Reflection and transmission of light in multilayers perturbed by picosecond strain pulse propagation

O. Matsuda* and O. B. Wright

Department of Applied Physics, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan

Received December 21, 2001; revised manuscript received May 31, 2002

We derive analytical formulas for the modulation of the reflectance and transmittance of light normally incident on a multilayer thin-film structure whose refractive indices are perturbed by an ultrashort optical pulse. The formulas, expressed in compact form, should prove useful for analysis of a wide range of ultrashort time-scale experiments on multilayers as well as longer time-scale photoacoustic and photothermal experiments based on optical probing. We demonstrate our method by the analysis of the modulated reflectance variation of a SiO$_2$/Cr structure in which picosecond acoustic pulses have been optically excited. © 2002 Optical Society of America

OCIS codes: 320.7120, 230.4170, 300.6430, 120.4290, 310.6860, 310.6870.

1. INTRODUCTION

The reflection of light from multilayer thin-film structures is an important problem for a variety of applications. Recently such structures with layer thicknesses in the submicrometer range have been the focus of a wide range of ultrashort time-scale experiments that probe the inhomogeneous modulation of the dielectric constant along the stacking direction induced by an incident ultrashort optical pulse. This modulation can be caused by, for example, the diffusion and relaxation of nonequilibrium electron and hole distributions, thermal diffusion, or coherent acoustic-phonon propagation. Another popular aim is to measure the electronic, thermal, or mechanical properties of the multilayer film structure itself.

To interpret the experimental results for multilayers in the general case, one needs to handle the problem of light scattering by multilayer films with inhomogeneously modulated optical constants and thicknesses. This procedure becomes extremely complex for transparent or partially transparent multilayer films because optical scattering from all or part of the sample makes a contribution to the final amplitude and phase of the reflected or transmitted light wave. Many commercially and physically important samples such as semiconductor heterostructures or multilayer metal stacks are partially transparent at visible or near-visible optical wavelengths when film thicknesses are in the nanometer to micrometer range.

For one- or two-layer structures, techniques have been developed to deal with the problem of multiple optical reflections when one is calculating the modulation in reflectance or transmittance. For samples with more layers, however, the problem becomes extremely complex and difficult to handle. Therefore there is a need for a simpler approach to analyze the modulation in the reflectance or transmittance of a multilayer sample with an arbitrary number of layers subject to perturbations in the dielectric constant or layer thickness.

In this paper we describe, for what to our knowledge is the first time, the derivation of such a generalized analytical theory. The reflectance and transmittance changes are expressed in a simple ready-to-use form that has not been given in previous treatments. The theory can be used to analyze ultrashort time-scale optical pump and probe experiments on arbitrary multilayer structures with normal probe light incidence when the changes induced in the dielectric constants or the layer thicknesses of the structure are relatively small compared to their equilibrium values. It is applicable, for example, to the interpretation of subpicosecond transient reflectance or transmittance in multilayers with spatiotemporally varying electron distributions that can be described by a suitable dynamical model and to the analysis of data from multilayers involving picosecond thermoreflectance or picosecond acoustics. The main focus of the present paper is on the application to picosecond acoustics. It should also be possible to apply the method to longer time-scale photothermal and photoacoustic experiments on multilayers that make use of optical probing. To demonstrate the practical application of the theory, we describe ultrafast optical measurements on a double-layer SiO$_2$/Cr thin-film structure on a fused-silica substrate involving the propagation of picosecond acoustic pulses and show how the results can be used to extract information about the film parameters.
2. THEORY

A. Light Scattering by an Inhomogeneous Multilayer

1. Theoretical Background

The typical dimensions of the multilayers considered in this paper range from the order of a nanometer to approximately a micrometer, and experimental time scales of concern here are of picosecond order. Photoexcitation of such a sample by ultrashort optical pulses causes perturbations, in the guise of strain,1–7,12–16 to the optical reflectance or transmittance through the variation in reflectance or transmittance, or phase of a probe light pulse.1,2 Although the technique has been applied successfully to opaque multilayer structures with several layers, the case of partially transparent or transparent multilayers is less well understood because of the increased complexity of the analysis. In spite of the continuing interest shown in the application to superlattices,5–8 only the case of a single transparent or partially transparent layer on another opaque layer has been properly analyzed to include interface motion as well as variations in the dielectric constants.14–16 The exact treatment for the general case of more than one transparent or partially transparent layer presented here should therefore be extremely valuable in the field of laser picosecond acoustics for application to samples of arbitrary multilayer structure. The method should also be useful in the field of femtosecond probing of semiconductor heterostructures. In addition, it should be applicable to more conventional experiments, based on photothermal or photoacoustic effects, that involve optical probing in transparent or partially transparent multilayers.20–23

2. Solution of the Inhomogeneous Wave Equation

Here we aim to calculate the complex reflectance or transmittance change for coherent light normally incident on a multilayer sample. Each layer is assumed to be optically isotropic in its equilibrium state, that is, at zero strain, with no excited carriers and at constant temperature. In addition, each layer is also assumed to be mechanically, thermally, and electronically isotropic. The z axis is defined along the stacking direction of the multilayer, as shown in Fig. 1. Each interface and the surface are

![Fig. 1. N layers on a substrate. The incident light comes from z < 0. Each layer is assumed to be optically isotropic in its equilibrium state.](image-url)
The lateral extent of the irradiated region is assumed to be much larger than the scale of the depth under consideration. For example, a typical laser beam spot with a radius of 10 μm would be appropriate for a multilayer film for which the optical penetration depth is of a submicrometer order. In this case it can be assumed that the strain, temperature, and excited carrier distributions in the sample are dependent only on the z coordinate and on the time t.

The general wave equation derived from the Maxwell’s equations is

\[
\left(\nabla^2 - \text{grad} \, \text{div} \right) \mathbf{E}(x, t) = \mu_0 \frac{\partial^2}{\partial t^2} \mathbf{D}(x, t). \tag{1}
\]

By considering monochromatic light with angular frequency ω, we can omit the common time-dependent factor exp(−iωt). Under a linear approximation, the electric displacement \(\mathbf{D} \) is given as \(\mathbf{D} = \varepsilon_0 \varepsilon \mathbf{E} \), with dielectric tensor \(\varepsilon \); and the wave equation of Eq. (1) is reduced to

\[
\left(\nabla^2 - \text{grad} \, \text{div} + k^2 \varepsilon \right) \mathbf{E}(x) = 0, \tag{2}
\]

where \(k = \sqrt{\mu_0 \varepsilon_0 \omega} \) is the wave vector of light in vacuum. Because the characteristic time scale of concern here for strain propagation, thermal diffusion, excited carrier relaxation, or carrier diffusion is much longer than the period of the light wave, we can treat the dielectric tensor as a quasi-static quantity. We therefore neglected terms related to the time derivatives of \(\varepsilon \). However, the spatial dependence of \(\varepsilon \) is retained.

