Efficient and selective epoxidation of styrene with TBHP catalyzed by Au25 clusters on hydroxyapatite

Liu, Yongmei; Tsunoyama, Hironori; Akita, Tomoki; Tsukuda, Tatsuya

Chemical Communications, 46(4): 550-552

2010-01-28

http://hdl.handle.net/2115/44765

Chem. Commun., 2010, 46, 550-552 - Reproduced by permission of The Royal Society of Chemistry (RSC)

article (author version)

CC46-4_550-552.pdf
Efficient and selective epoxidation of styrene with TBHP catalyzed by Au_{25} clusters on hydroxyapatite†

Yongmei Liu, a Hironori Tsunoyama, a Tomoki Akita, b c and Tatsuya Tsukuda a c

Received (in XXX, XXX) Xth XXXXXXXXX 200X, Accepted Xth XXXXXXXXX 200X

DOI: 10.1039/b000000x

Au_{25} clusters supported on hydroxyapatite oxidized styrene in toluene with 100% conversion and 92% selectivity to the epoxide, under optimum conditions and using anhydrous tert-butyl hydroperoxide (TBHP) as an oxidant.

In 1998, Haruta and coworkers demonstrated for the first time that supported Au nanoparticles (AuNPs) are effective for the direct epoxidation of propene using molecular oxygen. Since then, supported gold catalysts have been used for the selective epoxidation/oxidation of various alkenes such as the selective cyclohexene, cis-cyclooctene and trans-stilbene. A major current challenge is to use O₂ as a green oxidant. Lambert and coworkers have demonstrated that Au clusters supported on silica can catalytically activate O₂ for styrene epoxidation because of the electronic structures of the clusters, although the yield of the epoxide is not high (~5%). This work hints at the possibility that there is a optimal cluster size for the efficient and selective oxidation of alkenes. Here we focus on the epoxidation of styrene and aim to systematically study the effect on the catalytic activity of the size of Au clusters that are immobilized on hydroxyapatite (HAP; Ca₁₀(PO₄)₆(OH)₂). We use tert-butyl hydroperoxide (TBHP) as an oxidant since it is known to be more effective than O₂ for alkene oxidations. We describe the synthesis of HAP-supported Au_{25} clusters; they show a higher catalytic performance (100% conversion and 92% selectivity to the epoxide) than larger analogs.

The preparation of HAP-supported Au_{25} catalysts is depicted in Scheme 1. The basic idea is to use as a precursor ligand-protected Au clusters with a well-defined core size. In brief, we first deposit Au_{25} clusters protected by 18 glutathione (GS) ligands, Au_{25}(SG)₁₈, on an HAP support and then calcine the composite to remove the GS ligands. The Au_{25}(SG)₁₈ cluster is a water-soluble, stable cluster that supported Au nanoparticles (AuNPs) are effective for the selective oxidation of various alkenes such as styrene, cyclohexene, cis-cyclooctene and trans-stilbene. A major current challenge is to use O₂ as a green oxidant. We use tert-butyl hydroperoxide (TBHP) as an oxidant if it is known to be more effective than O₂ for alkene oxidations. We describe the synthesis of HAP-supported Au_{25} clusters; they show a higher catalytic performance (100% conversion and 92% selectivity to the epoxide) than larger analogs.

The preparation of HAP-supported Au_{25} catalysts is depicted in Scheme 1. The basic idea is to use as a precursor ligand-protected Au clusters with a well-defined core size. In brief, we first deposit Au_{25} clusters protected by 18 glutathione (GS) ligands, Au_{25}(SG)₁₈, on an HAP support and then calcine the composite to remove the GS ligands. The Au_{25}(SG)₁₈ cluster is a water-soluble, stable cluster that we first identified in 2005. Recent single crystal XRD results on Au_{25}(SC₂H₄Ph)₁₈ revealed that it is composed of an icosahedral Au₁₃ core fully protected by six Au₃(SC₂H₄Ph)₃ oligomers. In the present study, HAP was used as a support material for the Au clusters. We expected that Au_{25}(SG)₁₈ could be adsorbed on HAP by electrostatic interaction between Ca²⁺/PO₄³⁻ moieties and the GS ligands, and that HAP could stabilize Au_{25} clusters against sintering due to strong interaction with PO₄³⁻ moiety.

The Au_{25}(SG)₁₈ clusters prepared by the reported procedure and HAP were dispersed in water. The purity of the Au_{25}(SG)₁₈ sample was confirmed by the profile and extinction coefficient of the optical spectrum and thermogravimetric (TG) analysis. After the mixture was stirred for 4 h, the composite of Au_{25}(SG)₁₈ and HAP was collected by filtration. The Au_{25}(SG)₁₈ clusters were found to be adsorbed completely on HAP as evidenced by the colorless filtrate. The Au loading of the composites was determined to be 0.5 wt% (ESI, Table S1), so the composite is hereafter referred to as 0.5Au_{25}:SG-HAP. Similar profiles of the optical spectra for Au_{25}(SG)₁₈ and the 0.5Au_{25}:SG-HAP composite (ESI, Fig. S2) indicate that Au_{25}(SG)₁₈ is adsorbed intact on the HAP surface (Scheme 1). High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) confirmed that monodisperse Au clusters with an average diameter of 1.0 ± 0.4 nm are distributed in the 0.5Au_{25}:SG-HAP composite (ESI, Fig. S3). The diameter of the Au core is comparable to that of Au_{25} (~0.9 nm), assuming a spherical shape.

