

Title	海藻由来ハロゲン化酵素の特性
Author(s)	大城,隆
Citation	北海道海洋生物科学シンポジウム = Hokkaido Marine Bioscience Symposium. 平成22年11月5日(金). 北海道大学 地球環境科学研究院D棟201号室, 札幌市.
Issue Date	2010-11-05
Doc URL	http://hdl.handle.net/2115/44370
Туре	conference presentation
File Information	23_ooshiro.pdf

北海道海洋科学シンポジウム

海藻由来ハロゲン化酵素の特性

2010 年 11 月 5 日 鳥取大学大学院・工学研究科・化学・生物応用工学専攻 大城 隆

鳥取県ホームページより

<これまでに報告されているフコイダンの生理活性>

- ・抗腫瘍・抗ガン活性
- ・抗ウイルス活性
- ・抗凝血作用
- ・抗ピロリ菌作用など

オキナワモズクは、他の海藻に 比べてフコイダンの含有量が多く、 化学構造もシンプルである。

海藻由来の酵素の研究は進んでいない!

理由:1. 採集が困難 2. 人工増殖が困難 3. 藻体中の大量の多糖類、ポリフェノール類が生化 学的解析を阻害

海藻が生産する物質の潜在的な機能は未 だ未解明な点が多い!

海藻由来の酵素や機能性物質は新規でしかも実用性が高い可能性を秘めている!

海藻類は様々なストレスにさらされていることから 海藻類由来の酵素はユニークな特徴を示すのではないか!?

当研究室で研究対象にした海藻(草)由来酵素

由来 ハロペルオキシダーゼ Corallina pilulifera(紅藻、ピリヒバ) Ascophyllum nodosum(褐藻、和名なし) **Ulvella lens**(緑藻、アワビモ) Codium fragile(緑藻、ミル)

Phyllospadix japonica(海草、エビアマモ) Phyllospadix japonica(海草、エビアマモ)

C. pilulifera

A. nodosum

C. fragile

P. japonica

ピリヒバ由来ハロペルオキシダーゼ
 (I)酵素の精製、構造解析
 (II)安定性とカルシウム
 (III)変異酵素のハライドに対する活性

2. 緑藻(アワビモ、ミル)由来ハロペルオキシダーゼ

Halogenated Compounds Produced by Algae

Haloperoxidase

 $AH + X + H_2O_2 + H^+ - AX + 2H_2O_2$

(A: nucleophilic cpds. ; X: Cl, Br, I)

Haloperoxidases Produced by Marine Algae and Microorganisms

Source	Prosthetic group	Halide	Source	Prosthetic group	Halide
Algae			Microorganisms		
brown algae			Fungi		
Ascophyllum nodosun	n vanadium	Br, I	Caldariomyces fumago	ferriprotoporphyrin IX	CI, Br, I
Fucus distichus	vanadium	Br, I	Curvularia inaequalis	vanadium	CI, Br, I
Laminaria saccharina	vanadium	Br, I	Embellisia didymospora	vanadium	CI, Br, I
Macrocystis pyrifera	vanadium	Br, I			
red algae			Bacteria		
Corallina pilulifer	a Vanadium	Br, I	Pseudomonas pyrrocinia	ferriprotoporphyrin IX	Br, I
Laurencia japonica	(ferriprotoporphyrin)	Br, I	Pseudomonas pyrrocinia	zinc and iron	CI, Br, I
green algae			Actinomycetes		
Penicillus capitatus	ferriprotoporphyrin IX	CI, Br, I	Streptomyces aureofaciens	unknown	Br, I
Ulvella lens	(vanadium)	Br, I	Streptomyces phaeochromoge	es unknown	Br, I

Corallina pilulifera

Corallina pilulifera(ピリヒバ)