As the scattering and reflection of light are governed by the spatial variation of the dielectric tensor that depends only on the z coordinate here, no changes in the x and y components of the light wave vector are expected for any angle of incidence. In our case of normal incidence, it is possible to write \(\mathbf{E}(x) = \mathbf{E}(z) \). Then the wave equation of Eq. (2) is reduced to

\[
\begin{bmatrix}
\frac{\partial^2}{\partial z^2} & 0 & 0 \\
0 & \frac{\partial^2}{\partial z^2} & 0 \\
0 & 0 & 0
\end{bmatrix}
+ k^2 \varepsilon \mathbf{E}(z) = 0. \tag{3}
\]

Because no off-diagonal component in \(\varepsilon \) and \(\varepsilon_{xx} = \varepsilon_{yy} \), is expected here, as shown in Appendices A and B, Eq. (3) includes two independent and equivalent wave equations for \(E_x(z) \) and \(E_y(z) \), and, in addition, \(E_z(z) = 0 \). The light wave is purely transverse, and there is no mixing between x and y polarizations. Without loss of generality, we consider only linearly polarized incident light and take the x axis along the direction of polarization.

The dielectric tensor component of interest, \(\varepsilon = \varepsilon_{xx} = \varepsilon_{yy} \), can be divided into homogeneous and inhomogeneous parts, \(\varepsilon_h(z) \) and \(\varepsilon_{ih}(z) \). The material-dependent dielectric constant in the equilibrium state forms the homogeneous part. It is a staircaselike function and has a constant value within each layer characterized by the label n (0 ≤ n ≤ N + 1):

\[
\varepsilon_h(z) = \varepsilon^{(n)} \quad \text{for } z_{n-1} < z < z_n.
\]

Special values of \(z_n \) are \(z_{-1} = -\infty \) and \(z_{N+1} = +\infty \).

The inhomogeneous part \(\varepsilon_{ih} \) is the sum of bulk and interface contributions, \(\varepsilon_b \) and \(\varepsilon_f \), respectively. In this paper, the strain-induced bulk contribution \(\varepsilon_b \) is given by

\[
\varepsilon_b(z) = P_{12}^{(n)} \eta(z) \quad \text{for } z_{n-1} < z < z_n, \tag{4}
\]

where \(P_{12}^{(n)} \) is the photoelastic constant of the nth layer and \(\eta(z) = \eta_{zz}(z) \) is the zz tensor component of the strain distribution (Appendix A). The interface contribution \(\varepsilon_f \) is caused by the displacement of the interface because of the strain and is given by

\[
\varepsilon_f(z) = \begin{cases}
\varepsilon^{(n)} - \varepsilon^{(n+1)} & \text{for } u(z_n) > 0, \ z_n < z < z_n + u(z_n) \\
\varepsilon^{(n+1)} - \varepsilon^{(n)} & \text{for } u(z_n) < 0, \ z_n + u(z_n) < z < z_n, \\
0 & \text{otherwise,}
\end{cases} \tag{5}
\]

where

\[
u(z) = -\int_z^{\infty} \eta(z')dz'. \tag{6}\]

is the displacement in the +z direction.

We proceed by assuming that the solution for the homogeneous wave equation, defined over all space, is known:

\[
\frac{\partial^2}{\partial z^2} + k^2 \varepsilon_h(z) \mathbf{E}_0(z) = 0, \tag{7}
\]

and likewise for the Green’s function defined by the equation

\[
\frac{\partial^2}{\partial z^2} + k^2 \varepsilon_h(z) \mathbf{G}(z, z') = -\delta(z - z'). \tag{8}
\]

The derivations of the homogeneous solution \(\mathbf{E}_0(z) \) and the Green’s function \(\mathbf{G}(z, z') \) are given in Appendix C. Physically, \(\mathbf{G}(z, z') \) represents the response at z caused by a localized disturbance at \(z' \). Both \(\mathbf{E}_0(z) \) and \(\mathbf{G}(z, z') \) should satisfy the same boundary conditions at each interface. By using these solutions, we can express the solution to the inhomogeneous wave equation in Eq. (3) as

\[
\mathbf{E}(z) = \mathbf{E}_0(z) + \int_{-\infty}^{z} k^2 \varepsilon_{ih}(z') \mathbf{E}(z') \mathbf{G}(z, z') dz' \\
+ \int_{-\infty}^{z} k^2 \varepsilon_{ih}(z') \mathbf{E}_0(z') \mathbf{G}(z, z') dz' \\
+ \int \mathbf{E}_0(z') \varepsilon_{ih}(z) \mathbf{E}_0(z'' \mathbf{G}(z, z') dz' \cdot dz'' \cdot + \cdots. \tag{9}
\]

As described in Appendix C, the solutions \(\mathbf{E}_0(z) \) and \(\mathbf{E}(z) \) each contain two components propagating in the +z and -z directions. Because we consider the reflection and transmission of light coming from \(z < 0 \), the -z propagating components of \(\mathbf{E}_0(z) \) and \(\mathbf{E}(z) \) in the region \(z = +\infty \) should be zero. The boundary conditions for \(\mathbf{E}(z) \) at \(z = -\infty \) require that the +z propagating component of \(G(-\infty, z') \) and the -z component of \(G(+\infty, z') \) should both be zero. This formalism is exactly equivalent to
that for particle scattering by an arbitrary static potential in quantum mechanics. When \(\epsilon_n \) is small, expansion up to first order in Eq. (9) is sufficient in many experiments. It is also possible to include higher-order terms in the expansion for large perturbations.

The solution to Eq. (7) is constructed from the solutions for each layer where we consider the boundary conditions at each interface. This homogeneous solution for a multilayer structure can be derived by a transfer matrix technique, as is well known.34,35 We give the derivation in Appendix C. The solution for the \(n \)th layer has the form

\[
a_n \exp(ik_n z_n) + b_n \exp(-ik_n z_n),
\]

where \(a_n \) and \(b_n \) are constant electric fields that satisfy the given boundary conditions, and \(z_n \) and \(k_n \) are defined as follows:

\[
\zeta_n = \begin{cases}
 z - z_{n-1} & \text{for } n \geq 1, \\
 z & \text{for } n = 0,
\end{cases}
\]

\[
k_n = \sqrt{\epsilon(n)}k = (N_n + iK_n)k,
\]

where \(N_n + iK_n \) is the complex refractive index and \(k_n \) is the complex wave number in medium \(n \).

The Green's function necessary for the reflectivity calculation is given as

\[
G(z, z') = \frac{i}{2k_0a_0} \exp(-ik_0z)E_0(z')
\]

for \(z' > z, \ z < 0 \).(11)

Incorporating Eqs. (4), (5), and (11) in Eq. (9), we obtain the following result at \(z < 0 \) beyond the perturbed region:

\[
E(z) = E_0(z) + \int_z^{z+} k^2(\epsilon(z'))(z')dE_0(z')G(z, z')dz'
\]

\[
+ \epsilon_1(z')E_0(z')G(z, z')dz'
\]

\[
= E_0(z) + \int_{z_n}^{z+} k^2(\epsilon(z'))E_0(z')G(z, z')dz'
\]

\[
+ \sum_{n=0}^{N} \int_{z_{n+1}}^{z_n} k^2(\epsilon(z))dE_0(z')
\]

\[
\times G(z, z')dz'
\]

\[
= a_0 \exp(ik_0z) + b_0 \exp(-ik_0z)
\]

\[
+ \frac{ik^2}{2k_0a_0} \left\{ \int_z^0 P_{12}^{(0)}(z') \left[a_0 \exp(ik_0z')
\right] \right.
\]

\[
+ b_0 \exp(-ik_0z') \right\} dz'
\]

\[
+ \sum_{n=1}^{N} \int_{z_{n+1}}^{z_n} P_{12}^{(n)}(z') \left[a_n \exp(ik_nz') + b_n \exp(-ik_nz') \right] dz'
\]

\[
+ z_n \left[a_n \exp(i\kappa_nz') + b_n \exp(-i\kappa_nz') \right]
\]

\[
+ \sum_{n=1}^{N} \left(a_n + b_n \right)^2 \left[e^{(n-1)} - e^{(n)} \right] u(z_n-1)
\}

