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[Abstract] 

The present paper studies an optimum design method for proposing new types of fiber-reinforced composite 

plates with locally anisotropic structure. A finite element program is developed to analyze vibration of such 

locally anisotropic plates, and the fundamental frequency is taken as an object function to be maximized. First, 

for demonstrating the effectiveness of local anisotropy, the optimum distributions of short fibers are calculated 

without directional constraints using a simple genetic algorithm (GA), and the layerwise optimization (LO) 

concept is used to reduce the computation time in the finite element calculation. Secondly, optimum 

arrangements of continuous curvilinear fibers are obtained under the continuity constraints where fibers 

directions are considered as projections of contour lines of a cubic polynomial surface. Numerical results 

show that the local anisotropy successfully improves frequency property and the optimum directions of short 

fibers indicate physically reasonable orientations. Also, the plates with optimally shaped continuous fibers 

yield higher fundamental frequencies than the conventional plates with parallel fibers.  

Keywords:  Local anisotropy, Genetic algorithm, Fiber reinforced composite, Short fiber, Curvilinear fiber, 

Natural Frequency  
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1. Introduction 

The present paper focuses on locally anisotropic structures which are often found as parts of natural 

compounds. For example, the bony pelvis of humans is composed of inorganic calcium phosphates and 

organic collagen fibers. The inorganic component contributes to stiffness and strength, while organic fibers 

provide toughness. The organic fibers form curvilinear shapes which are possibly the optimum shape to 

sustain external forces. In other words, the natural compounds have local anisotropic properties distributed 

optimally throughout the compound to perform more effectively than simple anisotropic materials. It may then 

be hypothesized that if local anisotropy is exploited in structural design, it will be highly possible to design 

more effective engineering structures.  

To realize local anisotropy with curvilinear fibers, fiber reinforced composites would be highly 

appropriate, especially with an innovative method that has recently been developed to produce composites 

with curvilinear fibers. The method is termed automated tow-placement technology [1], and combines features 

of two conventional methods, i.e., differential tow-payout ability in filament winding, and the compaction and 

cut-restart capabilities of automated tape laying. The machine head has a wide range of degrees of freedom for 

axial motion, and the tow-placement direction can be changed continuously. In the fiber placement process, 

individual prepreg tows are fed with controlled tension and compacted by a heated rolling compaction device 

onto the lay-up surface. 

The mechanical properties of composite plates reinforced by curvilinear fibers strongly depend on the 

fiber shapes, and such composite plates display non-uniform stiffness and anisotropy. As compared with 

homogenously anisotropic plates with parallel fibers, there is the potential that task specific fibrous composite 

plates may be designed using automated tow-placement equipment and curvilinear fibers.  
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Leissa and Martin [2] first proposed a variable stiffness concept by varying fiber spacings to improve the 

vibration and buckling performance of plates with the Ritz method. Hyer and Lee [3] employed finite element 

analysis (FEA) to analyze the buckling performance of plates with variable stiffness formed by curvilinear 

fibers. Here, the fiber orientation angles between adjacent elements was varied, and it was found that such 

plates had higher failure loads than plates with parallel fibers. Qatu [4] mentioned curvilinear fibers for 

circular plates in the polar coordinates. Gürdal et al. [1, 5-7] defined arbitrarily shaped fibers by the linear 

change in fiber orientation angles between two different reference points for plates and conical shells, and 

confirmed that such plates have superior mechanical properties compared with homogenous plates by 

integrated research including experimental and analytical tests. The authors [8] have calculated the natural 

frequencies of plates reinforced by quadratically shaped fibers using the Ritz method, and showed that plates 

with local properties have advantages over homogenously anisotropic plates with parallel fibers in terms of 

vibration design.  

For the optimization of locally anisotropic composites, Setoodeh et al. [9-11] studied the optimization of 

plates with local properties by employing lamination parameters which describe laminated plate properties in 

simple form as design variables. Blom et al. [12] designed conical shells using curvilinear fibers for 

maximizing fundamental frequencies while imposing manufacturing constraints. Cho and Rowlands [13] and 

Huang and Haftka [14] designed fiber directions to reduce stress concentrations around circular holes. Parnas 

et al. [15] applied curvilinear fibers to a minimum weight design. Mu and Ulatoska [16] used Ritz method and 

approximated both displacement vectors and fiber shapes by unknown coefficient and trigonometric function. 

They gave improved bending stiffnesses for simply supported plates with curvilinear fibers. However, so far 

no paper has dealt with designs considering optimization of plate vibration with continuous curvilinear fibers 

for various boundary conditions. 
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There are a number of papers discussing optimization for laminated composite plates with parallel fibers. 