The 0.5Au_{25}:SG-HAP composite was then incubated for removal of the thiolate ligands. The results of thermogravimetric analysis revealed a 49% weight loss of Au_{25}(SG)₁₈ after calcination at 300 °C in vacuo for 2 h (ESI, Fig. S4); this weight corresponded to the calculated weight of the GS ligands in Au_{25}(SG)₁₈ (53%). Thus, 0.5Au_{25}:SG-HAP was calcined under the above mentioned conditions to remove the GS ligands. This removal was confirmed by inductively coupled plasma (ICP) measurements. After calcination, the sulfur content reduced from 0.058 wt% to 0.005 wt%, which was comparable to the amount of sulfur impurity in HAP. An HAADF-STEM image of the resulting Au_{25}-HAP shows that most of the clusters are 1.2-1.5 nm in size (Fig. 1A). Fig. 1B represents a histogram of the Au cluster size determined by measuring more than 400 particles. The average diameter is determined to be 1.4 ± 0.6 nm, larger than that for 0.5Au_{25}:SG-HAP (ESI, Fig. S3). Close inspection of Fig. 1A reveals Au clusters with non-spherical morphology. Possible explanations for these observations are that (1) larger clusters form because of sintering, or (2) Au_{25} clusters with various morphologies are formed in the heat-induced structural
arrangement and because of the strong interaction between Au$_{25}$ and HAP. We believe that (2) is the correct explanation since the cluster diameter does not change appreciably even when the loading of Au$_{25}$(SG)$_{18}$ is reduced to 0.2 wt%.

For comparison, other 0.5Au-HAP samples were prepared using HAuCl$_4$ as the precursor by the conventional method such as impregnation (IP), deposition precipitation (DP), and adsorption (Ad) (ESI†). These samples are denoted as 0.5Au-HAP(IP), 0.5Au-HAP(DP) and 0.5Au-HAP(Ad), respectively. Gold contents were confirmed by ICP measurement (ESI,† Table S1). Their Au particle sizes were measured by conventional TEM. The average diameters for 0.5Au-HAP(Ad) and 0.5Au-HAP(IP) were determined to be 1.7 ± 1.2 and 6.0 ± 3.7 nm, respectively, whereas the Au clusters for 0.5Au-HAP(DP) were polydisperse with sizes in the range of 1–20 nm (ESI,† Fig. S5).

The Au-HAP catalysts were also characterized by UV-vis diffuse reflectance spectroscopy. Fig. 2 compares the optical spectra of the four Au-HAP catalysts. The sharp peaks associated with quantized electronic structures of Au$_{25}$(GS)$_{18}$ on HAP (ESI,† Fig. S1) are smeared out after calcination (curve a). This change is consistent with the generation of structural isomers of Au$_{25}$ during calcination and/or by interaction between Au$_{25}$ and the HAP support. The surface plasmon (SP) band is absent in 0.5Au$_{25}$-HAP (curve a), whereas it is apparent for 0.5Au-HAP(Ad), 0.5Au-HAP(IP), and 0.5Au-HAP(DP) (curves b–d). This observation indicates that the Au clusters in 0.5Au$_{25}$-HAP are smaller than those in the other samples. Given that optical spectroscopy probes the electronic structure of the ensemble of Au clusters and is highly sensitive to the presence of AuNPs (>2 nm), curve a in Fig. 2 indicates that the population of Au clusters larger than 2 nm is negligibly small. These inferences are consistent with the HAADF-STEM results (Fig. 1B). The BET surface areas of the Au-HAP catalysts were ~30 m2/g (ESI,† Table S1).

To reveal the effect on the catalytic activity of the size of Au clusters, the catalytic performance of monodisperse Au catalysts 0.5Au$_{25}$-HAP, 0.5Au-HAP(Ad) and 0.5Au-HAP(IP) was compared. Oxidation of styrene (1) in toluene at 80 °C using anhydrous TBHP as an oxidant yielded styrene oxide (2) as a major product in every case, whereas acetophenone (3), benzaldehyde (4), benzylalcohol (5), and benzoic acid (6) were also produced.‡ It was essential to use toluene as a solvent to obtain 2 in a high yield, in sharp contrast to the case of Au/graphite and Au/SiO$_2$. The use of anhydrous toluene and TBHP was also important for enhancing the yield of 2. Compounds 3–6 were produced by the oxidation of 1 as well as the toluene solvent; for example, the yields of 4–6 by 0.5Au$_{25}$-HAP exceed 100% with respect to 1 (ESI,† Fig. S7).

For simplicity, we focus here on the conversion of 1.

