Inflammatory lipoproteins purified from a toxigenic and arthritogenic strain of Mycoplasma arthritidis are dependent on Toll-like receptor 2 and CD14.
Inflammatory lipoproteins purified from a toxigenic and arthritogenic strain of *Mycoplasma arthritidis* are dependent on TLR2 and CD14.

Running title; TLR2 and CD14 dependent mycoplasmal lipoproteins.

Akira Hasebe¹, Hong-Hua Mu¹, Leigh R. Washburn², Fok V. Chan¹, Nathan D. Pennock¹, Michael L. Taylor¹, Barry C. Cole¹ *

¹ Division of Rheumatology, Department of Internal Medicine, University of Utah School of Medicine 84132
² Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota 57069

Correspondent footnote

Corresponding author: Barry C Cole*, Division of Rheumatology, Department of Internal Medicine, University of Utah School of Medicine. 30 North 1900 East, Salt Lake City, UT 84132.

Phone; (801) 581-8845. Fax; (801) 581-6069.

E-mail: barry.cole@hsc.utah.edu
Abstract

Mycoplasma arthritidis is a naturally-occurring murine pathogen and the disease model has been used extensively to understand inflammatory mechanisms. Recently, Triton X-114 extracts of a virulent strain of *M. arthritidis* were found to be more potent in activating macrophages than were those from an avirulent strain suggesting a role in disease. Here, octyl glucoside extraction of cells was used to identify four distinct bioactive moieties with molecular masses of ~ 41, 37, 34 and 17 kDa. Their bioactivities were resistant to proteinase K but were destroyed by alkaline hydrolysis and oxidation. As for MALP-2, all were dependent upon TLR2 but unlike MALP-2, they were also dependent upon CD14. The *M. arthritidis* lipoproteins exhibited IR absorbances at 2900 and 1662 cm⁻¹ similar to those seen in Pam₃-Cys-Ser-(Lys)₄. Edman degradation failed to reveal N-terminal sequences suggesting that they were blocked and therefore might be tri-acylated. However, mass spectrometry of fragments revealed that the 41kDa moiety had similarity with the recently described MlpD, lipoprotein of *M. arthritidis* and possessed an ability to bind to serum apolipoprotein A-1.
Introduction

Mycoplasmas, or Mollicutes, are the smallest self-replicating prokaryotes and are common parasites of humans, animals, and plants. *M. arthritidis* infections in rodents serve as animal models for a chronic arthritis that closely resembles human rheumatoid arthritis (RA), necrotizing fasciitis-like syndrome, and acute toxic shock syndrome (6). Virulence factors include a superantigen (SAg), the *M. arthritidis* mitogen (MAM, (2) which utilizes Toll-like receptor (TLR)2 and TLR4 (14), two membrane lipoproteins, Maa1 (32) and Maa2 (34), and bacteriophage MAV1 (28). MAM is a potent activator of T-cells, B-cells, and macrophages (2). Although MAM can induce arthritis when directly injected into rat joints, systemic administration into rodents is without significant clinical effects. However, major changes in immune function do occur after intravenous injection of MAM (15) and MAM can trigger and exacerbate autoimmune collagen-induced arthritis (3). The inability of MAM to cause overt clinical disease by itself, supports the notion that other virulence factors participate in the inflammatory effects of whole organisms.

We recently reported that Triton X-114 (TX-114) extracts of whole cells of a virulent strain of *M. arthritidis* contained components that activated macrophages through TLR2 and caused dendritic cell maturation as evidenced by upregulation of surface expression of class II MHC, CD40, B7-1 and B7-2 (4). These activities were not due to contamination with MAM or lipopolysaccharide (LPS) and were significantly less potent in extracts from an avirulent strain of *M. arthritidis*, suggesting an association with disease. Other mycoplasmas have also been shown to possess macrophage–activating components,
including MALP-2 (16) a lipopeptide derivative of MALP-404 from *M. fermentan*
fermentum, and a fibroblast- and macrophage-stimulating lipopeptide FSL-1 (23) from *M. salivarium*, and a partially purified 29 kDa lipoprotein from *M. hominis* (19). The role of these potential inflammatory molecules in clinical disease remains to be defined in part because of the absence of a suitable animal model. However, such a model is available for *M. arthritidis* (2, 5); prior to initiating these studies the first goal would be to purify and characterize the bioactive components of this organism. In the present study we purify four macrophage-activating components from *M. arthritidis* the activities all of which are TLR2- and CD14-dependent. We also show that one, OGex A (see below), which has binding avidity for serum apolipoprotein A-I (9), is related to the MlpD, MlpE, and MlpF lipoproteins of unknown function, recently described by Washburn et al. (31, 35).