Adari and Verijenko [17] determined a minimum cost design of hybrid laminated plates subject to constraints 

on the fundamental frequencies or separation of frequencies using discrete sets of specified ply angles as a 

linear optimization problem. Miki et al. proposed a graphic method (described in [18]) introducing a feasible 

region of two lamination parameters. Fukunaga et al. [19-21] optimized lamination parameters by a gradient 

method and then derived optimum stacking sequences from corresponding lamination parameters by 

exploiting geometrical features of such feasible regions. Grenestedt [22] and Serge [23] also determined 

optimum stacking sequences using a graphic method. Todoroki et al. [24-26] combined a genetic algorithm 

(GA) with a fractal branch-and-bound method and a response surface approximation, and optimized laminated 

plates by assigning lamination parameters as design variables. Kameyama and Fukunaga [27] also used GA 

with lamination parameters and designed aircraft wings of composite plates. Autio [28] applied GA methods 

to determine corresponding lay-ups to the optimum lamination parameters. In these methods, the GA does not 

require the implementation of a structural analysis and successfully reduces calculation times when compared 

with conventional GA approaches which directly assign fiber orientation angles to design variables. 

Abouhamze and Shakeri [29] optimized laminated cylindrical panels using a GA and neural networks. Paluch 

et al. [30] studied the optimization of plates with variable thicknesses. Narayana et al. [31] investigated 

minimum weight designs using a failure mechanism based on failure criteria. Almeida and Awruch [32] 

introduced special operators in the GA and performed multi-objective optimizations to minimize weight of 

plates and maximize transverse stiffnesses. 

The present work designs optimal locally anisotropic structures of the fibrous laminated composites. First, 

it aims to confirm the effectiveness of local anisotropy in composite materials by exploring the optimum short 

fiber distribution without directional constraints on fiber orientations (Problem 1). For determining short fiber 
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distributions, this study uses a GA which considers fiber angles as the direct design variable in each element 

in an FEA. The plate generated with the present results display better performance than plates with parallel 

fibers in terms of fundamental frequencies, and show regular trends in the fiber distribution. After showing the 

superiority of composites with local anisotropy induced by short fiber distribution optimization, an optimum 

curvilinear fiber shape is developed under continuous constraints on the fiber orientations, where the fiber 

shapes are expressed as projections of contour lines on a cubic polynomial surface (Problem 2). The results 

show that plates with curvilinear fibers also result in higher fundamental frequencies than plates with parallel 

fibers. Further, the results of both sets of optimizations show that there are specific optimum fiber orientations 

along the plate boundaries. 

 

2. Analysis and Optimization Procedure 

2.1 Optimization of the Short Fiber Distributions (Problem 1) 

The assignment of fiber orientation angles as a design variable causes a rapid increase in the number of design 

variables when adding stacked layers, and layerwise optimization (LO) ideas [33-35] are used with GA to 

save computational effort, applying sequentially from the outer to the inner layers. This reduces the 

multi-layer optimization problem to a number of iterations of a single-layer optimization problem.  

The discussion here considers a laminated plate with a symmetric K-layer as shown in Fig. 1, where the 

plate dimensions are given by a × b × h (thickness) in an O-xyz co-ordinate system. In each layer, the fiber 

direction and the direction normal to the fibers for the curved fibers are denoted by 1 and 2, respectively. The 

plates in the present study are limited to plates that are symmetric around the center of the plate, and there is 

no coupling between bending and stretching.  
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To exploit a locally anisotropic plate with the maximum fundamental frequency, an optimum short fiber 

distribution is first determined. The fiber orientation angle for each element of the FEA in each layer is 

assigned as the design variable, allowing the present optimization problem to be stated as follows. 

1
( ) ( ) ( )

1 2 / 2
( )

Maximize :
Design variables :[ / / .../ ] ( 1,2,..., )

Subject to : 90 90 ( 1,2,..., / 2)

n n n
K s

n
i

n ne
i K

θ θ θ

θ

Ω

=

− ° < ≤ ° =

 (1) 

where θ i
( n )  is the angle of the nth element in ith layer, ne is the number of elements, and Ω1 is the normalized 

fundamental frequency referred as the frequency parameter 

2
1 1

0

a
D
ρωΩ =  (2) 

where D0 = E2h3/12(1-ν12ν21) is the reference stiffness, ρ is the material density, and ω1 is the fundamental 

angular frequency. No artificial constraints are imposed on the fiber orientation angles because the natural 

distributions of the local anisotropy would be found here. 

