<table>
<thead>
<tr>
<th>Title</th>
<th>A1-μW 600-ppm/℃ Current Reference Circuit Consisting of Subthreshold CMOS Circuits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Ueno, Ken; Hirose, Tetsuya; Asai, Tetsuya; Amemiya, Yoshihito</td>
</tr>
<tr>
<td>Citation</td>
<td>IEEE Transactions on Circuits and Systems II : Express Briefs, 57(9), 681-685</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2010-09</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/44205</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2010 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.</td>
</tr>
<tr>
<td>Type</td>
<td>article</td>
</tr>
<tr>
<td>File Information</td>
<td>TCS2-57-9_681-685.pdf</td>
</tr>
</tbody>
</table>

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP
A 1-μW 600-ppm/°C Current Reference Circuit Consisting of Subthreshold CMOS Circuits

Ken Ueno, Student Member, IEEE, Tetsuya Hirose, Member, IEEE, Tetsuya Asai, Member, IEEE, and Yoshihito Amemiya

Abstract—A low-power CMOS current reference circuit was developed using a 0.35-μm standard CMOS process technology. The circuit consists of MOSFET circuits operating in the subthreshold region and uses no resistors. It compensates for the temperature effect on mobility μ and threshold voltage V_{TH} of MOSFETs and generates a reference current that is insensitive to temperature and supply voltage. Theoretical analyses and experimental results showed that the circuit generates a stable reference current of 100 nA. The temperature coefficient of the current was 520 ppm/°C at best and 600 ppm/°C on average in the range of 0 °C–80 °C. The line regulation was 0.2%/V in a supply voltage range of 1.8–3 V. The power dissipation was 1 μW, and the chip area was 0.015 mm². Our circuit would be suitable for use in subthreshold-operated power-aware large-scale integrations.

Index Terms—Complementary metal–oxide–semiconductor (CMOS), current reference, power-aware large-scale integrations (LSIs), self-biasing circuit, subthreshold region, temperature dependence, ultralow power, weak inversion.

I. INTRODUCTION

CURRENT reference circuits are important building blocks for analog and mixed-signal circuit systems in microelectronics. They are indispensable components for producing reference currents for various analog circuits, such as operational amplifiers, analog buffers, oscillators, and analog-to-digital/digital-to-analog converters. Nanoampere current references have been strongly desired, particularly for use in ultralow-power large-scale integration (LSI) applications, such as radio-frequency identifications (RFIDs), implantable medical devices, and smart sensor networks [1]. These LSIs have to operate with ultralow power, e.g., a few microwatts or less [2], [3], because they will probably be placed under conditions where they will rely on poor energy sources, such as microbatteries and energy-harvesting devices [4]. Because the power dissipation and performance of these circuits are determined mainly by their bias currents, current references with nanoamperes-order currents are required to ensure stable and highly precise circuit operation.

Manuscript received August 24, 2009; revised March 12, 2010; accepted May 4, 2010. Date of publication September 2, 2010; date of current version September 15, 2010. This work was supported in part by the VLSI Design and Education Center (VDEC) and in part by the University of Tokyo, in collaboration with Cadence Design Systems, Inc. This paper was recommended by Associate Editor B. Otis.

K. Ueno, T. Asai, and Y. Amemiya are with the Department of Electrical Engineering, Hokkaido University, Sapporo 060-0814, Japan (e-mail: k_ueno@sapins-ci.eng.hokudai.ac.jp).

T. Hirose is with the Department of Electrical and Electronics Engineering, Kobe University, Kobe 657-8501, Japan (e-mail: hirose@eeedept.kobe-u.ac.jp). Digital Object Identifier 10.1109/TCSII.2010.2056051

II. CIRCUIT CONFIGURATION

Fig. 1 shows our current reference circuit [10]. The circuit consists of a bias-voltage subcircuit and a current-source subcircuit. The bias-voltage subcircuit is a modified β multiplier self-biasing circuit that uses a MOS resistor M_3, instead of ordinary resistors [8]. Bias voltage V_{FB} for MOS resistor M_3 is generated by a diode-connected transistor M_4 (for detail in an operating point of the bias-voltage subcircuit, see Appendix). The
current-source subcircuit accepts bias voltage \(V_B \) and generates reference current \(I_{\text{OUT}} \) that is independent of temperature and supply voltage. All MOSFETs are operated in the subthreshold region, except for \(M_3 \) and \(M_4 \). Table I shows an example of the transistor sizes (\(M_1-\ldots-M_7 \)) we used. A start-up circuit (not shown) is required to avoid the stable state in the zero bias condition and is based on our previous work [5]. The following sections describe the operation in detail.

