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Spacelike submanifolds of codimension
two in de Sitter space

Masaki Kasedou∗

Abstract

We investigate the differential geometry of spacelike submanifolds of codimension two
in de Sitter space and classify the singularities of lightlike surfaces and lightcone Gauss
maps in de Sitter 4-space.

1 Introduction

It is known that de Sitter space is a Lorentzian space form with positive curvature. The
Aim of this paper is to investigate the geometric meanings of the singularities of the lightlike
hypersurfaces and the lightcone Gauss maps of spacelike submanifolds as an application of
Legendrian singularity theory. In lower dimension case, we can classify the generic singularities
of those maps. In [6] we investigated the singularities of lightcone Gauss maps of spacelike
hypersurfaces in de Sitter space, which is analogous to the case of hyperbolic space [3]. If we
consider a spacelike submanifold of codimension two, the normal direction cannot be chosen
uniquely. However, we can determine the lightcone normal frames and define two maps called
Gauss maps and lightlike hypersurfaces by using analogous tools in [4, 5].

In §2 we introduce the notion of the lightcone Gauss map, the normalized lightcone Gauss-
Kronecker curvature and principal curvatures. The lightcone Gauss map does not depend on
the choice of the future directed normal frame. In §3 we introduce the notions of the lightlike
hypersurface and a family of functions that is called the Lorentzian distance squared function
on the spacelike submanifold. The singular set of the lightlike hypersurface corresponds to the
normalized lightcone principal curvatures of the spacelike submanifold, and this can be inter-
preted as the discriminant set of the family of height functions. In §4,5 we discuss the contact
of spacelike submanifolds with lightcones in de Sitter space. We apply the theory of Legendrian
singularities for the study of lightcone Gauss images of generic spacelike submanifolds. In §6,7
we introduce the notion of a family of functions that is called the lightcone height function. The
singular set of the normalized lightcone Gauss map corresponds to the normalized lightcone
parabolic set on the spacelike submanifold, and this can be interpreted as the discriminant set
of the family of lightcone height functions. We discuss the contact of spacelike submanifolds
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with lightlike cylinders in de Sitter space. In §8 we classify the singularities of lightlike hyper-
surfaces and lightcone Gauss maps of generic spacelike surfaces in de Sitter 4-space, and give
some examples which have their singularities.

2 Spacelike submanifolds in de Sitter space

In this section we construct the extrinsic differential geometry of spacelike submanifolds of
codimension two in de Sitter space which is analogous to the theory in [5]. Let Rn+1 = {x =
(x0, · · · , xn) | xi ∈ R (i = 0, · · · , n)} be an (n + 1)-dimensional vector space. For any vectors
x = (x0, · · · , xn), y = (y0, · · · , yn) in Rn+1, the pseudo scalar product of x and y is defined
by ⟨x,y⟩ = −x0y0 +

∑n
i=1 xiyi. We call (Rn+1, ⟨, ⟩) a Minkowski (n + 1)-space and write Rn+1

1

instead of (Rn+1, ⟨, ⟩).
We say that a vector x ∈ Rn+1

1 \{0} is spacelike, timelike or lightlike if ⟨x,x⟩ > 0, ⟨x,x⟩ = 0
or ⟨x,x⟩ < 0 respectively. The norm of the vector x ∈ Rn+1

1 is defined by ||x|| =
√
|⟨x,x⟩|.

For a vector v ∈ Rn+1
1 \ {0} and a real number c, we define a hyperplane with pseudo-normal

v by HP(v, c) = {x ∈ Rn+1
1 | ⟨x,v⟩ = c}. We call HP(v, c) a spacelike hyperplane, timelike

hyperplane or lightlike hyperplane if v is timelike, spacelike or lightlike respectively.
We now respectively define hyperbolic n-space and de Sitter n-space by

Hn
+(−1) = {x ∈ Rn+1

1 | ⟨x,x⟩ = −1, x0 ≥ 1},
Sn
1 = {x ∈ Rn+1

1 | ⟨x,x⟩ = 1}.

For any x1,x2, · · · ,xn ∈ Rn+1
1 , we can define a vector x1 ∧ x2 ∧ · · · ∧ xn with the property

⟨x,x1 ∧ · · · ∧ xn⟩ = det(x,x1, · · · ,xn), so that x1 ∧ · · · ∧ xn is pseudo-orthogonal to any xi (for
i = 1, · · · , n) (c.f. [5]).

We also define a set LCa = {x ∈ Rn+1
1 | ⟨x−a,x−a⟩ = 0}, which is called a closed lightcone

with vertex a. We denote

LC∗
± = {x = (x0, · · · , xn) ∈ LC0 | x0 > 0 (x0 < 0)}

and call it the future (resp. past) lightcone at the origin.
Let X : U −→ Sn

1 be an embedding from an open set U ⊂ Rn−2. We say that X is spacelike
in Sn

1 if {Xui
(u)}n−2

i=1 are spacelike, where u ∈ U and Xui
= ∂X/∂ui. We identify M = X(U)

with U through the embedding X and call M a spacelike submanifold of codimension two in
Sn
1 .
Since ⟨X,X⟩ ≡ 1, we have ⟨Xui

,X⟩ ≡ 0 (for i = 1, · · · , n − 1). In this case, for any
p = X(u), the pseudo-normal space NpM is a timelike plane. we can choose a future directed
unit normal section nT (u) ∈ NpM satisfying ⟨nT (u),X(u)⟩ = 0. Therefore we can construct a
spacelike unit normal section nS(u) ∈ NpM by

nS(u) =
nT (u) ∧Xu1(u) ∧ · · · ∧Xun−2(u)

||nT (u) ∧Xu1(u) ∧ · · · ∧Xun−2(u)||
,

and we have ⟨nT (u),nT (u)⟩ = −1, ⟨nT (u),nS(u)⟩ = 0, ⟨nS(u),nS(u)⟩ = 1. Therefore vectors
nT (u)± nS(u) are lightlike. We call (nT ,nS) a future directed normal frame along M = X(U).
The system {X(u),nT (u),nS(u),Xu1(u), · · · , Xun−2(u)} is a basis of TpRn+1

1 .
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Lemma 2.1. Given two future directed unit timelike normal sections nT (u), n̄T (u) ∈ NpM ,
the corresponding lightlike normal sections nT (u)± nS(u), n̄T (u)± n̄S(u) are parallel.

