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Abstract.
We study numerically the long-time evolution of the surface quasi-geostrophic

equation with generalised viscosity of the form (−4)α, where global regularity has
been proved mathematically for the subcritical parameter range α ≥ 1/2. Even in
the supercritical range, we have found numerically that smooth evolution persists, but
with a very slow and oscillatory damping in the long run. A subtle balance between
nonlinear and dissipative terms is observed therein. Notably, qualitative behaviours
of the analytic properties of the solution do not change in the super and subcritical
ranges, suggesting the current theoretical boundary α = 1/2 is of technical nature.

1. Introduction

The regularity issues on partial differential equations are challenging and important

problems in mathematical fluid mechanics. In particular, the regularity of the 3D

Navier-Stokes equations remains the well-known open problem. The case of 2D Euler

equations is an exceptional case, where global existence results have been proved by

the conservation of the vorticity. Even in two-dimensional fluid dynamical systems,

the vorticity is not generally conserved, say, in the 2D Boussinesq equations or in the
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2D magnetohydrodynamic equations. In these cases proving global regularity for ideal

fluids is virtually impossible.

In this paper, we consider so-called surface quasi-geostrophic (SQG) equation which

has attracted much attention recently. This equation is important not only as a test

bed for 3D problems, but also as a geophysical application on its own.

The mathematical study of the 2D SQG equation was initiated by [9, 10]. Since

then it has been investigated mathematically [5, 7, 8, 11, 17, 22, 24, 27] and numerically

[3, 12, 21, 23] by many authors. Recent mathematical works employ the method of

a generalised viscosity of the form (−∆)α and attempt proving regularity with the

exponent α as small as possible. The best mathematical result at the moment says that

if α ≥ 1/2 we have global regularity for the case of infinite plane R2 [4, 19]. At the

moment, it seems to be difficult to extend similar analyses for α < 1/2.

From the numerical experiments undertaken so far, we may gather the following

rough scenario. For ν = 0, layers with steep gradient of the temperature (the active

scalar) will form. We may get closer to this first (near-)singularity with increasing

spatial resolutions. For slightly viscous case, one can avoid the singularity formation

and the flow pattern will be changed drastically. In the end we expect that the flow is

on its way to converge towards the trivial zero solution. But apparently this final stage

of decay has not been discussed in detail in previous works. On the other hand, for a

successful proof of regularity, the dynamics in the late evolution should be dominated

by the linear dissipative term.

On the basis of computational results we may expect global regularity for slightly

dissipative cases and even for the ideal cases. But it has turned out to be very hard

to prove it. A couple of questions naturally arise here: i) Why is it so difficult ?, ii) Is

α = 1/2 a genuine boundary or of technical nature ?, and iii) How does the solution

actually behave in the long run ?

To address these issues, we study the hypoviscous SQG equation numerically in this

paper, in an attempt to shed some light upon the difficulty that analytical approaches

are facing. In particular, we will be interested in the analytic property of the flow in

the long term evolution.

We have carried out numerical simulations for an unprecedentedly long time to

understand what is happening in the ‘final’ stage of evolution, by changing the parameter

α around the critical value (α = 1/2). The rest of this paper is organised as follows. In

Section 2, mathematical formulation is given together with a recapitulation of previous

works. In Section 3, numerical results are presented, including detailed analyses of the

late stage evolution. Finally, Section 4 is devoted to summary and discussion.
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2. Mathematical formulation and strategy

2.1. SQG equation

The surface quasi-geostrophic equation for an active scalar (temperature) θ(x, t) with

generalised viscosity reads

∂θ

∂t
+ (u · ∇)θ = − ν(−∆)αθ,

θ(x, t) = θ0(x),

where θ0(x) is the initial condition and 0 ≤ α ≤ 1. Here ν denotes a generalised viscosity

coefficient, which reduces to a standard kinematic viscosity for α = 1. The velocity is

given by

u = ∇⊥(−∆)−1/2θ, (1)

or u = −R⊥[θ]. Here R⊥ is the skewed version of a Riesz operator R = −∇(−4)−1/2

and ∇⊥ = (∂y,−∂x). Periodic boundary condition with period 2π is imposed both in

the x and y directions.