A. Operation Principle

The subthreshold drain current \(I_D \) of a MOSFET is an exponential function of the gate–source voltage \(V_{GS} \) and the drain–source voltage \(V_{DS} \), and is given by

\[
I_D = K I_0 \exp \left(\frac{V_{GS} - V_{TH}}{\eta V_T} \right) \left(1 - \exp \left(- \frac{V_{DS}}{V_T} \right) \right)
\]

where \(K \) is the aspect ratio \(= W/L \) of the transistor, \(\mu \) is the carrier mobility, \(C_{\text{OX}} \) is the gate-oxide capacitance, \(V_T \) is the thermal voltage, \(k_B \) is the Boltzmann constant, \(T \) is the temperature, \(q \) is the elementary charge, \(V_{TH} \) is the threshold voltage of a MOSFET, and \(\eta \) is the subthreshold slope factor [2], [11]. For \(V_{DS} \) > 0.1 V, current \(I_D \) is almost independent of \(V_{DS} \) and given by

\[
I_D = K I_0 \exp \left(\frac{V_{GS} - V_{TH}}{\eta V_T} \right).
\]

In the bias-voltage subcircuit, the gate–source voltage \(V_{GS1} \) in \(M_1 \) is equal to the sum of gate–source voltage \(V_{GS2} \) in \(M_2 \) and the drain–source voltage \(V_{DS3} \) in \(M_3 \), i.e.

\[
V_{GS1} = V_{GS2} + V_{DS3}.
\]

Because currents \(I_B \) in \(M_1 \) and \(M_2 \) are equal to each other, (3) can be rewritten as

\[
V_{DS3} = \eta V_T \ln(K_2/K_1)
\]

where \(K_1 \) and \(K_2 \) are the aspect ratios of \(M_1 \) and \(M_2 \), respectively. The MOS resistor \(M_3 \) is operated in a strong-inversion deep-triode region, so its resistance \(R_{M3} \) is given by

\[
R_{M3} = \frac{1}{K_3 \mu C_{\text{OX}} (V_B - V_{\text{TH}3})}.
\]

From (3)-(5), we arrive at expression

\[
I_B = \frac{V_{DS3}}{R_{M3}} = K_3 \mu C_{\text{OX}} (V_B - V_{\text{TH}3}) \eta V_T \ln(K_2/K_1)
\]

for current \(I_B \).

The diode-connected transistor \(M_4 \) operates in the strong inversion and saturation region. Its drain current \(I_B \) is given by

\[
I_B = \frac{K_4 \mu C_{\text{OX}}}{2} (V_B - V_{\text{TH}4})^2.
\]

Because the current \(I_B \) of \(M_3 \) is equal to \(I_B \) of \(M_4 \) [i.e., (6) = (7)], \(V_B \) is given by

\[
V_B = V_{\text{TH}4} + \frac{2K_3}{K_4} \eta V_T \ln(K_2/K_1).
\]

Output current \(I_{\text{OUT}} \) through transistor \(M_5 \) can be given by

\[
I_{\text{OUT}} = K_5 I_0 \exp \left(\frac{V_B - V_P - V_{\text{TH}5}}{\eta V_T} \right).
\]