The proof is almost the same as that of Lemma 3.1 in [5], so that we omit it. Under the
identification of M and U through X, we have the linear mapping provided by the derivative
of the lightlike normal sections nT ± nS at p ∈ M

dp(n
T ± nS) : TpM −→ TpRn+1

1 = TpM ⊕NpM.

Consider two orthonormal projections πt : TpRn+1
1 −→ TpM and πn : TpRn+1

1 −→ NpM . We
define

dp(n
T ± nS)t = πt ◦ dp(nT ± nS),

dp(n
T ± nS)n = πn ◦ dp(nT ± nS).

We respectively call the linear transformation S±
p (n

T ,nS) = −dp(n
T ± nS)t an (nT ,nS)-shape

operator of M = X(U) at p = X(u).
The eigenvalues of S±

p (n
T ,nS) denoted by {κ±

i (n
T ,nS)(p)}n−2

i=1 are called the lightcone prin-
cipal curvatures with respect to (nT ,nS) at p. Then the lightcone Gauss-Kronecker curvature
with respect to (nT ,nS) at p is defined as

K±
ℓ (n

T ,nS)(p) = detS±
p (n

T ,nS).

We say that a point p is an (nT ,nS)-umbilic point if all the principal curvatures coincide at
p and thus S±

p (n
T ,nS) = κ± idTpM for some κ± ∈ R. We say that M is (nT ,nS)-totally umbilic

if all points on M are (nT ,nS)-umbilic.
Since Xui

(i = 1, · · · , n − 2) are spacelike vectors, we have a Riemannian metric (or the
first fundamental form) on M defined by ds2 =

∑n−2
i,j=1 gijduiduj, where gij(u) = ⟨Xui

,Xuj
⟩

for any u ∈ U . We also have a lightcone second fundamental form (or the lightcone second
fundamental invariant) with respect to the normal vector field (nT ,nS) defined by h±

ij(u) =
−⟨(nT ± nS)ui

,Xuj
⟩ for any u ∈ U .

Lemma 2.2. We have the following lightcone Weingarten formula with respect to (nT ,nS).

(nT ± nS)ui
= ±⟨nS,nT

ui
⟩(nT ± nS)−

n−2∑
j=1

h±j
i (nT ,nS)Xuj

,

where (hj±
i (nT ,nS))ij =

(
h±
ik(n

T ,nS)
)
ik
(gkj)kj and (gkj)kj = (gkj)

−1. Therefore we have

πt ◦ (nT ± nS)ui
= −

n−2∑
j=1

hj±
i (nT ,nS)Xuj

The proof is almost the same as that of Proposition 3.2 in [5], so that we omit it. Those
formula induce an explicit expression of the lightcone Gauss-Kronecker curvature in terms of
the Riemannian metric and the lightcone second fundamental invariant as follows:

K±
ℓ (n

T ,nS)(p) =
det(h±

ij(n
T ,nS)(u))

det(gαβ)(u)
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We say that a point p is an (nT ,nS)-parabolic point if K±
ℓ (n

T ,nS)(p) = 0, and M is an
(nT ,nS)-flat point if p is (nT ,nS)-umbilic and K±

ℓ (n
T ,nS)(p) = 0.

For a lightlike vector v = (v0, v1, · · · , vn) we define ṽ = (1, v1/v0, · · · , vn/v0). By Lemma
2.1, if we choose another future directed unit timelike normal section n̄T (u), then we have

˜nT (u)± nS(u) = ˜n̄T (u)± n̄S(u) ∈ Sn−1
+ . Therefore we define the lightcone Gauss map of

M = X(U) as

L̃± : U −→ Sn−1
+ , L̃±(u) = ˜nT (u)± nS(u).

The lightcone Gauss map is analogous to the Minkowski space which is studied in [5]. This

induces a linear mapping dL̃± : TpM −→ TpRn+1
1 under the identification of U and M , where

p = X(u). We have the following normalized lightcone Weingarten formula:

πt ◦ L̃±
ui
=

1

ℓ±0
(πt ◦ L±

ui
) = −

n−2∑
j=1

1

ℓ±0
h±j
i (nT ,nS)Xuj

,

where L±(u) = (ℓ±0 (u), · · · , ℓ±n (u)).
We call linear transformation S±

p = −πt ◦ dL̃±
p : TpM −→ TpM the normalized lightcone

shape operator of M at p. The eigenvalues {κ̃±
i (p)}n−2

i=1 of S̃±
p are called normalized lightcone

principal curvatures. By the above proposition, we have κ̃±
i (p) = (1/ℓ±0 (u))κ

±
i (n

T ,nS)(p). The

normalized lightcone Gauss-Kronecker curvature of M is defined to be K̃±
ℓ (u) = det S̃±

p . Then
we have the following relation between the normalized lightcone Gauss-Kronecker curvature
and the lightcone Gauss-Kronecker curvature:

K̃±
ℓ (u) =

(
1

ℓ±0 (u)

)n−2

K±
ℓ (n

T ,nS)(u).

It is clear from the corresponding definitions that the lightcone Gauss map, the normalized
lightcone principal curvatures and the normalized lightcone Gauss-Kronecker curvature are
independent on the choice of the normal frame (nT ,nS).

We say that a point u ∈ U or p = X(u) is a lightlike umbilic point if S̃±
p = κ̃±

p (p)idTpM .
By the above proposition, p is a lightlike umbilic point if and only if p is a (nT ,nS)-umbilic
point for any (nT ,nS). We say that M is totally lightlike umbilic if all points on M are lightlike

umbilic.We also say that p is a lightlike parabolic point (briefly L̃±-parabolic) if K̃±
ℓ (u) = 0.

Moreover, p is called a lightlike flat point if p is both lightlike umbilic and lightlike parabolic.
The spacelike submanifold M in Sn

1 is called totally lightlike flat if every point in M is lightlike
flat.

3 Lightlike hypersurfaces

In this section we define the Lorentzian distance squared function in order to study the singu-
larities of lightlike hypersurfaces.
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We define a hypersurface LH±
M : U × R −→ Sn

1 by

LH±
M(u, µ) = X(u) + µL̃±(u).