Materials and Methods

Organism and culture conditions. *Mycoplasma arthritidis* 158p10p9 (8) was grown in modified Edward medium (7) consisting of PPLO broth supplemented with 15% (vol/vol) heat inactivated horse serum, 1.5% yeast extract (vol/vol, Invitrogen Corp), 0.25% (wt/vol) l-arginine HCl, 0.001% (wt/vol) NAD, and 500 U of penicillin G per ml.

To adapt the organisms to a serum-free medium, the serum content was gradually reduced to 0% and was replaced with 3% (wt/vol) BSA and 0.4% (vol/vol) of a 250 x cholesterol lipid concentrate (Invitrogen) as based on that previously (30). Cultures of *M. arthritidis* grew up to 2 x 10^8 CFU/ml after 48-72 h incubation in serum-free broth, i.e. ~ ten-fold less
than in Edward medium. The organisms were harvested by centrifugation at 27,000 x g for 30 minutes, washed three times with normal saline (NS), concentrated 100-fold and frozen at –70 °C until use.

Chemicals, enzymes and antibodies. Pam3-Cys-Ser-(Lys)4 (Pam3CSK4), a synthetic bacterial lipopeptide analogue from *E. coli* (1); MALP-2, a 2-kDa synthetic lipopeptide from *M. fermentans*, and LPS from *E. coli* R515 were purchased from Alexis Biochemicals (San Diego, CA). Endotoxin-free NS was from Baxter Healthcare (Dearfield, IL). Polymyxin B, n-octyl-β-glucopyranoside (OG), and proteinase K, PK-506 (PK) were from Sigma, St. Louis, MO. Monoclonal antibodies (mAb) against the Maa1 or Maa2 lipoproteins from *M. arthritidis* were prepared as described (29). HRP-conjugated anti-mouse IgG was from eBioscience (San Diego, CA). Fluorescence-conjugated anti-human CD25 mAb (clone M-A251) and purified rat anti-mouse CD14 mAb (clone 4C1/CD14) were from BD biosciences.

Mouse antisera were prepared against five recombinant *M. arthritidis* lipoproteins, MlpA, MlpC, MlpD, MlpE, and MlpF (31, 35). Mlp genes, minus their signal peptide-encoding regions, were amplified by PCR with primers placing restriction sites at 5’ and 3’ ends. PCR primer sequences for Mlps are listed in Table 1. Amplification conditions were as described (34). Amplicons were inserted into the appropriate pRSET vectors (Invitrogen); recombinant proteins were expressed in *Escherichia coli* BL21 (DE3)pLysS and purified as described (Invitrogen). Protein emulsions in incomplete Freunds adjuvant, were injected subcutaneously at ~50 µg into each of five male BALB/c mice. Mice were
boosted two weeks later by intraperitoneal injection of 50 µg in H2O. Antibody was monitored by ELISA. Pooled sera were collected from each group.

Mice. Female C57BL/6 and C57BL/6 CD14 (-/-) KO mice were purchased from Jackson Laboratory (Bar Harbor, ME); C57BL/6 TLR2 (-/-) KO mice were from Dr. Thomas Hawn (University of Washington School of Medicine, Seattle, WA) courtesy of Dr. Shizuo Akira (Osaka University, Japan). All KO mice were bred in the animal care facility of the University of Utah under specific-pathogen-free conditions in compliance with the Animal Welfare Act, and were used at 8 to 12 weeks of age. BALB/c mice for production of anti-Mlp antisera were purchased from Harlan Sprague-Dawley (Indianapolis, IN) and housed in the University of South Dakota animal care facility.

Cell culturing for cytokine induction and ELISA. Mouse peritoneal adherent cells and mouse macrophage RAW 264.7 cell lines were prepared as described (15). Levels of TNF-α, IL-6 and/or IL12p40 in culture supernatants were determined by using ELISA kits purchased from eBioscience or BD Biosciences. For each experiment, triplicate cell suspensions were treated with each agonist or control prior to ELISA and results were expressed as means +/- SD. CHO cells stably transfected with murine CD14 and ELAM-CD25 and with TLR2 were provided by Dr. D. Golenbock (University of Massachusetts Medical Center, Worcester, MA) courtesy of Dr. Janis Weiss (University of Utah Health Sciences Center, UT) and were used as described (14).