\]

\[
, \text{(12)}
\]

where \(d_{N+1} = +\infty \). Thus the relative change in the complex reflectance is given by

\[
\frac{\delta r}{r} = \frac{ik}{2k_0a_0b_0} \left\{ \int_0^d \Delta\epsilon(z') \left[a_1 \exp(ik_1z')
\right]
\]

\[
+ b_1 \exp(-ik_1z') \right\} dz'
\]

\[
+ \int_{d}^{\infty} \Delta\epsilon(z' + d) a_2^2 \exp(2ik_2z')dz'
\]

\[
+ (a_1 + b_1)^2(1 - \epsilon_1u(0) + a_2^2(\epsilon_1 - \epsilon_2)d).\text{(13)}
\]

with
This case with either real or complex ε_1 has been treated previously exactly with a less compact formalism.14,16 Although the notation is different, Eq. (15) turns out to be identical to the result derived by Gusev.16 We also note that the second term in Eq. (13) agrees with the result quoted without proof by Perrin et al.3

We now turn to the case of the complex transmittance. Thin multilayers are often formed on a substrate with a thickness considerably greater than the multilayer itself. The reflection at the back surface of the substrate does not add coherently to the light emerging from the multilayer provided that the coherence length of the light pulse is short compared to the substrate thickness. This is the case for substrates with thickness $\approx 30 \mu m$ in the case of 100-fs light pulses. For simplicity, we calculate only the electric field at a point $z > z_N$ that is beyond the perturbed region and within the $(N + 1)$th layer, that is, the substrate. For this calculation, we require $G(z, z')$ for $z > z_N$ in Eq. (9). To calculate this, we need to extend the range of application of the homogeneous solution of Eq. (10). So far, we have considered only the solution $E_0(z)$ for light coming from the $x < 0$ region. In general, however, the $2N + 2$ constants a_n, b_n in Eq. (10) are uniquely determined if any two of them are specified. A suitable symbolic representation of the solution for generalized E_0 is $E_0(z; a'_1 = a, b'_j = b)$, which means that a'_1 and b'_j are specified. The primes are added to recall that the set $\{a'_n, b'_n\}$ is not necessarily the same as that used for the solution of E_0 in Eq. (9). For example, the solution for the case in which the light comes only from the $x < 0$ region is expressed as $E_0(z) = E_0(z; a'_0 = a_0, b_{N+1}' = 0$).

As is explained in Appendix C, the required $G(z, z')$ is given by

$$G(z, z') = \frac{i \tau \exp[i k N + 1 (z - z_N)]}{2 k_0} E_0(z'; a'_0 = 0, b'_0 = 1) \quad \text{for } z' < z, \; z > z_N,$$

(16)

where $\tau = a_{N+1}/a_0$ is the complex transmittance for the unperturbed multilayer. The coefficients $\{a'_{n}, b'_{n}\}$ for $E_0(z; a'_0 = 0, b'_0 = 1)$ are obtained from Eqs. (C1) and (C2). The final result for $z > z_N$ is given as

$$E(z) = E_0(z) + \frac{i k \tau}{2} \exp[i k N + 1 (z - z_N)]$$

$$\times \left\{ \int_{-\infty}^{0} P^{(0)}_{12} \eta(z') [a_0 \exp(i k_0 z')] + b_0 \exp(-i k_0 z') \exp(-i k_0 z') dz' \right\} + \sum_{n=1}^{N+1} \left[\int_{-\infty}^{0} P^{(n)}_{12} \eta(z' + z_{n-1}) [a_n \exp(i k_n z')] + b_n \exp(-i k_n z') \exp(-i k_n z') dz' + \sum_{m=1}^{n} (a_n + b_n)(a_n') + b_n' \right] [\epsilon^{(n-1)} - \epsilon^{(n)}] u(z_{n-1} - z) \right\}.$$

(17)

Thus the relative change in the complex transmittance is given by

$$\frac{\delta \tau}{\tau} = \frac{i k}{2 a_0} \int_{-\infty}^{0} P^{(0)}_{12} \eta(z') [a_0 \exp(i k_0 z')] + b_0 \exp(-i k_0 z') \exp(-i k_0 z') dz' \right\} + \sum_{n=1}^{N+1} \left[\int_{-\infty}^{0} P^{(n)}_{12} \eta(z' + z_{n-1}) [a_n \exp(i k_n z')] + b_n \exp(-i k_n z') \exp(-i k_n z') dz' + \sum_{m=1}^{n} (a_n + b_n)(a_n') + b_n' \right] [\epsilon^{(n-1)} - \epsilon^{(n)}] u(z_{n-1} - z) \right\}.$$

(18)

As was done for the reflectance, we describe examples for simple cases. In the case of a single semi-infinite isotropic material whose flat surface is exposed to a vacuum, the change of the transmittance is given as

$$\frac{\delta \tau}{\tau} = \frac{i k k^2}{(k + k_1)} \left\{ \int_{0}^{z} \Delta \epsilon(z') \left[\frac{k_1 - k}{2 k_1} \exp(2 i k_1 z') + \frac{k_1 + k}{2 k_1} \right] dz' + \frac{k_1 + k}{2 k_1} \right\}.$$

(19)

This can be rewritten as

$$\frac{\delta \tau}{\tau} = \frac{i k^2}{2 k_1} \int_{0}^{z} \Delta \epsilon(z') \left[\frac{k_1 - k}{k_1 + k} \exp(2 i k_1 z') + 1 \right] dz' + i (k - k_1) u(0).$$

(20)

Another example is a layer formed on a substrate. Using the same notation as before, we give the result by
\[\frac{\delta \tau}{\tau} = \frac{ik}{2a_0} \left[\int_0^d \Delta \varepsilon(z') [a_1 \exp(ik_1 z') + b_1 \exp(-ik_1 z')] \right. \\
\times [a_1' \exp(ik_1 z') + b_1' \exp(-ik_1 z')] \, dz' \\\n+ \left. \int_0^d \Delta \varepsilon(z') + d a_2 [a_2' \exp(2ik_2 z') + b_2'] \, dz' \right. \\
+ (a_1 + b_1)(a_1' + b_1')(1 - \varepsilon_1)u(0) + a_2(a_2' \\
+ b_2')(\varepsilon_1 - \varepsilon_2)u(d) \right), \tag{21} \]

with

\[a_1' = \frac{k - k_1}{2k_1}, \]
\[b_1' = \frac{k + k_1}{2k_1}, \]
\[a_2' = -\frac{(k + k_1)(k_2 - k)\exp(-ik_1 d) + (k - k_1)(k_1 + k_2)\exp(ik_1 d)}{4k_1 k_2}, \]
\[b_2' = \frac{(k - k_1)(k_2 - k_1)\exp(i k_1 d) + (k + k_1)(k_1 + k_2)\exp(-ik_1 d)}{4k_1 k_2}. \]

The other coefficients \(a_0, b_0, a_1, b_1, \) and \(a_2 \) were given following Eq. (15).

