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The main objective of our study is to disclose if any network structure is hidden among the pairs of
numbers obtained by splitting the consecutive integers. By adopting some preferred rule in placing
the links among the pairs obtained, we have a transition from a regular to a random one through a
small world one. This type of transition is also similar to the network of primes obtained by splitting
the consecutive integers which indicates some general feature in both kinds of networks. We also
obtained both some numerical and analytical explanations, that support the transition and also the
point of transition.

PACS numbers: 02.10.De, 64.60.aq

I. INTRODUCTION

The study of networks has been quite fruitful in disclosing the statistical properties of a diverse types of complex
systems for the last few decades [1–4]. Whether it is a World Wide Web [5] or social networks [6] or complex biological
systems [7], its application has become an inevitable tool for the physicists. A network is defined as a graph consisting
of some ‘nodes’ connected by some ‘links’ according to some relevant property depending upon the nature of the
system. For example, in a traffic network, the ‘stations’ are the nodes and the particular transport that connect two
stations is the ‘link’. The fundamental objective to generate a network from a complex system is to identify the nodes
and the corresponding links. It is also an important task to find the hidden rule by which the links are established
(whether it is according to any preference or just randomly). After having obtained these fundamental informations,
we can calculate some basic parameters (e.g. average shortest distance, clustering coefficient, degree distribution) of
a network that characterises it and also reflects some gross behaviour (thus avoiding the microscopic details).

The distance between two nodes in a network is the number of links along the shortest path connecting them. The
average shortest distance (〈d〉) is the distance averaged over all possible pairs of nodes in the network [1]. The clustering
coefficient of a node i (Ci) is the ratio between the number of links among the neighbours of that node and the total
number of such links possible. This was introduced by Watts and Strogatz [8] to measure the interconnectivity of the
network. One pair of linked neighbors form a triangle and thus all such connected triangles increases the clustering
coefficient of a network. But in case of bipartite networks, where two types of nodes exist and connections link only
nodes of different types, the standard clustering coefficient is zero. In this case, instead of triangles the quotient is
measured between the number of observed squares and the total number of possible squares [9]. The average clustering
coefficient of a network is the average taken over all the nodes 〈C〉 =

∑

i Ci/N , where N is the total number of nodes
in the network. The degree distribution P (k) measures the probability that a node has a degree k where degree of a
node is the number of links of that node. In case of a random network (i.e. links are established randomly), both 〈d〉
and 〈C〉 are very small (〈d〉 ∼ log N), whereas in a regular network both are very high. In some networks, 〈d〉 remains
low but 〈C〉 is very high. This kind of network is called small world network [10]. This is a very special feature of
many real-world networks where apparently the system looks very congested but every node is easily reachable from
another by some short route existing within that network. Generally these features are investigated while studying
various networks.
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Apart from its huge applications in real systems (transport, internet, scientific collaborations etc.) networks has
also been applied in the world of numbers. Corso considered a network where each node is a natural number and
are linked if they share a common prime factor larger than some chosen lower limit [11]. That network appeared
to show small-world behaviour unless the lower limit is 1. Some more number network studies has also been done
[12, 13]. Another study on number network was done [14] where the nodes were primes and the links were established
according to some rule and a tunable parameter α. In that study every even number were split into all possible pairs
of primes and one of them were chosen depending on their difference (according to some rule dictated by a parameter
α). Near α = −1.8, the small world property emerged. In this paper, we have extended the study of this splitting of
numbers to more general case (i.e. split any integer into all possible integer pairs) and obtained some striking results
(transitions from regular to random network) that shows some similarity to the study of prime numbers. We have
also done some extensive studies on the prime network as discussed above and present some features which remain
unexplored in the previous study of that network. The transition from regular to random network occurs near the
same value of α as it was in case of the prime number network which definitely indicates some general pattern hidden
in both kind of splitting.

In section II we discuss about the formulation of the network and in section III, we present the results for average
distance and clustering coefficient for the case of general splitting as obtained from simulation. We also discuss
about the transition of the network properties from those parameters. In section IV, we study the variation of
average absolute difference and its fluctuation with α, both analytically and by simulation, to have a deep insight
on the possible reasons of the particular transition point (α = −1.8) and in the final section we have some general
discussions.

