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Abstract

Extreme value copulas are the limiting copulas of component-wise maxima. A bivariate
extreme value copulas can be represented by a convex function called Pickands dependence
function. In this paper we consider nonparametric estimation of the Pickands dependence
function. Several estimators have been proposed. They can be classified into two types:
Pickands-type estimators and Capéraa-Fougeres-Genest-type estimators. We propose a new
class of estimators, which contains these two types of estimators. Asymptotic properties of the
estimators are investigated, and asymptotic efficiencies of them are discussed under Marshall-
Olkin copulas.

Key words and phrases: bivariate exponential distribution; extreme value distribution; Pickands
dependence function.

1 Introduction

Copulas are functions that join multivariate distribution functions to their one-dimensional mar-
gins. A class of copulas derived from the limiting behavior of component-wise maxima of inde-
pendent, identically distributed samples is that of extreme value copulas. Unlike the univariate
case, there is no finite-dimensional parametrization in the multivariate extreme value distributions.
In other words, the class of extreme value copulas cannot be represented by a finite-dimensional
parameters. The multivariate extreme value distributions have been discussed in many textbooks
of extreme value theory or copulas theory, for example, Galambos(1978, 1987), Resnick (1987),
Joe (1997), Kotz and Nadarajah (2000), Beirlant, et al. (2004), Castillo, et al. (2005), de Haan
and Ferreira (2006) and Nelsen (2006).

In this paper we consider bivariate extreme value distributions. Without loss of generality, we
can assume that marginal distributions are exponentials with unit means. Let X and Y be random
variables with survival functions F(z) = P(X > x) and G(y) = P(Y > y), respectively. When
(X,Y) follows a bivariate extreme value distribution, its joint survival function can be represented
as

Y
S(z,y) = —(z+ A 1
@ =ew{-@+na (2] )
for 0 < z,y < oo with z +y > 0, where A : [0,1] — [1/2,1] is a convex function satisfying
A(0)=A(1) =1 and

max(1 —¢t,t) < A(t) <1, te]l0,1]. (2)

The representation (1) was obtained by Pickands (1981), and the function A is called Pickands
dependence function. The survival copula corresponding to the survival function S is given by

logv
— G(_ — = < <1.
C(u,v) = S(—logu, —logwv) = exp [log(uv)A { Tog(av) H , 0<u,v<1

The copula is determined by the Pickands dependence function A. Important examples of A are
the lower and upper bounds of (2). If A(¢) =1 (the upper bound), then X and Y are independent.



If A(t) = max(1—t,t) (the lower bound), then X and Y are completely dependent, that is, X =Y
holds with probability one.

Several parametric models for A are presented by Tawn (1988), Joe (1997), Kotz and Nadara-
jah (2000) and Beirlant, et al. (2004). One of the classical parametric models is the so-called
logistic model, proposed by Gumbel (1960), and defined by

A(t) = {1 =) + 7}, telo,1], (3)

where ¢ > 1 is a dependence parameter. Independence and complete dependence correspond to
r =1 and r = oo, respectively. Another classical parametric model is the so-called Marshall and
Olkin (1967) model, defined by

A(t) = max(1 — 6t,1 — (1 —t)), te€]0,1], (4)

where 6 € [0,1] is a dependence parameter. Independence and complete dependence correspond
to # = 0 and 6 = 1, respectively.

We are concerned with nonparametric estimation of the Pickands dependence function A. A
nonparametric estimator of A was proposed by Pickands (1981). Modifications of the Pickands
estimator were suggested by Tiago de Oliveira (1989), Deheuvels and Tiago de Oliveira (1989),
Deheuvels (1991) and Hall and Tajvidi (2000). Another type of nonparametric estimator was
proposed by Capéraa, Fougeres and Genest (1997) . Modifications to satisfy the constraints of
convexity were suggested by Hall and Tajvidi (2000), Jiménz, Villa-Diharce and Flores (2001) and
Fils-Villetard, et al. (2008).

With the exception of modifications for the convexity, nonparametric estimators can be clas-
sified into two families: Pickands-type estimators and Capérad-Fougeres-Genest (CFG)-type esti-
mators. Based on a simulation study, Capéraa, et al. (1997) discussed comparison between the
Pickands-type estimators and the CFG-type estimators. Their results indicate that the CFG-type
estimators are preferable to the Pickands-type estimators under a wide range of dependence struc-
tures. Segers (2008) gave a unified treatment of the Pickands-type and CFG-type, and showed
that the CFG-type is asymptotically more efficient than Pickands-type under independence of X
and Y. The unified treatment and the moment formulas obtained by Segers (2008) are very useful
to discuss several properties of the nonparametric estimators. In this paper, we develop the unified
treatment a little further and propose a new class of nonparametric estimators for the Pickands
dependence function. The class includes both the Pickands-type and the CFG-type estimators.

The outline of the paper is as follows. In Section 2, based on the unified treatment obtained
by Segers (2008), we define a new class of nonparametric estimators for the Pickands dependence
function. The asymptotic properties of the nonparametric estimators are investigated in Section 3.
In Section 4, we discuss comparison of the estimators under Marshall-Olkin model of (4). All
proofs are given in Section 5.

