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An approximate likelihood procedure for competing risks data

Akio Suzukawa

Graduate School of Economics and Business Administration
Hokkaido University

Abstract

Parametric estimation of cause-specific hazard functions in a competing risks model is
considered. An approximate likelihood procedure for estimating parameters of cause-specific
hazard functions based on competing risks data subject to right censoring is proposed. In an
assumed parametric model that may have been misspecified, an estimator of a parameter is said
to be consistent if it converges in probability to the pseudo-true value of the parameter as the
sample size becomes large. Under censorship, the ordinary maximum likelihood method does
not necessarily give consistent estimators. The proposed approximate likelihood procedure
is consistent even if the parametric model is misspecified. An asymptotic distribution of the
approximate maximum likelihood estimator is obtained, and the efficiency of the estimator is
discussed. Datasets from a simulation experiment, an electrical appliance test and a pneumatic
tire test are used to illustrate the procedure.

Keywords and Phrases: Aalen-Johansen estimator, cause-specific cumulative incidence
function, censored data, Kaplan-Meier estimator.

1 Introduction

In reliability analysis or analyses in medical studies, more than one risk factor is often present.
The failure of an individual is attributed to one of the risk factors, or causes, and is called the
cause of failure. The competing risks data comprise the time to failure and the cause of failure.
There have been many analyses of such data; results and references are given by Chiang (1968),
David and Moeschberger (1978), Crowder (2001) and Kalbfleisch and Prentice (2002).

Suppose that an individual is exposed to k mutually exclusive causes of failure and that obser-
vations of a random sample of 7 individuals are made. Denote the failure time of the i-th individual
by T;. Its distribution function is denoted by Fy(t) = P(T; < t). The corresponding survival func-
tion is denoted by Fy = 1 — Fy,. Let V; be the cause of failure of the i-th individual, which takes
on values in a set of all causes C' = {1,2,...,k}. We consider the independent right censoring of
the failure times. Let Y; be the censoring time with distribution function G' and survival function

G =1- (. For each i, define
X, =min(T;,Y;) and 6, =I(T; <Y5),
where I(A) denotes the indicator of a set A. Observation of the i-th individual is either of the
form ()(Z = ZUZ',V;' = vi,éi = 1) or (Xz = 2132',61' = 0)
The identifiable probabilistic aspect in the competing risks set-up is the joint distribution of

T; and V;. It can be specified in terms of the cumulative incidence functions Féj )(t) = P(T; <
t, Vi = j), j € C. When Fj is continuous, the sub-density of a cause j € C is defined by

féj )(t) = dFéj )(t) /dt, and the cause-specific hazard function is defined by )\(()j )(t) = féj )(t) /Fo(t).
The overall hazard function is given by Ao(t) = ;¢ /\gj )(#).

In a nonparametric set-up, the overall survival function Fy is estimated by Kaplan and Meier’s
(1958) estimator:

Fo(t) = H (1 —di/n;),

it <t



where t(1) < --+ < t(,,) are the distinct times at which failures occur, and d; and n; are the number
of failures and individuals at risk at t(;), respectively. A nonparametric maximum likelihood

estimator of the cumulative incidence function FéJ ) was derived by Aalen (1976), and it can be
thought of as a special case of the Aalen-Johansen theory of estimation for time-inhomogeneous
Markov processes (Aalen and Johansen 1978). The estimator, which is termed Aalen-Johansen
estimator, is defined by

FO(t) = > Fultey=) d /ni,

it <t

where dgj ) is the number of individuals failing by cause j at t;).

In a parametric set-up, the overall density fo(t) = dFy(t)/dt, or equivalently the overall hazard
Ao(t), can be estimated by the ordinary likelihood procedure. Oakes (1986) proposed an approxi-
mate likelihood procedure for estimating unknown parameters of the overall density or the overall
hazard. Suzukawa et al. (2001) investigated asymptotic properties of the approximate maximum
likelihood estimator in comparison with those of the ordinary maximum likelihood estimator. In
this paper, Oakes’ (1986) approximate likelihood procedure is generalized to the competing risks
framework.

In many practical situations, we are interested not in all causes but in only some of the causes.
Decompose all causes C as C' = Cy UC5, where C; and (s are disjoint. Our main concern is in the
cause-specific hazards of sub-causes C;. Denote the cumulative cause-specific hazard of cause j by
A In the nonparametric set-up, AY) is estimated by the Nelson-Aalen estimator:

AP = Y dP /n,.

’i:t(,‘) St

Suzukawa and Taneichi (2003) proposed semiparametric estimators of A, j € Cy, which are
asymptotically more efficient than the above nonparametric estimators.
In a parametric set-up, a parametric model,

MO = {0 0)}jecy; 0 € O] )

is assumed for the cause-specific hazards of sub-causes C, where 6 is a p-dimensional vector of
unknown parameters and © is its parameter space. However, the assumed parametric model M1
does not necessarily contain the true cause-specific hazards. If it does not, it is a misspecified
model. One of the simplest parametric model is a constant hazard model:

Mg)lnst = {{/\(])(ﬂe(])) = 0(]) }jeol; 9(]) > O’] € Cl} ’

in which the cause-specific hazards for sub-causes C; are assumed to be independent of time. In
almost cases, this seems to be a misspecified model. However, if we want to approximate each
of the cause-specific hazards in C; with a constant value, the model MS2 . will be assumed,
and estimates of the parameters ), j € C; will be used as approximated values. In such a
situation, it is important to estimate unknown parameters in a parametric model that may have
been misspecified. In this paper, an approximate likelihood procedure for estimating parameters
in model (1), which is not necessarily correct, is proposed.

The structure of this paper is as follows. In Section 2, it is pointed out that the ordinary
likelihood procedure is unsuitable under the condition of misspecification of parametric models,
and a formulation of the approximate likelihood procedure is presented. These procedures are
asymptotically compared in Section 3. In Section 4, these procedures are illustrated using datasets
from a simulation experiment, an electrical appliance test (Nelson 1970) and a pneumatic tire test
(Davis and Lawrance 1989).