B. Strain Wave Generation in a Multilayer

To experimentally test the theoretical predictions, we simulate the strain wave generation, propagation, and detection in a multilayer sample containing metallic and insulating layers. For the strain wave generation, which takes place in the metallic region of the sample, we use a model that involves the following simplifying assumptions: (1) the absorbed pump light pulse sets up an instantaneous temperature rise \(\Delta T(z) \); (2) the isotropic thermal stress caused by \(\Delta T \) acts as the source term in the strain wave equation; and (3) effects such as the finite optical pulse duration and thermal diffusion are neglected, although the effect of diffusion of nonequilibrium electrons is included in an empirical manner as described below.

The equations of elasticity in one dimension for an elastically isotropic material can be expressed as

\[\sigma_{zz} = \frac{3 - \nu}{1 + \nu} B \eta_{zz} - 3B \beta \Delta T(z, t), \tag{22} \]

\[\rho \frac{\partial^2 u}{\partial t^2} = \frac{\partial \sigma_{zz}}{\partial z}, \tag{23} \]

\[u(z, t) = \int_{z=0}^z \eta_{zz}(z', t) \, dz', \tag{24} \]

where \(B \) is the bulk modulus, \(\nu \) is the Poisson's ratio, \(\rho \) is the mass density, \(\beta \) is the linear expansion coefficient, and \(\sigma_{zz} \) is the longitudinal stress. The other components \(\sigma_{xx} \) and \(\sigma_{yy} \) do not play an active role in the propagation on a picosecond time scale when, as we have assumed, the excitation laser spot size is much greater than the multilayer thickness. The second term on the right-hand side of Eq. (22) is the source term. The elastic wave propagates with the longitudinal sound velocity \(v \), which is expressed as

\[\rho v^2 = 3 \frac{1 - \nu}{1 + \nu} B. \tag{25} \]

The extension of these formulas to the multilayer structure is straightforward. The boundary conditions that must be satisfied are the continuity of \(u \) and \(\sigma_{zz} \) at each interface and \(\sigma_{zz} = 0 \) at the sample surface. The initial conditions are given by \(\eta_{zz} = \eta_{zz} = u = 0 \) at \(t = 0 \).

In the present case, the time dependence of the temperature rise \(\Delta T(z, t) \) is given by the step function

\[\Delta T(z, t) = \Delta T(z) \theta(t). \tag{26} \]

This temporal form of the source term makes it possible to include its effect as an initial strain distribution. The procedure to determine the time-varying strain distribution and interface motion is as follows. Using the solution \(\eta_A, u_A \) of the time-independent equations

\[0 = \rho v^2 \eta_A - 3B \beta \Delta T(z), \tag{27} \]

\[u_A(z) = \int_{z=\pm}^z \eta_A(z') \, dz', \tag{28} \]

we express the solution \(\eta_{zz}(z, t), u(z, t) \) as

\[\eta_{zz}(z, t) = \eta_A(z) + \eta_B(z, t), \tag{29} \]

\[u(z, t) = u_A(z) + u_B(z, t). \tag{30} \]

Then the elastic wave equation of Eqs. (22)–(24) becomes

\[\sigma_{zz} = \rho v^2 \eta_B, \tag{31} \]

\[\rho \frac{\partial^2 u_B}{\partial t^2} = \frac{\partial \sigma_{zz}}{\partial z}, \tag{32} \]

\[u_B(z, t) = \int_{z=\pm}^z \eta_B(z', t) \, dz', \tag{33} \]

which has the general solution

\[\eta_B(z, t) = f(z - vt) + g(z + vt). \tag{34} \]
The initial conditions are given as
\[\eta_B(z, t = 0) = f(z) + g(z) = -\eta_A(z), \] (35)
\[\dot{\eta}_B(z, t = 0) = -v \left[\frac{df(z)}{dz} - \frac{dg(z)}{dz} \right] = 0. \] (36)

The source term is canceled out in the equation for \(\eta_B \), and its effect is incorporated into the initial condition. Equations (35) and (36) are sufficient to determine the functions appearing in Eq. (34):
\[f(z) = g(z) = -\eta_A(z)/2. \] (37)

Unique functions \(f(z) \), \(g(z) \) are defined for each layer in the multilayer sample. To obtain the strain evolution, one should consider the reflection and transmission of the strain wave at the interfaces. We discuss this issue in Section 4.

The temperature rise \(\Delta T(z) \) is governed by the heat generated per unit volume \(Q(z) \) through light absorption:
\[\Delta T(z) = Q(z)/C, \] (38)
where \(C \) is the specific heat per unit volume. The heat generation rate per unit volume in the \(n \)th layer \(Q(z) \) can be calculated from the Poynting vector \(\mathbf{S} = \text{Re} \mathbf{E} \times \text{Re} \mathbf{H} \). For normal pump light incidence,
\[Q(z) = -\text{div} \mathbf{S} = \epsilon_0 \omega N_n K_n [a_n^2 \exp(-2K_n k \xi_n) + b_n^2 \exp(2K_n k \xi_n) + a_n b_n \exp(-2iN_n k \xi_n)], \] (39)
where \(\mathbf{S} \) refers to the time average and, as before, \(\xi_n = z - \epsilon_n^{-1}. \) The third and fourth terms in the parentheses arise from the interference between the forward- and backward-propagating light waves. The angular frequency \(\omega \) and refractive index \(N_n + iK_n \) here apply to the pump light and likewise for the electric field amplitudes \(a_n \) and \(b_n \).

To a first approximation the effect of electron diffusion can be phenomenologically included when we broaden the light penetration depth.\(^{12,13} \) This can be done if we introduce the multiplying factor \(\mu_n \) for the extinction coefficient \(K_n \) in the \(n \)th layer. Then Eq. (39) becomes
\[Q(z) = \epsilon_0 \omega \mu_n N_n K_n [a_n^2 \exp(-2\mu_n K_n k \xi_n) + b_n^2 \exp(2\mu_n K_n k \xi_n) + a_n b_n \exp(-2iN_n k \xi_n)]. \] (40)

This approximation will break down if diffusing electrons meet an interface. We therefore assume that \(d_n \gg 1/K_n \mu_n \) in any metallic layer. In the case of no electron diffusion, \(\mu = 1. \)

By integrating Eq. (40) with respect to time, one can obtain an expression for \(\eta_A(z) \) in the \(n \)th layer:
\[\eta_{A_n}(z) = \frac{2kF\beta_{a_n}N_n K_n}{C_n[a_0]^2} \left(\frac{1 + v_n}{1 - v_n} \right) \times \left[|a_n|^2 \exp(-2\mu_n K_n k \xi_n) + |b_n|^2 \exp(2\mu_n K_n k \xi_n) + a_n b_n \exp(2iN_n k \xi_n) + a_n^* b_n \exp(-2iN_n k \xi_n) \right], \] (41)
where \(F \) is the incident optical pump pulse fluence (in \(\text{Jm}^{-2} \)) on the front surface of the multilayer and \(k \) corresponds here to the vacuum wave vector of the pump light. This can be used to calculate the strain distribution at \(t = 0. \) For other angles of pump incidence and polarization, it is straightforward to generalize Eq. (41).