2 A class of estimators for Pickands dependence function

Let (X;,Y;), 4 =1,2,...,n be random samples from the bivariate survival function (1). For
t € [0,1], define
X YL
&:(t) = min (1—75’7) ,i=1,2,...,n
Then, &(t) is exponentially distributed with mean
1
< = Bl (5)

A

Pickands (1981) estimator is an empirical version of this moment equation, and which is defined

by
1 v N Xi Y
0 =n ;:1 &Lt)=mn ;:1 min <1 33 ) .




The estimator does not satisfy the constraints A(0) = A(1) = 1.
Deheuvels (1991) proposed an estimator AP (¢) defined by

AD(t ‘12{& — (L= (X = 1) —¢(Y; = 1},

and which satisfies A?(0) = A”(1) = 1. This estimator can be considered as an empirical version
of a moment equation

1
i = Pla® — =006~ 1) — (v - 1) (©)

Another nonparametric estimator was proposed by Capéraa, Fougeres and Genest (1997). They
focused on equations

" Pr{Y; J i) S Er T % ' Pr{Vi/(X; P) <z}—z
logA(t)=/0 P{K/()iz(:‘_y?)ﬁ } dzz_/t P{Y/()i(:—_}fz))g } "

Replacing the distribution function Pr{Y;/(X; +Y;) < z} by corresponding empirical distribution
function n=! "1 | I{Y;/(X; +Y;) < z}, where [ is the indicator function, Capéraa, Fougeres and
Genest (CFG) (1997) estimator ACFE is defined by

t —1§yn . . . —
IOgACFG(t) — P(t)/o n Zi:l I{EZ(/I()fzz';K)SZ} z

1 _ "ty Y/ (Xi+Y) <2} -z
{1- () / A

dz

dz,

where p(t) is an appropriate weight function on[0,1]. Beirlant, et al. (2004) and Segers (2008)
showed that A°F%(t) is an empirical version of an equation

—log A(t) = E[log&i(t) — p(t) log X; — {1 — p(t)} log Yi], (7)

and ASFE(t) can be expressed as
—log ACFC (1) =n 12 [log&;(t) — p(t)log X; — {1 — p(t)}log Y] .

In this paper, we consider Box and Cox’s (1964) power-transformation on [0, c0) defined by

[ AT -, A >0,
Pal) = { log z, A=0.

It can be easily verified that

Elprfso) = { L5 oA s -, 2 6

where T' is the gamma function and + is the Euler’s constant. Let a(t) and b(t) be appropriate
weight functions on [0, 1]. Then, it can be seen that

Elpa{&i()} = alt)pa(Xi) = b(t)a(Y3)]
_{ T(1+ N {1/A(1)} + A~ 1{F(1+)\)—1}{1—a(t)—b(t)}, A>0,
—po{1/A(1)} — {1 —alt) - b(®)}, A=0.

From this, we can obtain an equation

P+ Mea{1/A()} = Elpa{&i(D)} — a(t)oa(Xi) = b(t)pa(Yi)]
“ATHI(A+A) = THL - a(t) = b(t)}- (8)



This equation is a generalization of equations (5), (6) and (7). When A = 1 and a(t) = b(t) =
the equation (8) reduces to (5). If A =1, a(t) = 1 —¢ and b(t) = ¢, then (8) gives (6). If two weight
functions are chosen as a(t) =1 — p(t), b(t) = p(t) and let A — 0 in (8), then (7) is obtained.

The equation (8) suggests estimating A(t) by replacing the expectation term by sample means.
We define an estimator Ay (¢; a(t),b(t)) by

PG00 = 1y S aE0) ~ aDea(5) b 03]
—ox{l—a(t) = b(t)}, 9)
where
AT+ ) - 1}/T(+N), A>0,
= { -, A=0.
Noting that limy_0cy = —y = ¢o, as A = 0 in (9), we have a CFG-type estimator

—log Ao (t; alt Z log &i(t) — a(t) log X; — b(t) log Yi] + v{1 — a(t) — b(t)}.

From (8) and (9), we have

E [WA{l/AA(t;a(t),b(t))}] = ﬁE[w{&(t b= a(t)oa(Xs) — b(t)pa(Y3)]
—ex{l—a(t) - b(t)}
= o {1/A@®)},

for any fixed ¢+ € [0,1] and A > 0. Hence, px{1/Ax(t;a(t),b(t))} is an unbiased estimator of
©x{1/A(t)}. The constant term —cy{1—a(t)—b(¢)} in (8) is a bias-correction term. If a(t)+b(t) = 1
then this term is not needed.

Estimators A, (¢;0,0), Ay (t;1—t,t), Ag(t; 1 — p(t), p(t)) are AP (¢ t), AP (t) and ACFE(t), respec-
tively. In the next section, we 1nvest1gate asymptotic properties of Ay (t;a(t),b(t)) for A > 0.

3 Asymptotic Properties

Assume that weight functions a and b are bounded on [0, 1]. Then, for any fixed ¢ € [0, 1] and
A >0,
Ellox{&(t)} — a(t)ox(Xi) = b(t)oa(Yi)[] < oo.

Thus, by the strong law of large numbers, for any fixed ¢ € [0,1] and A > 0,
lim oy {1/Ax(Ea(0).b(0)} = o2 {1/AD)  as.
Since the transformation oy is continuous, Ay (#;a(t),b(t)) is consistent, that is,

lim Ay (t;a(t),b(t)) = A(t) as..

n— o0

The second moment of the transformed variate p{&;(-)} is given by the following lemma.