2 Parametric estimation of cause-specific hazard functions

2.1 Kullback-Leibler information in terms of cause-specific hazards

For any set of sub-densities { ()} ;ec, Kullback-Leibler information of the set of true sub-densities
{fo(j)}jeo relative to {f\)};cc is defined by
5 (0
KL [{fo Yiee, {1Y }]ec > / %8 757 It (2)

jEC

This is a measure of the divergence of sub-densities. However, we are interested in the divergence
of cause-specific hazards rather than the divergence of sub-densities.

When a set of sub-densities {f (G )} jec is given, the corresponding set of cause-specific hazards
{A0)}ec is given by

A9 (t) = fD (1) F(t),

where F(t) =3 e [ f9(u) du. Conversely, for a given set of cause-specific hazards {A)};cc,
the corresponding set of sub- densities {f j)}Jeo is given by fU)(t) = A9 (¢) exp{—A(t)}, where
A(t) = Y e AV () and AV (1) = [ A9 (u) du. Thus, the Kullback-Leibler information defined

by (2) can be thought as a measure of the dlvergence of the true cause-specific hazards {/\g tiec
relative to the cause-specific hazards {\9)};cc, and it can be expressed as

KL [\ e, (X }ec]

* G A (1) Fo(t)
= Z/O fé )(t) log { /\?J')(t) F?(t) dt
A

- jez;/ooofg”(t) g/\‘()TEgdt+ 2Amféj)(t)log%dt

- ]; OOO 55 ) log ;éjzgg dt + / folt tt))

- Jez; / h 9 #) log i;;gg dt — / fo@){Ao(t) — A(t)} dt
> V £90) ; z / FoO{AD (1) = AD @)} dt | .

(4)

From this, for each cause j, the divergence of the true cause-specific hazard /\ relative to A

can be measured by

S (4) o i ]
/0 15" () 1og ig’j)gg dt — /0 Fo{AT (1) — A9 (1)} dt.

When the parametric model M1 of (2) is assumed for sub-causes Cy, the divergence of the true

cause-specific hazards {)\ } jeo, relative to the parametric cause-specific hazards {A\Y)(+;0)};cc,
can be measured by

AW oo . .
l/ f(a) #)log (j(;(t('t;) dt_/o fO(t){Agﬂ)(t)—A(a)(t;O)} dt]

jEC ’

= > [ /0 9 (1)10g AP (1) dt — / h Fo)AY (1) dt]

JEC

—Z[/ £59 1) log)\J)tOdt—/ fo(t) J)te)dt]

JECT



where AU)(t;0) f A9 (u; @) du. The first term on the right-hand side is independent of . Put
the second term as

00)= 3 [ [ wosx0 o - [~ foa o) a). 3)

JjECT

Since it is desired to minimize the divergence, the best 8 in the parameter space © is a maximizer
of n(@). Supposing that n(@) has a maximum at @ = 6 € O, it is said that 6 is the pseudo-true
vector of 8. The pseudo-true 67 gives the best approximation to the true cause-specific hazards
{)\(j }iec, in the model M1,

When M includes the true cause-specific hazards {)\ } jec, , there exists the true vector 6
such that A (¢) = A (#; 8,) holds for all j € C; and all £ > 0. Noting

AU (t;:00) AU (t; 6) A9 (t;0)
B0 BNT(00) © A (0,)
we have, for any 6 € O,
n(6o) — n(0)
- ¥ | oo “’0 = [ (A8 (ws60) ~ A9 (0))
jeCy
19w {1 - V)(t;ﬂ)} [ { NG YRR T } ]
> ]ezc;/ {1 O :00) dt /Ofo(u) /O)\O (t;00) — A9 (t; 0) dt b du
=Y / OOFO(t){)\(j)(t;OO)—)\(j)(t;e)}dt

jec, WO
- [ eon -3 won { [ s b ar] <o

Thus, if M1 includes the true hazards, then 7(#) has a maximum at 8. In this case, the pseudo-
true @y is the true .

Ezample 1. Let pg = fo Fy(t) dt < oco. Consider the case in which, only for cause 1, the
constant hazard model
Mignat = XD (56) = 650 > 0}. (4)

is assumed. Then, n of (3) is given by
/ t)logf dt — 0/ tfo(t) dt—wol) log 8 — B,

where 7r (1) — = [ f 1)( t) dt. Obviously, (9) has a maximum at § = 6§ = 7r0 /po, which is the
pseudo-true value. When the model Mconst is correct, there exists a true parameter §, > 0 such

that )\01)( t) = XD (t;09) = Oy for all t. In this case, the pseudo-true value 6} is the true value
since

65 = 78" o = / £ @) dt o = / BoFo(t) dt /o = 6. O

2.2 Likelihood procedure

The purpose here is to explore the likelihood procedure in the parametric model M of (1), which
may have been misspecified. It is well known that the log-likelihood is given by

Z 3 {51 ) 1log A9 (X;; 0) — A(j)(Xi;a)} (5)

i=1 jeC1



(Kalbfleisch and Prentice 1980, Crowder 2001). The maximum likelihood estimator (MLE) @, is
a maximizer of L, (0). By the law of large numbers, as n — oo, L,(0)/n converges in probability
to a function

§0) = Y B{ad(Vi=j)logAV)(X;:6) - AV (X;;0)}
JjeC
= (4) — = (4)
]601{/ z)log AV (x; 0) dx /0 h(z)AY) (z 0)dx}

where h(z) = fo(z)G(x) + g(x)Fo(x) and g is the probability density function of the censoring
distribution G. Assuming that £(0) has a maximum at @ = 6, under suitable regularity conditions,
the MLE 0, converges in probability to 0y as n — co. The important point to note is that the
limit @y generally depends on the censoring distribution G, which is a nuisance. In general, 6
differs from the pseudo-true 6.

When M includes the true cause-specific hazards {)\(()] )} jec,, there exists the true 8y such

that )\(()j) (t) = A9 (t; 8y) holds for all j € C; and all t > 0. Thus, we have, for any 0 € O,
£(60) — £(0)

= j;l / F9(2)G(x ((‘”’00 / h(z){AY) (z;6,) — A(j)(x;())}daz]
> ¥ [ { - SB[ A 3 00) — A a36)) ]
_ j;l /0 {‘ / hu du} 9 (2;80) — )\(j)(x;G)}dx] — 0.