Note that for α = 0, the equation has a drag term. By a set of transformations,

e.g. [2], θ = e−νtθ̃, t̃ = 1−e−νt

ν
we may reduce it to the equation for an ideal fluid.

The SQG equation has originally been derived in the context of geophysical fluid

dynamics. On the other hand, this equation has been studied as a test bed for a

singularity formation in incompressible flows since the pioneering works of [9, 10].

A singularity suggested therein was shown to have an alternative interpretation in

[23]. Later this double-exponential growth has had added support [3, 12], whereas a

mathematical proof for global regularity is yet to be obtained.

2.2. Test problem

In this paper we will make a full use of the analyticity strip method[26] to keep track of

the long time evolution of the SQG equation in detail, particularly in connection with

the blow-up issue. Before doing that, it makes sense to convince ourselves that such a

numerical methodology actually works for a delicate problem of inviscid singularity.

Take, for example, the 1D Burgers equation with hypoviscosity (0 ≤ α ≤ 1):

ut + uux = −ν(−∂xx)
αu, (2)

with the initial data

u0 = − sin x, (3)

and the periodic boundary condition on [0, 2π]. It has been proved in [20] that no

solutions blow up for α ≥ 1
2

and that some blow up for α < 1
2

. Thus in this case α = 1
2

is a genuine boundary of regularity. See also [1, 6] for more recent works.

The equation is spatially discretised by the pseudo-spectral method with 4096 grid

points and temporally integrated by the fourth-order Runge-Kutta method with the
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time step size 1.0 × 10−4. The viscosity coefficient is set to ν = 0.1. We apply the

analyticity strip method to the energy spectrum defined by

E(k, t) =
1

2
|ũ(k)|2, (4)

where ũ(k) is the Fourier transform of the velocity. We fit it in the following form

E(k, t) = Ak−n exp(−δ(t)k), (5)

and monitor how δ(t) behaves in time. It is extremely difficult to resolve the values

of δ(t) for α ≈ 1
2

by the conventional least-squares fitting method with the double-

precision arithmetic, since δ(t) tends to zero rapidly in finite time when α is near the

critical value. Thus we estimate the values of A, n and δ(t) by assuming that the ansatz

holds for the consecutive three wave numbers, i.e., k, k + 1 and k + 2. The value of δ(t)

obtained by this pointwise fitting depends on the wavenumber k. However, as we have

observed in the numerical computation of the vortex-sheet singularity formation[25], if

the numerical solution is obtained very accurately, the value of δ(t) hardly depends on

the wavenumber and can be determined accurately. Thus here the numerical integration

of the Burgers equation was carried out with the 40-digits floating point arithmetic using

a multiple precision arithmetic library, Exflib[18]. Thanks to this, we can resolve the

value of δ(t) as accurately as O(10−4).

We show in Fig.1 the time evolution of δ(t) for various values of α. There an exact
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Figure 1. Time evolution of
the analyticity strip δ(t) for the
Burgers equation for various values
of α.
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Figure 2. The spectra of active
scalar for the inviscid case at t =
7, 8, 9 and 9.5 (from left to right).
The straight line represents a slope
−2.

relationship for the inviscid case δ(t) = 2
(
log 1+

√
1−t2

t
−

√
1 − t2

)
[26] is also shown.

The numerical results show the following. If α > 1
2
, δ(t) first decreases in time, but

it starts to increase later, recovering the analyticity. On the other hand, if α < 1
2
, it

monotonically decreases in time and the velocity field becomes under-resolved quickly.

By monitoring δ(t) we can distinguish regular and singular cases and confirm the result

[20], thereby gaining confidence with the analyticity strip method. We conclude that in

this case the analyticity strip method does yield a useful guide regarding the regularity

property of the solution.
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3. Numerical results

We consider two kinds of initial data in this paper;

Case 1 θ0(x) = sin x sin y + cos y, (6)

and

Case 2 θ0(x) = cos 2x cos y + sin x sin y + cos 2x sin 3y. (7)

They correspond to IC1 and IC3 in [9], respectively. We mainly treat Case 1 in detail

and compare the results with those of Case 2 later.