Lemma 1 For A >0 and 0<s <t <1, covariance between p {&(s)} and p{&(t)} is given by
Cov [pa{&(s)}, ea{&(B)}]

I(1+2)) 1t * s 1 A P (1 — w) Mt
232 [(1 —s){A1)}? ] i [t{A(S)}Q] T /s Awp ™
{TA+ M)}

SR {A) AP




Letting A = 1 in Lemma 1, we have

Cov [p1{&(s)}, p1{&(t)}] = Cov [£(s),£(2)]
1—t¢ N s N 1 /t 1 B
1=s){A®}*  HAB)P  A-st /), {Aw)}? A(s)A(t)

This formula has been obtained in Theorem 1 of Segers (2008). Covariance formula between
wo{&(s)} = log&(s) and @o{&(t)} = log&(t) has been given in Theorem 2 of Segers (2008). The
formula can be also derived from Lemma 1 as A — 0. The result is given in the next corollary.

1

Corollary 2
s given by

Cov[goo{f )} polé(®)}]
hm Covlpa{&(s)}; pa{&(t)}]
2 log w

~ + (logt)lo 1_t+/t
gt)log CTow

1-s5
1 log A

}2 _/: w(l —w)

The estimator Ay (t; a(t),b(t)) consists of random samples of 3-dimensional random vector
[ea{&@®)}, oA (X), oa(Y)]. Covariance matrix of it is directly obtained from Lemma 1.

For 0 <s <t <1, covariance between po{&(s)} =log&(s) and po{&(t)} = log&(t)

1—-1 s
dw — {log A(t)} log T~ {log A(s)} log "

A(s)

A dw.

Corollary 3 For any fized t € [0,1] and A > 0, covariance matriz of 3-dimensional random vector
[eA{@®)}, or(X), ox(Y)] is given by

O (ta t) 2P (07 t) 2 (ta 1)
EA(t): JA(Oat) U)x(OaO) UA(Oal) ) (10)
0')\(t,].) O'A(O,l) 0‘)\(1,1)
where
B P +20) —{T(1+ M)}
U)\(t7t) - Var[goA{f(t)}]— )\Q{A(t)}g)\ ’
72(0,0) = ox(1,1) = Varlpa (¥)] = Varln (V)] = T2V ISR,
JA(Oat) = COV[(p)\(X),QO)\{f(t)}]
ST [ 1=t N A et w) ! MERLCEPY
- T _[{A(t)}ﬂ] 5 ), d] VIADP
ox(t, 1) = Covlpa{é(®)}, oa(Y)]
_T(1+2)) e 1 A LaA=1(1 = w)-1 {La+x)2
2N _[{A(t)}Q] +(1—t)*/t {A(w)}* dw]_ AP
O-A(Ov]-) = COV[@A(X)WO)\(Y)]
o r42n ot - w)r T+ N}
a 2 /0 {A(w)}* e

Tawn (1988) has stated that correlation between X and Y, whose margins are exponential, is

given by

Cor[X,Y]:/O mdw

5



From Corollary 3, we can obtain a generalized formula

Cor[X*, YA = Corfpa(X), oA (Y)] = 0(0,1)/0(0,0)
27IAL(L+2)) fy S dw — {T(1+ V)

T(14+2)) - {T(1+)N)}? ’

which is correlation under Weibull margins. For any A > 0, the two extreme case Cor[X*,Y*] = 0
and 1 correspond to independence A(w) =1 and complete dependence A(w) = max(1 — w,w).
Fundamental asymptotic properties of Ay (¢; a(t),b(t)) are given by the following theorem.

Theorem 4 Assume that weight functions a and b are bounded on [0,1]. Then, for any fized
t €[0,1] and X\ > 0,

E[Atatn)] = s LEADRGa000) o (1Y gy

2n n?
Var [Ax(a(0),b(1))] = {4y ;3 (ta®),b®) (%) (12)
and A
Vi {Ax(ta(), b)) — A® } 5 N (0.{A@ PO i (#a(),b(1)) (13)
where

" _ n(OSOn()
R (ta(0),b(0) = T

n(t) is a 8-dimensional column vector defined by n'(t) = [1, —a(t), —b(t)] and X (t) is the covari-
ance matriz defined in Corollary 3.

From Theorem 4, expected squared error of Ay (;a(t), b(t)) is given by

E [{A,\(t; a(t),b(t)) — A(t)}2] = Var [AA(t; a(t), b(t))] +0 <%> :

and its main contribution comes from the variance term.
When a(t) = b(t) = 0, the asymptotic variance is

(AP 7 (10,0) = RIS {A0)

Thus, asymptotic relative efficiency (ARE) of A, (t;0,0) with respect to Pickands estimator AP (t) =
A1 (t;0,0) is given by
P P L(1+A))2
ARE [4,(0,0), A"(t)| = %

which does not depend on ¢. Figure 1 shows the ARE for A > 0. We can see that the ARE is less
than one for A # 1. If weight functions are not used, then Pickands estimator is asymptotically
preferable. The estimator flo(t; 0,0) is an CFG-type estimator without weight functions, and its
ARE is 6/72 ~ 0.608. From these results, it can be seen that weight functions a(t) and b(t) play
an important role in Ay (¢; a(t), b(t)).