Isolation and Purification of the bioactive components. The lipoprotein fraction was extracted from M. arthritidis by OG as previously described (23, 24). Briefly, OG-
extracted (lipo)proteins (OGex) were separated on a 10% SDS-PAGE gel and were
transferred to a 0.45-µm-pore-size cellulose nitrate membrane (Bio-Rad) which was cut
into 2-mm strips, that were each dissolved in 1 ml dimethylsulfoxide. The (lipo)protein-
coated particles, formed by dropwise addition of 3 ml 0.05 M sodium carbonate buffer
(pH 9.6) to the dissolved membrane, were washed three times with NS, and tested for
ability to induce RAW 264.7 cells to secrete TNF. SDS-PAGE of extracted strips was
repeated and the gel was stained with zinc (Bio-Rad); the bioactive (lipo)protein bands
were excised and the gel slices eluted by Electro-Eluter (Bio-Rad). Resulting lipoproteins
were precipitated and washed with ice-cold acetone; purity was confirmed by SDS-PAGE
stained with silver.

Characterization of lipoproteins. The effect of proteolytic digestion on bioactivity was
determined by incubating lipoproteins at 1 µg/ml with 5µg/ml proteinase K (PK-5056,
Sigma; PK) for 1 hr at 37°C followed by 100°C for 15 min to inactivate the enzyme. The
susceptibility of lipoproteins to alkaline hydrolysis indicating acyl groups and to oxidation
indicating presence of thioesters was performed as described (4). Infra-red (IR) absorbance
spectra to identify bioactive groups, was performed on dried fractions of each lipoprotein
in KBr pellets using a Bruker, Model IFS 88 spectrometer. Flow cytometry to determine
TLR-2 expression on transfected CHO cells exposed to agonists was as previously
described (4).

Partial amino acid sequences were examined by Edman degradation using lipoproteins
blotted onto Immobilon PVDF membranes that were analyzed by an ABI Procise sequencer
(Applied Biosystems. Foster City, CA) or by mass spectrometry of tryptic digests using an
RESULTS AND DISCUSSION

Isolation and purification of bioactive lipoproteins from *M. arthritidis*

The OG lipoprotein fraction (OGex) from washed cells of the virulent 158p10p9 strain of *M. arthritidis* induced TNFα production by murine RAW 264.7 macrophages in a dose-dependent manner, with a concentration of 0.2 to 1.0 μg/ml being optimal (Fig. 1A). The activity in the extracts was not due to contamination with endotoxin or the MAM SAg as determined by methods previously described (4).

SDS-PAGE of OGex revealed the presence of seven major bands (Fig. 1B). When the gel was blotted to a cellulose nitrate membrane and strips therefrom extracted, the TNFα-inducing bioactivity was found in two major areas corresponding to approximately 42 to 32 kDa and 20 to 14 kDa, the latter comprising the dye front. (Fig 1B). Bands occurring in
the regions of activity were identified by negative zinc staining and were extracted by
electro-elution. Repeat SDS gels and extraction revealed the presence of 4 homogeneous
components that corresponded to mol masses of ~ 41, 37, 34 and 17 kDa (Fig 1C) which
we designated as OGex A, B, C and D, respectively. All four purified lipoproteins activated
RAW.264.7 cells in a dose-dependent manner with activity levels being similar (Fig 1 D).

Characterization of \textit{M. arthritidis} lipoproteins

Before characterizing these moieties in more detail, we first tested whether they might
be related to the Maa1 and Maa2 \textit{M. arthritidis} lipoprotein adhesins, virulence factors for
disease caused by \textit{M. arthritidis} \footnote{33}. We concluded that there was no relationship since
the molecular masses of Maa1 and Maa2 were markedly greater (86 and 56 kDa,
respectively), and Western blotting of OGex and each of OGex A, B, C, and D with
specific polyclonal anti-sera to Maa1 and Maa2 provided no evidence of cross-reactivity
(data not shown). Also, peptide fragments of OGex lipoproteins did not match adhesin
sequences in the Mascot data base (see below).