Since the design variables are assigned to each element of the FEA, this optimization problem has a very 

large number of possible solutions. For example, when a plate is divided into 10 × 10 elements and 15° 

increments are used for the optimization in the -90° to 90° range (12 possible angles), the total number of 

possible solutions is 12100 even for a single-layer plate. In addition, the number of possible solutions increases 

exponentially with increases in the number of layers. To deal with this very large number of combinations, a 

layerwise optimization (LO) approach is employed to reduce the number of possible solutions. 

The LO approach was developed by Narita [33-35] and is based on the physical observation that the outer 

layer has a greater stiffness effect than the inner layer in the bending of laminated plates and that it therefore 

has a stronger influence on the vibration behavior of the plate. The optimum conditions for bending vibrations 

of laminated plates are assumed to be determined by optimizing each layer sequentially from the outermost to 
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the innermost layer. In the algorithm, the inner layers are initially assumed to have no stiffness but to have the 

same density as the other layers while the stiffness of the outer layers are being optimized.  

The concept of the LO approach successfully reduces the multi-layer optimization to iterations of the 

single-layer optimization, because the optimization for each layer is repeated sequentially. The algorithm of 

the LO approach is presented in Fig. 2, and the optimization problem in Eq. (1) can now be re-formulated as  

{ }
1

(1) (2) ( )

( )

Iterate 1 to / 2
Maximizing :

Design variables : , ,...,

Subject to : 90 90

ne
i i i

n
i

i K

θ θ θ

θ

=

Ω 
 
  

− ° < ≤ °

 (3) 

Iterations of this optimization starting from the outermost layer of a laminated plate may determine an 

optimum fiber distribution for each layer, and then, by adding further iterations, a plate with more layers can 

be optimized. The advantages of the LO approach are to reduce the dimension of calculation for each 

optimization process

 

 and to make it insensitive to increases in the number of layers to be optimized. Moreover, 

the accuracy is improved by adding a further set of iterations while maintaining fiber orientations from the 

previous cycle (See Fig. 2 (ii) Second iteration). Due to these repeated processes, the LO approach results in 

longer calculation times than other approaches optimizing whole layers simultaneously. 

2.2. Optimization of the Curvilinearly Shaped Fibers (Problem 2) 

Based on the above discussion, optimum curvilinear fiber shapes can be exploited under continuously varying 

constraints because the optimum short fiber distributions showed specific orientations as will be developed in 

the following (Section 3.1). To define curvilinearly shaped fibers, a cubic polynomial function f(x,y) is 

introduced here, as 
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2 2
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3 2 2 3
30 21 12 03

( , )f x y c c x c y c x c xy c y
c x c x y c xy c y

= + + + + +

+ + + +
 (4) 

where cij (i, j = 0, 1, 2, 3) are shape coefficients which determine the surface shape. An example of a surface 

and the corresponding curves is shown in Fig. 3(a) and (b). The expression in Eq. (4) is based on the level set 

function used in topology optimization and makes it possible to accommodate topology changes simply [36]. 

In FEA, continuous fibers are discretized and the fiber orientation angles for each element are calculated using 

the co-ordinates of the center of the element by 

1

,

/( , ) tan ( )
/

c c

c c
x x y y

f xx y
f y

θ −

= =

∂ ∂
= −

∂ ∂
   (when ∂f / ∂y = 0, θ = 90º) 

(5) 

where (xc, yc) are the co-ordinates of the center of the element. The angles are in the same direction as the 

tangents to the surfaces in the horizontal plane, and assume straight fibers and a constant volume fraction in 

the element but different angles for each element (Fig. 3(c)). It is possible to describe different shapes of 

surfaces and curvilinear fibers by varying the values of the shape coefficients. The angle is defined by the 

continuous polynomial function and this description imposes continuity constraints on the fibers. Further, the 

present description is more effective and flexible than using the spline function because there is no need to 

solve simultaneous equations to determine the fiber shapes as it simply accepts the multi-valued functions.  

Problem 2 limits plates to symmetric K-angle-ply laminates [(±θ)K/4]s where the “+ layer” means that the 

layer has fiber shapes determined in the optimization problem, and the “- layer” is the layer with fiber shapes 

symmetric to the “+ layer” with respect to the horizontal line and becomes –θ in Eq. (5). Thus it is sufficient 

to design one layer in this problem formulation. The objective is to maximize the fundamental frequency Ω1, 

and the corresponding shape coefficients cij for the optimum fiber shapes are the design variables. This 

problem can be stated as 
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10 01 20 11 02 30 21 12 03

Maximize
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:
: , , , , , , , ,

: 1 1 ( , 0,1, 2, 3)ij

c c c c c c c c c
c i j

Ω

− ≤ ≤ =
    (6) 

The c00 is eliminated in the derivative process in Eq. (5), and it is not included in the design variables. The 

increment of cij is 0.1 in the range from -1 to 1, and there are 21 possible values for each shape coefficient. 