We call LH±
M the lightlike hypersurface along M . It is analogous to the Minkowski four space

which is studied in [4], and has been introduced by Izumiya and Fusho [2]. We introduce the
notion of Lorentzian distance squared functions on spacelike submanifold of codimension two,
which is useful for the study of singularities of lightlike hypersurfaces. We define a family of
functions G : U × Sn

1 −→ R on a spacelike submanifold M by

G(u, λ) = ⟨X(u)− λ,X(u)− λ⟩,

where p = X(u). We call G Lorentzian distance squared function on the spacelike submanifold
M . For any fixed λ0 ∈ Sn

1 , we write gλ0(u) = G(u, λ0) and have following proposition.

Proposition 3.1. Let M be a spacelike submanifold of codimension two and G : U×Sn
1 −→ R

the Lorentzian distance squared function on M . Suppose that p0 = X(u0) ̸= λ0 and have the
following:

(1) gλ0(u0) = ∂gλ0(u0)/∂ui = 0 (i = 1, · · · , n − 2) if and only if λ0 = LH±
M(u0, µ) for some

µ ∈ R \ {0}.

(2) gλ0(u0) = ∂gλ0(u0)/∂ui = 0 (i = 1, · · · , n − 2) and detHess (gλ0)(u0) = 0 if and only if
λ0 = LH±

M(u0, µ0) for some µ0 ∈ R \ {0} and −1/µ0 is one of the non-zero normalized
lightcone principal curvatures κ̃±

i (p0).

We now naturally interpret the lightlike hypersurface of the spacelike submanifold in Sn
1 as

a wave front set in the theory of Legendrian singularities. Let π± : PT (Sn
1 ) −→ Sn

1 be the
projective cotangent bundles with canonical contact structures. Consider the tangent bundle
τ± : TPT ∗(Sn

1 ) −→ PT ∗(Sn
1 ) and the differential map dπ± : TPT (Sn

1 ) −→ T (Sn
1 ) of π

±. For
any X ∈ TPT ∗(Sn

1 ), there exists an element α ∈ T ∗(Sn
1 ) such that τ±(X) = [α]. For an element

V ∈ Tx(S
n
1 ), the property α(V ) = 0 does not depend on the choice of representative of the class

[α]. Thus, we can define the canonical contact structure on PT ∗(Sn
1 ) by

K = {X ∈ TPT ∗(Sn
1 ) | τ±(X)(dπ±(X)) = 0}.

On the other hand, we consider a point λ = (λ0, λ1, · · · , λn) ∈ Sn
1 , then we have the relation

λi =
√

λ2
0 − · · · − λ2

i−1 − λ2
i+1 − · · · − λ2

n + 1 > 0 for some i. So we adopt the coordinate system

(λ1, · · · , λ̂i, · · · , λn) of the manifold Sn
1 . Then we have the trivialization PT ∗(Sn

1 ) ≡ Sn
1×PRn−1,

and call ((λ0, · · · , λn), [ξ1 : · · · : ξn]) homogeneous coordinates of PT ∗(Sn
1 ), where [ξ1 : · · · : ξn]

are the homogeneous coordinates of the dual projective space PRn−1.
It is easy to show that X• ∈ K±

• if and only if
∑n

i=1 µiξi = 0, where • = (x, [ξ]) and
dπ±

• (X•) =
∑n

i=1 µi∂/∂vi ∈ T•S
n
1 . An immersion i : L −→ PT ∗(Sn

1 ) is said to be a Legendrian
immersion if dimL = n − 1 and diq(TqL) ⊂ Ki(q) for any q ∈ L. The map π ◦ i is also called
the Legendrian map and the image W (i) = image(π ◦ i), the wave front of i. Moreover, i (or
the image of i) is called the Legendrian lift of W (i).
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Let F : (Rn−1 × Rk, (u0, λ0)) −→ (R, 0) be a function germ. We say that F is a Morse
family of hypersurfaces if the map germ ∆∗F : (Rn−1 × Rk, (u0, λ0)) −→ (Rn,0) defined by

∆∗F =

(
F,

∂F

∂u1

, · · · , ∂F

∂un−1

)
is non singular. In this case, we have a smooth (k − 1)-dimensional smooth submanifold,

Σ∗(F ) =

{
(u, λ) ∈ (Rn−1 × Rk, (u0, λ0)

∣∣∣∣F (u, λ) =
∂F

∂u1

(u, λ) = · · · = ∂F

∂un−1

(u, λ) = 0

}
,

and the map germ LF : (Σ∗(F ), (u0, λ0)) −→ PT ∗Rk defined by

LF (u, λ) =

(
v,

[
∂F

∂u1

(u, λ) : · · · : ∂F

∂un−1

(u, λ)

])
is a Legendrian immersion germ. Then we have the following fundamental theorem of Arnol’d
and Zakalyukin [1, 10].

Proposition 3.2. All Legendrian submanifold germs in PT ∗Rk are constructed by the above
method.

We call F a generating family of LF (Σ∗(F )). Therefore the wave front is

W (LF ) =

{
λ ∈ Rk

∣∣∣∣ ∃u ∈ Rn−1 such that F (u, λ) =
∂F

∂u1

(u, λ) = · · · = ∂F

∂un−1

(u, λ) = 0

}
.

We call it the discriminant set of F . By proceeding arguments, the lightlike hypersurface LH±
M

is the discriminant set of the Lorentzian distance squared function G, and the singular point
set of the lightlike hypersurface is a point λ0 = LH±

M(u0,−1/κ̃±
i (p0)). We have the following

proposition.

Proposition 3.3. Let G be the Lorentzian distance squared function on M . For any point
(u, λ) ∈ ∆∗G−1(0), G is a Morse family of hypersurfaces around (u, λ).

Proof. For λ = (λ0, · · · , λn) ∈ Sn
1 , λi ̸= 0 for some i. Without loss of generality, we as-

sume that λn > 0 and local coordinates around λ in de Sitter space Sn
1 is given by λ =

(λ0, · · · , λ̂k, · · · , λn−1), where λn =
√

1 + λ2
0 − λ2

1 − · · · − λn−1. Jacobian of ∆∗G is given by

B(u, λ) =


(
−Xj(u) +

Xn(u)

λn

λj

)
j=0,··· ,n−1(

Xj,ui
(u)− Xn,ui

(u)

λn

λj

)
j=0,··· ,n−1
i=1,··· ,n−2


where X(u) = (X0(u), · · · , Xn(u)),Xui

= (X0,ui
(u), · · · , Xn,ui

(u)) for (i = 1, · · · , n − 1). On
the other hand, λ,X(u),Xu1(u), · · · ,Xun−2 are linearly independent on (u, λ) ∈ ∆∗G−1(0), so
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that rank of n× (n− 1) matrix
λ0 −λ1 · · · −λn−1 −λn

X0(u) −X1(u) · · · −Xn−1(u) −Xn(u)
X0,u1(u) −X1,u1(u) · · · −Xn−1,u1(u) −Xn,u1(u)

...
...