Since a number of studies have shown that the bioactivities of lipoproteins derived from
mycoplasmas or other bacteria, \footnote{10, 16, 23} are borne on small lipopeptides, we treated the
\textit{M. arthritidis} lipoproteins with PK or NS as a control. The protein bands of all moieties
were totally digested by PK (Fig. 2A) and the all of the bioactivity now migrated to the dye
front on blotted and extracted gels (Fig 2A). Importantly PK treatment did not decrease the
bioactivity of the lipoproteins as compared with that seen for NS-treated lipoproteins (Fig 2B).

To confirm that the active moieties were associated with lipids, we demonstrated that all four purified components were susceptible to alkaline hydrolysis indicating a role for fatty acid acyl groups (Fig 2C), and were also susceptible to oxidation with H$_2$O$_2$ indicating involvement of thioesters (Fig 2D). The presence of these bioactive lipid groups was confirmed by IR spectrometry by showing that as for the bioactive synthetic Pam3CSK$_4$ lipopeptide based on the bioactive region of a lipoprotein derived from E coli, the spectra of OGex A, B, C, and D exhibited absorbances at ~1,700 cm$^{-1}$ and ~2,900 cm$^{-1}$ (Fig 3), again suggesting the presence of acyl chains and thioester bonds, respectively, that are characteristic of microbial lipoproteins (10). Interestingly, the overall profiles of the four lipoproteins were quite similar although not identical.

Macrophage activation by *M. arthritidis* lipoproteins is dependent on TLR2 and CD14 co-receptors.

A wide range of bioactive bacterial lipoproteins are known to be dependent upon TLRs (11, 13, 25) and preliminary findings also suggested that the bioactivity of TX114 extracts of *M. arthritidis* might be also dependent upon TLR2 (4). To determine TLR usage by the purified lipoproteins of *M. arthritidis*, we tested their ability to up-regulate CD25 on CHO cells transfected with TLR2 and CD14, which act as an indicator of cell activation of NF-
κB through TLR. CD25 expression on these CHO cells was up-regulated by MALP-2 as well as all OGeX moieties indicating activation through TLR2 (Fig 4). We also demonstrated that whereas peritoneal macrophages from wild-type C57BL/6 mice produced high levels of TNFα, those from C57BL/6 KO mice failed to induce significant amounts (P < 0.0005). In contrast, the levels of TNFα induced by LPS, which utilizes TLR4, were not significantly different (P > 0.9) in macrophages from either TLR2+/+ or TLR2−/− mice (Fig. 5A).

Toll-like receptors are now known to be key molecules in innate immunity, recognizing pathogen-associated molecular patterns on microbial as well as endogenous agonists (13) (26). Microbial lipoproteins such as those from Trepanema pallidum, OSPA from Borrelia burgdorferi (22), possibly a lipoprotein of M. penetrans (24), and Pam3CSK4 from E. coli (1) are triacylated. The triacylated lipoproteins possess two acyl fatty acids attached to the cysteine residue at the N-terminus of the molecule through a sulfhydryl group and the third added to the free N-terminus by acyl transferase during cleavage of the mature molecule from the signal peptide (20). In the case of MALP-2 from M. fermentans (16), and probably also the FSL lipopeptide from M. salivarium (23), the third acyl group is missing, due to absence of acyl transferase. Characteristically, triacylated lipoproteins use TLR1 with TLR2 and diacylated lipoproteins use TLR6 with TLR2 although recent studies indicate that the N-terminal cysteine peptide region can also influence TLR usage (18) (27). In addition, at least one other co-receptor may be required for agonist recognition since triacylated lipoproteins and LPS also require CD14 (12), (17, 22). The requirement for
CD14 by diacylated lipoproteins has been more controversial (17, 21; Muhlradt, personal communication).