These values were determined by try and error in the preliminary numerical experiment.  

  

2.3 Genetic Algorithm 

For the single layer optimization problem in the optimization of fiber distributions (Problem 1) in Eq. (3) and 

the optimization of curvilinearlity (Problem 2) in Eq. (6), a genetic algorithm (GA) method coded with an 

integer representation is employed as an optimizer. Such a GA based on integer coding was used by Riche and 

Haftka [37], and is commonly used to represent design variables with many possible solutions. When N 

possible values are considered, an integer ranging from zero to (N-1) is used to represent the possible values.  

For GA operators, a two-point crossover and a uniform mutation are used to generate offspring with elitist 

tactics. Parents with better fitness (frequency parameter Ω1) are selected by a roulette rule, and the genes 

(coded by integer parameters) between two crossing points also selected randomly are replaced to generate a 

child individual in the crossover procedure. In the mutation, a randomly selected gene is converted to another 

integer with low probability to maintain variety of genes. Further, some of the fittest individuals are selected 

from the previous generation and used in the next generation where selected individuals are not imposed on 

the GA operations. This procedure is termed an elitist strategy and is implemented to conserve the gene which 

may contribute to a better fit and to make the fitness value of the optimization search increase monotonically. 
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2.4 Finite Element Formulation as Modified in the Present Method 

2.4.1  4-node Element Based on the Classical Plate Theory 

For the frequency analysis in Problem 1, classical plate theory (CPT) is employed due to its simplicity 

together with an ACM element as proposed by Adini, Clough and Melosh [38]. An ACM element is 

rectangular and has 12 degrees of freedom as each corner of the rectangle has three variables (w, ∂w/∂x and 

∂w/∂y). Although this element is a non-confirming element, which may mean that it forms kinks along the 

boundary between elements, it was confirmed that there are advantages in accuracy and calculation speed 

because the domain of integration is a simple shape and the integration can be done analytically. The first 

optimization problem is sensitive to the calculation speed of the structural analysis since the number of design 

variables is significant and thus a large number of populations and generations have to be included. 

For symmetrically laminated thin plates, the maximum strain energy stored in each element is given by 

{ } { }( )1
2

T n
e ijA

U d dAκ κ =  ∫∫     (7) 

where dij
(n) are the local bending stiffnesses defined by the fiber orientation angles in each element, and {κ} is 

a curvature vector obtained by the second derivative of the deflection. The element stiffness matrix [Ke] is 

obtained from Eq. (7). 

The maximum kinetic energy stored in each element is given by 

2 21
2e A

T w dAω ρ= ∫∫     (8) 

The element mass matrix [Me] is obtained from Eq. (8) in the integration process.  

The global stiffness matrix [K] and mass matrix [M] are provided by assembling [Ke] and [Me] for 

eigenvalue equations. After imposing the boundary conditions on the global matrixes, the frequency parameter 

is determined by solving an eigenvalue equation. 
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{ }2([ ] [ ]) 0K Mω δ− =     (9) 

where {δ} is the global deflection vector. 

 

2.4.2  8-node Element Based on First-order Shear Deformation Theory 

For Problem 2, the FEA is performed with an isoparametric eight-node plane element based on the first-order 

shear deformation theory (FSDT) [39] to enable an analysis of the variously shaped plates. The FSDT is used 

to consider transverse shear deformation in the frequency analysis, and it does not require continuity in the 

slope of deflection between element boundaries since the theory is based on a displacement field 

0 0 0, ,x yu u z v v z w wφ φ= + = + =     (10) 

where (u0, v0, w0) are the displacement of a plane (x, y, 0), and ϕx and ϕy are the rotations in the x and y 

directions, respectively. In this paper, laminated plates are limited to symmetric plates (the ply number is K) 

as shown in Fig. 1, and the in-plane displacements (u, v) are uncoupled from (w, ϕx, ϕy).  

For symmetrically laminated plates, the energy stored in an element of the plate during bending 

deformation is given by 

{ } { } { } { }( ) ( )
max 1 1 2 2

1
2 2

T Tn n
ij klA A

U d dA a dAακ κ κ κ   = +   ∫ ∫　     

(i, j = 1, 2, 6;  k, l = 4, 5) 

(11) 

where akl
(n) are the local shear stiffnesses in the out-of-plane direction of the plate, α is a shear correction 

factor ( = 2 / 3) [40], and the vectors {κ1} and {κ2} are given by  

{ }1
T y yx x

x y y x
φ φφ φκ

 ∂ ∂ ∂ ∂ = − − − +  ∂ ∂ ∂ ∂   
    (12) 
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{ }2
T

x y
w w
x y

κ φ φ
 ∂ ∂

= − − 
∂ ∂ 

 (13) 

The maximum kinetic energy stored in each element during vibration is 

( )2 2 2 2
max 1 3 3

1
2 x yA

T I w I I dAω φ φ= + +∫   (14) 

where I1 and I3 are inertial amounts given by 
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−

−

=

=


= 


=


∑∫

∑∫
    (15) 

   After the element stiffness and mass matrices are calculated using a standard routine for FEA with 

isoparametric elements, the eigenvalue equations are obtained similar to the procedure in Section 2.4.1.  