3. EXPERIMENT AND RESULTS

To test the above theory for a nontrivial geometry, but for one in which the number of fitting parameters is not excessive, we carried out an experiment with laser picosecond acoustics on a multilayer sample consisting of a double-layer film made up of transparent and opaque layers on a substrate. A film of vitreous silica (\(\alpha \)-SiO\(_2\)) upon a film of polycrystalline chromium was prepared on a fused-silica substrate by rf sputtering at room temperature. Needle profiling techniques gave the thicknesses of the \(\alpha \)-SiO\(_2\) and Cr layers as, respectively, 1000 and 100 nm with 10% accuracy.

The optical pump and probe method is used to generate and detect strain pulses in the multilayer sample. The strain pulses are excited by optical pump pulses at a wavelength of 830 nm from a mode-locked Ti:sapphire laser and focused to a spot diameter \(\sim 20 \mu \text{m} \) on the front surface of the multilayer and \(k \) corresponds here to the vacuum wave vector of the pump light. The pump pulse duration is 700 fs after passing through an acousto-optic modulator that chops the light at a frequency of 1.5 MHz for lock-in detection purposes. The pulse energy is 1 nJ, and the laser repetition rate is 82 MHz. Second-harmonic light at a wavelength of 415 nm is used for the probe, with a pulse energy of 0.2 nJ. This produces a transient temperature rise \(\sim 4 \text{ K} \) that is small enough for linear theories for the sample response and for the detection process to be appropriate. A delay line provides a variable delay of 0–600 ps between the pump and the probe pulses, the latter focused onto the excitation region at normal incidence also from the front side of the sample. The probe light spot diameter is \(\sim 10 \mu \text{m}. \)

The presence of the strain pulse causes a time-dependent change in the complex reflectance from its initial value \(r_0 = |r_0| \exp(i\phi_0) \) to \(r_0 + \delta r = |r_0| \exp(i(\phi_0 + \delta\phi)) \), where the real quantities \(\rho \) and \(\delta\phi \) are the relative change in the modulus of the reflectance and the change in phase, respectively. For the case in which both \(\rho \) and \(\delta\phi \) are much smaller than unity, \(\delta r/r = \rho + i\delta\phi \), and this should be calculable by use of the theoretical result of Eq. (13). In general both \(\rho \) and \(\delta\phi \) contain contributions from surface or interface displacement as well as from the changes in dielectric constants in the bulk of the sample. Therefore a modified
Sagnac interferometer geometry is used here to detect ρ and $\delta \phi$ separately to provide a more stringent test for the theory. The results are shown in Fig. 2. The relative signal intensities in ρ and $\delta \phi$ are retained in the plot by use of the same scale for each (or differing by a factor of 2). The typical signal level is $10^{-6} \sim 10^{-5}$.

4. DISCUSSION

The main characteristics of the experimental results are as follows: At $t = 0$ the optical pump pulse is absorbed in the Cr substrate, producing a strain, temperature, and carrier distribution localized within a region of the order of the optical skin depth of Cr (~15 nm). The strain pulse is transmitted to the a-SiO_2 layer, and, for an interval of ~170 ps, the outward propagation of the strain pulse within the a-SiO_2 layer produces an oscillation in ρ and $\delta \phi$ arising from the interference between the light reflected at the surface or interfaces and at the strain pulse. The frequency of the oscillation is given by $f = 2N_1 v_1 / \lambda \sim 40$ GHz, where λ is the probe wavelength and N_1 and v_1 refer to a-SiO_2. The change in signal level near $t = 0$ is caused by a combination of effects: the motion of the Cr-SiO_2 interface, the change in temperature, and the change in carrier distribution in the Cr. The strain pulse reaches the sample surface at ~170 ps and is reflected with a π phase change to produce subsequent signals similar to those in the interval from 0 to 170 ps. The abrupt changes in the average signal levels in ρ and $\delta \phi$ at 170 ps are caused by an outward displacement of the sample surface at this time. The magnitude of this displacement is ~1 pm.

To analyze the experimental results more precisely, the thermal background of the signal is approximated to a single exponential form with a common time constant for both ρ and $\delta \phi$, and this is subtracted from the raw data (Fig. 2). The resulting curves are then compared with the simulated data calculated by use of the parameters shown in Table 1. The thickness, sound velocities, and photoelastic constants were adjusted as fitting parameters by the least-squares technique. Other parameters are adopted from the literature. The simulation is executed in three stages: the photoinduced strain pulse generation, the strain pulse propagation, and the optical strain pulse detection.

The generation stage is as described in Subsection 2.B, taking full account of the multiple reflection of the pump light. In fact the picosecond strain generation in metals is governed by nonequilibrium electron diffusion and energy transfer between the excited electrons and the lattice. This is well depicted by the two-temperature model describing the evolution of the electron and lattice temperatures. In our case, however, the main contribution to the observed signals arises from an integral of the strain over the transparent SiO$_2$ layer, and thus these signals are not sensitive to the detailed strain pulse shape and strain generation mechanisms. We therefore make the simplifying assumption that an instantaneous thermal stress can adequately describe the strain pulse generation. We account for the electronic diffusion in the Cr layer by setting $\mu = 0.5$ for the Cr layer. This is a reasonable approximation for Cr. In fact, it turns out that the calculated result here does not depend critically on μ for $0.5 \leq \mu \leq 1$. A more precise analysis of the effect of electron diffusion on strain pulse generation in Cr is given in Ref. 39.

The propagation of the strain wave is traced step by step in the time domain with a sufficiently small time step $\Delta t (=1$ ps, in this case). Suppose the strain at the time $t = t_j$ is expressed as

\begin{equation}
\frac{dV}{d\eta} + i dK/d\eta = -0.5 \times 0.24 + 0.45i
\end{equation}

![Fig. 2. Change in reflectance ρ (lower solid curve) and phase $\delta \phi$ (upper solid curve) obtained with a a-SiO_2-Cr double layer on a fused-silica substrate by use of a modified Sagnac interferometer detection scheme. The fitted thermal background signals (smooth curves) are shown superimposed on the raw data. The theoretical curves are in good agreement with the experimental data after the subtraction of the thermal background. Note that ρ and $\delta \phi$ are plotted on the same vertical scale (or differing by a factor of 2 where indicated).](image-url)

Table 1. Parameters Used for the Simulation of the Photoacoustic Signals

<table>
<thead>
<tr>
<th>Parameter</th>
<th>a-SiO_2</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness (nm)</td>
<td>940</td>
<td>110</td>
</tr>
<tr>
<td>Refractive index at $\lambda = 830$ nm</td>
<td>1.45b</td>
<td>4.26 + 4.32c</td>
</tr>
<tr>
<td>Refractive index at $\lambda = 415$ nm</td>
<td>1.47b</td>
<td>1.54 + 3.71c</td>
</tr>
<tr>
<td>Longitudinal sound velocity (m/s)</td>
<td>5430</td>
<td>6610d</td>
</tr>
<tr>
<td>Mass density (g/cm3)</td>
<td>2.2e</td>
<td>7.15f</td>
</tr>
</tbody>
</table>

aValues without a reference number correspond to fitted values.