![Fig. 1](image1.png) (A) Representative HAADF-STEM image of 0.5Au$_{25}$-HAP and (B) size distribution of the Au clusters. The bar in panel (A) represents 10 nm.

Fig. 1

![Fig. 2](image2.png) Diffuse reflectance UV-vis spectra of a) 0.5Au$_{25}$-HAP, b) 0.5Au-HAP(Ad), c) 0.5Au-HAP(IP), and d) 0.5Au-HAP(DP).

Fig. 2

![Fig. 3A](image3A.png) Time evolution of (A) conversion of 1 and (B) selectivity of 2 for a) 0.5Au$_{25}$-HAP, b) 0.5Au-HAP(Ad), and c) 0.5Au-HAP(IP).

Fig. 3A

![Fig. 3B](image3B.png) Time evolution of (A) conversion of 1 and (B) selectivity of 2.
HAP(Ad) may reflect the difference in geometrical (Fig. 1A) and/or electronic structures (Fig. 2) of the Au clusters although their average diameters appeared to be similar by TEM observation. Because of the high selectivity, the 0.5Au25-HAP catalyst gave the highest yield of 2, reaching 92% at 12 h. To our knowledge, this yield of styrene oxide is one of the highest reported so far. Very recently, AuNPs (3 nm) stabilized by an oligomer of ionic liquid exhibited a styrene conversion of 100% with a selectivity to styrene oxide of 90%, but they were gradually deactivated during the reuse process.

What is the reason for the high selectivity of 0.5Au25-HAP? To answer this question, we compared the rate constant for the decomposition of 2 by the three Au-HAP catalysts in methylocyclohexane. The smallest 0.5Au25-HAP showed the slowest decomposition (15%) while the largest, Au-HAP(IP), showed the highest activity (ESI,† Fig. S9). On the basis of this size effect, we suggest that the high selectivity of 0.5Au25-HAP can be explained on the basis of the extremely slow decomposition of 2 by Au25 clusters. The 0.5Au25-HAP also showed excellent reusability without any significant loss in either the catalytic activity or the selectivity of the formation of 2 (ESI,† Fig. S10). Finally, we tested the catalytic activity of 0.5Au25-HAP against styrene oxidation in toluene in an O2 atmosphere (1 atm). Microwave heating at 100 °C for 2 h yields 2 with a conversion of 22% and a selectivity of 36% (ESI,† Table S3), although the reaction conditions were not optimized.

In summary, we developed a reproducible method to immobilize Au25 clusters on HAP using Au25(SG)18 as a precursor. The size of the HAP-supported Au clusters after calcination appeared to be ~1.4 nm by HAADF-STEM observation, slightly larger than that expected for Au25 (~0.9 nm) with a spherical morphology. The Au25 clusters anchored on HAP exhibited higher catalytic performance than larger clusters in the epoxidation of styrene using TBHP as an oxidant. This catalyst could be reused without significant loss of either activity or selectivity. These observations suggest that small Au clusters on HAP is a promising catalyst for the selective epoxidation of alkenes.

We thank Prof. M. Haruta for valuable comments. This work was financially supported by CREST, JST.

Notes and references

† Electronic Supplementary Information (ESI) available: optical spectra of Au25(SG)18 in water and on HAP, preparation and characterization TEM images of Au-HAP catalysts, kinetic analysis, result of reuse test. See DOI: 10.1039/b000000x.

‡ Preparation of Catalysts: The Au25(SG)18 precursors were first prepared by following the procedure we reported previously. The Au25(SG)18 clusters (10.7 mg) and HAP (Sigma Aldrich, 1 g) were then dispersed in water and the mixture was stirred for 4 h. The composite of Au25(SG)18 and HAP was collected by filtration and then incubated in vacuo at 30 °C for 2 h.

Catalytic Test: Typically, 50 mg of the Au-HAP catalyst was added to the toluene (10 mL) solution in a test tube (~30 mm) containing 40 mg of styrene and 200 mg of TBHP. The mixture was stirred at a rate of 1200 rpm while the temperature was kept at 80 °C. The products were extracted and identified by gas chromatography (Shimadzu GC-2014) using authentic samples. The yield of product was determined by gas chromatography using the external standard method.

14 The catalytic activity of HAP is negligibly small; the yield of 2 was ~5% after 16 h (ESI,† Fig. S6).
15 The decrease in the selectivity when reaction time is >12 h was due to the decomposition of 2 into 3 and 4 (ESI,† Fig. S7).
16 Lot-to-lot reproducibility of Au25-HAP was confirmed by UV-vis spectroscopy and measurement of the catalytic activity for styrene oxidation. The spectra of the three independently synthesized Au25-HAP catalysts were nearly identical. Furthermore, the conversion of 1 observed with each of the catalysts was similar with a typical standard deviation of ~5%.

This journal is © The Royal Society of Chemistry [year]
Au$_{25}$ clusters supported on hydroxyapatite oxidized styrene in toluene with 100% conversion and 92% selectivity to the epoxide, under optimum conditions and using anhydrous tert-butyl hydroperoxide (TBHP) as an oxidant.