 

3. Numerical Results and Discussions 

Numerical results here were calculated for symmetric 8-layer laminated square plates (a/b = 1 in Fig. 1), with 

the elastic constants for the graphite/epoxy (CFRP) composite used in the calculations: 

E1 = 138 GPa, E2 = 8.96 GPa, G12 = 7.10 GPa, and ν12 = 0.3 

Figure 4 shows the boundary conditions used in the present study, with letters showing the states of the 

edges: F for Free, S for simply supported, and C for clamped edges, and the letter P represents a point support. 

The square plate in Ex. 1 to Ex. 5 are defined with the various boundary conditions of the edges of the plates 

listed in the counterclockwise direction starting from the left edge of the plate, and all plates are divided into 

10 × 10 = 100 elements, thus each plate has 100 design variables in each layer. They present a simply 

supported plate (Ex. 1 SSSS), a fully clamped plate (Ex. 2 CCCC), a plate with unsymmetrical boundary 
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conditions including two free edges (Ex. 3 CSFF), a plate with a point support at the free corner of CSFF (Ex. 

4 CSF(P)F), and a plate with a mixed boundary at the lower edge (Ex. 5 Mixed S(CS)SS). Ex. 6 is an 

L-shaped plate with a notch and all edges simply supported. The size of the corner cutout is 0.2a with the 

length of the plate edge a, so Ex. 6 has 96 elements for the calculation. 

Ex. 7 is a quarter model of a plate with a circular hole at the center of the plate and Ex. 8 is a cantilevered 

plate imitating the wings (fins) of a rocket. Since only rectangular elements are employed in Problem 1, Ex. 7 

and Ex. 8 are not included in the calculations. Plates with finer element divisions than the present also show 

similar specific orientations (data not shown here), and the 100 element division were employed here in 

consideration of the calculation effort. 

 

3.1 Results for the Short Fiber Distribution Calculation (Problem 1) 

The results from the LO approach are compared with results from conventional GA without LO approach 

aiming to confirming the efficiency of the LO approach. The conventional GA employs fiber orientation 

angles in whole layers as design variables. The results are given for the symmetric 8-layer square plates 

divided into 6 × 6 elements due to saving the calculation time, and boundary condition is all edges clamped 

since this boundary gives smaller matrices in FEA than others and it is also efficient to save the calculation 

time. In the present GA, the optimization is carried out each layer sequentially and the number of design 

variables is 36. On the other hand, the conventional GA has 36 (elements) × 4 (layers) = 144 design variables. 

Taking the difference of the number of design variables into consideration, the numbers of population are 500 

for the present GA and 4000 for the conventional GA. The number of generation is 300 for both GAs. The 

calculated frequencies are 116. 9 and 107.4 for the present and conventional GAs, respectively, and obtained 

fiber orientation angles are shown in Fig. 5. The present GA gives higher fundamental frequencies and clearer 
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fiber orientation than the present GA even the dimension of optimization for GA is smaller. Thus the 

efficiency of the present approach is confirmed.  

The parameters used in the present GA are: number of populations S = 2000, number of generations ge = 

500, the crossover probability pc = 0.7, the mutation pm = 0.003 and the proportion of elite individuals who are 

inherited to the next generation without further operation pe = 0.005. Increment angles of 15° (giving 12 

possible angles) are used in this optimization, and the maximum value of the integer used in the integer coding 

in GA becomes 11 with the first number zero. 

Table 1 presents the maximum frequency parameters from the plates calculated here, the values for 

conventional plates with optimally oriented parallel fibers obtained using the LO method, the optimum 

lay-ups given by the LO method and the differences (%) based on the values for conventional plates. Table 1 

shows that the plates result in higher frequency parameters for all boundary conditions, and it is clearly 

showing that locally anisotropic plates with optimally oriented short fibers make it possible to design 

composite plates with higher frequencies than conventional plates. 

The optimum short fiber distribution in all layers for the plate with all clamped edges (Ex. 2 CCCC) is 

shown in Fig. 6, here the outermost layer is defined as the 1st layer. It shows high improvement in frequencies 

and clear specific fiber orientation in each layer and Ex. 2 is referred here. Figure 7 shows overlapping views 

for the Exs. 1-6 boundary conditions, with the fibers in the first and second layers shown by bold lines and 

those in the third and fourth layers with thinner lines.  