We now consider some conditions for the weight functions. From Theorem 4, asymptotic
variances of Ay (0;a(0),b(0)) and Ay (1;a(1),b(1)) are given by

{(1 — a(0))* + (6(0))*}0x(0,0) — 2b(0)(1 — a(0))a»(0,1)

7 (0:0(0),5(0)) = TR and
. _ (@) + (1= b(1)*)or (1,1) = 2a(1)(1 = {1 (0, 1)
7 (Lia(1).b(1) = e ,



respectively. Thus, if a(t) and b(t) satisfy conditions a(0) = b(1) = 1 and a(1) = b(0) = 0, then
these variances vanish. This is natural because, under these conditions, Ay (¢;a(t), b(t)) satisfies a
preferable property

Ax(0;a(0),6(0)) = Ax(1;a(1),b(1)) = 1.
Partition X, (t) of (10) as

(t,1) |

(oBY t 0')\(0,t) 0'>\(t,].) . (t t) ~ ! (t)
Sa(t) = | Toa(0,8) | 02(0,0) 02(0,1) | =| 2V 2
’ ! (6 1) | 0 (0.1) on(11) ] [ aat) 3 ]
and put 7' (t) = [a(t), b(t)] Then, the asymptotic variance of A, (¢;a(t),b(t)) can be expressed as
2(142) ~
o {0 - 25 0a0 + 7 OB )
For any fixed ¢ € [0,1] and A > 0, this is minimized at
o Taa® ] s te o [ 0a(0,00 0x(0,1) 77 [ 0a(0,0)
a=| 50 |=S'm0=[ 200 200 ] [ai ] (9
if 3, is nonsingular. Corresponding minimal variance is
2(1+A) o
% {ontn —aa 0%, 60} (15)

We call a}(t) and b}(t) defined by (14) as optimal weight functions. These functions satisfy
a}(0) = b3(1) =1 and a}(1) = b3(0) = 0, and hence, Ay(t;a}(t),b}(t)) satisfy

Ax(0;07(0),6"(0) = Ax(1;a%(1),5%(1)) = L.

Singularity of %, occurs only in complete dependence case because 0 (0,1) = ¢, (0,0) if and
only if A(w) = max(1 — w,w) for all w € [0,1]. In other words, except for complete dependence
case, optimal weight functions are uniquely determined by (14). However, we can not know them
because they depend on the unknown dependence function A.

4 Asymptotic Comparison under Marshall-Olkin models

The purpose here is to explore a little further into optimalities of A, a(t) and b(¢) in the estimator
Ax(t;a(t),b(t)). It seems reasonable to consider that the optimalities depend on the unknown A(t).
It is quite likely that dependence structure between X and Y influences the optimalities of A, a(t)
and b(t). In order to investigate such an influence, we assume the Marshall-Olkin model defined
by (4). It is a symmetric case of the nondifferentiable asymmetric logistic model introduced by
Tawn (1988), and is just the Marshall and Olkin’s (1967) bivariate exponential model transformed
to have unit exponential margins. When # = 0, we have independence. Complete dependence
corresponds to # = 1. The joint distribution of X and Y is singular on the line z = y, and

Cor[X,Y]=Pr[X = Y] =6/(2-0).

Define a function fy on [0, 1] by

t
i) = )\t_A/ w1 — w) " dw.
0
This is one of the Gaussian hypergeometric function, that is,

— (A);(1=X); ¥

t) =oF [N 1=X )+ 1t] =
f)\() 2 1[7 3 + 7] (1+)\)],]' )

Jj=0



where (c); is Pochhammer’s symbol defined by (¢); = c(c+1)---(¢c+ j — 1), cf. Johnson, et
al. (2005).
Under (4), it holds that

t A—1 1— A—1
A/ wdw

{A(w)}*

() 5 (%8) - (i) 1 (58)
Y= o)xf,\(_ _( ss)) I (“A_(i);s _(%) I ((1_2#), s<i<t (16)

() 1 (58072) - (5)  (2=2). L<s,

for 0 < s <t < 1. A proof of this is in Section 5.
From (16) and Corollary 3, we have, under (4),

2)25,(0,0)  2X203(1,1)
T(1+2\)  T(1+2) =2- A0,
2)\20')\(t, t) _ 2 — f)\( )
T(1+2\) AN
W0 _ (0-D AW IE<1/) ((1 —9)t>
[(1+2)) A {a@r  {A®P At)
) 1—t\*, /1-6)1-1)
=12 {m o (7=6) - () (g )} ()
2020, (t, 1) _ A __h(Q@) N I(t > 1/2)fA ((1 —6)(1 —t)>
L(1+2)) {A@ P A0y AP A(t)
2 6 t A =
s 1/2){(1—0%2 o (225) - (a=am) & (Y )}
220, (0,1) 2 1-6
Tiroy - @ <2—0) — A,

where I is the indicator function.
The correlation coefficient between X* and Y* is given by

B o0 20 () -0
COI"[X)\,Y)\] - COT[WA (X)7<P>\(Y)] - 0_)\(0’ 0) - (2 _ 9))\{2 _ f)\(].)} 9

and which is non-increasing with A > 0 .
(Under complete dependence: 6 = 1)