鳥取空港付近の海岸

Haloperoxidases Produced by Marine Algae and Microorganisms

Source	Prosthetic group	Halide	Source	Prosthetic group	Halide
Algae brown algae			Microorganisms Fungi		
Ascophyllum nodo	sum vanadium	Br, I	Caldariomyces fumago	ferriprotoporphyrin IX	CI, Br, I
Fucus distichus	vanadium	Br, I	Curvularia inaequalis	vanadium	CI, Br, I
Laminaria saccharina	vanadium	Br, I	Embellisia didymospora	vanadium	CI, Br, I
Macrocystis pyrifera	vanadium	Br, I			
red algae			Bacteria		
Corallina pilulifera	Vanadium	Br, I	Pseudomonas pyrrocinia	ferriprotoporphyrin IX	Br, I
Laurencia japonica	(ferriprotoporphyrin)	Br, I	Pseudomonas pyrrocinia	zinc and iron	CI, Br, I
green algae			Actinomycetes		
Penicillus capitatus	ferriprotoporphyrin IX	Cl, Br, I	Streptomyces aureofaciens	unknown	Br, I
Ulvella lens	(vanadium)	Br, I	Streptomyces phaeochromog	e <i>n</i> es unknown	Br, I

Ascophyllum nodosum

大堤防 Afsluitdijk(オランダ北部)

Ascophyllum nodosum の採集

ピリヒバ由来ハロペルオキシダーゼ ()酵素の精製、構造解析 ()安定性とカルシウム ())変異酵素のハライドに対する活性

2. 緑藻(アワビモ、ミル)由来ハロペルオキシダーゼ

Haloperoxidase $AH + X^{-} + H_2O_2 + H^+ \longrightarrow AX + 2H_2O_2$ (A: nucleophilic cpds. ; X: CI, Br, I)

Purification of BPO Produced by Cor. pilulifera

Step	Total activity (U)	Total protein (mg)	Specific activity (U/mg)	Purifi- cation (fold)	Yield (%)
Cell-free extract	35,000	4,240	8.25	1	100
(NH₄)₂SO₄ fractionation	35,700	4,230	8.44	1.02	102
DEAE-Sepharose	22,600	188	120	14.5	64.6
1st Q-Sepharose	9,230	57.6	160	19.4	26.4
Sepharose CL-4B	7,360	25.9	284	34.4	21.0
2nd Q-Sepharose	4,560	11.6	393	47.6	13.0

SDS-PAGE of BPO from *Cor. pilulifera*

M. Marker proteins

1. Cell-free extract

- 2. $(NH_4)_2SO_4$ fractionation
- 3. DEAE-Sepharose
- 4. 1st Q-Sepharose
- 5. Sepharose CL-4B
- 6. 2nd Q-Sepharose

Comparison of Properties between BPOs from Cor. pilulifera and A. nodosum

	Cor. pilulifera	A. nodosum	
Molecular weight	680 kDa	90 kDa	
Subunit weight	64 kDa × 12	40 kDa x 2	
Optimum temp.	65°C	N.D*	
Optimum pH	6	6.5	
Heat stability	85ºC (90% 20 min)	70ºC (38%, 20 min)	
pH stability	5-13	N.D*	
Specific activity	393 U/mg (BPO)	87.5 U/mg (BPO)	
<i>K</i> m value	0.12 mM (H ₂ O ₂) 8.4 mM (KBr)	12.7 mM (KBr)	

*Not determined

BPO1	${\tt MGIPADNLQSRAKASFDTRVAAAELALNRGVVPSFANGEELLYRNPDPDNTDPSFIASFT}$	60
BPO2	CETG	58
BPO1	${\tt KGLPHDDNGAIIDPDDFLAFVRAINSGDEKEIADLTLGPARDPETGLPIWRSDLANSLEL}$	120
BPO2	•••••••••••••••••••••••••••••••••••••••	118
BPO1	EVRGWENSSAGLTFDLEGPDAQSIAMPPAPVLTSPELVAEIAELYLMALGREIEFSEFDS	180
BPO2	DD	178
BPO1	PKNAEYIQFAIDQLNGLEWFNTPAKLGDPPAEIRRRRGEVTVGNLFRGILPGSEVGPYLS	240
BPO2	AF.RSER	238
BPO1	QYIIVGSKQIGSATVGNKTLVSPNAADEFDGEIAYGSITISQRVRIATPGRDFMTDLKVF	300
BPO2	FF	298
BPO1	${\tt LDVQDAADFRGFESYEPGARLIRTIRDLATWVHFDALYEAYLNACLILLANGVPFDPNLP}$	360
BPO2	G	358
BPO1	${\tt FQQEDKLDNQDVFVNFGSAHVLSLVTEVATRALKAVRYQKFNIHRRLRPEATGGLISVNK}$	420
BPO2	HH.	418
BPO1	${\tt IAPQKG-ESIFPEVDLAVEELGDILEK-AEISNRKQNIADGDPDPDFSFLLPMAFAEGSP$	478
BPO2	.KSFLA.SDISELSSDDVERIVSK	477
BPO1	${\tt FHPSYGSGHAVVAGACVTILKAFFDSGIEIDQVFEVDKDEDKLVKSSFKGTLTVAGELNK}$	538
BPO2	T	537
BPO1	${\tt LADNIAIGRNMAGVHYFSDQFESLLLGEQVAIGILEEQSLTYGENFFFNLPKFDGTTIQI}$	598
BPO2	V	597