bRef. 36.

cRef. 37.

dRef. 38.
\(\eta(z, t_J) = f(z - vt_J) + g(z + vt_J) = F_j(z) + G_j(z) \)
(42)

The functions \(F_j(z) \) and \(G_j(z) \) correspond to waves propagating in the \(+z\) and \(-z\) directions, respectively. These components evolve at time \(t_{J+1} = t_J + \Delta t \) according to

\[
\begin{align*}
F_{j+1}(z) &= F_j(z - v \Delta t), \\
G_{j+1}(z) &= G_j(z + v \Delta t),
\end{align*}
\]

unless \(z \) is on an interface. At the interface \(z = z_i \) between the region \(I \) (\(z < z_i \)) and \(II \) (\(z > z_i \)), the incident strain wave is reflected and transmitted according to the following relations:

\[
\begin{align*}
F_{j+1}^I(z_i) &= F_j^I(z_i - v_I \Delta t), \\
G_{j+1}^I(z_i) &= \frac{Z_{II} - Z_I}{Z_{II} + Z_I} F_j^I(z_i - v_I \Delta t) \\
&\quad + \frac{v_I}{v_{II}} 2Z_{II} Z_I^{-1} G_j^I(z_i + v_{II} \Delta t), \\
F_{j+1}^{II}(z_i) &= \frac{Z_I - Z_{II}}{Z_{II} + Z_I} G_j^{II}(z_i + v_{II} \Delta t) \\
&\quad + \frac{v_I}{v_{II}} 2Z_I Z_{II}^{-1} F_j^I(z_i - v_I \Delta t), \\
G_{j+1}^{II}(z_i) &= G_j^{II}(z_i + v_{II} \Delta t),
\end{align*}
\]

where \(Z = \rho v \) is the acoustic impedance and quantities are labeled \(I \) and \(II \) to denote which region they apply to. By combining these relations, we can calculate the strain and thus the displacement for any values of \(z \) and \(t \).

Once the time evolution of the strain distribution is known, the whole photoacoustic signal can be calculated according to the procedure described in Subsection 2.4, ignoring the contributions from the temperature change and carrier distribution in Eq. (A1). As previously reported, the strain pulses transmitted to the \(a\text{-SiO}_2 \) film are unipolar in shape.\(^{14} \) Because the optical and non-equilibrium electron penetration into the Cr is small compared to the Cr thickness, Eq. (15) can be used to calculate \(\delta r / r \). The fitted curves for \(\rho \) and \(\delta \rho \) are also plotted in Fig. 2, again taking care to use the same scale factor for the predicted \(\rho \) and \(\delta \rho \) variations to preserve their relative magnitudes. In addition to the detailed signal shape, the relative intensities of \(\rho \) and \(\delta \rho \) are also well reproduced. One feature of the experimental curves, the slight maximum in \(\rho \) (or minimum in \(\delta \rho \)), at \(t \sim 170 \text{ ps} \), is also predicted. This is caused by a train of strain pulses (produced by multiple reflection inside the Cr film) reaching the \(a\text{-SiO}_2 \) surface and producing a temporally staggered response. Moreover, the fitted sound velocities and the photoelastic constant for \(a\text{-SiO}_2 \) (for which comparative data are available) are in reasonable agreement with literature values.\(^{14,40,41} \) The accuracies for the fitted values in Table 1 are approximately \(\pm 5 \text{ nm} \) for thicknesses, approximately \(\pm 25 \text{ ms}^{-1} \) for velocity, and approximately \(\pm 0.03 \) for photoelastic constants.

Although similar laser picosecond acoustics experiments have been done on transparent films by use of reflectivity measurements,\(^{14,15} \) to our knowledge this research represents the first attempt to simultaneously monitor both \(\rho \) and \(\delta \rho \) for such samples. Therefore this provides a more accurate test of the theory of optical modulation.

We made use of a simplified model for the strain wave generation and propagation. However, the procedures for the calculation of the photoacoustic signal from the spatial perturbation of the optical constants are exactly the same for strain distributions arising from more sophisticated strain generation and propagation models, such as those that would arise with use of the two-temperature model\(^{12} \) or with the inclusion of frequency-dependent acoustic attenuation. It should also be possible to simulate the raw experimental data when the variations of the dielectric constants with temperature and nonequilibrium electron distributions are included in the model.

5. SUMMARY

In conclusion, we have derived general formulas for the reflection and transmission of light incident normally on an arbitrary multilayer structure subject to an inhomogeneous perturbation in its dielectric constants. These formulas can be applied to the calculation of the transient reflectance or transmittance for multilayer structures containing transparent, semitransparent, or opaque layers if one can appropriately model the spatiotemporal modulation of the dielectric constants. The validity of the theory is demonstrated by comparison with experimental transient reflectance and phase signals associated with picosecond strain propagation in a structure containing transparent and opaque layers. From the fitting procedure we have derived some characteristic sample parameters, namely, the thicknesses, sound velocities, and photoelastic constants. This powerful analytical tool should provide a firm foundation for the application of ultrashort pulsed laser techniques to the quantitative investigation of acoustic strain transduction mechanisms, to the analysis of transient temperature and electronic distributions, and to the nondestructive diagnostics and evaluation of complex microstructures and nanostructures in general. The method should also be useful in longer time-scale photoacoustic and photothermal experiments on microstructures.

APPENDIX A: BULK CONTRIBUTION TO THE PERTURBATION OF THE DIELECTRIC TENSOR

In this appendix we discuss the nature of the bulk contribution to the inhomogeneous modulation of the dielectric constant, that is, \(\varepsilon_b \). We start the discussion from a consideration of the dielectric tensor. The assumed isotropy of the system reduces the complexity of the strain tensor. In addition, because of this isotropy, both the displacement vector connected with the elastic deformation and the propagation direction of the strain wave are parallel to the \(z \) axis. The displacement vector \(\mathbf{u} \) can therefore be
expressed as $[0, 0, u(z, t)]$, and the only nonzero strain tensor component is $\eta_{zz}(z, t)$.

Inhomogeneous strain, temperature, or carrier distributions can modulate the dielectric tensor; for an optically isotropic material the deviation of the dielectric tensor from its equilibrium value is assumed to be given by

$$\Delta \epsilon(z, t) = \eta_{zz}(z, t) \epsilon_{zz} + (s \Delta T + \gamma \Delta n),$$

where $P_{11}, P_{12}, s, \gamma \Delta n$, and $\gamma \Delta T$ are constant coefficients; ΔT is the temperature deviation from its initial equilibrium value; and Δn is the excited carrier density. For the more general case, Eq. (A1) could be extended in principle to include other terms, such as those arising from the electro-optic or the magneto-optic effects. We assume here that the perturbation is small enough to avoid significant second-order contributions in Eq. (A1).

In the present treatment we are concerned with the case in which the only nonzero component of η_{ij} is η_{zz}. In this case the components of $\Delta \epsilon_{ij}$ that play a role in optical modulation are

$$\Delta \epsilon_{xx} = \Delta \epsilon_{yy} = P_{12} \eta_{zz} = -\epsilon_{zz} P_{12} \eta_{zz} = \epsilon_0,$$

where ϵ_0 is the complex refractive index $\tilde{\nu} = \sqrt{\epsilon_{xx}}$.