First we consider the inviscid (ideal) case. As numerical methods we use a 2/3-

dealiased Fourier pseudo-spectral method. Spatial resolutions used are typically 20482

and 40962 grid points for hypoviscous cases and up to 163842 for the ideal case. Temporal

integration is performed with the fourth-order Runge-Kutta method with the time step

size typically, ∆t = 1 × 10−3. All the computations have been done in double-precision

arithmetic. Note that we do not implement the multiple precision arithmetic to the

numerical computation of the SQG equation unlike the case of the Burgers equation,

for the reasons to be explained later. Some hypoviscous computations cover up to

t ≤ 1000. We mainly discuss the case of α = 0.4, a supercritical case for which we have

no proof of global regularity.

3.1. Initial condition 1

3.1.1. Long time evolution of the passive scalar We show in Fig.2 the inviscid evolution

of the spectrum of the active scalar Q(k), defined by

Q(k) =
1

2

∑
k≤|k|≤k+1

|θ̃(k)|2, (8)

where θ̃(k) is the Fourier transform of the active scalar. We confirm that the flow is

well-resolved at t = 7.0, 8.0, 9.0 and 9.5. At t = 10.0 it is slightly under-resolved with a

pile up at the highest wavenumber range (not shown).

In previous inviscid computations with 40962 modes, calculations were reliable up

to t ≤ 7. With a higher resolution of 163842 we may integrate the SQG equation a little

bit further in time to t ≈ 9.5, because δ(t) > 2π/16384 × 3/2 ≈ 0.00058 (see Fig.15

below). In Fig.3 we show that thin layers of active scalar gradient formed in the domain.

We begin discussing the hypoviscous computations, starting with the supercritical

case of α = 0.4. Most of hypoviscous calculations were done with 20482 modes, except

for ν = 2.5 × 10−4 (see Figs.15 and 16 below). The analyticity strip δ(t) exceeds the

mesh size 2π/2048 × 3/2 ≈ 0.0046 throughout the computation (typically, see Fig.8

below), showing that the flow is well-resolved all the time. First we consider the time

evolution of (squared) norms defined by

E(t) =
1

2

∑
k

|θ̃(k)|2

|k|2
, H(t) =

1

2

∑
k

|θ̃(k)|2

|k|
, (9)
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Figure 3. Contour plots of active
scalar for the inviscid case at t =
9.5 in [−π, π]2. Equally-spaced 10
thresholds are used between the
maximum and minimum.
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Figure 4. Time evolution of the
several (squared) norms for α =
0.4, ν = 1.0 × 10−3. The figure
shows E(t) (solid) H(t)(dashed)
and Q(t)(dotted).

Q(t) =
1

2

∑
k

|θ̃(k)|2, P (t) =
1

2

∑
k

|k|2|θ̃(k)|2. (10)

The quantities H(t) and Q(t) are inviscid constants of motion.‡ As we see in Fig.4

they decrease in time with a slightly dissipative mechanism. It should be noted that

E(t), Q(t) and H(t) almost collapse with each other for t ≥ 100. This happens when

essentially only one wavenumber mode is excited, as confirmed later. The norm of higher

derivatives P (t) increases rapidly in the early stage and later generally decreases in time

(figure omitted). The norm E(t), which is not an inviscid constant of motion, slightly

increases in the initial stage and decays with time. Unfortunately, from these spatially

global behaviours it is hard to understand the details of the property of the flow.

Before studying the spectra of active scalar by the analyticity strip method in

detail, we give their time evolution in relatively early stage t ≤ 100 in Fig.5. From this

we see that up to time of order O(102) the spectra display a short power-law range,

which has a slope steeper than that of the inviscid value −2, followed by an exponential

fall-off. Again, by taking a look at this behaviour, we cannot understand the details of

the analytic property.

After this time of order O(102), we expect that the flow is on its way to eventual

decaying process and it will converge to a trivial state of θ(x) = 0 in the end. In

practice, it would take very long time for the flow to reach the final stage. To the

authors’ knowledge no detailed study has been reported on the behaviours in the very

late stage.