Figure 6 shows that the fiber placement radiates toward to the center of the plate in the outer two elements 

adjacent to the plate edges and are oriented concentrically in the inner elements in all layers. These 

orientations become less distinct in the inner layers, agreeing with the physical observation which the LO 

concept was based on: the outer layer has a stronger influence to the bending vibration than the inner layers. 
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The specific fiber orientations are detailed in the overlapping view (Fig. 7, Ex. 2). The fiber orientations are 

not symmetric in Fig. 5 although the boundary condition is symmetric. This is because GAs are optimization 

methods based on probabilities and their solutions are not necessarily global-optimum. However, the present 

solutions result in improved frequencies compared to the conventional plates and they are clear enough to 

identify tendency in the fiber orientation. The plate has 30.3 % higher fundamental frequency (frequency 

parameter) than conventional plates, and this improvement is the second largest among the six examples. 

The fibers in the simply supported plate (Fig. 7, Ex. 1) form a diamond shape (with two opposing fibers 

directions at the corners and variety of directions at the center of the elements). In the elements outside the 

central diamond, fibers are oriented at about 45° and -45°. These angles are the same as in the optimum lay-up 

of the conventional plate, and here the improvement of 7.22 % is the lowest among the six examples. In Ex. 3, 

the fibers are oriented horizontally in the elements near the left (clamped) edge, and take on various angles in 

other elements, giving a 16.4 % improvement in frequency. In Ex. 4 (CSF(P)F), the fibers flow from the lower 

right corner to the point support (upper right) corner through the center of the plate, and this plate has the 

largest improvement, 35.7 % compared with the conventional plates. In Ex. 5 with mixed boundary conditions 

on the lower edge, there are the mixed fiber orientations of Ex. 1 and Ex. 2, giving a 12.7 % improvement in 

the frequency parameter. The skewed diamond shape orientations due to the corner cut-out appear in Ex. 6, 

resulting in a frequency that is 9.78 % higher with the shorter fibers. 

There is some correlation between the short fiber orientations and the vibration mode. In the vicinity of 

peaks of vibration modes where the modes have large amplitude and small contour slope, fibers orient 

concentrically around peaks. Areas adjacent to clamped edges (small amplitude and small contour slope), 

fibers orient normal to the contour lines of modes, and areas adjacent to simply supported edges (small 

amplitude and large contour slope), fibers orient ±45º. These characteristics are clear in the Exs. 1 and 2 and 
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fiber orientations combining both features appear in other examples. 

The above discussion allows the conclusion that a plate with optimally distributed short fibers has higher 

fundamental frequencies than a conventional plate with parallel straight fibers, and that such a plate has 

specific optimum fiber orientations even when no directional constraints are imposed on the fiber orientation 

in the design procedure. Regrettably, a material of this kind is not practical with present production techniques 

and does not satisfy the need for continuity of element boundaries. However, the results suggest the potential 

for using continuous fibers with optimally curvilinear shapes, and such curvilinear fiber shapes will be 

determined under the continuity constraint in Problem 2, below.  

 

3.2 Results with the curvilinear fiber calculations (Problem 2) 

Problem 2 employs 8-node isoparametric elements (Section 2.1.2) and Ex. 7 and Ex. 8 which have circular 

edges and trapezoidal elements can also be considered. The GA parameters for Problem 2 are S = 300, ge = 

150, pe = 0.9, pm = 0.01 and pe = 0.02. 

Figure 3 also discussed in Section 2.2 shows (a) an optimum surface, (b) a model with continuous fibers 

and (c) a model with the discrete fibers for the totally clamped plate (Ex. 2 CCCC). As suggested by Fig. 3 (a), 

the surface is described using optimum shape coefficients in O-xyz co-ordinates. Figure 3 (b) shows the 

contour lines projected to the horizontal plane and Fig. 3 (c) presents the discrete model of overlapping of the 

“+ layer” (bold) with optimized fiber shapes denoted and “− layer” (lighter) with symmetric fiber shapes to 

the + layer with respect to horizontal line. In the finite element calculation, the fiber orientation of each 

element is calculated using the co-ordinate of the center of the element based on the surface function (Eq. (5)), 

and the discrete model is used for the calculation as an approximation of the curvilinear fibers. 

Figure 8 suggests the discrete optimum fiber shapes and vibration modes for the eight boundary condition 
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examples (Fig. 4), where only the “+ layer” is shown as overlapping views would make it difficult to find 

fiber continuity. The values corresponding to the shape coefficients for Fig. 8 are listed in Table 2, and plots 

of the fundamental frequencies of the plates here and conventional plates are presented in Fig. 9. The typical 

3.lay-up configurations, [(0º)4]s, [(0º/90º)2]s, [(±60º)2]s, [(±45º)2]s and [(±15º)2]s, are shown in Fig. 9 for 

comparison.  

