, it cannot be homeomorphism. Therefore, � maps
the two boundary points of the interval I� to those of ��I��,
which are also elements of P� because of the fact that
��P���P�. This means that ��I�� is a connected union of the
intervals of P� between the two boundary points of the in-
terval P�.

In the following, given a Markov partition P, we would
like to point out in which cases there is a Markov partition
P� such that P�P� and ��P���P�. The Markov partition of
a certain finite number of elements P can be divided into two
parts, i.e., Q composed of periodic orbits and R composed
of all the rest.

By adding element�s� of periodic orbit�s� to the Q part,
one can construct P� if there is �are� a periodic orbit�s� that is
�are� not taken as the element�s� of Q. In turn, if the set
�−1�P�∖P is not empty, one can add any element�s� of the set
to the R part. The resultant partition P� forms a Markov
partition for both cases.

APPENDIX C: AN ILLUSTRATION OF THE PROOF
IN SECTION III

In this section, we demonstrate the proof of Sec. III us-
ing a roof map F : �0,1�→ �0,1� �Fig. 1�. We choose P= �0

TABLE I. Some incidence matrices and the number of the periodic orbits of
the corresponding shift space of several Markov partitions. Note that for
m=5, there exist two period-5 periodic orbits, which are denoted by A and
B, respectively.

Partition Incidence matrix No. of period-n orbits

P3 �0 1

1 1 � 	n+�n

P1+3 �0 0 1

1 0 1

1 1 0 � 	n+�n+ �−1�n

P2+3 �0 0 0 1

0 0 1 0

1 0 1 0

0 1 1 0
� 	n+�n+ in+ �−i�n

P4+3 �
0 0 0 0 0 1

0 0 0 0 1 0

1 0 0 0 1 0

1 0 0 1 0 0

0 1 0 1 0 0

0 1 1 0 0 0

� 	n+�n

+eni/4+e3ni/4

+e5ni/4+e7ni/4

P5+3
A �

0 0 0 0 0 0 1

0 0 0 0 0 1 0

0 0 0 0 1 0 0

1 0 0 0 1 0 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 0 1 1 0 0 0

� 	n+�n+ �−1�n

+eni/5+e3ni/5

+e7ni/5+e9ni/5

P5+3
B �

0 0 0 0 0 0 1

0 0 0 0 0 1 0

1 0 0 0 0 1 0

1 0 0 0 1 0 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

� 	n+�n+1

+e2ni/5+e4ni/5

+e6ni/5+e8ni/5
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=a0 ,�=a1 ,1=a2� as a Markov partition and P̂= �0,� ,�=1
−�+�2 ,1� as an F-refinement of it. It is straightforward to

check that P̂ is an F-refinement of P since F���=�, and thus

F�P̂��P.
First, note that GP has the same structure as a graph

of V= �v1 ,v2�, E=E1�E2 where E1= ��v1→v2�� and E2

= ��v2→v1� , �v2→v2��,

�������	v1 �������	v2��
��

��
�

It is because ��I1�= I2 ,��I2�� I1� I2, where I1= �0,��,
I2= �� ,1�.

Next, we construct GP̂ as follows: let us rewrite P and P̂
by P= �0,� ,1�= �a0 ,a1 ,a2� and, according to the notation of

Eq. �1�, P̂=�−1�P�= �0,� ,� ,1�= �a0
0 ,a0

1=a1
0 ,a1

1 ,a1
2�. Com-

pared to the notations of Sec. III, this corresponds to k1

=1 , k2=2, p1=1 , p2=2, r1
0=0 , r1

1=1, and r2
0=0 ,r2

1=1 ,r2
2

=2, i.e., P̂= �a0
r1
0
,a0

r1
1
=a1

r2
0
,a1

r2
1
,a1

r2
2
�. Each interval of the parti-

tion P̂ can be written as Î1
1= �0,��= �a0

r1
0
,a0

r1
1
�, Î2

1= �� ,��
= �a1

r2
0
,a1

r2
1
�, and Î2

2= �� ,1�= �a1
r2
1
,a1

r2
2
�. As a result, GP̂ is de-

picted as

�������	v̂1
1

�������	v̂2
2

�������	v̂1
2

� � � �
� �

� � 	 	
�

because of the fact that ��Î1
1�= I2= Î2

1� Î2
2, ��Î2

1�= I2= Î2
1� Î2

2,

and ��Î2
2�= I1= Î1

1.
Then, we construct the outsplitting graph GP� of GP by

following the recipes in Sec III. According to the recipes, the
decomposition of the edges Ei=� j=1