Thus, if M® is correct, then £() has a maximum at @ = 6, and, as n — oo, the MLE 0,
converges in probability to the true 8o under some regularity conditions.

However, in misspecified parametric models, 8y, which is a limit of MLE, generally differs from
the pseudo-true 6;. Thus, MLE is not always consistent. In general, MLE does not give the best
approximation in the assumed parametric model to the true hazards even if the sample size is
sufficiently large.

Ezxample 2. As a simple example, we consider the case of Example 1 again. In the model
Mﬁonst of (4), the log-likelihood function is

2{51 s =1)logh — 60X},

and MLE is given by

n

b = > 0I(Vi=1}/ > Xo). (6)

i=1 =1

According to the law of large numbers, as n — oo, 6, converges in probability to

fo = B{6:I(V: = 1)}/ E(X { / £ ()G () daz} / { /0 " Fy(2)G(a) daz} ,

which maximizes

£(9)

/ (z) log AV (z; 6) dx—/ooho( JAW (23 0) dz

logG/ dx—G/ Fy(z



If /\/lconst is correct, there exists the true parameter g > 0 such that /\81)(15) = A (t;6) = 6,
holds for all t. In this case,

90_{/ B0 Fo(x }{/ Fo(x }=00,

and hence Gn is consistent.

If G = 1 (no censorship), then 6y = 6 = 7r01) /1o (pseudo-true value). However, , is generally
dependent on G, and it is generally different from the pseudo-true value. We w111 make stronger
assumptions to illustrate how 8y differs from the pseudo-true value 05 when M
model.

Assume that the true cause-specific hazard of cause 1 is proportional to the overall hazard:
AV @) = wol))\o(t) and the overall hazard has a Weibull form: \o(t) = at®~!, where o > 0. In this

case, /\/lcomt is correct if and only if @ = 1. The pseudo-true value is given by 65 = 7T(()1) /T(1+1/a),
where T is the gamma function. We also assume proportional censoring: G(t) = {Fy(t)}?. Then
the censoring proportion ¢ is given by ¢ = P(§; = 0) = /(1 + ). Under these assumptions, the
MLE of (6) converges in probability to 6y = 83(1 — ¢)'~'/® as n — oo. A necessary and sufficient
condition for 8y = 08 is a = 1 (correct specification) or ¢ = 0 (no censorship). In other words,
under the condition of misspecification (« # 1) and censorship (¢ > 0), the MLE defined by (6)
does not converge in probability to the pseudo-true value as n — co.
The inconsistency can be measured by

n(65) — 1(00) = = {(1 =)'~/ — 1= (1~ 1/a)log(1 )}

comt is a misspecified

When « # 1 (misspecification), this is strictly increasing with the censoring proportion ¢g. Thus,
the divergence of AV (#;8y) = 6, which is a limit of the MLE, with respect to the true hazard
increases with increase in the censoring proportion.

Figure 1 shows how the hazards A (¢;6%) = 6 (dotted line) and X)) (¢;8) = 6, (dashed line)
differ from the true hazard A(()l)(t) = ﬂél)ata_l when o = 1.5 (misspecification), 71'(()1) = 0.2 and
q = 1/3,2/3. The hazard XV (t;87%) = 65 (dotted line) is the pseudo-true value, which is a limit
of the MLE under no censorship. It gives the best constant approximation to the true Weibull
hazard. However, it can be seen that the hazard A(l)(t; 50) = fy, which is the limit of the MLE
under censorship, is so different from the true hazard that censoring is heavy. Under the condition
of the misspecification and heavy censorship, the MLE is not suitable. O

Example 3. Assume that the true cause-specific hazard of cause 1 is a piecewise-constant hazard:
AP = 65010 <t < a)+ 651t > a),

where a > 0 is a fixed time point. An assumed parametric model for cause 1 is ./\/lconst of (4).

Unless 9011) = 03; , this is a misspecified model.
Suppose that the true overall hazard is Ag(t) = 1. Then, n(#) defined by (3) is

= {057 + e~ (05) — 05;) Hlog 6 — 6,

and it has a maximum at 6 = 65 = 9(%) + e‘“(@é;) - 0311)). This is the pseudo-true value, and
it gives the best constant approximation to the true piecewise-constant hazard. In the left figure
of Figure 2, the solid line shows the true piecewise-constant hazard with a = 1, 9(11) = 0.4 and
9(()2 = 0.1, and the dotted line shows the pseudo-true value, 65 = 0.290. The figure on the right
shows correspondmg cumulative cause-specific hazards.

Suppose that the hazard of censoring time is constant (= 3). Then censoring proportion is
given by ¢ = 8/(1 + 8). MLE of # in the model Mﬁmt is given by (6), which converges in
probability to

fo = 9(()11) + e_a/(l_q)(ﬂ(();) - 9(()11)) as n — 0o.



It holds that fy = 6 if and only if ¢ = 0 (no censorship) or 0(1 = 902 (correct specification). The
dashed lines in the left figure of Figure 2 show 8, for ¢ = 1 /3 and ¢ = 2/3. Inconsistency of the
MLE is remarkable for ¢ = 2/3 (heavy censorship). O

Ezxample 4. We will take an example of MLE being consistent even if an assumed parametric
model is misspecified. Assume that the true cause-specific hazards of causes 1 and 2 are constant;

)\(()j )(t) = Géj ), j =1,2. An assumed parametric model is

MD=D = D (;6) = AP (56) = 6; 6 > 0}. (7)

In this model, it is assumed that the hazards of causes 1 and 2 are not only constant but also the
same. This model is correct if 0(()1) = 0(()2). The pseudo-true value is given by 6§ = (9(()1) + 0(()2)) /2,

and MLE is given by
én:{Z(siI(Vi:lor 2)}/(22)@.). (8)
=1 =1

It converges in probability to

E{5:I(Vi=10r2)} (00 +60) [;° Fo(t)G(t) di
2E(X;) B 2 [7 Fo(t)G(t) dt

=65 asn— 0.
Thus, in this case, the MLE is consistent though the assumed model is misspecified. O

2.3 Approximate likelihood procedure

As we have already seen in Section 2.1, the purpose of parametric estimation in model (1), which
may have been misspecified, is to know the pseudo-true 8 which maximizes 7(0) of (3). The
objective function 7(@) can be expressed as

n(0)=2[/0 log AY)(t;8) dFY) (¢) /A t0)dF0()].