Except for the purely simply supported plates (Exs. 1 and 6), the plates with curvilinear fibers result in 

higher frequencies than all conventional plates with typical lay-ups. Even in the case of Exs. 1 and 6, the 

result is very similar frequencies to the plates with parallel fibers. This is because the optimum fiber shapes 

for Exs. 1 and 6 show quite similar shapes to [(±45º)2]s (See Fig. 8, Exs. 1 and 6). The other boundary 

conditions give clearly curved fiber shapes and higher fundamental frequencies than the parallel fibers. 

It is shown by all shapes in Fig. 8 that the fibers respond to the specific shapes along the boundaries and 

mode shapes. Fibers adjacent to the clamped edges (all edges in Ex. 2, the left edges in Exs. 3, 4 and 8, the 

left-half of the lower edge in Ex. 5 and the top and right edges in Ex. 7) orient normal to the plate edges, and 

fibers along the simply supported edges (all edges in Exs. 1 and 6, the lower edge in Ex. 3, and all edges 

except for the clamped half in Ex. 5) compose ±45º shapes. Fibers adjacent to the lower edge in Ex. 4 also 

meet at an angle. These characteristics, specific to the edges, are very similar to those in the short fiber 

distribution results (Fig. 7), but no characteristic appears around mode peaks due to continuity constraints. 

In Ex. 7, fibers are arranged normal to the circular hole. This is an effect of the clamped edges rather than 

the hole because when the boundary condition is simply supported, the optimum fibers form a [(±45º)2]s 

shape throughout the plate, and they are quite similar to the simply supported plate (Ex. 1). Therefore, the 

effect on the fiber shapes around a circular hole is small when compared with that of the boundary conditions 

in terms of fundamental frequencies. However, the amount of improvement for the plate with the circular hole 
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(Ex. 7) is larger than for the plate without a hole (Ex. 2) as the mass is reduced at the large amplitude area. 

The wing model (Ex. 8) also shows a specific orientation in elements adjacent to the clamped edge, and fibers 

orient parallel to the upper edge away from the clamped edge. These shapes are impossible to archive with 

parallel fibers and are unique characteristics of the curvilinear fibers. Accordingly, it may be concluded that 

locally anisotropic plates involving curvilinear fibers have higher fundamental frequencies than conventional 

plates with homogenous anisotropy.  

In a previous study [8], it was shown that plates with curvilinear fibers have skewed vibration mode 

shapes due to the fiber shapes. However the vibration mode shapes indicated in Fig. 8 are not strongly skewed. 

Thus, the unique mode shapes are not the direct reason for the improvement in the natural frequencies. The 

improvement of fundamental frequencies for the curvilinear fiber plates (Problem 2) is smaller than for the 

plates with optimally distributed short fibers (Problem 1). This is because the curvilinear fiber plates have 

smaller amounts of freedom than the plates with optimally distributed short fibers. Still, curvilinear fibers are 

simpler realized than the plates with optimally distributed short fibers. 

 

4. Conclusions 

To exploit the properties of locally anisotropic structures, the optimum fiber distributions for fibrous 

composite plates were first determined (Problem 1) in finite elements with independently oriented fibers using 

a layerwise optimization (LO) idea with a genetic algorithm (GA). The process of the multi-layer optimization 

of a laminated composite plate was reduced to iterations of optimizations of a single-layer applying the 

optimization method sequentially from the outermost layer towards to the innermost layer. For the single-layer 

optimization, each fiber orientation angle in all elements is used as the design variable and optimized 

simultaneously by the GA. Next, the optimal continuous curvilinear fiber shapes were also found with a GA 
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(Problem 2). The fiber shapes were denoted by the projections of contour lines for the cubic surfaces, and the 

coefficients of the cubic polynomial terms were employed as design variables. The finite element analysis 

(FEA) was used for the vibration analysis, and the fiber orientation angle at each element was calculated from 

the co-ordinates at the center of element. 

In the numerical results for Problem 1, the results of the present approach gave higher fundamental 

frequencies for all boundary when compared with the fundamental frequencies of conventional plates with 

parallel fibers. The short fibers were oriented with specific distributions without any constraints, this indicates 

the possibility to find optimum continuous and curved fiber paths. The results for Problem 2 showed that all 

the boundary conditions considered here result in higher fundamental frequencies than those of conventional 

parallel fiber plates with typical lay-ups, except for the purely simply supported square plate. Therefore, it is 

concluded that the optimum curvilinear fiber shapes determined here give higher or equal fundamental 

frequencies compared to conventional plates with parallel fibers for the various boundary conditions and that 

the optimum fiber arrangement is influenced by specific conditions at each boundary condition, but that no 

specific fiber shape to circular hole was found in this investigation. 
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Fig. 1 Cross-section and dimensions of the laminated rectangular plate. 
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Fig. 2 The process of the algorithm of the LO approach. 