...
...

X0,un−2(u) −X1,un−2(u) · · · −Xn−1,un−2(u) −Xn,un−2(u)


is n. We subtract the first row multiplied by Xn(u)/λn from the second row, and then subtract
the first row multiplied by Xn,uk

(u)/λn from the (2 + k)-th row for k = 1, · · · , n− 2. We have
λ0 − λ1 · · · − λn−1 −λn

B(u, λ)
0
...
0

 .

Therefore rankB(u, λ) = n− 1. This completes the proof.

Since G is a Morse family of hypersurfaces, we have the Legendrian immersion L±
G :

Σ∗(G) −→ PT ∗(Sn
1 ) defined by

L±
G(u, λ) =

(
λ,

[
∂G

∂λ1

(u, λ) : · · · : ∂̂G

∂λk

(u, λ) : · · · : ∂G

∂λn

(u, λ)

])
where λ = (λ0, · · · , λn) and Σ∗(G) = (∆∗G)−1(0) = {(u, λ) ∈ U×Sn

1 | λ = LH±
M(u, µ), µ ∈ R}.

We observe that G is a generating family of the Legendrian immersion L±
G whose wave front

set is the image of LH±
M .

4 Contact with lightcones

In this section we use the theory of contacts between submanifolds due to Montaldi [7]. We
define a set LC(Sn

1 )λ0 = LCλ0 ∩ Sn
1 and call it a de Sitter lightcone.

Proposition 4.1. Let λ0 ∈ Sn
1 and M be a spacelike submanifold of codimension two without

umbilic points satisfying K̃ℓ ̸= 0. Then M ⊂ LC(Sn
1 )λ0 if and only if λ0 is an isolated singular

value of the lightlike hypersurface LH±
M and LH±

M(U × R) ⊂ LC(Sn
1 )λ0 .

Proof. We assume that M ⊂ LC(Sn
1 )λ0 . By Proposition 3.1, there exists a smooth function

µ : U −→ R such that X(u) = λ0 + µ(u) · ˜(nT ± nS)(u). Therefore, LH±
M(U ×R) ⊂ LC(Sn

1 )λ0 .
We now show that λ0 is isolated singularity. It follows that

∂LH±
M

∂t
(u, t) = ˜(nT + nS)(u)

∂LH±
M

∂ui

(u, t) = µui
(u) ˜(nT + nS)(u) + (t+ µ(u)) ˜(nT + nS)ui

(u) (i = 1, · · · , n− 2).
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Then, we have

P (u) := X(u) ∧ ∂LH±
M

∂t
(u, t) ∧ ∂LH±

M

∂u1

(u, t) ∧ · · · ∧ ∂LH±
M

∂un−2

(u, t)

= (t+ µ(u))n−2 ·X(u) ∧ ˜(nT + nS)(u) ∧ ˜(nT + nS)u1
(u) ∧ · · · ∧ ˜(nT + nS)un−2

(u).

On the other hand, X(u) − λ0 = µ(u) · ˜(nT + nS)(u) ̸= 0 is a lightlike vector and TpM are
spacelike, so that X(u),X(u) − λ0,Xu1(u), · · · ,Xun−2(u) are linearly independent. Therefore
we have

0 ̸= X(u) ∧ (X(u)− λ0) ∧Xu1(u) ∧ · · · ∧Xun−2(u)

= µ(u)n−1 ·X(u) ∧ ˜(nT + nS)(u) ∧ ˜(nT + nS)u1
(u) ∧ · · · ∧ ˜(nT + nS)un−2

(u)

so that X(u)∧ ˜(nT + nS)(u)∧ ˜(nT + nS)u1
(u)∧· · ·∧ ˜(nT + nS)un−2

(u) ̸= 0. Therefore P (u) = 0

if and only if t + µ(u) = 0. This means that λ0 is an isolated singular value of LH±
M . The

converse is trivial.

We remark that this proposition is generalization of Proposition 4.1 in [4]. We now consider
the contact of spacelike submanifolds of codimension two with lightcones due to Montaldi’s
result [7]. Let Xi and Yi (i = 1, 2) be submanifolds of Rn with dimX1 = dimX2 and dimY1 =
dimY2. We say that the contact of X1 and Y1 at y1 is the same type as the contact of X2 and
Y2 at y2 if there is a diffeomorphism germ Φ : (Rn, y1) −→ (Rn, y2) such that Φ(X1) = X2 and
Φ(Y1) = Y2. In this case we write K(X1, Y1; y1) = K(X2, Y2; y2).

Two function germs g1, g2 : (Rn, ai) −→ (R, 0) (i = 1, 2) are K-equivalent if there are a
diffeomorphism germ Φ : (Rn, a1) −→ (Rn, a2), and a function germ λ : (Rn, a1) −→ R with
λ(a1) ̸= 0 such that f1 = λ · (g2 ◦ Φ). In [7] Montaldi has shown the following theorem.

Theorem 4.2. (Montaldi [7]) Let Xi and Yi (for i = 1, 2) be submanifolds of Rn with dimX1 =
dimX2 and dimY1 = dimY2. Let gi : (Xi, xi) −→ (Rn, yi) be immersion germs and fi :
(Rn, yi) −→ (Rp,0) be submersion germs with (Yi, yi) = (f−1

i (0), yi). Then K(X1, Y1; y1) =
K(X2, Y2; y2). if and only if f1 ◦ g1 and f2 ◦ g2 are K-equivalent.