JjEC

Replacing the cumulative incidence function F0 and the overall lifetime distribution Fy by the

(4)

Aalen-Johansen estimator F and the Kaplan-Meier estimator F;,, respectively, the approximated

log-likelihood is defined by

—nZ{/ log A9 (¢;0) dFEY) (1) / AJ)tG)dF()} (9)

jeCy

The approximated maximum likelihood estimator (AMLE) 9:; is a maximizer of L% ().

When there is no censoring at all, the Aalen-Johansen estimator and the Kaplan-Meier estima-
tor reduce to empirical (sub-)distribution functions. Thus, under no censorship, the approximated
log-likelihood L% (8) coincides with the log-likelihood L, (8) of (5), and hence AMLE and MLE are
the same.

Define 7y = inf{z : H(z) = 1}, i.e., 7y is the right extreme of H. Then, from Stute and
Wang’s (1993) results for Kaplan-Meier integrals, it can be seen that, as n — oo,

/ A (£:0) dF, (1) %3 / Fo A (L 0) dt, je Ch.
0
Suzukawa (2002) has shown that for any F-integrable function ¢, the Aalen-Johansen integral
fooo %) dF,(lJ ) almost surely converges to fOTH @ dFU) as n — co. From this result, it is seen that as
n — oo,

/log/\(])(te ) dED (1) 25 / DA 0y dt, je .

0



Thus, L (0)/n almost surely converges to

TH . TH

3 { / FDOAD (¢ 0) dt — / Fo(H)AD (¢; ) dt}. (10)
jec, Wo 0

Let 75, = inf{z : Fy(z) = 1} and 7¢ = inf{z : G(z) = 1}. Since 7y = min(rg,,7¢), (10)
is equal to n(0) of (3) if 7r, < 7¢. Thus, when 75, < 7¢, AMLE 92 converges in probability to
the pseudo-true 0 under suitable regularity conditions. In a large number of practical situations,
TF, = T = 00, and hence the assumption 75, < 7¢ is satisfied.

We next consider the asymptotic distribution of the AMLE under the condition 7, < 7g.
Define

Q1(;0) =exp{— >_ AV(#:0)}, ¢V (t:60) =\ (t;0)Q1(1:6), je O,

jeCy

and let (,)( 0) o
0)(t: 0 :{ log¢'9)(t; i€t
(¢ 0) log Q1(t; 6) j€Cs.

Then the approximated log-likelihood L¥(0) can be expressed as

L:(0 —nZ/ ) (t;0) dFY (t).

jeC

The AMLE 9; is a solution of an equation

0= aL*(@) 6L*((9)+ 6—2L*(9*)}(9*—0*)
06 " 06" 0006' " TOn

where 87, lies between @, and 6. Thus, we have

120, - 05) =4 - _18—213*(9*) h w12 2 g L(65) (11)
n n o/ — n 80801 n\Yn o0 n\“0

The first term on the right-hand side is the sum of Aalen-Johansen integrals:

SO - B
> | g 8 a0,
jec

and it converges in probability to a p X p matrix

- t; 65) dt. 12
7@ =3 [ 19055577 6 0) (12)
jeC
On the other hand, the second term on the right-hand side of (11) can be written as
0
n—1/2 ¥\ _ 1/2
ol = Tn | g i) ar 0

= [Ip,....Ip] X s,

where I, is the p-dimensional identity matrix, and s, is a pk-dimensional vector defined by

o0 a .
n1/2/0 5" (4:60) dFL) (1)

(o) 6 ) .
w2 [ e 0y arp )



Suppose the following assumptions

(A1): for each j € C, there exists a p X p matrix

/°° @)
o G()
and
(A2): for all j € C,
/ £9¢
where C(t) = | dG(z)/{H(z)G(z)}.

a j *
VT 507 1:65)

0 (; o .
= oDt 0* — oDt 0*

dt < oo,

0
Then, similarly to Theorem 2 of Suzukawa (2002), it can be shown that the limiting distribution

of s, is pk-variate normal with a mean vector

[V (0:60)......

and a covariance matrix .
©11(65)

* .

0

Q(6;) :
Q41(65)

where, for 0 <t < oo,

v(:0) = [ T @)

0\ (z:0)

»9(0:65)]
21,(65)

Q41 (65)

, Jeq,

00

and, for 0 < j,I < k, ©;;(0) is a p x p matrix defined by

(J) 9 )
/ e e wen | { g s6) ) a
(O =1 _ Fo(t) o) GY (4 90 910 (0 _
Q,(6) | mep? T GO (60)d60 - w06 (0:0), =1,
-/ {g(’((t’;;«,b“)(t;e)«,b(”’(t; 0) dG(t) — ¥ (0:0)p (0:0),  j#L

Thus, the limiting distribution of n='/20L%(8};)/06 is p-variate normal with a mean vector

> )

JjeC
We redefine the function 5 of (3) as

[/ 79 (@) log AD (2
jeC

(n(0) of (3) is 7(0;0)). Then we have

> b

jeC

(0;0%) =

n(t; ) =

9

0) dx—/ fo(@)AY) (2;0) dz|

0

= S 5(t:60),

and we can express the limiting covariance matrix of n=/29L% (65)/00 as

I(6;) = Zzﬂjz(%)
jeCleC
]EC[ ( {
[ Fo() 9
MRV OE {ae (

©

P:65) | { e s60) | ]

60} { ggrntesen) | ac.



Thus, we obtain the following results.
Theorem 1. Under the assumptions T, < 7¢, (Al) and (A2), it holds that

Vi@, = 05) > N, (0, T 1O (65)T771(65))  as n — oo,
where p X p matrices J*(03) and I*(0;) are defined by (12) and (13), respectively.

Corollary 1. When M of (1) contains the true hazards, under the same assumptions as Theo-
rem 1, it holds that

V(B — 80) 5 N, (0, T3 (80)15(80) T3 (65)) (14)
as n — oo, where
T = > /Oo/\(j)(t‘OO)F‘o(t) ilog/\(j)(tﬁo) ilogz\(j)(tﬁo) dt  and
0 = 0 ) 90 ) 801 )
* A0 (t;00) Fo(t) | ) 9 )
I;(6) = Jez;/o T{%m@ (t,OO)}{wlog)\ (t,OO)} dt.