Substitute # = 1 into (17). Then, we have covariance matrix of (10) as

T(1+20{2 - A1) {A((tt))}__zf {A(tl)}_A {A(tl)}_A
2x° (A 1 1

NGRS
under complete dependence. Because of singularity, the optimal weight functions are not deter-
mined by (14). In this case, the asymptotic variance of A, (t;a(t),b(t)) is given by

{2-HOHABY [
PEING)

1= {A@® M a(t) +b(8)}]”. (18)



Under complete dependence, if two weight functions satisfy a condition

a(t) +b(t) = m for all ¢ € [0,1], (19)

then, (18) vanishes. This is a natural result. If (19) holds, then we have
Ax(t;a(t),b(t)) = A(t) = max(1 —t,¢) for all ¢t € [0,1] (20)

with probability one. This is shown in Section 5. When A = 0, (19) reduces to a simple condition
a(t) + b(t) = 1. This shows that, in CFG-type estimator (A = 0), the simple weight functions
a(t) = p(t) and b(t) = 1 — p(t) are optimal under complete dependence.

(Under independence: § = 0)

When 6 = 0, the covariance matrix of (10) is given by

2 — fa(1) (L= =D+ () =)+, — 1)
zmo=£%§§§[<1—ntfxnfnm 2 Fu(1) 0 ]
A= D)+ (1 =) 0 2 — fa(1)

From (14) and (15), optimal weight functions and corresponding minimal variance are given by

(1—1)* — fa(1) + falt) P —HO)+HA-1)
2-fa(1) ’ 2 - fa(1)

ax(t) = bX(t) =

and
1 2~ (1) — (A== AO)+AOF +H{* - HAQ) + AO -1}
A2 fa(1) 2 - fia(1) ’
respectively. When A = 1, these reduce to aj(t) = 1 — ¢, bj(t) = ¢t and 2¢(1 — ¢), respectively,
and which has been already derived by Segers (2008). When A\ = 0, optimal weight functions and
corresponding minimal variance are given by

6 6
G0 =1- L), bBt)=1- La(1-1)

and
7'['_2 _ {7T2/6 — Lg(t)}2 + {7T2/6 — L2(1 - t)}2
6 72 /6 ’
where Lo (t) is the dilogarithm function defined by

*log(1 — — tJ
L2(t):—/ de: =
0

w
=17

These results for A = 0 has been also obtained by Segers (2008).

Figure 2 shows the optimal weight functions a} and b} for A = 0 (dotted curve), A = 1/3
(broken curve), A = 1 (solid line) and A = 3/2 (broken-dotted curve). Under independence, the
smaller A is, the larger optimal weights for both marginals are.

The optimal weight functions under independence do not satisfy the optimality condition (19)
under complete dependence. (19) is equivalent to {a(t) + b(t)}{max(1 — ¢,t)}* = 1. We are
interested in how different {a}(¢) + b%(t)}{max(1 — ¢,¢)}* is from one. Figure 3 shows {a}(t) +
b3 (t)Hmax(1 — ¢,¢)}* for A = 0 (dotted curve), A = 1/3 (broken curve), A = 1 (solid curve) and
A = 3/2 (broken-dotted curve). From this figure, we can see that, for A = 0,1 and 3/2, a3 and
b3, which are optimal under independence, do not work well under complete dependence. On the
other hand, {a] /;(t) +b] 5 (t) }H{max(1-t, t)}'/3 is near one for all t € [0, 1]. In other words, aj 5(t)
and b} /3(t) are not so far from the optimality under complete dependence.



Figure 4 shows ARE of Ay (t;a% (), b%(t)) with respect to Ag(t; ag(t), b(t)) which is CFG-type
estimator with optimal weights, for A = 1/3 (broken curve), A = 1/2 (dotted curve), A = 1
(solid curve) and A = 3/2 (broken-dotted curve). Under independence, estimators for A > 1 are
inferior to the CFG-type estimator if weight functions are optimally chosen. When 0 < A < 1,
Ax(t;a%(t),b5(t)) has smaller variance than the CFG-type estimator in neighborhoods of both
edges. However, in general, the CFG-type estimator may be better under independence.

(Under the Marshall-Olkin model: 0 <6 <1)

Covariances for general 0 < 6
optimal weight functions a} (¢) and
about t = 1/2.

Figure 5 shows a} (t) for A = 0,1/3,1 and 3/2 under § = 0 (solid curve), § = 0.5 (broken curve)
and § = 0.8 (dotted curve). The parameter 6 can be considered as one of the global dependence
measures between X and Y. From Figure 5, we can see that aj /3(75) does not receive its influence
so much and a} /3(t) ~ 1—tfor any 0 < # < 1. This is important in the sense that the simple
choice a(t) =1 —t and b(t) =t can be used independently of § when A\ =1/3.

For each A > 0, minimal variance is given by (15). From that, we can obtain asymptotic relative
efficiency (ARE) of Ay (t;a%(t),b%(t)) with respect to the CFG-type estimator Ag(t;ag(t), b (t))
with optimal weights. Figure 6 shows the ARE’s of A = 1/3,1/2,1 and 3/2 under § = 0 (solid),
6 = 0.3 (broken), § = 0.5(dotted) and § = 0.8 (broken-dotted). When A = 1 or 3/2, corresponding
Estimators for A = 1 and 3/2 are inefficient for all §. On the other hand, estimators of A = 1/3
and 1/2 are more efficient than the CFG-type if 6 is not so small. When 6 > 0.5 (in this case,
correlation coefficient between X and Y is not less than 1/3), the estimator of A = 1/3 is more
efficient than the CFG-type for all ¢ € [0, 1].