In view of the above, several approaches were used to determine the comparative usage of CD14 by the OGex lipoproteins and MALP-2 using LPS as a positive control for CD14 usage. First, we examined the effect of anti-CD14 antibody on TNFα induction by each of the agonists. In a preliminary dose/response experiment, we established that 10μg/ml of anti-CD14 antibody was the lowest concentration that reduced TNFα levels induced by OGex to background levels. Anti-CD14 antibody alone failed to influence spontaneous TNFα release by cells in the absence of stimulants. However, antibody to CD14 which, as expected, completely inhibited TNFα production by murine RAW 264.7 in response to LPS (P< 0.0005), also significantly inhibited (P< 0.0005) TNFα production by the OGex A, B, C, and D lipoproteins. In contrast, the response to the MALP-2 lipopeptide was not significantly inhibited (P> 0.05) by antibody to CD14 (Fig. 5B), even when doses as low as 0.25ng/ml of MALP-2 were used (data not shown). To confirm this observation, we compared TNFα production from peritoneal macrophages isolated from C57BL/6 wild-type mice versus those from C57BL/6 CD14 KO mice (Fig 5C). Absence of CD14 virtually abolished the ability of the M. arthritidis lipoproteins (P< 0.02) and LPS (P< 0.05) to induce TNFα in resident peritoneal macrophages, whereas the response to MALP-2 was not decreased by absence of CD14 (P> 0.05). We conclude that cytokine induction by OGex lipoproteins is CD14-dependent and thus quite unlike the MALP-2 di-acylated lipopeptide which, in our hands, does not require CD14.
Relationship of OGex A, B, C and D with other lipoproteins. Edman degradation to derive N-terminal sequences of OGex A, B, C, and D failed suggesting that the N-terminal cysteine was blocked and thus, likely tri-acylated. This finding supports our results described above indicating that the OGex lipoproteins require CD-14. Trypsin digests of OGex A, B, C and D were also analyzed by mass spectrometry for internal fragment sequences that matched proteins in the MASCOT data base (Fig. 6). Two fragments were found in OGex A (LLELNILK and LLELNDLK) that were identical to two sequences in *M. arthritidis* MlpD and, except for a single amino acid, in MlpE, formerly L-Rep, (31). Similar sequences were subsequently found in the newly identified lipoprotein, MlpF (Fig. 6). These three MlpD share extensive DNA and amino acid sequence homology and contain two domains of tandem, nonidentical repeats. The OGexA-like sequences are located near the beginning of repeat units in the second domain. Although we obtained some information on peptide fragment sequences from OGex B, C and D, their amino acid sequences did not match any in the MASCOT databases.

To confirm the relatedness between OGex A and the Mlp lipoproteins, OGex A, B, C and D were blotted onto PVDF membranes and tested for their reactivity to anti-MlpA, -C, -D, -E, and -F antibody and to pre-immune sera. OGex A reacted with anti-MlpD, -MlpE and -MlpF but OGex B, C, and D not react and neither did the pre-immune sera. The results indicate that OGex A is closely related to the MlpD, MlpE, and MlpF lipoproteins of *M. arthritidis*, but that MlpA, MlpB, and MlpC might be distinct.

The bioactive lipid moieties of microbial lipoproteins are characteristically borne on the N-terminal cysteine residue of the molecule. An analysis of the sequences of the mature
MlpD, MlpE, and MlpF lipoproteins revealed that all possessed only one cysteine residue and that the adjacent region, which in MlpD was “CDNTNKLEEPKKE”, was highly conserved with MlpE and MlpF. We therefore propose that this region likely represents the bioactive lipopeptide contained in OGex A. Interestingly, although MlpA, MlpB, and MlpC share less sequence with the other Mlps they all bear N-terminal cysteine regions which are very similar to those in MlpD, MlpE and MlpF. This raises the possibility that all of the Mlp family of lipoproteins may have bioactivity mediated by a common lipopeptide. Inasmuch as MlpA, -B, and -C exhibit molecular masses similar to OGex D, B and C, we cannot exclude the possibility that they may in fact be related despite our preliminary failure to detect sequence similarity by mass spectrometry.

Concluding remarks.

These studies have established that *M. arthritidis* possesses multiple macrophage-activating lipoproteins that appear to be related to the Mlp family of lipoproteins (31). Furthermore, the OGex moieties appear to be quite distinct from the MALP-404 lipoprotein of *M. fermentans* and its synthetic lipopeptide derivative, MALP-2, in that they are likely tri-acylated and have a requirement for CD14 whereas the MALP molecules, are di-acylated and, are independent of CD14 for cytokine induction. Although the function of the *M. arthritidis* Mlp lipoproteins was recently considered to be unknown (31), the present study suggests that they have inflammatory potential and thus might play a role in disease mediated by this organism. Preliminary studies have indeed shown an association with the potency of the lipoproteins and organism virulence (4). Of importance is their dependency
on TLR2, a molecule that is instrumental in *M. arthritidis* -mediated inflammatory disease (14, 15). In this regard it should be re-emphasized that the *M. arthritidis* SAg MAM can also not only regulate the immune system through TLR2, but also through TLR4 (14). The additional finding that MAM engagement of TLR4 can down-regulate inflammatory disease mediated by *M. arthritidis* (Cole and Mu, unpublished observations) suggests that both MAM and the OGex lipoproteins play a significant role in disease pathogenesis. Furthermore, concurrent work has demonstrated that OGex A lipopetides can bind to apolipoprotein A-1, a component of HDL cholesterol, also suggests a mechanism whereby microbial agonists might render host lipoproteins inflammatory, a process which in this case may contribute to atherosclerosis (9).
Acknowledgments