‡ With a slight abuse of notations, Q(t) denotes a (squared) norm at time t, whereas Q(k) the Fourier
spectrum at wavenumber k (see below).
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Figure 5. Time evolution of the
spectra of active scalar at t =
70(solid), 80(dashed), 90(dotted),
and 100(short-sashed) for α =
0.4, ν = 1.0 × 10−3. The straight
line has a slope of −2.

We have conducted the direct numerical simulations for an unprecedentedly long

time. In Fig.6 we show the time evolution of contours of active scalar up to t = 50.

We observe that after the formation of a very thin layer of scalar gradient around

t = 10, the flow pattern changes drastically by the effect of dissipativity. By t = 50, we

see prominent structures align parallel to the y-axis. In Fig.7 we show time evolution

of contours of active scalar from t = 100 to 600. From t = 100 onward, the flow

pattern is predominantly parallel to the y-axis. For example, at t = 500 and 600,

the contours appear to be parallel to the y-axis almost perfectly. Recall if they were

perfectly parallel the nonlinear term would vanish. Although the solution at the time

t = 600 looks almost parallel at a glance, the width of δ(t) indicates that even at that

time the nonlinear term does not identically vanish as we see later in Fig.25b below. An

animation showing the time evolution of contours of active scalar is available online at

http://koji-ohkitani.staff.shef.ac.uk/papers.html.

3.1.2. Oscillatory damping and the analyticity strip We then analyze the data by

applying the analyticity strip method to the spectrum of the active scalar. We fit the

spectrum as

Q(k, t) = A(t)k−n(t) exp(−δ(t)k) (11)

with three parameters A(t), n(t) and δ(t) and watch how the width of the analyticity

strip δ(t) recovers in time. (Time dependence of Q(k, t) will be suppressed hereafter for

simplicity.)

Unlike the case of the Burgers equation, we apply the least-squares fitting. This

is because the profile of the energy spectra for the solution of the SQG equation is

oscillatory and is not as smooth as that for the Burgers equation even if the multiple

precision arithmetic is implemented. For such oscillatory numerical data, the least-
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Figure 6. Contour plots of active scalar in [0, 2π]2 at t = 0.5, 10.0, 20.0, 30.0, 40.0
and 50.0 for α = 0.4, ν = 1.0 × 10−3. Ten equally-spaced levels are used between the
maximum and the minimum.

squares fitting gives more reliable estimate of δ(t) than the pointwise fitting. Moreover,

we remove the lower-mode spectra up to the wavenumber k = 15 from the fitting data,

since they suffer from violent oscillations. We have checked that the estimate of δ(t)

is insensitive of the level of the cut-off wavenumber as long as the high wavenumber

components remain in the spectra.

In Fig.8 we show the time evolution of δ(t) up to t = 300. At the very early

stage, the value of δ(t) drops very sharply, which is due to the formation of the sharp

gradient of the scalars. The decrease of δ(t) soon stops due to the effect of the viscous

dissipation, and then starts recovering the analyticity. After t ≥ 150, we notice an
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Figure 7. Contours of active scalar at t = 100., 200., 300., 400., 500. and 600, plotted
as in Fig.6.

unexpected behaviour in δ(t), that is, it oscillates around a certain level of analyticity.

To examine the behaviour, we show in Fig.9 the time evolution of δ(t) up to t = 600.

It is clear from this that the analyticity strip δ(t) is recovering its width in time on

average, but the oscillations observed in the previous Fig.8 persist to a later stage. For

this initial condition with hypoviscosity, we have found an oscillatory damping process

in the late stage of time evolution. A dip in δ(t) observed around t = 600 is actually an

numerical artifact, which will be addressed later in subsection 3.1.3. We have confirmed

that the oscillation persists even when we halve the time step to δ = 0.5 × 10−3 (figure

omitted). This shows the oscillation is genuine, rather than a numerical artifact.
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Figure 8. Time evolution of the
analyticity strip δ(t) up to t = 300
for α = 0.4, ν = 1.0 × 10−3 in a
semi-log plot.
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Figure 9. Time evolution of
the analyticity strip δ(t) for α =
0.4, ν = 1.0 × 10−3 up to t = 600.
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Figure 10. Time evolution of δ(t)
for α = 0.4, ν = 1.0 × 10−3 from
t = 250 to 320 when the oscillatory
damping is taking place.
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Figure 11. Snapshots of the spec-
tra of the active scalar during one
period of the oscillatory damping
of δ(t) for α = 0.4, ν = 1.0 × 10−3

from t = 274.0 to t = 294.5.