Alignment of the Amino Acid Sequences of BPOs, BPO1 and BPO2 from *Cor. pilulifera*

	Protein (mg)	Total activity (U)	Specific activity (U/mg)
1. Cell-free extracts	17600		
2. DEAE-Sepharose	264	613	2.32
3. Phenyl-Sepharose	9.92	363	36.6
4. Source 30Q	1.66	159	95.9
5. Superdex	0.34	1 97.5	286

G-I-P-A-D-N-L-Q-S-R-A-K-A-S-F-D

Purification of BPO from the Recombinant E. coli

Purification of BPO Produced by Saccharomyces cerevisiae BJ1991/pTNT30

Step	Total activity (U)	Total protein (mg)	Specific activity (U/mg)	Purifi- cation (fold)	Yield (%)
Cell-free extract	225,000	10,300	21.8	1	100
(NH ₄) ₂ SO ₄ fractionation	213,000	5,730	37.2	1.71	94.7
DEAE-Sepharose	160,000	627	255	11.7	71.1
Q-Sepharose	65,700	162	406	18.6	29.2
Sepharose CL-4B	63,000	146	432	19.8	28.0

SDS-PAGE of BPO from S. cerevisiae BJ1991/pTNT30

M. Marker proteins

1. Cell-free extract

- 2. $(NH_4)_2SO_4$ fractionation
- 3. DEAE-Sepharose
- 4. Q-Sepharose
- 5. Sepharose CL-4B

- 1.8 M Ammonium dihydrogenphosphate 0.1 M Tris-HCI buffer, pH 5.0 (1 day)
- 1.8 M Ammonium dihydrogenphosphate0.1 M Tris-HCl buffer, pH 5.0 (6 days)

Photomicrographs of Crystalline BPO from *S. cerevisiae* BJ1991/pTNT30

Electron Micrograph *J.B.C.*, <u>261</u>, 5194-5200 (1986)

Dodecamer Structure of the Cor. pilulifera BPO

バナジン酸が位置する活性中心から離れた場所にカルシウムが存在

Structure of the Cor. pilulifera BPO

ピリヒバ由来ハロペルオキシダーゼ ()酵素の精製、構造解析 (Ⅱ)安定性とカルシウム (Ⅲ)変異酵素のハライドに対する活性

2. 緑藻(アワビモ、ミル)由来ハロペルオキシダーゼ

Effects of Temperature on Wild or Recombinant BPO Activity and Stability

Structure of the Calcium Binding Site of BPO from *Cor. pilulifera* Structure of the Vanadate Binding Site of BPO from *Cor. pilulifera*

Determination of Calcium in BPO by Inductively Coupled Plasma (ICP) Emmision Spectrometry

				Аро		
	Wild	Recombinant	Wild	Recombinant		
mol Ca/mol subunit	0.976	0.828	N.D.	0		

N.D. : not determined

Enzymes from Cor. pilulifera and the recombinant yeast

- dialyzed against 10 mM EDTA/
 100 mM citric acid-potassium dihydrogenphosphate buffer
 (pH 3.8) for 24 h
- dialyzed against 50 mM Tris-SO₄ buffer (pH 7.4) for 24 h