This work was supported by the Nora Eccles Treadwell Foundation, by NIH grant AR02255, by a grant from the North Central Chapter of the Arthritis Foundation, and by a grant from the South Dakota Health Research Foundation. BCC is the recipient of the Nora Eccles Harrison Chair in Rheumatology. Amino acid sequence analysis and IR spectrometry were done by University of Utah HSC Core Research Facilities. We also thank Chris Li and John Huntinghouse for excellent technical assistance.
<table>
<thead>
<tr>
<th>primer</th>
<th>sequence (5’-3’)<sup>a</sup></th>
<th>Mlp reference or accession number</th>
</tr>
</thead>
<tbody>
<tr>
<td>mlpA-f</td>
<td>CTCggatccGCGATAATACCGAGAAAAAGCC</td>
<td>unpublished</td>
</tr>
<tr>
<td>mlpA-r</td>
<td>CAGgaatttTTTCTTGCTAAAGACCTTG</td>
<td>AF154924 (OrfA)</td>
</tr>
<tr>
<td>mlpC-f</td>
<td>CAGggatccGATAATACTGATAAAAAACTAG</td>
<td>(31)</td>
</tr>
<tr>
<td>mlpC-r</td>
<td>CTGgaatcCATTTGCTATTTTTGCTTTCTCC</td>
<td></td>
</tr>
<tr>
<td>mlpD-f</td>
<td>CGGAGCTAGATAATAATAAAAAACTAGAAGAAC</td>
<td>(31)</td>
</tr>
<tr>
<td>mlpD-r</td>
<td>CTATTTGGAagcttCTATAGC</td>
<td></td>
</tr>
<tr>
<td>mlpEF-f<sup>b</sup></td>
<td>CGGctgAATAATACATATAAAAAAC</td>
<td>AY544183</td>
</tr>
<tr>
<td>mlpE-r</td>
<td>GGCggtaccCTATTTTGAAGCTTCTTCGAC</td>
<td></td>
</tr>
<tr>
<td>mlpF-r</td>
<td>GGCgaatttTTATTTTTAAAATTCATTTAAC</td>
<td>DQ451673</td>
</tr>
</tbody>
</table>

^a Restriction sites added by PCR (except for mlpD-r) for cloning into expression vectors are italicized and in lower case. The HindIII site in mlpD-r occurs naturally at the 3’ end of mlpD.

^b The same forward primer was used for both mlpE and mlpF.
Figure legends

Figure 1. Purification of bioactive components from *M. arthritidis*. The following purification data are representative of repeated OG extractions on two separate batches of organisms. **(A)** Dose dependency of OGex induction of TNF-α in murine RAW 264.7 cells. **(B)** SDS-PAGE of OGex. Lane 1, protein standards; lane 2, OGex. Gel was blotted to cellulose nitrate, 2mm strips were excised, dissolved in DMSO, precipitated, and the (lipo)protein-coated particles, tested for TNF-α production in culture supernatants of RAW cells. **(C)** SDS-PAGE of purified lipoproteins stained with silver. Lane 1, protein standards; lane 2, OGex A; lane 3, OGex B; lane 4, OGex C; lane 5, OGex D. **(D)** Dose response of TNF-α production by purified OGex A, B, C and D in RAW 264.7 cells.