II. FORMULATION OF THE NETWORK

Any integer n can be split in a various number of ways (n = p + q). Such as the number 8 can be split in 4 unique
ways, e.g. 8 = 1 + 7 = 2 + 6 = 3 + 5 = 4 + 4. The rest are just reverse of these. We can carry on this splitting
for all such consecutive integers from 2 to ∞. We construct a network by a growing process where the nodes are the
numbers obtained by splitting the consecutive integers and selecting only a pair of numbers following some rule, which
is described below elaborately. We start with the integer 3, which has only one break-up (2 + 1) and place the two
numbers as two nodes and put a link between them (we have no other choice). Next comes the integer 4, which has
two break-ups: (1 + 3) and (2 + 2). But we will always ignore the pair obtained from equal break-ups, because this
gives rise to a self-connected node and again the only choice we have is to take 1 and 3 as two nodes and put a link
between them. So now a new node (3) appears in our network and thus the network evolves. Interesting situation
arises in case of splitting the next integer 5, for which we have two options : (1 + 4) or (2 + 3). In order to choose
one of these pairs we give priority to the absolute difference of these two pair of numbers and select one of them. We
calculate the absolute difference ∆ = |p − q| between the two components for every break-up (p + q) and choose one
break-up with probability proportional to ∆α, where α is a tunable parameter. By tuning α we can decide, whether
to take pairs of large differences or smaller ones as nodes. So in case of splitting the integer 5, the probability to
connect (1, 4) is p1 and (2, 3) is p2, where p1 = |4 − 1|α/s and p2 = |3 − 2|α/s with s = 3α + 1α. If (1, 4) is selected,
then 4 is incorporated in the network as a new node and gets connected with 1, whereas if (2, 3) is selected, no new
nodes appear but a link is established between 2 and 3. Like this we go on splitting the integers one after another
(continue the growth process) until we obtain a certain number of nodes (say N). Now, for a fixed value of α, we
construct networks of various values of N and measure various network properties such as average shortest distance,
clustering coefficient etc. We also repeat the same study for different values of α.

So in our study we give preference to pairs according to the value of α. When α = 0.0, the choice is random.
When the value of α is high, higher values of ∆ are preferred, whereas when α becomes negative, break-ups with
smaller ∆ are preferred. This preference gives rise to a transition in the network properties around α = −1.8. Near
about α = −1.8 the network shows small world properties characterised by low average distance (〈d〉 ∼ log N shown
in Fig. 2) and high clustering coefficient (Fig. 4). As the value of α is gradually decreased the network becomes a
regular network (〈d〉 ∼ N shown in Fig. 3) and high clustering coefficient (Fig. 4), whereas as it is increased it leads
to a random one (both 〈d〉 and 〈C〉 are small). When the value of α is high, the pair with larger differences are
preferred and as a consequence of splitting of each integer one small number is chosen many times, which becomes a
hub (highly connected node) and the other one is a large number which changes with change in the integer (cause of
randomness) and thus leads to a random network. But when the value of α is low, the pair with smaller differences
are preferred and as a result more often we obtain a new pair of nodes and thus leads to a regular one. To have a
better image of the network, we have presented six sample networks with N = 15 for various values of α (typically
−6.0,−2.0,−1.5,−1.0, 0.0 and 4.0). The numbers corresponding to each vertices of the network are the numbers
obtained by splitting the consecutive integers. It can be clearly seen from the first network (α = −6.0), that almost
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FIG. 1: Sample networks for α = −6.0,−2.0,−1.5,−1.0, 0.0 and 4.0 for N = 15 (from left to right). The numbers corresponding to each
vertices of the networks are the split numbers.

all the nodes have equal degrees indicating regular network, whereas in the last one the smaller integers are highly
connected and the larger ones only one degree leading to a random network. Previously we obtained a similar kind of
transition in case of prime number networks [14] as discussed above. In that study, the nodes were primes obtained
by splitting consecutive even numbers according to the same rule followed here. There also the transition occured
around α = −1.8, which shows a similarity between the two networks. We also justify this value of α = −1.8 by some
analytic arguments.

III. AVERAGE DISTANCE AND CLUSTERING COEFFICIENT

Now let us discuss about the variations in average distance 〈d〉 and clustering coefficient 〈C〉 with the number of
nodes N for different values of α. This has been shown in Fig. 2, 3 and 4. For α ≥ −1.8, 〈d〉 ∼ log N (Fig. 2) whereas
as α is decreased gradually it varies linearly with the number of nodes (Fig. 3). The nature of the clustering coefficient
also shows a transition near α = −1.8. When the value of α is very high than −1.8, the value of 〈C〉 is very low, but
as α decreases, 〈C〉 increases and at very small value of α (e.g. α = −6.0) it becomes very high (0.5) (Fig. 4). The
clustering coefficient is almost independent of N for all values of α. So for values of α much greater than −1.8, both
the average distance and clustering coefficient is low which indicates random nature, whereas for values of α much
smaller than −1.8, both of the parameters (〈d〉 and 〈C〉) are high leading to a regular network. Around α = −1.8 for
a finite region the average distance of the network is low but simultaneously the clustering coefficient remains high
which is the signature of small world network. Also upto Just as we decrease the value of α below −1.8, 〈d〉 does not
increase linearly with log N (Fig. 2), indicating the transition point at α = −1.8.