Returning to lightlike hypersurfaces, we now consider the function G : Sn
1 ×Sn

1 −→ R defined
by G(x, λ) = ⟨x − λ, x − λ⟩. For a given λo ∈ Sn

1 , we denote gλ0(x) = G(x, λ0), then we have

g−1
λ0
(0) = LC(Sn

1 )λ0 . For any u0 ∈ U , we take the point λ±
0 = X(u0) + µ0L̃±(u0) and have

(gλ±
0
◦X)(u0) = G ◦ (X× idSn

1
)(u0, λ

±
0 ) = G(u0, λ

±
0 ) = 0,

where p0 = X(u0) and µ0 = −1/κ̃±
i (u0), (i = 1, · · · , n− 1). We also have

∂(gλ±
0
◦X)

∂ui

(u0) =
∂G

∂ui

(u0, λ
±
0 ) = 0.

It follows that the lightcone g−1

λ±
0

(0) = LC(Sn
1 )λ0 is tangent to M at p0 = X(u0). In this case,

we call each LCλ±
0
a tangent lightcone of M at p0.
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We now review some notions of Legendrian singularity theory to study the contact be-
tween hypersurfaces and de Sitter hyperhorospheres. We say that Legendrian immersion germs
ij : (Uj, uj) −→ (PT ∗Rn, pj) (j = 1, 2) are Legendrian equivalent if there exists a contact dif-
feomorphism germ H : (PT ∗Rn, p1) −→ (PT ∗Rn, p2) such that H preserves fibers of π and
H(U1) = U2. A Legendrian immersion germ at a point is said to be Legendrian stable if for
every map with the given germ there are a neighborhood in the space of Legendrian immer-
sions with the Whitney C∞-topology and a neighborhood of the original point such that each
Legendrian map belonging to the first neighborhood has a point in the second neighborhood,
at which its germ is Legendrian equivalent to the original germ.

Proposition 4.3. (Zakalyukin [11]) Let i1, i2 be Legendrian immersion germs such that regular
sets of π ◦ i1 and π ◦ i2 are respectively dense. Then i1, i2 are Legendrian equivalent if and only
if corresponding wave front sets W (i1) and W (i2) are diffeomorphic as set germs.

Let Fi : (Rn × Rk, (ai, bi)) −→ (R, c) (k = 1, 2) be k-parameter unfoldings of function
germs fi, we say F1 and F2 are P-K-equivalent if there exists a diffeomorphism germ Φ :
(Rn × Rk, (a1, b1)) −→ (Rn × Rk, (a2, b2)) of the form Φ(u, x) = (ϕ1(u, x), ϕ2(x)) for (u, x) ∈
Rn × Rk and a function germ λ : (Rn × Rk, (a1, b1)) −→ R such that λ(a1, b1) ̸= 0 and
F1(u, x) = λ(u, x) · (F2 ◦ Φ)(u, x).

Theorem 4.4. (Arnol’d, Zakalyukin [1, 10]) Let F,G : (Rk × Rn,0) −→ (R,0) be Morse
families and denote the corresponding Legendrian immersion germs by LF ,LG. Then

(1) LF and LG are Legendrian equivalent if and only if F and G are P-K-equivalent.

(2) LF is Legendrian stable if and only if F is K-versal deformation of f .

Let LH±
M,i : (U, ui) −→ (Sn

1 , λ
±
i ) (for i = 1, 2) be lightlike hypersurface germs of Xi :

(U, ui) −→ (Sn
1 , λi). We say that LH±

M,1 and LH±
M,2 are A-equivalent if and only if there

exist diffeomorphism germs ϕ : (U, u1) −→ (U, u2) and Φ : (Sn
1 , λ

±
1 ) −→ (Sn

1 , λ
±
2 ) such that

Φ ◦ L±
1 = L±

2 ◦ ϕ. We denote gi,λ±
i
: (U, ui) −→ (R,0) by gi,λ±

i
(u) = Gi(u, λ

±
i ). Then we have

gi,λ±
i
(u) = (gi,λ±

i
◦Xi)(u). By Theorem 4.2,

K(X1(U), LCλ±
1
;λ±

1 ) = K(X2(U), LCλ±
2
;λ±

2 )

if and only if g1,λ±
1
and g2,λ±

2
are K-equivalent.

Let Q±(X, u0) be the local ring of the function germ gλ±
0
: (U, u0) −→ R defined by

Q±(X, u0) = C∞
u0
(U)/⟨gλ±

0
⟩C∞

u0
(U),

where λ0 = LH±
M(u0, µ0) and C∞

u0
(U) is the local ring of function germs at u0 with the unique

maximal ideal M.

Proposition 4.5. Let F,G : (Rk × Rn,0) −→ (R,0) be Morse families. Suppose that Leg-
endrian immersion germs LF and LG are Legendrian stable, then the following conditions are
equivalent:
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(1) (W (LF ), λ) and (W (LG), λ
′) are diffeomorphic as set germs.

(2) LF and LG are Legendrian equivalent.

(3) Q(f) and Q(g) are isomorphic as R-algebras, where f = F |Rk×{0} and g = G |Rk×{0}.

The proof is almost the same as that of Theorem 6.3 in [3], so that we omit it. By the above
propositions, we have following theorem.

Theorem 4.6. Let Xi : (U, ui) −→ (Sn
1 , pi) (for i = 1, 2) be spacelike submanifold germs such

that the corresponding Legendrian immersion germs are Legendrian stable. Then the following
conditions are equivalent:

(1) Lightlike hypersurface germs LH±
M,1 and LH±

M,2 are A-equivalent.

(2) Legendrian immersion germs L±
1 and L±

2 are Legendrian equivalent.

(3) Lorentzian distance squared function germs G1 and G2 are P-K-equivalent.

(4) g±1,λ1
and g±2,λ2

are K-equivalent.

(5) K(X1(U), LCλ±
1
; p1) = K(X2(U), LCλ±

2
; p2)

(6) Local rings Q±(X1, u1) and Q±(X2, u2) are isomorphic as R-algebras.

Proof. Since LH±
M,1 and LH±

M,2 are Legendrian stable, regular sets of LH±
M,1 and LH±

M,2 are
respectively dense, by Proposition 4.3, the conditions (1) and (2) are equivalent. And we
apply Theorem 4.4, the conditions (2) and (3) are equivalent. By the previous arguments from
Theorem 4.2, the conditions (4) and (5) are equivalent. If we assume the condition (3), then
P-K-equivalence preserves the K-equivalence, so that the condition (4) holds. Since the local
ring Q±(Xi, ui) is K-invariant, this means that the condition (6) holds. By Proposition 4.5, the
condition (6) implies the condition (2).