We observe how the spectra of the scalars evolve when the oscillatory damping

is taking place. Figure 10 shows the evolution of δ(t) between t = 250 and 320, in

which we see three periods of the oscillation. We take one period from t = 274.0 to

t = 294.5 and observe how the spectra of active scalar evolve in Fig.11. From t = 274.

to t = 284.5, the spectrum decreases due to the viscous dissipation, as a result of

which δ(t) increases from the local minimum to the local maximum. Afterwards, the

spectrum begins growing due to the nonlinear advection effect until t = 294.5 when

δ(t) attains the local minimum again. Let us notice the following two facts. First,

although the spectrum at t = 274.0 is decaying smoothly, the one at t = 284.5 where

δ(t) attains local maximum after the viscous dissipation has a wavy profile. This means

the viscous linear dissipation is prevented by the growth of spectra due to their nonlinear

interactions. Second, after the one period of oscillation the distribution of the spectrum

at t = 294.5 is lower than that at t = 274.0, which means the solution gets a little bit

smoother in the one period of oscillation. On the basis of this observation we infer that

the oscillatory damping arises due to a subtle periodic balancing between the growth by
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the nonlinear advection and the damping by the linear viscous damping. Note also that

the period ≈ 20 is on the same order of the large-scale turn-over time T , which may be

estimated T = 2π/
√

3E/2 ≈ 10 using E ≈ 0.25 at t = 300.

In order to understand this oscillatory damping in more detail, we compare the time

evolution of analyticity strips for a number of different values of α in Fig.12. For all the

values of α, still δ(t) recover in time with oscillations. If we use α = 0.3, it does so a

bit more slowly than the case of α = 0.4 because of weaker dissipativity. On the other

hand, for α > 0.4, it grows rapidly than the case of α = 0.4. Moreover, if we switch

from α = 0.4 (supercritical case) to α = 0.6 (subcritical case) abruptly at t = 300, the

analyticity starts to increase faster as in seen Fig.13, consistent with intuition.

A rather clear oscillatory behaviour suggests that there may be a periodic solution in

the phase space for the ideal case. To check this possibility we switch off the dissipative

term at t = 300 all of a sudden, to see if it converges toward an inviscid limit cycle

that might possibly exist. However, as is clear from Fig.13, the analyticity strip rapidly

decreases after switching to the inviscid evolution and the flow becomes under-resolved

in a very short time. This shows that such an inviscid limit cycle does not exist. It also

shows that in the stage of oscillatory damping with hypoviscosity, the nonlinear term

and the linear dissipative term are in a subtle balance. We judge that the dynamics at

that stage is not dominated by the dissipative term yet.
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Figure 12. Time evolution of
analyticity strip for different α for
ν = 1.0 × 10−3.
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Figure 13. Time evolution of δ(t)
for α = 0.4(solid) with ν = 1.0 ×
10−3. The dashed line shows δ(t)
after switching to α = 0.6 at t =
300. Likewise, short-dashed line
shows a switch to the inviscid case.
Wavenumber modes with k ≤ 15
have been removed for the fitting.

3.1.3. Analyticity strip and maximally excited mode In some of the cases we observe

large fluctuations in the late stage, see again Fig.12. The larger values α takes, the

sooner the wild fluctuations set in. It has turned out that the fluctuation comes from
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the fact that in the late stage of the evolution we have only limited number of modes

that can be used for fitting δ(t). To confirm this view we introduce the concept of

the maximally excited number, that is, the number k such that Q(k) ≥ 10−25. Time

evolution of the maximally excited modes is shown in Fig.14 for various values of α. We

find that once the maximally excited mode reaches about 60, the analyticity strip δ(t)

starts to fluctuate violently.
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Figure 14. Time evolution
of maximally excited number for
different α for ν = 1.0 × 10−3.