APPENDIX B: INTERFACE CONTRIBUTION TO THE PERTURBATION OF THE DIELECTRIC TENSOR

In this appendix we consider the interface contribution to the inhomogeneous modulation of the dielectric constants, that is, ϵ_{ij}. The origin of the position coordinate z is defined to be fixed with respect to the equilibrium state of the multilayer. In the presence of elastic deformation, any point of the solid originally at z is displaced to $z + u(z)$. For points in the bulk of the multilayer distant from an interface, there is no need for a linearized theory of the strain to distinguish between the deformed position $z + u(z)$ and the equilibrium position z.43 (Such a linearized theory is valid in the present paper for which strain amplitudes are no greater than $\sim 10^{-4}$, implying that η_{zz} is related to u through $\eta_{zz} = \partial u/\partial z$.) However, for points in the region of an interface between two media of different dielectric constant, we have to take the displacement of the interface position into account.

This can be seen when we express the perturbed dielectric constant distribution $\epsilon'(z)$ in terms of the equilibrium distribution $\epsilon(z)$:

$$\epsilon'(z) = \epsilon(z - u(z)) + \Delta \epsilon(z) = \epsilon(z - u(z)) + P_{12} \eta_{zz}(z),$$

where we abbreviated ϵ_{zz} by ϵ and η_{zz} by η. The presence of $z - u(z)$ in the argument of ϵ arises because of the movement of material in accordance with the elastic deformation. In the bulk of the sample, in a region dis-
tart from any interface, we can write \(\varepsilon(z - u(z)) \) = \(\varepsilon(z) - \frac{\partial \varepsilon}{\partial z} u(z) \). The order of magnitude of \(\frac{\partial \varepsilon}{\partial z} \) and \(u(z) \) are, respectively, \(\Delta \varepsilon / \lambda \) and \(\gamma \), where \(\gamma \) is a typical strain amplitude and \(\lambda \) is of the order of the spatial extent of the strain (in practice, of the order of the acoustic wavelength in the case of a propagating strain pulse). The quantity \(\lambda \) therefore cancels out, and \(\varepsilon(z - u(z)) \) can therefore be replaced to a good approximation by \(\varepsilon(z) \) in Eq. (B1) in a region distant from any interface.

In the region of an interface, however, one has to take into account the deformation because, in that case, \(\varepsilon(z) \) is no longer a good approximation to \(\varepsilon(z - u(z)) \). As an example, let us consider the spatial dependence of the dielectric constant around the front surface of the multilayer, that is, around the interface at \(z = z_0 \). The dielectric constant in the absence of any inhomogeneous perturbation is given by

\[
\varepsilon_{xx}(z) = \begin{cases}
\varepsilon^{(0)} & \text{for } z < z_0, \\
\varepsilon^{(1)} & \text{for } z > z_0.
\end{cases}
\]

Taking account of the deformation, this is modified to

\[
\varepsilon_{xx}'(z) = \begin{cases}
\varepsilon^{(0)} + P_{12}^{(0)} \gamma(z) & \text{for } z < z_0 + u(z_0), \\
\varepsilon^{(1)} + P_{12}^{(1)} \gamma(z) & \text{for } z > z_0 + u(z_0).
\end{cases}
\]

Equation (B2) represents the effect of the motion of the front surface of the multilayer on \(\varepsilon_{xx}(z) \) together with that of the photoelastic effect from the bulk. The combined effect from all the interfaces and from the bulk of the sample must be included in the complete analysis.

The inhomogeneous part of the dielectric constant \(\varepsilon_{ih} \) is conveniently divided into a part because of the bulk contribution \(\varepsilon_b \) and a part because of the movement of the interfaces \(\varepsilon_{if} \):

\[
\varepsilon_{ih} = \varepsilon_b + \varepsilon_{if}.
\]

According to Eqs. (A1) and (B2), the component \(\varepsilon_b \) in the \(n \)th layer can be expressed as

\[
\varepsilon_b(z) = P_{12}^{(n)} \gamma(z).
\]

The component \(\varepsilon_{if} \) is zero for most values of \(z \) except in the small regions encompassing the movement of each interface. Around the interface at \(z = z_n + u(z_n) \), this component is given by

\[
\varepsilon_{if}(z) = \begin{cases}
P_{12}^{(n)} - P_{12}^{(n+1)} \gamma(z) + [\varepsilon^{(n)} - \varepsilon^{(n+1)}] & \text{for } u(z_n) > 0, \ z_n < z < z_n + u(z_n), \\
[P_{12}^{(n+1)} - P_{12}^{(n)} \gamma(z)] + [\varepsilon^{(n+1)} - \varepsilon^{(n)}] & \text{for } u(z_n) < 0, \ z_n + u(z_n) < z < z_n, \\
0 & \text{otherwise}.
\end{cases}
\]

As \(\varepsilon_{if} \) appears only in the integral of Eq. (9), and the region of the integration is restricted at most to \(z_n \pm u(z_n) \), the first terms in the nonzero lines of Eq. (B5) produce a second-order effect whereas the second terms produce a first-order effect. Thus we can neglect the first terms in Eq. (B5), giving

\[
\varepsilon_{if}(z) = \begin{cases}
\varepsilon^{(n)} - \varepsilon^{(n+1)} & \text{for } u(z_n) > 0, \ z_n < z < z_n + u(z_n), \\
\varepsilon^{(n+1)} - \varepsilon^{(n)} & \text{for } u(z_n) < 0, \ z_n + u(z_n) < z < z_n, \\
0 & \text{otherwise}.
\end{cases}
\]

APPENDIX C: DERIVATION OF THE GREEN’S FUNCTION

In this appendix we discuss the transfer matrix method to analyze the light-wave propagation in homogeneous multilayers and give the full description of the Green’s function.

For the moment we concentrate on finding the relation between the coefficients \(a_n \) and \(b_n \) in Eq. (10) according to the boundary conditions at the interfaces, without incorporating the conditions at \(z \to \pm \infty \).

At any of the interfaces of the multilayer, the electric and magnetic field parallel to the interface must be continuous. Because the magnetic field vector is given by

\[
H(z) = \frac{1}{i \mu_0 \omega} \nabla \times E(z),
\]

the boundary condition at \(z_0 \) is expressed as

\[
M_0 a_0 = M_1 a_1,
\]

and the condition at \(z_n(n \neq 0) \) as

\[
M_n a_n = M_{n+1} a_{n+1},
\]

where

\[
M_n = \begin{bmatrix} 1 & 1 \\ k_n & -k_n \end{bmatrix}, \quad Q_n = \begin{bmatrix} \exp(ik_n d_n) & 0 \\ 0 & \exp(-ik_n d_n) \end{bmatrix}.
\]

Because matrices \(M_n \) and \(Q_n \) are all regular and have inverse matrices, the equations are reduced to

\[
\begin{bmatrix} a_0 \\ b_0 \end{bmatrix} = M a_{N+1}, \quad \begin{bmatrix} a_n \\ b_n \end{bmatrix} = M_n^{-1} M_{n+1} a_{n+1},
\]

where

\[
M = M_0^{-1} \prod_{j=1}^{N} M_j Q_j^{-1} M_j^{-1} M_{N+1}.
\]

Thus if two parameters out of the four, \(a_0, b_0, a_{N+1}, b_{N+1} \), are known, then all other coefficients \(\{a_n, b_n\} \) are uniquely determined.
Because the light is incident from the \(z < 0 \) side of the multilayer, \(b_{N+1} \) can be chosen to be zero because no light is expected to return from the substrate side. In this case \(a_0 \) is the amplitude of the electric field of the incident light. The complex reflectance is then \(r = b_0/a_0 = M_{21}/M_{11} \). The complex transmittance is given by \(\tau = a_{N+1}/a_0 = 1/M_{11} \).