The source voltage \(V_P \) of transistor \(M_5 \) can be given by

\[
V_P = V_{GS7} - V_{GS6} = \eta V_T \ln(2K_6/K_7) - \delta V_{\text{TH7}6}
\]

where \(\delta V_{\text{TH7}6} \) is the difference between the threshold voltages of \(M_6 \) and \(M_7 \) with different transistor sizes (including the body effect in the transistors). To operate transistor \(M_5 \) in the subthreshold region, source voltage \(V_P \) of \(M_5 \) has to be set to a large value by adjusting the aspect ratios of \(M_6 \) and \(M_7 \). Therefore, in this design, the aspect ratio \((W/L) \) of \(M_6 \) and \(M_7 \) was set to 320/1 and 12/3, respectively. From (8)-(10), we find that

\[
I_{\text{OUT}} = I_0 \exp \left(\frac{\delta V_{\text{TH}}}{\eta V_T} \right) \left(\frac{K_5 K_7}{2K_6} \left(\frac{K_2}{K_1} \right) \right)^{2K_3/K_4}
\]

where \(\delta V_{\text{TH}} = V_{\text{TH}7} + V_{\text{TH}4} - V_{\text{TH}6} - V_{\text{TH}5} \) is the difference between the threshold voltages of transistors \(M_4-M_7 \). The value of \(\delta V_{\text{TH}} \) depends on the transistor sizes [12], [13]. In this way, we can obtain a reference current with nanomamp order.

B. Temperature Dependence of Reference Current

The temperature dependence of the threshold voltage \(V_{\text{TH}} \) and the mobility \(\mu \) of MOSFET can be given by

\[
V_{\text{TH}} = V_{\text{TH}0} - \kappa T \quad \mu(T) = \frac{\mu(T_0)}{(T/T_0)^{-m}}
\]

where \(\mu(T_0) \) is the carrier mobility at room temperature \(T_0 \), \(m \) is the mobility temperature exponent, \(V_{\text{TH}0} \) is the threshold voltage at 0 K, and \(\kappa \) is the TC of \(V_{\text{TH}} \) [14].

The TC of the output current \(I_{\text{OUT}} \) given by (11) is

\[
\text{TC} = \frac{1}{I_{\text{OUT}}} \frac{dI_{\text{OUT}}}{dT} = \frac{1}{\mu} \frac{d\mu}{dT} + \frac{1}{V_T^2} \frac{dV_T^2}{dT} + \frac{1}{\eta V_T} \frac{d\eta V_T}{dT} = \frac{-m - \delta V_{\text{TH}0}/\eta V_T}{T}
\]

where \(\delta V_{\text{TH}0} = V_{\text{TH}0} + V_{\text{TH}4} - V_{\text{TH}6} - V_{\text{TH}5} \) is the difference between the threshold voltages at 0 K of transistors.
M₄–M₇. Therefore, the condition for a zero TC can be given by

\[2 - m - \left(\frac{\delta V_{TH0}}{\eta V_T} \right) = 0. \] (14)

Because the difference between the threshold voltages \(\delta V_{TH0} \) is insensitive to temperature, adjusting \(\delta V_{TH0} \) to an appropriate value will provide a zero TC at room temperature. Fig. 2 shows the calculated TC as a function of temperature with \(\delta V_{TH0} \) as a parameter. The mobility temperature exponent \(m \) was set to 1.5, and the subthreshold slope factor \(\eta \) was set to 1.3 [11], [15]. A zero TC can be obtained at \(\delta V_{TH0} = 17 \) mV and at room temperature.

In this way, we can obtain a zero-TC current by setting the appropriate \(\delta V_{TH0} \). The value of \(\delta V_{TH0} \) can be adjusted by the transistor sizes [12], [13].

C. Process Variation of Reference Current

Process variations can be classified into two categories: 1) within-die (WID) (intradie) variation and 2) die-to-die (D2D) (interdie) variation [16]–[18]. The WID variation is caused by mismatches between transistor parameters within a chip and affects the relative accuracy of the parameters. In contrast, the D2D variation affects the absolute accuracy of transistor parameters between chips.

The process variations of the output current \(I_{OUT} \) given by (11) can be expressed as

\[
\frac{\Delta I_{OUT}}{I_{OUT}} = \frac{1}{I_{OUT}} \left(\frac{\partial I_{OUT}}{\partial \mu} \Delta \mu + \frac{\partial I_{OUT}}{\partial \delta V_{TH}} \Delta \delta V_{TH} \right) = \frac{\Delta \mu}{\mu} + \frac{\Delta \delta V_{TH}}{\eta V_T}. \] (15)

The mobility variation is generally smaller than the threshold voltage variation, so the output current depends mainly on \(\Delta \delta V_{TH}/\eta V_T \), which is the variation of the threshold-voltage difference between transistors in a chip. Therefore, reducing WID variation is important in our device. The WID variation can be reduced by using large-sized transistors and various analog layout techniques [18], [19], or the calibration techniques such as a programmable transistor array for \(M_5 \) will enable us to compensate for process variation.