  

No stiffness

Step 0

.  .  .

Plate mid-surface

(i) First iteration

No stiffness

No stiffness

1st layer
2nd layer

K/2th layer

     Find
Step 1

No stiffness

No stiffness

( )
1

nθ
Step 2

No stiffness

( )
1

nθ
     Find ( )

2
nθ

Step K/2
( )
1

nθ
( )
2

nθ

     Find ( )
/2

n
Kθ

No stiffness No stiffness No stiffness ( )
3

nθ3rd layer

.  .  .

     Find
Step 1

( )
1

nθ
Step 2

( )
1

nθ
     Find ( )

2
nθ

Step K/2
( )
1

nθ
( )
2

nθ

     Find ( )
/2

n
Kθ

( )
3

nθ

(ii) Second iteration

Plate mid-surface

( )
2

nθ
( )
3

nθ

( )
/2

n
Kθ ( )

/2
n

Kθ

( )
3

nθ

Another iteration



 
 

  
 

Fig. 3 Examples of (a) surface, (b) continuous fibers and (c) discrete fiber orientaions. 
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Fig. 4 Boundary condition examples.  

Ex.7 circle Ex.8 wing
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(a) Present GA with LO approch    (b) Conventional GA 

Fig. 5 Comparison of short fiber distributions between (a) present GA with LO approach and (b) 

conventional GA 

 

  



 

 

Fig. 6 Optimally distributed short fibers in the layers of a symmetric 8-layer square fully clamped plate 

(CCCC, Ex. 2). 
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Fig. 7 Overlapping views of the short fiber distributions in the six of boundary conditions (Ex. 1 - 6). 
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Fig. 8 Discrete models of optimum curvilinear fiber shapes (+ layer) for the eight examples of the plates 

and the corresponding vibration modes (Ex. 1-8). 
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Fig. 9 Frequencies for the present plates with optimum curvilinear fibers and conventional plate with 

parallel fibers 
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The number of Tables: 2 

 

Table 1 Maximum frequencies of the present plates and conventional plates, the optimum lay-ups 

for conventional plates, and differences between frequencies of the plates. 

Table 2 Shape coefficients for the optimum fiber shapes for the eight examples. 

 

  



Table 1 Maximum frequencies of the present plates and conventional plates, the optimum lay-ups for 

conventional plates, and differences between frequencies of the plates. 

 

B.C. 
 Short fiber 

(dif. %) 

Conventional 

[Opt. Lay-up] 

Ex. 1 
60.13 

(7.22) 

56.08 

[45/-45/-45/-45]s 

Ex. 2 
120.9 

(30.3) 

92.78 

[90/0/0/0]s 

Ex. 3 
19.08 

(16.4) 

16.39 

[20/-45/20/20]s 

Ex. 4 
43.24 

(35.7) 

31.87 

[55/-50/20/-70]s 

Ex. 5 
71.48 

(12.7) 

63.41 

[55/-50/-55/55]s 

Ex. 6 
71.05 

(9.78) 

64.72 

[45/-45/-45/45]s 

 

  



Table 2 Shape coefficients for the optimum fiber shapes for the eight examples. 

 

BC (c10, c01, c20, c11, c02, c30, c21, c12, c03) 

Ex. 1 (1, -0.9, 0.1, 0.1, -0.2, 0.5, -0.9, 0.9, -0.7) 

Ex. 2 (0.8, -0.8, 0.2, -0.5, 0.2, -1, -0.9, 1, 1) 

Ex. 3 (0.6, -0.8, 0.5, 0.1, -0.6, -0.2, 0.6, 0.5, -0.6) 

Ex. 4 (-0.4, -0.3, -0.8, 1, 0.9, -0.8, 0.2, -0.2, 0.5) 

Ex. 5 (0.8, -0.4, 0, -0.8, -0.1, -0.5, 0.3, 1, 0.2) 

Ex. 6 (1, -0.9, 0.5, -0.3, -0.1, 0.6, -0.6, 0.2, -0.4) 

Ex. 7 (-0.9, 0.9, 0.8, 0, -1, 0.2, -0.3, 0.4, 0.1) 

Ex. 8 (0.8, 0.9, 0.8, 0.6, 0.1, 0, 1, 0.9, -0.4) 
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