In the next section, we will prove that the assumption of the Theorem 4.6 is a generic
property in the case when n ≤ 6. In general we have the following proposition.

Proposition 4.7. Let Xi : (U, ui) −→ (Sn
1 , pi) (for i = 1, 2) be spacelike submanifold germs

and regular sets of their lightlike surfaces LH±
M,i are dense in U . If lightlike hypersurface germs

LH±
M,1 and LH±

M,2 are A-equivalent, then

K(X1(U), LCλ±
1
; p1) = K(X2(U), LCλ±

2
; p2).

In this case, (X−1
1 (LCλ±

1
), u1) and (X−1

2 (LCλ±
2
), u2) are diffeomorphic as set germs.

Proof. By Proposition 4.3, if LH±
M,1 and LH±

M,1 are A-equivalent, then L±
1 and L±

2 are Legen-
drian equivalent. By Theorem 4.4, G1 and G2 are P-K-equivalent, so that g1,λ±

1
and g2,λ±

2
are

K-equivalent. Applying Theorem 4.2, the first assertion holds. On the other hand, g−1

i,λ±
i

(0) =

(X−1
i (LCλ±

i
), ui) and K-equivalence preserves the zero level sets, so that (X−1

1 (LCλ±
1
), u1) and

(X−1
2 (LCλ±

2
), u2) are diffeomorphic as set germs.
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5 Generic properties

In this section we consider generic properties of spacelike submanifolds in Sn
1 . We consider

the space of spacelike embeddings Sp-Emb(U, Sn
1 ) with Whitney C∞-topology. We define a

function G : Sn
1 × Sn

1 −→ R by G(x, λ) = ⟨x, λ⟩, and denote gx(λ) = G(x, λ). Then gx is a
submersion at x ̸= λ for any λ ∈ Sn

1 . For any spacelike submanifolds x ∈ Sp-Emb(U, Sn
1 ), we

have G = G ◦ (x × idSn
1
). We also have the ℓ-jet extension jℓ1G : U × Sn

1 −→ J ℓ(U,R) defined
by jℓ1G(x, λ) = jℓgλ(u). We consider the trivialization J ℓ(U,R) ≡ U × R × J ℓ(n − 1, 1). For

any submanifold Q ⊂ J ℓ(n − 1, 1), we denote Q̃ = U × {0} × Q. Then we have the following
proposition as a corollary of Lemma 6 of Wassermann [9].

Proposition 5.1. Let Q be a submanifold of J ℓ(n− 1, 1). Then the set

TQ = {x ∈ Sp-Emb(U, Sn
1 ) | jℓ1G is transversal to Q̃}

is a residual subset of Sp-Emb(U, Sn
1 ). If Q is a closed subset, then TQ is open.

We remark that if the corresponding Lorentzian distance squared function gλ0 is ℓ-deter-
mined relative to K, then G is a K-versal deformation if and only if jℓ1G is transversal to

K̃ℓ
g,λ0

, where Kℓ
g,λ0

is the K-orbit through jℓgλ0(0) ∈ J ℓ(n − 1, 1). Applying Theorem 4.4, this
condition is equivalent to the condition that the corresponding Legendrian immersion germ is
Legendrian stable. From the previous arguments and the Appendix of [4], we have the following
proposition. (See also [1].)

Theorem 5.2. if n ≤ 6, there exists an open subset O ⊂ Sp-Emb(U, Sn
1 ) such that for any

x ∈ O, the corresponding Legendrian immersion germ L is Legendrian stable.

6 lightcone Gauss maps and lightcone height functions

In this section, we define the lightcone height function whose wave front set is the image of the
lightcone Gauss map.

We define a lightcone height function H : U × Sn−1
+ −→ R by H(u, v) = ⟨X(u), v⟩. For

v0 ∈ Sn−1
+ , we write hv0(u) = H(u, v0) and have following proposition.

Proposition 6.1. Let H be the lightcone height function of spacelike submanifold X, then we
have the following:

(1) H(u0, v0) = Hui
(u0, v0) = 0 (i = 1, · · · , n− 2) if and only if v0 = L̃±(u0).

(2) H(u0, v0) = Hui
(u0, v0) = 0 (i = 1, · · · , n − 2) and detHess (hv0)(u0) if and only if

v0 = L̃±(u0) and K̃±
ℓ (u0) = 0.

Proof. Let v0 = λX(u0) + ηTnT (u0) + ηSnS(u0) +
∑n−2

j=1 ξjXj(u0) for some λ, ηT , ηS, ξj ∈ R.
By the assumption, we have λ = 0, |ηT | = |ηS| and H̄′(u0, v0) = (gij(u0)) ξ̄ , where H̄′ =
t(Hu1 , · · · , Hun−2), ξ̄ = t(ξ1, · · · , ξn−2) and (gij) is the first fundamental form on M . Since
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(gij(u0)) is regular, H̄
′(u0, v0) = 0 if and only if ξ̄ = 0. Therefore we have v0 = L̃±(u0). The

converse of (1) is trivial. By the calculation,(
∂2H

∂ui∂uj

(u0, v0)

)
ij

=
(
⟨Xuiuj

(u0), L̃±(u0)⟩
)
ij
=

1

ℓ±0 (u0)

(
h±
ij(u0)

)
,

where ℓ±0 (u0) is the first component of L̃±(u0) and (h±
ij(u0)) is the lightcone second funda-

mental form with respect to the lightcone normal frame (nT ,nS). Therefore HessH(u0, v0) is
degenerate if and only if u0 is a lightcone parabolic point. This completes the proof.

By the above proposition, the discriminant set of the lightcone height function is given by

DH =
{
v ∈ Sn−1

+

∣∣∣v = L̃±(u), u ∈ U
}

which is the image of the lightcone Gauss map of M . The singular set of the lightcone Gauss
map is the normalized lightcone parabolic set of M .

Proposition 6.2. Let H is the lightcone height function on M . Then H is a Morse family of
hypersurfaces around (u, v) ∈ ∆∗H−1(0).