Now we proceed to evaluate the Green's function. The right-hand side of Eq. (8) is zero unless \(z = z' \). The function \(G(z, z') \) therefore can be expressed by two solutions for Eq. (7), corresponding to \(z < z' \) and \(z > z' \), that are continuous at \(z = z' \):

\[
\lim_{\epsilon \to 0} [G(z, z - \epsilon) - G(z, z + \epsilon)] = 0. \tag{C4}
\]

The above continuity is reasonable because the second derivative in Eq. (8) would otherwise give a singularity other than \(\delta(z - z') \). The function \(G(z, z') \) must also satisfy

\[
-1 = \lim_{\epsilon \to 0} \int_{z = z' - \epsilon}^{z = z' + \epsilon} \left[\frac{\partial^2}{\partial z^2} + k^2 \epsilon_0(z) \right] G(z, z')dz
\]

\[
= \lim_{\epsilon \to 0} \left[\frac{\partial}{\partial z} G(z, z') \right]_{z = z' - \epsilon}^{z = z' + \epsilon}. \tag{C5}
\]

Because the quantities \(E(z) \) and \(E_0(z) \) in Eq. (9) must contain incident and reflected light components at \(z \to -\infty \) and only transmitted light at \(z \to \infty \), \(G(z, z') \) must give rise only to a \(+z \) propagating component at \(z \to \infty \) and to a \(-z \) propagating component at \(z \to -\infty \).

When we use these conditions, it is possible to construct \(G(z, z') \). For this purpose we use the general solution of Eq. (7) that is discussed in Subsection 2.A.2. A possible form of \(G(z, z') \) is then

\[
G(z, z') = \begin{cases}
\frac{g_1(z')}{i} E_0(z; a_0' = 0, b_0' = 1) & \text{for } z < z', \\
\frac{g_2(z')}{i} E_0(z; a_0' = 1, b_{N+1}' = 0) & \text{for } z > z',
\end{cases} \tag{C6}
\]

with \(z' < 0 \). The coefficients \(g_1, g_2 \) depend only on \(z' \) and can be determined by the conditions expressed by Eqs. (C4) and (C5). The solution for \(G(z, z') \) for \(z > z' \) is proportional to that for \(E_0(z) \) in Eq. (9), where \(g_2 \) is used instead of \(a_0 \).

When measuring the reflectivity, we detect the reflected light far from the sample. It is therefore sufficient to evaluate Eq. (9) at some point \(z < 0 \) where no effect is caused by the strain or other perturbations. This implies that we need to know \(G(z, z') \) at any value of \(z' \) and at a fixed observation point \(z < 0 \). On the other hand, Eq. (C6) is convenient for expressing \(G(z, z') \) at any value of \(z \) and fixed \(z' \). This dilemma is resolved when we use the reciprocity of the Green's function, which can be demonstrated as follows:

\[
\int G(z, z') \left[\frac{\partial^2}{\partial z'^2} + k^2 \epsilon_0(z) \right] G(z', z'')dz' = G(z', z'') - G(z'', z') = 0, \tag{C7}
\]

where we calculate the integral by first using Eq. (8) and then by partial integration. Thus we simply obtain the Green's function \(G(z < 0, z') \) that we actually need for Eq. (9) by interchanging \(z \) and \(z' \) in \(G(z, z' < 0) \).

As described above, for the complex reflectance we require only the solution for \(G(z, z') \) for \(z' < 0 \). In this case, the functions \(g_1 \) and \(g_2 \) can be readily calculated as

\[
g_1(z') = \frac{i}{2k_0} \exp(ik_0z') + r \exp(-ik_0z'),
\]

\[
g_2(z') = \frac{i}{2k_0} \exp(-ik_0z').
\]

The form for \(g_1 \) has fortuitously the same form as \(E_0(z') \) for \(z' < 0 \). The result for the Green's function becomes

\[
G(z, z') = \begin{cases}
\frac{i}{2k_0a_0} \exp(-ik_0z')E_0(z') & \text{for } z < z' < 0, \\
\frac{i}{2k_0} \exp(-ik_0z')E_0(z) & \text{for } z > z', z' < 0.
\end{cases} \tag{C8}
\]

The symmetry of this result has a satisfying elegance. The reciprocity gives

\[
G(z, z') = \begin{cases}
\frac{i}{2k_0a_0} \exp(-ik_0z')E_0(z) & \text{for } z' < z < 0, \\
\frac{i}{2k_{N+1}a_0} \exp(-ik_0z')E_0(z') & \text{for } z' > z, z < 0.
\end{cases} \tag{C9}
\]

for the required \(G(z, z') \) for Eq. (9).

To evaluate the transmittance, we need the \(G(z, z') \) for \(z > z_N, z' < z \). Using the reciprocity relation of Eq. (C7), we can convert the problem into one for which \(G(z, z') \) is obtained for \(z' > z_N, z' < z \). The boundary conditions for \(z = \pm \infty \) are exactly the same as those described above. Therefore \(G(z, z') \) is expressed as

\[
G(z, z') = \begin{cases}
\frac{i}{2k_0a_0} \exp(-ik_0z)E_0(z; a_0' = 0, b_0' = 1) & \text{for } z < z', \\
\frac{i}{2k_{N+1}a_0} [M_{11} \exp(-ik_{N+1}(z' - z_N)) - M_{12} \exp(ik_{N+1}(z' - z_N))] & \text{for } z > z', \text{with } z' > z_N.
\end{cases}
\]

This is essentially the same as Eq. (C6), but the second line is expressed in a different way for later convenience. The functions \(g_1 \) and \(g_2 \) are determined by the conditions of Eqs. (C4) and (C5) as

\[
g_1(z') = \frac{i \exp(ik_{N+1}(z' - z_N))}{2k_0M_{11}},
\]

\[
g_2(z') = \frac{i [M_{11} \exp(-ik_{N+1}(z' - z_N)) - M_{12} \exp(ik_{N+1}(z' - z_N))]}{2k_{N+1}M_{11}}.
\]
Here, use has been made of the identity

\[M_{11}M_{22} - M_{12}M_{21} = k_N/k_0 \]

obtained from Eq. (C3). The coefficients \(\{a_n', b_n'\} \) for \(E_0(x; \alpha_y = 0, b_y = 1) \) are obtained from Eqs. (C1) and (C2). The reciprocity relation of Eq. (C7) gives the required function as in Eq. (16).

ACKNOWLEDGMENTS

The authors thank David Hurley for stimulating discussions. This research is partially supported by Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture (Japan) and the Murata Science Foundation.

“The e-mail address for O. Matsuda is omatsuda@eng.hokudai.ac.jp.

REFERENCES