From Figure 6, we can see that, except for § = 0, the ARE has a minimum at symmetric points
near ¢ = 1/4 and 3/4 and it has a substantial maximum at ¢ = 1/2. We shall focus on ¢t = 1/4 and
1/2. Figure 7 shows ARE of Ay (t; a%(t),b%(t)) with respect to Ag(t;ag(t),bs(t)) at t = 1/4 and
1/2, for # = 0,0.3,0.5 and 0.8. The left (¢ = 1/4) and right (¢ = 1/2) figures approximately show
minimum and maximum efficiencies, respectively. When 6 = 0.8 (0.5), the minimum efficiency is
greater than one for 0 < A < 0.6 (0 < A < 0.4), and the maximum efficiency is greater than one for
0<A<09(0< A<0.8). Except for independent case (6 = 0), there exists a optimal A € (0,0.5).
It seems reasonable to suppose that 0.2 < A < 0.4 is better than A = 0 if there exists dependency
to some degree.

The above comparison is based on optimal choice of the weight functions. However, the optimals
depend on the unknown dependence function A(t). Segers (2008) proposed an adaptive estimator,
in which an initial estimator of A(t) was used for estimating the optimal weight functions. We
consider weight functions

< 1 are given by (17). Unless § = 1 (complete dependence),
b} (t) are uniquely determined by (14), and they are symmetric

O 1-
~ {max(1 —t, )}

t

and IN))\ (t) = m .

ax(t) (21)
When A = 0 (CFG-type), these are the simple weight functions 1 — ¢ and ¢, respectively. For
any X > 0, ax(t) and by (t) of (21) satisfy (19) which is a condition for optimality under complete
dependence. This is an important condition in the sense that (20) holds if the bivariate data are
completely dependent, that is, X; =V, fori =1,2,...,n.

Figure 8 shows ARE of Ay (t;ax(t),bx(t)) with respect to Ay (t;a%(t),b%(t)). It means a loss
of information by using a, and by instead of the optimals a3 and b}. The nearer zero 6 is, the
larger the loss is. In general, (21) may be suitable under strong dependency. Under independence
(6 = 0), about 20% and 50% information is lost in maximum when A = 0 and 1, respectively.
Efficiencies of the Pickands-type (A = 1) and the CFG-type (A = 0) are sensitive to choice of the
weight functions. On the other hand, when A = 1/3, the loss is not so large even if § = 0. The
estimator A1/3(t; ayys(t), 51/3(75)) has a stable efficiency.

As we have seen in Figure 6 and 7, if the weight functions can be chosen optimally for each A > 0,
the CFG-type (A = 0) is more efficient under independence or weak dependency, and 0.2 < A < 0.4
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is more efficient under strong dependency. As has been pointed out, the CFG-type is sensitive to
choice of the weight functions. The simple weights a(¢t) = 1 — ¢ and b(t) = t are approximately
optimal for the CFG-type under strong dependency. However, under weak dependency, the simple
choice causes a loss of information.

Practically, the simple weights has been used in the CFG-type and the Pickands-type estimators.
Deheuvels estimator is Pickands-type with the simple weights. Segers (2008) has mentioned that
the difference between the simple choice and the optimal choice are almost negligible within the
class of the CFG-type. We are interested in comparison between

Deheuvels estimator : Al(t; 1—1,t),

the CFG-type estimator with the simple weights : flo(t; 1—1t,1),

an estimator of A = 1/3 with the simple weights : A, s3(t;1—1t,t) and

an estimator of A = 1/3 with the weights defined by (21) : Al/g(t; ayys(t), 131/3(1&)).

Figure 9 shows AREs of Al(t; 1—14,1), A1/3(t; 1—t,t) and A1/3(t; ays(t), Bl/g(t)) with respect to
flo(t; 1—#¢,t) under § = 0, 0.5 and 0.8. The solid curve is the ARE of Deheuvels estimator, and
which is not greater than one for all §. Deheuvels estimator is asymptotically inferior to the simply
weighted CFG-type estimator under the Marshall-Olkin model. Comparing the dotted and broken
curves, it can be seen that the weight functions defined by (21) brings improvement of the simple
weight functions when A = 1/3. The reason for this is that, when A = 1/3, the weight functions
defined by (21) is more similar to the optimal weights than the simple weights.

Since the dotted curves in Figure 9 are beyond one, A, /3(t;ay/3(t),b1/3(t)) is asymptotically
more efficient than the simply weighted CFG-type estimator under each 6. As we have seen in
Figure 4, under independence, the CFG-type (A = 0) is preferable to A = 1/3 if the weight
functions are optimally selected. However, the dominance relation under independence is reversed
in flo(t;l — t,t) and 1211/3(15; a1/3(t),bi/3(t)). The reason for this is that, under independence,
the simple choice is different from the optimal choice of the CFG-type (A = 0) as we have seen
in Figure 5. Under strong dependency, the simple choice and the weights defined by (21) are
approximately optimal for A = 0 and 1/3, respectively. As we have seen in Figure 6, in the case of
the optimal choice, A = 1/3 is more efficient than A = 0 under strong dependency. These are the
reason why Al/g(t; ay3(t), by /3(t)) is more efficient than flo(t; 1—1t,1).