3 Asymptotic comparison of estimators

If both MLE and AMLE are consistent, we are interested in their efficiencies. In this section,
we consider asymptotic comparison of these estimators. When M®* is correct, under the ordi-
nary regularity conditions for the likelihood (5), the asymptotic distribution of \/n(8,, — o) is
N, (0, I5'(6y)), where

Io(0) = ) / N9 (1:00) Fo (DG (1) { 0 10 AV (1:80) L { 2108 XD (1 600) }
: 0 00 00
JjECT
Theorem 2. When the assumed parametric model M of (1) is correct, the MLE 0, is asymp-
totically more efficient than the AMLE (9:;

Proof.
The asymptotic covariance matrices of the AMLE 92 and MLE 8,, are given by

J5~ (80)15(80) T~ (80) and  Ig"(6o),

respectively. Define, for j € Cf,

19 = 5, 1(v; = ) 2 10g A9 (X1 0,),
00
then we can express as
()0 () /A () /A !
nio) = Y {0}, 1o = Y B[ {1 60} {1 o) |
jecl jeCl

and

Titen = 3 £ 12 {1 o} |
jeC

For any non-zero p-dimensional vectors a and b, we have expressions

a'Ij(0o)a= Y E [{a/lgﬂ/é(xi)}?] , b'Io(Bo)b= > E{(b:ly))z}

JjeC JECT
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and
Tiona= 3 B[(019) {a1 jax)Y] .
b J5(00)a jqu[(bll ){all /G(Xl)}]

From Cauchy-Schwarz inequality, it holds that
{a'I}(80)a} x {b'To(8o)b} > {b'T5(6,)b} .
Since b is arbitrary, we can put b = I;"(00)J(0o)a. Then we have
a'I5(80)a > a'J5(60)I5 " (80)J5(60)a.
This implies that J§ " (80)I5(60)J 5" (60) — Iy ' (o) is positive semi-definite. O

The above result shows that information is lost by the approximated likelihood method when
an assumed parametric model is correct. Similar results have been shown by Oakes (1986) and by
Suzukawa et al. (2001) in a non-competing risks framework.

Ezample 5. Assume that the overall lifetime distribution and the censoring distribution are
exponential distributions with hazards 1 and 3, respectively. Suppose that the true cause-specific

hazard of cause 1 is constant; A(()l)(t) = 77(()1), where 0 < w(()l) < 1 is the probability of failure by

cause 1. Then the censoring proportion is ¢ = P(§; = 0) = /(1 + ). An assumed parametric
model is the constant model MS}M of (4). This model is correct, and the true parameter is

0o = 77(()1). MLE of 6 is given by (6) and it is a consistent estimator of §p = 77(()1). Moreover, it can
be shown that, as n — oo,

Vb, —m57) S N0, 7§ /(1 - q)).

On the other hand, AMLE is given by
6x = F(M(c0)/ / tdF,(t) (15)
0

and it is also consistent to 6y = 77(()1). If ¢ < 1/2, the assumptions (A1) and (A2) in Section 2.3 are
satisfied. Then it is seen that

\/ﬁ(é,"; - ﬂél)) 4 N(0, ﬂ(()l)(l —-q)/(1—2q)) asn— co.

The asymptotic relative efficiency (ARE) of the AMLE é;‘; with respect to the MLE 6, is given
by
ARE(67;0,) = (1 -2¢)/(1 —q)* for0< q<1/2.
It is a strictly decreasing function of the censoring proportion ¢ and is less than one unless ¢ = 0

(no censoring). This indicates that information loss by the AMLE increases with increase in the
censoring proportion. O

Ezxample 6. Let us consider the case of Example 4 again. This is a case in which MLE is
consistent although an assumed parametric model is not always correct. Assume that the true
cause-specific hazards of causes 1 and 2 are constant; /\(()J)(t) = 08”, j = 1,2. An assumed
parametric model is (7), in which the two hazards are assumed to be not only constant but also

the same. In this model, the pseudo-true value is 6} = (0(()1) + 032)) /2. MLE 8, is given by (8). If
ux = E(X;) < oo, it converges in probability to the pseudo-true value as n — co. We can write as

Vil - 65) = n—”in?{éim:lor 2) - (65 + 057) Xi}| /(2X),
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where X = 3" | X;/n. Under the condition E(X?) < oo, the asymptotic distribution of the
numerator is N(0, 265 ux) and the denominator converges in probability to 2ux as n — co. Thus,
it is seen that

Vil — 65) S N(0, 65/(21x)) as n — .

On the other hand, AMLE is given by
g = {F,§1>(oo) +F,§1>(oo)}/{2/ tan(t)}.
0

If 75, < 7q, it converges in probability to the pseudo-true value 6§ = _(9(()1) + 0(()2)) /2 as n — oo.
From Theorem 1, it is seen that, under assumptions 75, < 7¢ and [~ Fo(t){G(t)} ™" dt < oo,

*

V@ -6 SN <0, 26% /OOO F®{GH} dt) as n — oo,

0
where pig = E(T;) = [;° Fy(t) dt. The ARE of 67 with respect to 8, is
o o kR@ay” -
px % foS Fo{G@®)}~tdt  {[7 Fo()G(t) dt} x {[y° Fo(){G(t)}~1dt} —

The last inequality follows from the Cauchy-Schwarz inequality. Thus, the MLE is asymptotically
more efficient than the AMLE. O

4 Applications

4.1 Application to simulated data

We assume that there are two competing risks and let U, j = 1,2 be the potential unobservable
time to occurrence of the jth risk. Suppose that the joint survival function of the potential times
is

PUW > uy,UP > uy) = {1+ pluy +ug)} /" (16)
with a parameter p > 0. This has been discussed as an example of potential times in competing
risks by Klein and Moeschberger (2003). The parameter p measures dependence between U") and
U®). Here, p = 0 implies independence and p > 0 implies dependence. Kendall’s tau is p/(p + 2).
Marginal survival functions are

PUW >u)=PUP >u) =1+ pu) /7.
Cause-specific hazard functions are
A =27 (1) = 1+ 207" (17)

Cause-specific cumulative incidence functions are
1
BV () = R0 = 5 {1 1+ 2pt)_1/p} . (18)

The potential times U(") and U are unobservable. When there is no censorship, we can observe
the failure time 7' = min(U"),U®)) and the cause of failure. The dependence parameter p is not
testable with only the observable variates.