III. EXPERIMENTAL RESULTS

We fabricated a prototype chip using a 0.35-μm, two-poly, four-metal standard CMOS process. Fig. 3 shows a micrograph of our chip with an area of 0.015 mm² (= 110 μm × 140 μm). We designed the circuit to produce a 100-nA output current.

Fig. 4 shows measured output current \(I_{OUT} \) as a function of temperature, with supply voltage \(V_{DD} \) as a parameter. The power supply voltage was set in the range of 1.8–3 V. The output current was about 96 nA and almost constant at temperatures in the range of 0 °C–80 °C. The temperature dependence and TC were 50 pA/°C and 520 ppm/°C, respectively. Almost a constant reference current was obtained over a wide temperature range. The dependence of the output current on temperature was convex and different from the theoretical result of a concave dependence, as shown in Fig. 2. A probable explanation is that \(\delta V_{TH0} \) (difference in the threshold voltages at 0 K) in actual transistors included body effects in \(M_5 \) and \(M_6 \), and different channel lengths in \(M_6 \) and \(M_7 \). Therefore, because temperature dependence \(\kappa \) of \(V_{TH} \) was not completely canceled, \(\delta V_{TH0} \) in actual transistors had slightly temperature dependence including higher order nonlinear effects that were not able to be included in the theoretical equation. Consequently, this decreased the temperature dependence of \(\delta V_{TH0} \).
to make the current–temperature curve convex. However, the
difference is quite small, so it is acceptable in our applications.

Fig. 5 shows output current I_{OUT} at room temperature as a
function of supply voltage. The circuit correctly operated when
the supply voltage was higher than 1.8 V. The line regulation
was 0.2%/V in a supply range of 1.8 to 3 V. This way, we were
able to achieve a nanoampere current reference that was almost
independent of temperature and supply voltage.

To study the process variations of our device, we measured
four samples, each on a different chip from the same wafer,
and confirmed their constant-current operation. Fig. 6 shows
measured output currents I_{OUT} at room temperature as a
function of temperature for four samples on different chips from the same wafer. TCs ranging
from 520 ppm/$^\circ$C to 670 ppm/$^\circ$C were observed. The average TC was
600 ppm/$^\circ$C.

Table II summarizes the characteristics of our device in
comparison with other low-power CMOS current references
reported in [5]–[9]. Our device is superior to others in chip area.
In the circuits reported in [5]–[9], there are tradeoffs between
the power dissipations and the TC of reference currents. Our
device was able to achieve an appropriate tradeoff. The power
dissipation of our device was 1 μW at a 1.8-V power supply,
and the load regulation was 0.02%/V. The lower limit of the
supply voltage will be able to reduce to less than 1.8 V by using
an operational amplifier, instead of the cascode current mirrors
that we used in this example.

IV. CONCLUSION

We have developed an ultralow-power CMOS current ref-
ERENCE circuit consisting of subthreshold MOSFET circuits
and no resistors. The device generates a temperature and sup-
ply voltage compensated reference current. We have made a
prototype chip that generates a 100-nA output current and
demonstrated its operation by measurements. The TC and line
regulation of the output current were 520 ppm/$^\circ$C and 0.2%/V,
respectively. The power dissipation was about 1 μW. Our
circuit will be useful as a current reference circuit for use
in power-aware LSI applications, such as RFID, implantable
medical devices, and smart sensor networks.

APPENDIX

Operating Point of Bias-Voltage Subcircuit

The bias-voltage subcircuit [8], as shown in Fig. 1, is divided
into three components. Fig. 7(a) shows these components as
follows:

1) β multiplier self-biasing circuit with MOS resistor;
2) diode-connected transistor (M_4);
3) p-channel MOS current mirror.