5 Proofs

Proof of Lemma 1

Essential techniques for derivation of the covariance formula can be found in Segers (2008). For
any A > 0, some modifications are needed.

For0<s<t<1,

X? XY Y2>

§(s)§(t) = min ((1 —s)(1—t) (1—s)t’ st

Thus, for A > 0, we can express as

E [{&(s)&( t)}A]
rq&(s 1/)‘} dz

)
e

"U

r{X?> (1-s)(1-1)2"* XY > (1-s)tz'/*,v? > stzl/)\} dz

I
o\c\c\
las)

OOE[I (X?>(1—8)(1—t)z1”)Pr{Y>maX<( v \/W> H
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From Lemma 1 of Segers (2008), conditional survival function of ¥ given X = z can be written as
Pr(Y > y|X = z) = e*g(2,y),

where g(z,y) = S(z,y)Q(w), Q(w) = A(w) — wA(w), w = y/(x +y) and A’ is a right-hand
derivative of A.
Hence, we have

E [{e()¢n)]
= /OOE [I (X2 (1-s)(1- t)zl/)‘> eXg (X,max<(1_8 tzl/’\ stzl/’\>>]
= / / (1-s)(1- t)zl/A) g (:L',max ((1 — 8t Vs zl/A)> dzdz.

Let (z,2) = (z,u*z*") and v(u) = max((1 — s)tu, /stu). Then,

E[{&s)¢))] = / / (1= s)(1 = t)u < Dg(z,v(u)z) "1 z* dedz.

_ /(1 )(1 t) \u A—1 {/ g(x,v(u)x)xz)‘ diB} du.
0 0

Denoting w(u) = v(u)/{1 + v(w)}, it can be written as
B [{¢(s)¢ ()} Y]
= " )(lt) ur h - v(u))A(w(u))z} dz| du
. / 10 <>>[/0 P exp (~(1+ o) A(w(w)e) de] a

_ r(1+2x)/m e () du
; {(1+M)A 1J‘F/St_su>}1+%
= w1 ()

+T(1+2)) du. (22)

. N
- [{1 +(1—-s)tu}A (1+ T )St)m)]
Put w = v/stu/(1 + +/stu) in the first term of (22), then

2AT(1 + 2 sl
the first term of (22) = A ((st;;‘ a) ; ?A(w)ﬁgji dw

_ Ta+2y /s 22w A(w) — wA' (w)} dw
0

(st)? {A(w)}1+2A
O T(1+2)) w (142} (s
(st {A(w)} o T {4l ( ) ‘

Put w = (1 — s)tu/{1 + (1 — s)tu} in the second term of (22), then

the second term of (22)

T +2)) a1 - w)rQw)
= Gogn ] e

e ] () Gi)
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{0 ) o)

T(1+2)) 1-t A s A A\ EA=1(1 = )AL
{(1 - S){A(t)}Q} B {t{A(S)}Q} Ta—e /s {A(w)} dw] ‘

2
The result follows from

SN — A
Cov[pa{&(s)}, er{é(®)}] = COV[{g( )i\ 1’{6(75)1\ 1]

E [{§(s)6)}1*] — B [{8()}* E [{e®)}] .
A2 '

Proof of Corollary 2

Let, for A > 0,
g(\) = /\/01 w1 —w) ! du %
Then, by using L’Hopital’s rule, we can easily verify that, for any fixed z > 0,
fmo0) =2, tim 20N T (3)
lm ‘P)\(x))\_ logz _ (log;?)2 and i pa(z?) —)S\J(/\)SOA(-T?) = (log ). (24)

From Lemma 1, we can express as

gN)
mCov[@x {&(s)} oa{é®)}]
1-—t

- % + Aoy <m) A (W)
+A "oy <ﬁ) /s 1420, <i(41(;)1}02)> } w(ldqf w)

_% {1 + Apa (A(s)lA(t) }

2-g()
)\2

+ [*”(( igff(f)}?)*‘” (t{A }2) / | ) ~ W <A<s>1A<t>>]
o (1—5)Lw [ o (Giw) vz
2o (e ) o (e ) . (25)

On the left-hand side of (25), g(A)/{T(1+A)}?> = 2 as A} 0.
On the other hand, from (23), the first term on the right-hand side of (25) converges to 72/3
as A} 0. The last term of (25) converges to zero. The third term converges to

1 t(1—s) t w(l —w) dw
8 T ) B0 +/s IOg{ (A(w))? } w(l—w)

=~ (ogt)? — S (logs)? ~ 2 {log(1 — 5)}” — 5 {log(1 - 1))*
+2(log t){log(1 — t)} + (log s)(logt) + {log(1 — s)}{log(1 — ¢)} — 2{log(1 — s)}(logt)
+2/t log w dw—2/t log A(w) dw.