Apo-enzymes

—preincubated with 1 mM Na₃VO₄ and/or 1 mM various metal salts at 30°C for 12 h

Holo-enzymes

— heat treatment (20 min)

— measure BPO activity

Scheme of Formation of Apo-enzyme and Holo-enzyme

Effects of Vanadate and Calcium Ions on Thermostability of Apo-BPO

Ca が熱安定性に関与、V も多少関与

Effects of Various Metal Ions on Thermostability of Apo-BPO

Mg, Sr に Ca の代替効果有り

Effects of Tungstate Ion and Molybdate Ions on Thermostability of Apo-BPO

Effects of Polar Organic Solvents on the Stability of Apo-BPO

Effects of Polar Organic Solvents on the Stability of Holo-BPO

Analysis of CD Spectrometry of Apo- and Holo-enzymes

アポ型、ホロ型酵素の CD スペクトルに大差なし → アポ型、ホロ型酵素で極端な構造変化なし

Analysis of CD Spectrometry of Holo-enzymes in 80% Organic Solvents

エタノール添加では構造変化なし、 メタノール添加で 195 nm~230 nm の CD 波形にずれ

1. ピリヒバ由来ハロペルオキシダーゼ

(I)酵素の精製、構造解析

(II)安定性とカルシウム

(III)変異酵素のハライドに対する活性

2. 緑藻(アワビモ、ミル)由来ハロペルオキシダーゼ

Structure and Active Site of the BPO Subunit from *Cor. pilulifera*

Haloperoxidases Produced by Marine Algae and Microorganisms

Source	Prosthetic group	Halide	Source	Prosthetic group	Halide
Algae brown algae			Microorganisms Fungi		
Ascophyllum nodosun	n vanadium	Br, I	Caldariomyces fumago	ferriprotoporphyrin IX	CI, Br, I
Fucus distichus Laminaria saccharina Macrocystis pyrifera	vanadium vanadium vanadium	Br, I Br, I Br, I	Curvularia inaequalis Embellisia didymospor	vanadium a vanadium	CI, Br, CI, Br,
red algae			Bacteria	forriprotoporphyrip IV	Br I
Corallina pilulifera Laurencia japonica	Vanadium (ferriprotoporphyrin)	Br, I Br, I	Pseudomonas pyrrocinia Pseudomonas pyrrocinia	zinc and iron	CI, Br, I
green algae			Actinomycetes		
Penicillus capitatus Ulvella lens	ferriprotoporphyrin IX (vanadium)	CI, Br, I Br, I	Streptomyces aureofaciens Streptomyces phaeochromoge	unknown nes unknown	Br, I Br, I

Haloperoxidase $AH + X^{T} + H_{2}O_{2} + H^{+} \longrightarrow AX + 2H_{2}O$ (X: CI, Br, I)

Comparison of Properties between BPO from Cor. pilulifera and CPO from Cur. inaequalis

	BPO	СРО	
Molecular weight	680 kDa	67 kDa	
Subunit weight	64 kDa × 12	67 kDa	
Optimum temp.	65°C	N.D*	
Optimum pH	6	5.5	
Heat stability	85ºC (90% 20 min)	80ºC (73%, 5 min)	
pH stability	5-13	N.D*	
Specific activity	432 U/mg (BPO)	48 U/mg (BPO)	
	0.65 U/mg (CPO)	14 U/mg (CPO)	
<i>K</i> m value	0.12 mM (H ₂ O ₂)	1 μ Μ (H₂O₂)	
	8.4 mM (KBr)		
	N.D* (KCI)	0.25 mM (KCI)	

*Not determined

Alignment of the Amino Acid Sequences of Vanadium-dependent Haloperoxidases from Algae and Microorganisms

C. pilulifera: Corallina pilulifera, F. distichus: Fucus distichus,

- A. nodosum: Ascophyllum nodosum, C. inaequalis: Curvularia inaequalis,
- E. didymospora: Embellisia didymospora
- 1) The sequence was submitted to the GenBank Data Bank under the accession number AF053411 (1998).
- 2) The partial amino acid sequence was determined.
- 3) Eur. J. Boichem., 229, 566-574 (1995).
- 4) J. Biol. Chem., 273, 23381-23387 (1998).