These circuits operate as a voltage-to-current converter (V_B
to-I_{B3} conversion), a current-to-voltage converter (I_{B4}-to-V_B
conversion), and a current-to-current converter, respectively.
The bias-voltage subcircuit can be considered as a feedback
connection of these components, as shown in Fig. 7(b). The oper-
ating point of the circuit can be determined from the transfer
characteristics of these components. Fig. 7(c) shows a partial
enlarged view of the transfer characteristics in these compo-
nents. In the lower current operation, because the drain–source
voltages of M_3 and M_4 are a small value, current I_{B3} is
larger than current I_{B4} by the difference of aspect ratios in
K_3 and K_4 as shown in Table I. Whereas, in a larger current
operation, because the drain–source voltage of M_3 in the triode
region is a small value and the voltage of M_4 in the saturation
region is a large value, current I_{B3} is smaller than current I_{B4}.
These currents create an intersection point with the difference
of operating region in transistors. Because the current mirror
The bias-voltage subcircuit makes the current of I_{B3} equal the current of I_{B4}, this
intersection point becomes an operating point of the circuit.
From the analysis, details of the circuit operation in Fig. 7(c)
can be understood as follows:

1) Start up at a low-voltage operation V_S: Because current
I_{B3} is larger than current I_{B4}, the generated current
produces a new high voltage of V_2' from the transfer curve
of I_{B4}. The feedback in the circuit in this operation is
positive, and then, the circuit operates at the operating
point.
TABLE II

<table>
<thead>
<tr>
<th>Process</th>
<th>This work</th>
<th>[5]</th>
<th>[6]</th>
<th>[7]</th>
<th>[8]</th>
<th>[9]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature range</td>
<td>0.35-μm, CMOS</td>
<td>0.35-μm, CMOS</td>
<td>1.5-μm, CMOS</td>
<td>3-μm, CMOS</td>
<td>2-μm, CMOS</td>
<td>2-μm, CMOS</td>
</tr>
<tr>
<td>V_{DD}</td>
<td>0 - 80°C</td>
<td>-20 - 80°C</td>
<td>-20 - 70°C</td>
<td>0 - 80°C</td>
<td>-40 - 80°C</td>
<td>0 - 75°C</td>
</tr>
<tr>
<td>I_{OUT}</td>
<td>96 nA</td>
<td>36 nA</td>
<td>0.41 nA</td>
<td>774 nA</td>
<td>1 - 100 nA</td>
<td>285 nA</td>
</tr>
<tr>
<td>Power</td>
<td>1 μW(1@1.8 V)</td>
<td>0.3 μW(1@1.5 V)</td>
<td>0.002 μW(1@1.1 V)</td>
<td>10 μW(1@5 V)</td>
<td>0.07 μW(1@2.3 V)</td>
<td>N.A.</td>
</tr>
<tr>
<td>T.C.</td>
<td>520 ppm/C</td>
<td>2200 ppm/C</td>
<td>2500 ppm/C</td>
<td>375 ppm/C</td>
<td>1100 ppm/C</td>
<td>230 ppm/C</td>
</tr>
<tr>
<td>Line regulation</td>
<td>0.2%/V</td>
<td>0.002%/V</td>
<td>6%/V</td>
<td>0.015%/V</td>
<td>10%/V</td>
<td>N.A.</td>
</tr>
<tr>
<td>Load regulation</td>
<td>0.02%/V</td>
<td>N.A.</td>
<td>N.A.</td>
<td>0.004%/V</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>Chip area</td>
<td>0.015 mm²</td>
<td>0.06 mm²</td>
<td>0.046 mm²</td>
<td>0.2 mm²</td>
<td>0.06 mm²</td>
<td>N.A.</td>
</tr>
</tbody>
</table>

Fig. 7. (a) Three components for bias-voltage subcircuit analysis. (b) Circuit’s feedback connection. (c) Partial enlarged view of transfer curves in components.

2) **Start up at a high-voltage operation V_H:** Because current I_{B3} is smaller than current I_{B4}, the generated current produces a new small voltage of V'_H from the transfer curve of I_{B4}. The feedback in the circuit in this operation is negative, and then, the circuit operates at the operating point.

Therefore, the circuit repeats the preceding current and voltage generation process and then finally operates at the operating point.

REFERENCES