1—w w(l —w)
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The second term can be written as

ond term of right-hand side of (25)
o (i) o (o) oy o (aeam)|
o (aaoimr) o (= gor)
o (sgatar) s (gt | 3 [ (o)~ (o)

|
()~ (awm) |

From (24), it is seen that the second term converges to
1—t 1 s 171 1 2 1
o ] 3 i) 3 [ )}2] + o6 3
= %{log(l -+ %{log(l —8)}% — {log(1 — s)}Hlog(1 —t)} + = (log s)% + %(log t)?

2

2
—(log 5)(logt) — 2 (log ;:S) {log A(t)} — 2 (log ;) {log A(s)} + {log %} O

Proof of Theorem 4
Let, for i = 1,2,...,n,

1
Wii(t) = [px{&i ()} — a(t)pa(Xi) = b()ea(Yi)] — ex{l — a(t) - b(t)},
IN{ESY)
then, from(9),
ex{1/Ax(t;alt Z Wi
It is nothing but a arithmetic average of i.i.d. random varlables Wy.i(t),i=1,2,...,n, with mean

E[Wx:(@)] = ex{1/A(t)}

and variance

Var [W:(t)] = 73 (t;a(t), b(t)).
For A > 0, define a function hy(x) on [0, 00) by

1+Xz)"YY,  A>0
h)\(.'lf) - { i—w x) A=0.

Then, the k-th derivative of hy(z) is given by
WE () = (=1)*(1 + Az) Fha(z H{1 + A},
and which is bounded on [0, 00) for k = 1,2,...,. Noting
Ax(t;a(t),b(t)) = hy ( Z Wit ) and  A(t) = ha (px{1/A(1)}),
from Theorem 4.2.1 of Lehmann (1999), we obtain

Blaswanae] = a0+ TEMD0 0, 0 00y 40 (L),

var [Assa )] = DO G0 a4 o (4)
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and
Vi {As tsalo). o) - 40} 5 ¥ (073500000 {1 er1/a0n} )
Proof of equation (16)

We present a proof for s < 1/2 < t. Equations for other cases can be shown similarly.

A 1 A 1 i w’\_l(l _ w)’\_l
A =A — < dw+ A —_— — dw.
/ }2}‘ / - 1—t (1—6w)z* v

Changing variable by y = (1 — 8)w/(1 — fw), we have

{A(w)}? o b
- (1-0 {A/% T - dw + /\/% TPy dw}
= (1—9)”{2(;:9) ( ) (1—2)38>ka<%)

-(Eas) () o

Proof of equation (20)

Under complete dependence, X; = Y;, ¢ = 1,2,...,n with probability one. In this case, we
have
&:(t) = min X Yi) Xi _ K
T 1—t"t /) max(l1—tt) At)’
and

PA(Ei(t) — alt)oa(Xi) = b (Ys) = A [XM{(A@) Y —a(t) = b()} — 1+ a(t) + b(t)]
= A Ya(t) +b(t) — 1}.

Thus, from (9), it holds that

1 n

ox(1/Ax(ta(t),b(t) = SN > A Halt) +b(t) — 1} — ex{l — a(t) — b(t)}
=1
a — -
= 2 +§(t) Lo (A(t))/\ Lo eA(1/A1). o
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Figure 1. Asymptotic relative efficiency of Ax(t;0,0) with respect to Pickands estimator A®(t) =
Al (t7 07 0)
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Figure 2. Optimal weight functions a}(¢) and b3 (t) for A = 0 (dotted), A = 1/3 (broken), A =1
(solid) and A = 3/2 (broken-dotted) under independence.
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Figure 3. {a}(t) + b} (¢)}{max(1 — ¢,¢)}* of optimal weight functions a3 (¢) and b}(¢) under inde-
pendence, for A = 0 (dotted), A = 1/3 (broken), A = 1 (solid) and A = 3/2 (broken-dotted).
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Figure 4. Asymptotic relative efficiency of A, (¢; aj(t),b}(t)) with respect to Ao (t; ag(t),b5(t)),
for A = 1/3 (broken), A\ = 1/2 (dotted), A = 1 (solid) and A = 3/2 (broken-dotted) under
independence.
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Figure 5. Optimal weight function a}(¢) under Marshall and Olkin’s Model (4) of 8 = 0 (solid),
# = 0.5 (broken) and 6 = 0.8 (dotted).
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Figure 6. Asymptotic relative efficiency of A, (¢; a} (t), b3 (t)) with respect to Ao(t;a
A =1/3 (broken), 1/2 (dotted) and 1 (solid) under Marshall and Olkin’s Model

t;a5 (1), b5(t)), for
(4).
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Figure 7. Asymptotic relative efficiency of Ay (t;a%(t),b%(t)) with respect to Ag(t; ag(t), bi(t)), at
t =1/4 and 1/2, under Marshall and Olkin’s Model (4) of # = 0 (solid), 0.3 (broken), 0.5 (dotted)

and 0.8 (broken-dotted).
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Figure 8. Asymptotic relative efficiency of Ay (;ax(t),b(t)) with respect to A (t;a%(t),b%(t)) for
A =0 (solid), A = 1/3 (dotted) and A = 1 (broken-dotted) under Marshall and Olkin’s Model (4).
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Figure 9. Asymptotic relative efficiency of A;(t;1 — t,t) (solid), Ay3(t;1 — ¢,t) (broken)

Al/ (t; 61/3(t),l~)1/3(t)) (dotted) with respect to Ag(t;1 — t,t) under Marshall and Olkin’s Model

(4).
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