<table>
<thead>
<tr>
<th>Title</th>
<th>Understanding sediment cascades along river networks for sustainable catchment management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kimura, Takashi</td>
</tr>
<tr>
<td>Citation</td>
<td>第2回北海道大学サステナビリティ学生研究ポスターコンテスト = The Second Hokkaido University Sustainability Research Poster Contest. 平成22年10月24日 (日) - 11月5日 (金) 北海道大学学術交流会館 札幌市</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2010-10-24</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/44150</td>
</tr>
<tr>
<td>Type</td>
<td>conference presentation</td>
</tr>
<tr>
<td>Note</td>
<td>「グッドコミュニケーション賞」受賞</td>
</tr>
<tr>
<td>File Information</td>
<td>C6-4.pdf</td>
</tr>
</tbody>
</table>
1. Management of River Network is essential for Sustainable Water Supply & Land Use

River network functions not only as “pipe line network” for water resources transport, but also as “jerky conveyor belt” for sediment transport from hillslopes to outlet of catchment (Fig.1). Because sediment transport along river network (hereafter, sediment cascades) is primarily modulated by intermittent supply, storage and failure (reworking) in cascade system, its activation and/or alternation has potential threats to cause flood and sediment disasters and undesirable changes in river network structure and linkages.

Therefore, knowledge of cascade system dynamics along river network is required to use water resources and surrounding landscapes sustainably, and to avoid loss of lives, housing, and infrastructure.

Combination of remote-sensing and field observation successfully reconstructed dynamics of sediment cascades for about 50 years. Here, based on the results, aim of this study is addressed to quantitatively evaluate hydrogeomorphic threshold(s) which significantly effect on sediment cascade dynamics and their variation.

2. Understanding Sediment Cascades is a Key for Management of River Network

Significant catchment-to-catchment variability in sediment cascades

(Suwada, 1980; Pyes, 1980)

Close relationships with sediment strage types, distribution patterns, and failure (reworking) processes

Conceptual models have demonstrated effectiveness of hydrological and geomorphic condition

(Orita et al., 2005; Pyes et al., 2007)

However, hydrogeomorphic thresholds which significantly effect on sediment cascade dynamics have not quantitatively evaluated.

3. Significance of Debris Fan Formation

Debris fan formation mostly results from occurrence of debris flow that attained subcatchment outlet (Ashida, 1985).

• Variation in sediment cascades may lead to difference in timing of debris fan formation

Debris fan works as “buffer” in sediment cascade system between subcatchment and main stream (Harvey, 2010).

• Debris fan may alter structure of sediment cascade.

To understand sediment cascade dynamics, exploring processes of debris fan formation (development) is effective.

4. Variation in Patterns of Sediment Cascades

4-1. Procedures for field measurements & data analyses

4-2. Temporal changes in sediment cascades & their variation

Fig.3. Sediment cascades of the 13 subcatchments for each observation period.

Debris fan formation years did not necessarily coincide with landslide occurrence in subcatchments.

In subcatchments which abruptly develop their fans by the 2003 storm, landslide occurrence before 2003 did not result in fan formation.

5. Hydrogeomorphic Thresholds for Changes in Sediment Cascades & Debris Fan Formation

5-1. Relationships with rainfall intensity

5-2. Rainfall and geomorphic thresholds

As rainfall intensity of storm events increased,
1) Proportion of storm events which induced debris fan formation increased.

2) Both upper limits of landslide area in subcatchments and of drainage area of subcatchments which form debris fan increased.

Detected thresholds which modulate variation in sediment cascades dynamics are
1) 1.3 km² drainage area, and 2) 100 mm day⁻¹ and 300 mm day⁻¹

6. Summary

• Significant hydrogeomorphic thresholds which modulate variation in sediment cascades of subcatchments were successfully detected by comparing reconstructed sediment cascade dynamics with rainfall records.

• Quantification of hydrogeomorphic thresholds enables to plan and practice sustainable catchment management.