The joint survival function (16) is constructed by Clayton’s (1978) bivariate copulas. Thus,
random variates (U1, U?)) can be generated by Genest and MacKay (1986)’s algorithm. For
p = 1/2, n = 300 samples were generated. Scatter plots of them are presented in Figure 3.
Kendall’s tau of the population is p/(p + 2) = 0.2, and Kendall’s tau of the simulated samples is
0.189. The sample correlation coefficient is 0.396.

12



We also assume that the censoring time Y is distributed as the standard exponential distribu-
tion. We can only observe min(U™"), U, Y") and cause of the failure. In the simulated competing
risks data, 90 (30.0%) and 101 (33.7%) samples failed by cause 1 and 2, respectively, and 109
(36.3%) samples were rightly censored.

Since the two causes are symmetric, we focus only on cause 1. In Figure 4, the curve shows
the true cumulative incidence function (18) with p = 1/2. The step function is its Aalen-Johansen
estimate obtained from the simulated competing risks data. From this, we can see that the true
cumulative incidence curve is well-estimated by the nonparametric Aalen-Johansen estimates.

We consider parametric estimation of the cause-specific hazard of cause 1. If the potential
times are independent (p = 0), then the cause-specific hazard given by (17) is constant. Here the
true value of p is 1/2 and the potential times are dependent. However, the dependency cannot be
seen from the competing risks data. If we have mistakenly considered that the potential times are
independent (p = 0), then the constant hazard model (4) would be assumed. This is a misspecified
parametric model.

Under the misspecified model (4), the unknown constant parameter § can be estimated by
MLE and AMLE. The MLE 6, is given by (6) and the AMLE 6 is given by (15). From the
simulated samples, we obtained two estimates of 6 as 6,, = 0.770 and 9,*; = 0.670. The left figure
of Figure 5 shows these constant estimates and the true cause-specific hazard function. The right
figure shows the corresponding cumulative hazard functions. The cause-specific hazard of cause 1
is overly estimated by the MLE (dashed line). On the other hand, the estimated line by the AMLE
(dotted line) is nearer the true curve (solid curve).

4.2 Application to failure data for electrical appliance test

Let us consider the data shown in Table 1 (Nelson 1970; Lawless 1982), which shows failure times of
36 electrical appliances. The appliances were operated repeatedly by an automatic testing machine.
Each failure time in the table is the number of cycles of use completed until the appliance failed.
The appliances were exposed to 18 causes of failure. Each cause is denoted by a failure code
number. There were some censored observations, since it was not always possible to operate the
testing machine long enough for an appliance to fail. Failure codes of the censored observations
are indicated by 0.

Only failure codes 6 and 9 appear more than twice. Figure 6 shows Nelson-Aalen estimates of
cumulative cause-specific hazard functions and Aalen-Johansen estimates of cumulative incidence
functions. It can be seen that causes 6 and 9 are main causes of failure. Estimates of probabilities
that the appliance fails by causes 6 and 9 are 0.198 and 0.509, respectively. We shall focus on these
two causes.

Let C; = {6,9}, which is a set of sub-causes in which we are interested. Denote the cause-
specific hazard functions of causes 6 and 9 by A(®) and A, respectively. The following three
parametric models are considered.

Constant hazard model:

M

const

_ {Am(t; a®y = a); o) > 0,j € Cl} ’ (19)
Weibull hazard model:

MG = {)\(j)(t;a(j)7ﬂ(j)) — aDFPT =1 4 0) 50,89 > 0, € Cl} 7 (20)
Log-Logistic (LL) hazard model:

()i -1 ;
a3t ) ;a(])>0,ﬂ(])>0aj601}' (21)

MO — {wu;a“%ﬂ(”) = Tra0w

The model M%:_, is the simplest model, and it is important in order to approximate a hazard
function by a constant value. The model M1, . is a generalization of the constant model. In

MGt if B9 < 1 (B9 > 1), then A9 is decreasing (increasing). If 4¢) = 1, then AU is
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constant. From the Nelson-Aalen estimate of the cumulative cause-specific hazard of cause 9 (the
solid step function in the left figure of Figure 6), we can see that the cumulative hazard of cause 9
is convex until 4000 cycles and it is concave after 4000 cycles. Thus, the cause-specific hazard of
cause 9 is increasing until 4000 cycles, and it is decreasing after 4000 cycles. The model M}
includes such type of hazard function. In M&1, if 80) > 1, then A9 (¢; a9, 80)) is increasing for
t < {(BD = 1)/a)}1/8” and is decreasing for t > {(80) — 1)/ }1/8Y

In each model, estimates of parameters are obtained by MLE and AMLE. The estimates are
given in Table 2. Figure 7 shows estimates of the cumulative cause-specific hazards of causes 6 and
9. The figures on the left and right show estimates for causes 6 and 9, respectively. In these figures,
the solid step functions are the Nelson-Aalen estimates of the cumulative cause-specific hazards,
and the dotted step functions are approximate pointwise 90% confidence limits of them. The limits
are obtained by log-transformation. The solid and dashed curves show parametric estimates by
the MLE and AMLE, respectively.

For each cause, the Nelson-Aalen estimate does not look like a straight line. It is quite likely that
the constant model M1 is not correct. Obviously, in this model, the hazards are under-estimated
by the MLE. The estimates by the MLE do not give good approximations to the Nelson-Aalen
estimates. Using the simplest model M the AMLE is superior to the MLE.

In cause 6, the Weibull and LL models give similar estimates, and there is no notable difference
between the MLE and AMLE. On the other hand, for cause 9, the parametric estimates show
different features between the MLE and AMLE. Generally, in the Weibull and LL models, estimates
obtained by the MLE is well-fitted. However, they are strongly influenced by two observations
failed by cause 9 after 5000 cycles, and hence their fitness is poor before 5000 cycles. On the other
hand, until 5000 cycles, the estimates by the AMLE are similar to the nonparametric Nelson-Aalen
estimates.