The smaller α is, the longer the duration of oscillatory damping lasts. In order

to understand this consistently with (expected) global regularity we examine the early

stage behaviour in detail, by changing the values of ν. For the totally inviscid case, the

analyticity strip δ(t) is observed to decrease exponentially in time. For the viscous case,

if the viscosity is very small, the solution behaves nearly inviscidly, tracking the inviscid

shrinkage of analyticity until the viscous effects become important. It should be noted

that (i) by that time δ(t) is very small and (ii) it takes long to recover analyticity with

prolonged oscillations because of small α.

The exponential decay of δ(t) for the inviscid case plays a vital role here, as it

enables us to choose α and/or ν in such a way that recovery of δ(t) starts from an

arbitrarily small value. If there were a finite-time blowup for the SQG equation, then

we would have a fixed time, near which the viscous effects become important as we have

observed in the case of the Burgers equation in Fig.1. If it were the case, all the above

argument would have broken down.

In Fig.15 we plot the early time evolution of δ(t) for different values of ν, with α

held fixed at 0.4. The smaller ν becomes (or, equivalently the larger the initial data

are), the longer the viscous solutions track the inviscid evolution. This explains, at least

partially, why it is difficult to prove regularity for α < 1
2
.

In Fig.16 we plot the maximally excited modes. This shows that the number of

excited modes also tracks that of the inviscid solution. Note that for ν = 0 (with 163842

modes) and ν = 2.5× 10−5 (with 40962 modes), the graphs become flat after some time
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because of the cut-off at high wavenumber. All in all, the long-term oscillatory damping

is entirely consistent with global regularity of the inviscid solution.
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Figure 15. Time evolution of the
analyticity strip with α = 0.4 for
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Figure 16. Time evolution of the
the maximally excited modes with
α = 0.4 for several values of ν.

3.1.4. Very late stage Now, we examine the very late stage of the time evolution. In

Fig.17 we show the over-all evolution of spectra for α = 0.4. It shows how the excitation

initially localised at low wavenumbers spreads over to the larger wavenumbers and then

starts to decay. It should be noted that at t = 300 the spectrum begins to show

oscillatory excitations in lower wavenumber range and this is even more pronounced

at t = 600. In Fig.18 we show similar plots for α = 0.7. Again, the spectrum shows

oscillations at low wavenumbers. The physical mechanism of this oscillations is not

known.
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Figure 17. Spectra of active
scalar at t = .5(solid), 10(dashed),
300(short-dashed) and 600(dotted)
for α = 0.4, ν = 1.0 × 10−3.
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Figure 18. Spectra of active
scalar at t = .5(solid), 10(dashed),
300(short-dashed) and 600(dotted)
for α = 0.7, ν = 1.0 × 10−3.

In order to examine the very late stage, where the numerical solution aligns the y

direction, it is useful to check 1D spectra defined by

Q1(k1) =
1

2

∞∑
k2=0

|θ̃(k1, k2)|2, (12)
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and

Q2(k2) =
1

2

∞∑
k1=0

|θ̃(k1, k2)|2. (13)

In the Fourier transform

θ̃(k1, k2) =

∫ 2π

0

∫ 2π

0

θ(x1, x2)e
−i(k1x1+k2x2)dx1dx2

(2π)2
, (14)

if we assume that the active scalar is independent of x2, that is, θ(x1, x2) = θ(x1) we

find

θ̃(k1, k2) = δk2,0F (k1), (15)

where δk2,0 is Kronecker’s delta and F (k1) ≡
∫ 2π

0
θ(x1)e

−ik1x1 dx1

2π
. Thus, if θ(x) is totally

independent of x2, Q2(k2) has an excitation only at k2 = 0. In this case we have

Q1(k1) =
F (k1)

2

2
and Q2(k2) = δk2,0

∞∑
k1=0

F (k1)
2

2
. (16)

In Fig.19 and 20 we show the over-all development of 1D spectra, which shows that

Q2(k2) ¿ Q1(k1) at the late stage, if we compare at the same wavenumber k1 = k2.