Figure 2. Properties of OGex lipoproteins. **(A)** SDS-PAGE of OGex. Lane 1, protein standards; lane 2, OGex treated with PK. PK-treated OGex were blotted to cellulose nitrate strips extracted and tested for activity which migrated to the dye front. **(B)** OGex were incubated with NS or with PK and after heating to 100°C for 15 min were assayed for ability to induce TNFα in RAW cell cultures. **(C)** Effect of alkaline hydrolysis on the activity of 50ng/ml of OGex A, B, C and D as indicated by the ability to stimulate TNFα production by RAW 264.7 cells. **(D)** Effect of H₂O₂ treatment on the bioactivity of OGex A, B, C and D. Tests for lipid groups in Figs (C) and (D) were assayed on three separate cell suspensions stimulated with each of the treated OGex lipoproteins. Mean results +/- SD are shown.
Figure 3. IR spectra of Pam3CSK4, OGex A, B, C and D. White arrow shows the signal about 2900 cm$^{-1}$, suggesting the presence of fatty acid acyl chains. Black arrow shows the signal about 1700 cm$^{-1}$, suggesting the presence of ester bonds.

Figure 4. Flow cytometric analysis of CHO/TLR2 cells. The cells were stained with FITC-labeled anti-human CD25 mAb and analysed by flow cytometry for the expression of the CD25 transgene, an indicator of TLR activation. The activation of cells was expressed by mean fluorescence intensity (MFI). Thin lines, no Ab; broken lines, isotype control Ab; thick lines, anti-human CD25 mAb.

Figure 5. (A) TNF-α production by peritoneal macrophages of C57BL/6 mice or C57BL/6 TLR2KO mice stimulated with OGex A, B, C, D, LPS or NS. The concentration of OGex A, B, C, D and LPS were 100 ng/ml. Peritoneal adherent cells were stimulated for 18 h with inducers, and the amounts of TNF-α in cell culture supernatants were tested by ELISA. The data is representative of 2 experiments using 4-5 mice in each. The experiment was repeated twice. (B) RAW 264.7 cells were pre-incubated with NS, isotype control Ab or anti-mouse CD14 mAb (10 μg/ml) for 1 h. Then, they were stimulated with LPS (10 ng/ml), MALP-2, OGex A, B, C or D (20 ng/ml) for 18 h. (C) Peritoneal macrophages from C57BL/6 or C57BL/6 CD14 KO mice were stimulated with 50 ng/ml LPS, MALP-2 or OGex A, B, C, or D and culture supernatants tested for the presence of TNFα. Representative data from two similar experiments is shown using 4-5 mice in each.
Figure 6. Amino acid sequence comparisons between OGexA fragments and M1ps D, E, and F. Amino acid residues identical to one or both of the OGexA peptides are shaded black.

Figure 7. Dot blot analysis of OGex A, B, C and D. Recombinant M1p (rM1p) A, C, D, E, F lipoprotein, OGex A, B, C and D were placed on a PVDF membrane and detected by anti M1p anti serum. (A) Schema of protein Spotting patterns. (B) PVDF membranes of dot blot analysis. Antigens were detected by anti M1p anti serum. The amount of protein was 2μg/dot, respectively. The experiment was conducted 3 times using different antigen concentrations but with similar results.
References

and partial purification of a macrophage-stimulating factor from Mycoplasma

Transfer of diacylglycerol moiety from phosphatidylglycerol. J Biol Chem
269:19701-6.

21. Schroder, N. W., H. Heine, C. Alexander, M. Manukyan, J. Eckert, L. Hamann,
binds to triacylated and diacylated lipopeptides and mediates innate immune

Treponema pallidum and Borrelia burgdorferi lipoproteins and synthetic
lipopeptides activate monocyctic cells via a CD14-dependent pathway distinct from
that used by lipopolysaccharide. J Immunol 160:5455-64.

terminal lipopeptide of a 44-kDa membrane-bound lipoprotein of Mycoplasma
salivarium is responsible for the expression of intercellular adhesion molecule-1 on
the cell surface of normal human gingival fibroblasts. J Immunol 165:6538-44.

of Mycoplasma fermentans and M. penetrans activate human immunodeficiency
virus long-terminal repeats through Toll-like receptors. Immunology 113:121-9.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
MlpD repeat 1: EERLLEINDLKEIAKK
MlpD repeat 2: EERLLEINDLKEIAKK
MlpE repeat 1: EERLLEINDLKEITKK
MlpE repeat 2: EERLLEINDLKEIAKK
MlpF repeat 1: EERLLEINDLKEITKK
MlpF repeat 2: EERLLEINDLKEITKK
OGexA 1st peptide: LLEINDLK
OGexA 2nd peptide: LLEINDLK
Fig. 7