4.3 Application to failure data for pneumatic tire test

Let us consider the data shown in Table 3 from a laboratory test on 171 pneumatic tires (Davis
and Lawrance 1989). The test involved rotating the tires against a steel drum until some type
of failure occurred. Failures were classified into six modes: open joint on the inner liner (failure
mode 1), rubber chunking on the shoulder (2), loose casing low on the sidewall (3), cracking of the
tread rubber (4), cracking on the sidewall (5) and all other causes (6). There were 21 censored
observations (failure code 0).

Figure 8 shows Nelson-Aalen estimates of cumulative cause-specific hazards and Aalen-Johansen
estimates of cumulative incidences. It can be seen that cause-specific hazards of some failure codes
change at 200 hours. In this test, the inflation pressure in unfailed tires was reduced at 200 hours
. Naturally this changes the hazards. Thus, as a simple parametric model, a piecewise-constant
hazard model,

A (t; 09 08y = 0 1(t < 200) + 6 1(¢ > 200), j=1,2,...,6, (22)

is considered.
_Table 4 shows estimates of the parameters obtained by the MLE and AMLE. In estimates of
9? ), j =1,...,6, which are hazards before 200 hours, differences between the MLE and AMLE

are slight. Notable differences appear in Géj), j = 1,...,6, which are hazards after 200 hours.
Figure 9 shows cumulative cause-specific hazards. The dotted step-functions are the Nelson-Aalen
estimates, and the solid and dashed lines are the parametric estimates obtained by the MLE and
AMLE, respectively. In each cause of failure, the difference between the MLE and AMLE is not
so large. The Nelson-Aalen estimates are approximately piecewise-linear. The piecewise-constant
model (22) may be well-fitted. In this case, it is better to use the estimates obtained by the MLE.
The effect on each cause of the reduction of inflation pressure can be evaluated by the ratio
9§j ) / 9? ). Based on the estimates obtained by the MLE, the ratios are 5.66 (cause 1), 15.3 (cause 2),
1.91 (cause 3), 33.9 (cause 4), 3.64 (cause 5) and 7.63(cause 6). The reduction of inflation pressure
accelerates failure due to each cause. The acceleration is remarkable for causes 2 and 4.
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5 Concluding remarks

This paper presents a procedure for estimating parameters of cause-specific hazard functions in
competing risks. When there are censored observations, the ordinary likelihood procedure is not
always appropriate. If an assumed parametric model is misspecified, it is not always consistent to
the pseudo-true parameters. On the other hand, the proposed approximate maximum likelihood
estimators (AMLE) are consistent to the pseudo-true parameters under misspecification and cen-
sorship. In other words, when sample size is sufficiently large, the best approximations to the true
hazards are given by AMLE even if the assumed parametric model is misspecified.

The asymptotic normality of AMLE was shown in this paper. Under correct parametric models,
AMLE is asymptotically inefficient compared with the ordinary maximum likelihood estimator
(MLE). In conclusion, AMLE is superior to MLE when fitness of an assumed parametric model is
not so good. On the other hand, when the model is well-fitted, AMLE is inferior to MLE. Selection
of an appropriate parametric model is very important in analysis of censored competing risks data.
It is debatable which estimating procedure should be used in practical situations. There is room
for further investigation on this point.

References

(1] Aalen, O. O. (1976). Nonparametric inference in connection with multiple decrement models.
Scand. J. Statist. 3, 15-27.

[2] Aalen, O. O. and Johansen, S. (1978). An empirical transition matrix for nonhomogeneous
Markov chains based on censored observations, Scandinavian Journal of Statistics, 5, 141-150.

[3] Chiang, C. L. (1968). Introduction to Stochastic Process in Biostatistics. New York: John
Wiley and Sons.

[4] Clayton, D. G. (1978). A model for association in bivariate life tables and its application
in epidemiological studies of familial tendency in chronic disease incidence. Biometrika, 65,
141-151.

[5] Crowder, M. J. (2001). Classical Competing Risks. London: Chapmann and Hall.
[6] David, H. A. and Moeschberger, M. L. (1978). Theory of Competing Risks. London: Griffin.

[7] Davis, T. P. and Lawrance, A. J. (1989). The likelihood for competing risk survival analysis.
Scand. J. Statist. 16, 23-28.

[8] Genest, C. and MacKay, J. (1986). Copules archmédiennes et familles de lois bidimensionnelles
dont les marges sont données. Canad. J. Statist. 14, 145-159.

[9] Kalbfleisch, J. D. and Prentice, R. L. (2002). The Statistical Analysis of Failure Time Data,
2nd ed. New York: John Wiley and Sons.

[10] Kaplan, E. L. and Meier, P. (1958). Non-parametric estimation from incomplete observations.
J. Amer. Statist. Assoc. 53, 457-481.

[11] Klein, J. P. and Moeschberger, M. L. (2003). Survival Analysis, Techniques for Censored and
Truncated Data, 2nd ed. New York: Springer.

[12] Lawless, J. F. (1982). Statistical Models and Methods for Lifetime Data. New York: John
Wiley and Sons.

[13] Nelson, W. B. (1970). Hazard plotting methods for analysis of life data with different failure
codes. J. Qual. Technol. 2, 126-149.

[14] Oakes, D. (1986). An approximate likelihood procedure for censored data. Biometrics, 42,
177-182.

15



[15] Stute, W. and Wang, J. L. (1993). The strong law under random censorship. Annals of Statis-
tics, 21, 1591-1607.

[16] Suzukawa, A. (2002). Asymptotic properties of Aalen-Johansen integrals for competing risks
data. J. Jpn. Statist. Soc. 32, 77-93.

[17] Suzukawa, A., Imai, H. and Sato, Y. (2001). Kullback-Leibler information consistent estima-
tion for censored data. Ann. Inst. Statist. Math. 53, 262-276.

[18] Suzukawa, A. and Taneichi, N. (2003). Semiparametric estimation based on parametric mod-
eling of the cause-specific hazard ratios in competing risks. J. Multi. Anal. 87, 80-100.