This is consistent with the observation that contours of θ(x) are almost parallel to y-

axis. In Fig.21 and 22 we show the late-stage development of 1D spectra, where a rapid
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Figure 19. One-dimensional
spectrum of active scalar Q1(k1)
for α = 0.4, ν = 1.0 × 10−3 at
t = .5, 10, 300, 600.
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Figure 20. One-dimensional
spectrum of active scalar Q2(k2)
for α = 0.4, ν = 1.0 × 10−3 at
t = .5, 10, 300, 600.

decay of Q2(k2) is seen. It is also seen that in Q1(k1) the mode k1 = 1 is decaying slowly

is together with odd-numbered modes k1 = 3, 5, . . .

In order to check if the higher harmonics survive or not we compute normalised

spectrum defined by

Q̃(k) =
Q(k)∑
k Q(k)

. (17)

Note that if the excitation is strictly localised at k = 1 then Q̃(k) = 1 at k = 1, and

Q̃(k) = 0 otherwise. In Fig.23, we show the phase portrait in Q̃(1), Q̃(3), which are the
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Figure 21. One-dimensional
spectrum of active scalar Q1(k1)
for α = 0.4, ν = 1.0 × 10−3 at
t = 100, 200, 300, 400, 500, 600.
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Figure 22. One-dimensional
spectrum of active scalar Q2(k2)
for α = 0.4, ν = 1.0 × 10−3 at
t = 100, 200, 300, 400, 500, 600.

two largest excitations in the late stage. As time goes on, we see Q̃(1) → 1, Q̃(3) → 0,

with the crowded symbols represent the late stage. In Fig.24 we plot a similar portrait

for Q̃(3), Q̃(5), showing that both Q̃(3) and Q̃(5) → 0. We have also found similar

results for α = 0.7(figures omitted).
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Figure 23. Phase portrait in
normalised spectrum Q̃(1) − Q̃(3)
for α = 0.4, ν = 1.0 × 10−3.
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Figure 24. Phase portrait in
normalised spectrum Q̃(3) − Q̃(5)
for α = 0.4, ν = 1.0 × 10−3.

To take a closer look at the late stage behaviour compare the sub- and supercritical

cases. We plot the time evolution of some individual the Fourier coefficients of |k| = 1

in Fig.25. We recall that the initial condition (6) reads in Fourier space

θ̃(0,±1) =
1

2
, θ̃(±1,−1) = ±1

4
, θ̃(±1, 1) = ∓1

4
. (18)

The coefficient Re(θ̃(1, 0)) sharply increases in the beginning and decays slowly

subsequently. This is responsible for changing the contour pattern to the one with

contours nearly parallel to the y-axis (Fig.25a). In Fig.25b we show a semi-logarithmic

plot together with a linear decay rate: exp(−νt) (dashed line). The discrepancy is

noticeable, which confirms that the nonlinear term is still effective. As for Re(θ̃(0, 1))

which is responsible for sin y, it sharply drops from its initial value 1/2 and starts
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oscillating. The oscillation is visible up to t = 400 in the figure (Fig.25c). Figure 25d

shows a phase portrait in these components; which shows θ̃(0, 1) decays to 0 quickly

whereas θ̃(1, 0) does so very slowly. At t = 600, we have Re(θ̃(1, 0)) ≈ 0.453, which

corresponds to θ(x) ≈ 0.9, or to only 10 % decay from the initial value. A comparison

has been made to the similar plots for α = 0.7 (figures omitted), which shows a decay of

θ̃(1, 0) more rapid than for α = 0.4 and which is closer to the linear decay rate exp(−νt).

In Fig.26 we plot the decay of θ̃(1, 0), after compensating by exp(νt) for both α. It

shows that even α = 0.7 the decay is not a perfectly linear one but close to it. Noting

Re(θ̃(1, 0)) ≈ 0.378 at t = 600, if we assume the linear decay rate for t ≥ 600, the peak

value of the active scalar is approximated as

θ = 0.755 exp(−ν(t − 600)) with ν = 0.001. (19)

If we estimate how long it takes to have |θ| ≤ ε, then we get t > 600 + 1
ν

log 0.755
ε

. For

example, in order for the active scalar to become as small as 1% of the initial value, we

find t > 4932, which is much longer than the present coverage of numerical simulations.
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Figure 25. Time evolution of several Fourier coefficients for supercritical α = 0.4
with ν = 1.0×10−3, a: Re(θ(1, 0)), b: its log-linear plot with a straight line exp(−νt),
c: Im(θ(1, 0)) and d: Re(θ(0, 1)) vs. Re(θ(1, 0)).