In order to have a more clear insight to the transitions we present a comparative picture of the change in 〈d〉
and 〈C〉 with that of the distance and clustering coefficient obtained for the regular network with the same number
of nodes (i.e., the values of 〈d〉 and 〈C〉 for very low values of α which we say 〈dreg〉 and 〈Creg〉 respectively). So
〈d〉/〈dreg〉 and 〈C〉/〈Creg〉 gives the normalised average distance and clustering coefficient respectively, and when our
network becomes regular, both the values will approach 1.0. We plot 〈d〉/〈dreg〉 and 〈C〉/〈Creg〉 as a function of α
for N = 10000 (Fig. 5), where dreg and Creg denote the average distance and clustering coefficient for the regular
network. Here we have assumed that the network becomes regular for values of α ≪ −0.2 (we went up to α = −6.0)
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and taken the corresponding average distance as dreg and clustering coefficient as Creg. From Fig. 5 it is very clear
that for α ≫ −1.8, both the d/dreg and C/Creg are low which indicates random nature, whereas for α ≪ −1.8, both
of the parameters are high which is a signature of a regular network. Near around α = −1.8 there is a transition from
this random to a regular one where for a large region of α, 〈d〉/〈dreg〉 remains low but 〈C〉/〈Creg〉 is high which leads
to a small world network.

A similar plot for the prime number network (discussed above and in [14]) has also been given in Fig. 6. This plot
also shows a similar kind of transition near α = −1.8 which definitely indicates some universality of the value of this
particular α.

IV. AVERAGE ABSOLUTE DIFFERENCE OF THE SPLIT NUMBERS

Now let us look after some other parameters that also reflects such kind of transitions near α = −1.8. One such
parameter is the average absolute difference of the pair of numbers 〈∆〉 that are selected for the splitting upto a
certain integer. For the splitting of a certain integer I which has say m break ups with absolute values of differences
j1, j2, ...... and jm, 〈∆〉I =

∑m

i=1
jα+1

i /jα
i . If we split upto n integers, 〈∆〉 =

∑n

I=1
〈∆〉I/n. We have calculated the

value of 〈∆〉 and also the relative fluctuation of ∆ i.e. σ/〈∆〉 (where σ is given by Eq.2) as a function of α for different
values of n (for n = 1000, 2000, 3000 and 4000) from simulation. The results are given in Fig. 7 and Fig. 8. There
is a sharp rise of 〈∆〉 at α = −1.9 and it becomes sharper with increasing n (Fig. 7). Also the relative fluctuation
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shows a peak at α = −1.9, which again becomes sharper with increasing n (Fig. 8). From both the figures there is
a clear indication of a transition near α = −1.9. Although this point does not exactly matches with the transition
point obtained earlier i.e. α = −1.8, but it gives strong indication of the presence of the original transition point near
it. The anomaly comes from the fact that in the original network we measure the average shortest distance between
the nodes, whereas here we measure the average absolute difference between the numbers obtained by splitting the
consecutive integers following the rule adopted by us to create our network. So it gives us a clue about the presence
of the transition point which is very close to that we obtained here.

We have also obtained an analytical expression of 〈∆〉 and σ/〈∆〉. It can be easily noticed that as we consider the
splitting of an odd(even) integer I, we get odd(even) absolute differences starting from 1 up to I − 3 at an interval of
2. The analytical expression obtained is given by

〈∆〉 =
1

n − 2

n
∑

I=3

∑I−2

k=1
kα+1

∑I−2

k=1
kα

[k-odd(even) for I-odd(even)] (1)

and

σ =
√

〈∆2〉 − 〈∆〉2 (2)

The corresponding curves are shown in Fig. 9 which qualitatively same as we found in Fig. 7 and Fig. 8 and also
confirms the transition point.
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V. DISCUSSION

The entire study shows that the network formed by general splitting of integers into pairs of integers, shows
a transition depending upon our choice of splitting. The choice of splitting the integers is controlled by a single
parameter α, which determines whether we prefer a pair having large difference or a small one. Above the value
α = −1.8, pairs having large differences are favoured and consequently the smaller integers are selected a large
number of times leading to the creation of hubs and small 〈d〉. For very high values of α the network becomes
random. As α is decreased below −1.8, the linear nature of 〈d〉 with lnN breaks (N is the number of nodes) showing
a clear signature of transition. At and just below α = −1.8 both 〈d〉 ∼ lnN and the clustering coefficient is high
indicating small world nature. Although as α is increased further, 〈d〉 increases linearly with N which along with high
clustering coefficient suggests regular one. So given a tunable parameter, the network formed by the integers displays
a transition from a random to a regular one through an intermediate small world region, the transition occuring near
α = −1.8. This transition along with the point of transition (α = −1.8) is almost similar as the one we obtained
while splitting the consecutive even integers into pairs of primes. This similarity discloses some common pattern in
both kinds of splitting. Moreover, it is also quite interesting to have such presence of network structures in the world
of numbers.
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