pi Ei
j is chosen as Ei

j = ��vi

→v�i
l� 
ri

j−1+1� l�ri
j�. In this case, E1

1= ��v1→v�1
l � 
r1

0+1
� l�r1

1�= ��v1→v2��, E2
1= ��v2→v2��, and E2

2= ��v2→v1��,
where �1

1=2 ,�2
1=2 ,�2

2=1. Therefore, the set of all vertices of
the outsplitting graph is V�= �v1

1�� �v2
1 ,v2

2� and that of the
edges is

E� = ��v1
1 → v2

1�,�v1
1 → v2

2�,�v2
1 → v2

1�,

�v2
1 → v2

2�,�v2
2 → v1

1�� . �C1�

One can see that the structure of the outsplitting graph GP is
manifestly the same as GP̂ by renaming vi

j as v̂i
j.

APPENDIX D: THE NUMBER OF PERIODIC ORBITS
OF THE ROOF MAP AND ITS TOPOLOGICAL
ENTROPY

We present here the analytical expression of the number
of the root of the equation x=Fn�x� and the topological en-

tropy of the roof map presented in Sec. IV. The graph
y=Fn�x� of n-times mapping is also piecewise linear as F�x�,
which consists of two types of lines: one is a line starting
from y=0 to y=1 and the other from y=� to y=1. Here we
call the former type of line as “long line” and the latter as
“short line.” For example, the graph of F has one short line
from �x ,y�= �0,�� to �� ,1� and one long line from �� ,1� to
�1,0�. Since F has a “bending point” at x=� and the bending
point is mapped to a bending point of the graph y=F2�x� by
F, and by repeating this argument the graph y=Fn�x� has
also a bending point at that point. Due to this fact, every
short line and long line that appeared in Fn exist either on the
domain 0�x�� or ��x�1. One can easily confirm that
every short line and every long line appeared in Fn are
mapped to one long line, and one short and one long lines,
respectively. For example, at F2, one short line at F1 is
mapped to a long line from �0,1� to �� ,0�, and one long line
is mapped to a short line from �1 / �2−�� ,1� to �1,�� and a
long line from �� ,0� to �1 / �2−�� ,1�, respectively.

Since such long lines run through the whole range of the
value of F whose absolute value of gradient is always greater
than unity when 0���

1
2 , every long line that appeared in

Fn must have one intersecting point with y=x, corresponding
to the root of x=Fn�x�. However, as for the short lines, every
short line does not necessarily have an intersecting point
with y=x because short lines run through only the range �
�y�1. Thus, when they are on the domain 0�x��, it
cannot have an intersecting point with y=x. Note also that
y=Fn�x� and y=x cannot be tangential with each other be-
cause the absolute value of the gradients of all linear pieces
of Fn is always greater than unity for 0���

1
2 . The above

facts allow us to write down the number of the root x
=Fn�x�, �n, as �n=dn+en+ fn, where dn is the number of the
long lines located on the domain 0�x��, en is that of the
short lines on ��x�1, and fn is that of the long lines on
��x�1.

Next, we derive the recurrence formula for dn, en, fn, and
cn, which is the number of the short lines of Fn located on the
domain 0�x��. Due to the structure of the map F, every
short line is mapped to one long line and every long line is
mapped to one short and one long lines. Thus, the recurrence
formulas are

cn+1 = dn, �D1�

dn+1 = cn + dn, �D2�

en+1 = fn, �D3�

fn+1 = en + fn, �D4�

with the boundary condition c1=1 ,d1=0 ,e1=0 , f1=1. The
solution of the recurrence formula with the boundary condi-
tion is

cn =
1
5

�	n − �n� , �D5�

dn =
1
5

�	n − �n� , �D6�
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en =
1
5

�	n − �n� , �D7�

fn =
1
5

�	n−1 − �n−1� , �D8�

and finally we can get the analytical expression of the num-
ber of period-n periodic orbits in the graph Fn by

�n = dn + en + fn = �n + 	n. �D9�

Here, � and 	 correspond to the eigenvalues of � 0 1
1 1

� which
are �=1+5 /2 and 	=1−5 /2, respectively.

The topological entropy hF can be calculated using the
formula in Ref. 19,

hF = lim
n→�

1

n
log lap�Fn� , �D10�

where lap�Fn� is the smallest number of intervals on each of
which Fn is monotonic. In this case, lap�Fn�=cn+dn+en+ fn

=2 /5��n+1−	n+1� because cn+dn+en+ fn is the total num-
ber of the piecewise linear intervals of Fn, which is rational-
ized as the smallest one because Fn cannot be monotonic on

the interval if we connect adjacent two of those intervals to
get an interval. Therefore, we have hF=log �.
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