3.2. Initial Condition 2

Finally we briefly describe the other initial condition (7) of Case 2 with α = 0.4 and with

ν = 1×10−3. In Fig.27 we show the time evolution of contour plots of the active scalar.

The long time evolution is markedly different from Case 1 in that we have apparently

regular arrays of ’vortices’ in the late stage rather than straight lines. However, even in

this case the oscillatory damping does take place, and an oscillation is observed in the
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Figure 26. Time evolution of a
Fourier coefficient compensated by
exp(νt) with ν = 1.0 × 10−3, for
supercritical α = 0.4 (solid) and
subcritical α = 0.7 (dashed).

peripheral regions between the vortices. Indeed, the time evolution of the analyticity

strip shows in Fig.28 an oscillatory behaviour in the long run: t ≥ 400. Also the figure

shows the case when we switch suddenly to inviscid evolution at t = 600. As before δ(t)

quickly decreases in time and the numerical solution gets under-resolved. This shows

that the nonlinear and viscous terms are in a subtle balance in this case, too. Finally,

we plot in Fig.29 the time evolution of the maximally excited number, which supports

again the oscillatory behaviour in the late stage of the time evolution.

All in all, this result suggests that the long-term oscillatory damping found here is

not restricted to Case 1 but rather it is a phenomenon common to many initial data.

4. Summary and discussion

In an attempt to shed some light upon the regularity problems of the SQG equations

actively discussed recently, we have numerically investigated their analytic property in

the long-term evolution. We have found an oscillatory damping in the late stage with a

subtle balance between nonlinear and dissipative terms. This suggests that it may be a

serious obstacle that cutting-edge mathematical analysis is facing.

Inviscid solutions are also treated numerically. The analyticity strip decreases

exponentially in time and it takes arbitrarily small values as time proceeds and the

solutions do not appear to blow up in finite time. For slightly viscous cases, we can

construct solutions as close as the inviscid one, independent of α. However, by the effect

of α, sooner or later the viscous solution deviates from the inviscid one, relaxing toward

smoother solutions.

As far as the present computations are concerned, the relaxation process is closer

to a linear damping process for the subcritical case α > 1/2, but a nonlinear damping

for the supercritical case α < 1/2 . For fixed ν, the smaller α is the longer time it takes

for recovering the analyticity. However, it should be noted that no sharp qualitative
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Figure 27. Contours of active scalar for the initial data (7)

for α = 0.4, ν = 1.0 × 10−3 at t = 0., 5.0, 10.0, 100.0, 200.0 and 400.0, plotted as in

Fig.6.

change around α = 1/2 has been observed in the numerical results, suggesting that the

boundary α = 1/2 is of artificial and technical nature.

Taking smaller ν (or, larger initial norms) the analyticity deteriorates as bad as the

inviscid solution and the relaxation thereafter takes place extremely slowly. To make

progress in mathematical analysis, it may be necessary to consider nonlinear relaxation

and relaxation time.

There exist mathematical frameworks in which one attempts to connect large-time

asymptotics of the Navier-Stokes equations with eigenfunctions of Stokes operators

assuming global regularity. One such framework is called normal form theory



Surface quasi-geostrophic equations 19

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  200  400  600  800  1000

δ(
t)

t

α=0.4
α=0.0

Figure 28. Time evolution of the
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Figure 29. Time evolution of
maximally excited number up to
t = 1000 for Case 2 with α =
0.4, ν = 1.0 × 10−3.

[13, 14, 16, 15]. Assuming that a similar framework works for the SQG equations

(we are not aware of articles on such frameworks for the SQG equation), we may write

θ(t) ∼
∞∑

n=1

Wn(θ0, t) exp(−νnt), (20)

as large-time asymptotics. By normal form, we mean a map from θ(0) to (Wn(0))∞n=1.

The polynomials Wn(θ0, t) could in principle be computed recursively from the

normalisation map W (θ0) by the nonlinear terms of the SQG equation. Constructing

Wn(t) specifically and comparing it with the numerics will be an interesting direction

to pursue.
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