Proof. We denote that X(u) = (X0(u), · · · , Xn(u)), Xui
(u) = (X0,ui

(u), · · · , Xn,ui
(u)) and

v = (v0, · · · , vn). Without the loss of generality, we assume that vn > 0. Therefore we denote
a matrix B and C by

B =


(
Xj(u)−

vj
vn

Xn(u)

)
j=1,··· ,n−1(

Xj,ui
(u)− vj

vn
Xn,ui

(u)

)
j=1,··· ,n−1
i=1,··· ,n−2

 ,C =



1 0 · · · 0

L̃±(u)
X(u)
Xu1(u)

...
Xun−2(u)


.

Then we have J(∆∗H) = ( ∗ |B) and detB = (−1)n−2 detC/vn.
On the other hand, determinant of a matrix

C


−1 0
0 1

O

O
. . . 0
0 1

 tC =


−1 −1
−1 0

∗ · · · ∗
0 · · · 0

∗ 0
...

...
∗ 0

1 O

O (gij)


equals to − det(gij) ̸= 0, where (gij) is the first fundamental form on M . This implies that
both B and C are regular, therefore rank J(∆∗H) = n − 1. therefore rank J(∆∗H) = n − 1.
This completes the proof.
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By Proposition 3.2 and the above proposition, we have the Legendrian immersion L±
H :

Σ∗(H) −→ PT ∗(Sn−1
+ ) defined by

L±
H(u, v) =

(
λ,

[
∂H

∂v1
(u, v) : · · · ∂̂H

∂vk
(u, v) : · · · ∂H

∂vn
(u, v)

])

where v = (v0, v1, · · · , vn) ∈ Sn+1
+ and Σ∗(H) = {(u, v) ∈ U | v = L̃±(u), K̃±

ℓ (u0) = 0}. The
lightcone height function H is the generating family of the Legendrian immersion L±

H whose

wave front set is the image of lightcone Gauss map L̃±.

7 Contact with lightlike cylinders

In this section we describe contacts of submanifolds with lightlike cylinders by applying Mon-
taldi’s theory.

For any v ∈ Sn−1
+ , we define a lightlike cylinder along v by HP (v, 0) ∩ Sn

1 . It is an (n− 1)-
dimensional submanifold in Sn

1 which is isomorphic to Sn−2 × R. We observe that its tangent
space at each point has lightlike directions.

Proposition 7.1. Let L̃± be a lightcone Gauss map of X. Then L̃± is a constant map if and
only if M is a part of lightlike cylinder HP (v, 0) ∩ Sn

1 for some v ∈ Sn−1
+ .

Proof. Necessity is trivial, so we prove sufficient condition. If M ⊂ HP (v, 0) ∩ Sn
1 , then

v = α(u)nT (u) + β(u)nS(u) for some functions α, β : U −→ R. Since v is lightlike, we have

α = |β| > 0. Therefore v = L̃±(u) for all u ∈ U . This completes the proof.

We now consider the function H : Sn
1 × Sn−1

+ −→ R defined by H(x, v) = ⟨x, v⟩. Given
v0 ∈ Sn−1

+ , we denote hv0(x) = H(x, v0), so that we have h−1
v0
(0) = HP (v0, 0) ∩ Sn

1 . For any

u0 ∈ U , we take the point v±0 = L̃±(u0) and have

(hv0 ◦X)(u0) = H ◦ (X× idSn−1
+

)(u0, v
±
0 ) = H(u0, v

±
0 ) = 0,

where p0 = X(u0). We also have

∂(hv±0 ◦X)

∂ui

(u0) =
∂H

∂ui

(u0, v
±
0 ) = 0.

It follows that the lightcone h−1

v±0
(0) = LCv0 is tangent to M at p0 = X(u0). In this case, we

call LCv±0
a tangent lightlike cylinder of M at p0.

Theorem 7.2. Xi : (U, ui) −→ (Sn
1 , pi) (i = 1, 2) be spacelike submanifold germs and vi =

L̃±
i (ui). If the corresponding Legendrian immersion germs are Legendrian stable. Then the

following conditions are equivalent:

(1) Lightcone Gauss map germs L̃±
1 and L̃±

2 are A-equivalent.
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(2) Legendrian immersion germs L±
1 and L±

2 are Legendrian equivalent.

(3) Lightcone height function germs H1 and H2 are P-K-equivalent.

(4) h±
1,v1

and h±
2,v2

are K-equivalent.

(5) K(X1(U), HP (v1, 0) ∩ Sn
1 ; p1) = K(X2(U), HP (v2, 0) ∩ Sn

1 ; p2)

Proof. This proof is similar to the proof of Theorem 4.6.

We observe that the assumption of the Theorem 7.2 is a generic property in the case when
n ≤ 6.

Proposition 7.3. Let Xi (for i = 1, 2) be spacelike submanifold germs and regular sets of

their lightcone Gauss maps L̃±
i are dense in U . If lightcone Gauss map germs L̃±

1 and L̃±
2 are

A-equivalent, then we have

K(X1(U), HP (v±1 , 0) ∩ Sn
1 ; p1) = K(X2(U), HP (v±2 , 0) ∩ Sn

1 ; p2)

In this case, (X1
−1(HP (v±1 , 0) ∩ Sn

1 ), u1) and (X2
−1(HP (v±2 , 0) ∩ Sn

1 ), u2) are diffeomorphic as
set germs.

The proof of this proposition is almost the same as Proposition 6.5 in [3], so that we omit
it. We call (Xi

−1(HP (v±i , 0) ∩ Sn
1 ), ui) a tangent lightlike cylindrical indicatrix germ of Mi at

p0.

8 Classification in de Sitter 4-space

In this section we consider the case of n = 4 and classify singularities of lightlike hypersurface
and lightcone Gauss map. We also give some examples of spacelike surfaces in de Sitter 4-space.

We now define K-invariants of spacelike surfaces in de Sitter space. For open subset U ⊂ R2

and spacelike submanifold X : U −→ S4
1 , we define the K-codimension (or Tyurina number) of

the function germs hv±0
, gλ±

0
and corank of hv±0

, gλ±
0
by

H-ord±(X, u0) = dimC∞
u0
/⟨hv±0

(u0), ∂hv±0
(u0)/∂ui⟩C∞

u0
,

H-corank±(X, u0) = 2− rankHess (hv±0
(u0)),

G-ord±(X, u0) = dimC∞
u0
/⟨gλ±

0
(u0), ∂gλ±

0
(u0)/∂ui⟩C∞

u0
,

G-corank±(X, u0) = 2− rankHess (gλ±
0
(u0)),

where v±0 = L̃±(u0) and λ±
0 = X(u0) + t0.