16



Table 1: Failure data for electrical appliance test

Failure time Code Failure time Code Failure time Code Failure time Code

11 1 35 15 49 15 170 6
329 6 381 6 708 6 958 10
1062 5 1167 9 1594 2 1925 9
1990 9 2223 9 2327 6 2400 9
2451 5 2471 9 2551 9 2565 0
2568 9 2694 9 2702 10 2761 6
2831 2 3034 9 3059 6 3112 9
3214 9 3478 9 3504 9 4329 9
6367 0 6976 9 7846 9 13403 0

Table 2: Estimates of parameters in models (19), (20) and (21) for electrical appliance tests

Model Constant (19) Weibull (20) Log-Logistic (21)
Parameter a® a® 5(®) al® 5(®)
MLE 7.05 x 10~° 6.97 x 107* 0.721 2.27 x 1073 0.589
AMLE 8.34 x 10~° 451 x107* 0.791 3.05 x 1074 0.859
Parameter a® a® 5 a® 5
MLE 1.71 x 104 857 x 1077 1.628 1.42 x 1078 2.192
AMLE 2.15 x 10~* 6.78 x 1079 2.249 7.09 x 107 4.032
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Table 3: Failure data for pneumatic tire test

Time Code Time Code Time Code Time Code Time Code Time Code Time Code
6 0 30 0 47 5 72 1 74 3 81 1 84 3
84 3 84 3 90 3 96 1 101 6 105 5 105 3
106 4 107 1 111 6 111 4 111 4 118 3 118 4
119 3 120 4 126 5 131 1 132 1 133 6 133 3
135 4 135 3 136 6 137 3 142 5 144 3 148 3
153 3 155 1 157 6 158 5 159 0 162 1 165 4
172 5 177 2 179 3 181 4 188 1 188 6 191 6
193 3 195 4 197 5 198 6 200 0 200 2 201 4
203 4 204 3 204 6 205 4 205 6 206 4 207 4
207 4 207 1 207 4 208 1 208 6 208 4 208 3
209 1 209 4 210 6 210 6 210 4 210 6 211 4
212 4 213 4 214 4 215 4 215 4 215 4 215 3
216 4 217 4 220 5 222 4 222 4 224 4 224 6
225 4 225 5 226 4 227 4 227 2 228 4 229 4
229 6 230 5 230 1 230 2 231 4 232 1 232 2
233 1 233 4 233 4 234 4 234 4 236 4 237 4
239 6 241 4 241 4 243 4 244 1 244 3 246 6
246 4 249 4 250 4 252 4 253 4 255 4 258 4
259 0 262 5 265 4 266 1 268 2 269 4 270 5
270 2 271 4 271 4 281 4 281 3 285 1 285 4
286 4 286 4 295 1 297 2 299 3 300 0 300 0
300 4 300 4 300 0 300 0 300 0 300 0 300 0
300 0 300 0 300 0 300 0 300 0 300 0 300 0
300 0 306 4 306 4 314 4 318 6 320 4 332 4
335 0 342 6 347 4

Table 4: Estimates of parameters in the model (22) for failure data of pneumatic tires

Failure Code

1

2

3

Parameters (051) ) 951)) (99 , 952)) (9§3) ; 0%3))
MLE x10~3 | (0.295,1.670) | (0.066,1.002) | (0.525,1.002)
AMLE x1073 | (0.296,1.567) | (0.066,0.944) | (0.525,0.941)
Failure Code 4 5 6
Parameters (054) ) 954)) (Gf’) , 955)) (9§6) ; 0%6))
MLE x107® | (0.295,10.02) | (0.230,0.835) | (0.262,2.004)
AMLE %1073 | (0.296,11.20) | (0.230,0.785) | (0.263,2.617)
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Figure 1: Limits of MLE under the condition of misspecification and censorship (Example 2). The
solid curve in the left figure is the true cause-specific hazard of cause 1, /\(()1)(7?) =02x 15571
and the solid curve in the right figure is a corresponding cumulative hazard, A{"(¢) = 0.2 x 15,
The assumed parametric model is MS,ZM of (4). In each figure, the dotted line is the pseudo-

true hazard in MS)ZM. The dashed lines are limits of the MLE under the conditions of censoring

proportion ¢ = 1/3 and 2/3.
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Figure 2: Limits of MLE under the condition of misspecification and censorship (Example 3).

The solid line in the left figure is the true cause-specific hazard of cause 1, )\gl)(t) = 04I(t <
1) +0.11(t > 1), and the solid line in the right figure is a corresponding cumulative hazard. The

assumed parametric model is Mﬁ})mt of (4). In each figure, the dotted line is the pseudo-true

hazard in M(l) The dashed lines are limits of the MLE as n — oo under the conditions of

const*

censoring proportion ¢ = 1/3 and 2/3.
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Figure 3: Scatter plots of simulated samples (n = 300) from the bivariate survival function (16)
with p = 1/2. The left figure shows plots of all samples. The right figure is an expansion of the

origin.
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Figure 4: The cumulative incidence functions of cause 1 for simulated data. The curve is the true
cumulative incidence function (18) with p = 1/2. The step-function is its Aalen-Johansen estimate
based on the simulated samples.
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Figure 5: The cause-specific hazard functions of cause 1 (left) and the corresponding cumulative
hazard functions (right) for the simulated data. In both figures, the solid curves are true. The
dashed and dotted lines are estimates by MLE and AMLE, respectively. In the right figure, the

solid step-function is the nonparametric Nelson-Aalen estimate.
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Figure 7: Estimates of cumulative cause-specific hazards of causes 6 and 9 (appliance test data).
The figures on the left and right show estimates for causes 6 and 9, respectively. In each figure, the
thick step-function is the Nelson-Aalen estimate and the dotted step-functions are approximate
pointwise 90% confidence limits based on log-transformation. Assumed parametric models are

(19), (20) and (21).

MLE and AMLE, respectively.
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In each figure, the solid and dashed curves show estimates obtained by the
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Figure 9: Estimates of cumulative cause-specific hazards for failure of pneumatic tires. The dotted
step-functions are Nelson-Aalen estimates. The solid and dashed lines are estimates obtained by
the MLE and AMLE in the piecewise-constant model (22), respectively.

22



	文書名 _DPA231(表).pdf
	DPA231(本文,訂正版).pdf