Structure and Active Site of the BPO Subunit from *Cor. pilulifera*

Activities of Mutant Enzymes in Cell-free Extracts

Comparison of Properties among Recombinant Wild Type BPO, Mutant BPOs (R397W and R397F)

	Wild	R397W	R397F
Molecular weight	680 kDa	680 kDa	680 kDa
Subunit weight	64 kDa × 12	64 kDa × 12	64 kDa×12
Optimum temp.	65°C	65°C	65°C
Optimum pH	6	6	6
Heat stability (20 min)	85ºC (90%)	85ºC (90%)	85ºC (90%)
pH stability	5-13	<mark>3</mark> -13	5-13
Specific activity	432 U/mg (BPO)	469 U/mg (BPO)	459 U/mg (BPO)
	0.65 U/mg (CPO)	25.1 U/mg (CPO)	32.0 U/mg (CPO)
<i>K</i> m value	0.12 mM (H ₂ O ₂)	0.13 mM (H ₂ O ₂)	0.081 mM (H ₂ O ₂)
	8.4 mM (KBr)	7.1 mM (KBr)	4.25 mM (KBr)
	N.D* (KCI)	780 mM (KCI)	670 mM (KCI)
Inhibitor	Cu ² , 8-quinolinol	Cu ²⁺ , 8-quinolinol	Cu ² ; 8-quinolinol
	lodoacetate	lodoacetate	lodoacetate
		Sodium azide	Sodium azide

*Not determined

2. 緑藻(アワビモ、ミル)由来ハロペルオキシダーゼ

PHYTOCHEMISTRY

Phytochemistry 52 (1999) 1211-1215

アワビモ(Ulvella lens)由来ハロペルオキシダーゼ

Occurrence of bromoperoxidase in the marine green macro-alga, ulvella lens, and emission of volatile brominated methane by the enzyme

Takashi Ohshiro^a, Satoru Nakano^b, Yoshinori Takahashi^b, <u>Minoru Suzuki</u>^b, Yoshikazu Izumi^{b,*}

^aDepartment of Biotechnology, Tottori University, Tottori 680-8552, Japan ^bDivision of Material Science, Graduate School of Environmental Earth Science, Hokkaido University, Sapporo 060-0810, Japan

海藻ミル(Codium fragile)の無細胞抽出液調製

海藻ミル由来ハロペルオキシダーゼの精製

	Total protein (mg)	Total activity (U)	Specific activity (U/mg)	Purification (fold)	Yield (%)
ミルC.F.E.	768	212	0.277	1	100
1st DEAE	238	32	0.136	0.5	15
2nd DEAE	94	18.8	0.200	0.7	8.9
Q-Sepharose	3.5	4.3	1.24	4.5	2.0
Superdex	0.18	0.64	3.56	12.9	0.3

ミル藻体 10 kg(湿重量)から酵素精製

・金属(Ca、Mn)で活性増大
 ・ピリヒバ由来酵素に比べ、
 熱安定性は低い
 (60℃、20 min 処理で失活)

海藻ミル由来ハロペルオキシダーゼの諸性質

	至適 pH	κ _m [H ₂ O ₂] (mM)	K _m [KBr] (mM)	分子量 (kDa)
<i>C. fragile</i> (緑藻)	6.0	0.015	35	72 ¹⁾ , 417 ²⁾
<i>P. capitatus</i> (緑藻)	4.0	0.125	30	52 ²⁾
<i>P. lamourouxii</i> (緑藻)	4.0	0.125	15	48 ²⁾
<i>C. pilulifera</i> (紅藻)	6.0	0.092	11	67 ¹⁾ , 790 ²⁾
<i>A. nodosum</i> (褐藻)	6.0	0.034	13	40 ¹⁾ , 90 ²⁾

1) subunit 2) native

本酵素は他の緑藻由来ハロペルオキシダーゼと 異なる特性を有する!

ハロゲン化酵素の現状と今後の課題

- ピリヒバ由来の酵素は、他のハロペルオキシダーゼよりも高い熱安定性、溶媒耐性、 比活性
- クロロ活性が低い

さらに機能改変された変異酵素の構築

実際のハロゲン化反応への適用