Theorem 8.1. Let Sp-Emb(U, Sn
1 ) be the set of spacelike submanifolds. We have open dense

subset O ⊂ Sp-Emb(U, Sn
1 ) such that for X ∈ O, v±

0 = L±(u0) and λ±
0 = LH±

M(u0, t0), we have
the following:
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(1) λ±
0 is an singular value of LH±

M if and only if G-corank±(X, u0) = 1 or 2.

(2) If G-corank±(X, u0) = 1 then there are distinct principal curvatures κ̃±
1 , κ̃

±
2 such that

κ̃±
1 ̸= 0, t0 = −1/κ̃±

1 and LH±
M has the Ak-type singularity (k = 2, 3, 4) at (u0, t0). In this

case we have G-ord±(X, u0) = k.

(3) If G-corank±(X, u0) = 2 then u0 is an non-flat umbilic point and t0 = −1/κ̃±
1 . In this

case, LH±
M has the D+

4 -type or D−
4 -type singularity at (u0, t0). In this case we have

G-ord±(X, u0) = 4.

where the singular type of LH±
M is A-equivalent to one of the map germs f : (R3,0) −→ (R4,0)

in the following list:

(A2) f(u1, u2, u3) = (3u2
1, 2u

3
1, u1, u2)

(A3) f(u1, u2, u3) = (4u3
1 + 2u1u2, 3u

4
1 + u2u

2
1, u2, u3)

(A4) f(u1, u2, u3) = (5u4
1 + 3u2u

2
1 + 2u1u3, 4u

5
1 + 2u2u

3
1, u2, u3)

(D+
4 ) f(u1, u2, u3) = (2(u2

1 + u2
2) + u1u2u3, 3u

2
1 + u2u3, 3u

2
2 + u1u3, u3)

(D−
4 ) f(u1, u2, u3) = (2(u3

1 − u1u
2
2) + (u2

1 + u2
2)u3, u

2
2 − 3u2

1 − 2u1u3, u1u2 − u2u3, u3).

Proof. By Proposition 3.1, if λ±
0 is singular value then G-corank±(X, u0) ≤ 2. By Theorem

5.2, there exists an open subset O ⊂ Sp-Emb(U, Sn
1 ) such that for any X ∈ O, corresponding

Lorentzian distance squared function G is a versal deformation of g±λ0
. By Thom’s classification

of function germs, g±λ0
is K-equivalent to Ak-type germ (k = 2, 3, 4) or D±

4 -type fuction germ,
so that we have G-corank±(X, u0) ≥ 1, therefore (1) holds. If g±λ0

has Ak-type singularity, then

it is K-equivalent to f(u1, u2) = u2
1 ± uk+1

2 and G-ord±(X, u0) = k. Since the corresponding
lightlike hypersurface LH±

M is the discriminant set of the Lorentzian distance squared function
G, therefore (2) holds. If g±λ0

has D±
k -type singularity, then it is K-equivalent to f(u1, u2) =

u3
1 ± u1u

2
2 and G-ord±(X, u0) = 4. This completes the proof.

We remark that corresponding tangent lightcone indicatrix germ is diffeomorphic to the
following list:

(A2) {(u1, u2) ∈ (R2,0) | u2
1 + u3

2 = 0} (ordinary cusp)

(A3) {(u1, u2) ∈ (R2,0) | u2
1 ± u4

2 = 0} (tachnode or a point)

(A4) {(u1, u2) ∈ (R2,0) | u2
1 + u5

2 = 0} (rhamphoid cusp)

(D+
4 ) {(u1, u2) ∈ (R2,0) | u1 + u2 = 0} (a line)

(D−
4 ) {(u1, u2) ∈ (R2,0) | u3

1 − u1u
2
2 = 0} (triple point).

For normalized Gauss maps, we have following results.

Theorem 8.2. There exists an open dense subset O′ ⊂ Sp-Emb(U, Sn
1 ) such that for any

X ∈ O′, the following conditions hold.

(1) u0 is an L̃±-parabolic point if and only if H-corank±(X, u0) = 1 (that is, u0 is not a flat
point).

15



(2) The L̃±-parabolic set K̃−1
ℓ (0) is a regular curve. Along the curve L̃± has cuspidal edge

points except at isolated points. At this points L̃± has swallowtail points.

(3) If L̃± has the cuspidal edge points, then hv±
0
isK-equivalent to (u2

1+u3
2) : (R2,0) −→ (R, 0)

and H-ord±(X, u0) = 2. In this case, the tangent lightlike cylindrical indicatrix germ is
an ordinary cusp.

(4) If L̃± has the swallowtail points, then hv±
0
is K-equivalent to (u2

1±u4
2) : (R2,0) −→ (R, 0)

and H-ord±(X, u0) = 3. In this case, the tangent lightlike cylindrical indicatrix germ is a
tachnode or a point.

where L± has cuspidaledge point if L± is A-equivalent to (3u2
1, 2u

3
1, u1) : (R2,0) −→ (R3,0),

and L± has swallowtail point if L± is A-equivalent to (4u3
1 + 2u1u2, 3u

4
1 + u2u

2
1, u2).

Figure 1: Cuspidal edge Figure 2: Swallowtail

Proof. By Proposition 6.1, the condition that v±
0 is singular value is equivalent to the condi-

tion H-corank±(X, u0) ≥ 1. By Theorem 5.2, there exists an open subset O′ ⊂ Sp-Emb(U, Sn
1 )

such that for any X ∈ O, corresponding lightcone height function H is a versal deforma-
tion of hv±

0
. By Thom’s classification of function germs, hv±

0
has Ak-type singularity (k =

2, 3) and H-corank±(X, u0) = 1, therefore (1) holds. On the other hand, the condition

H-corank±(X, u0) = 1 means that the parabolic set K̃−1
ℓ (0) is a part of curves. If hv±

0
has

A2-type singularity, then it is K-equivalent to f(u1, u2) = u2
1 + u3

2 and H-ord±(X, u0) = 2.
Since the corresponding lightcone Gauss map L± is the discriminant set of the lightcone height
function H, therefore (3) holds. If hv±

0
has A3-type singularity, then it is K-equivalent to

f(u1, u2) = u3
1 ± u3

2 and H-ord±(X, u0) = 3, therefore (4) holds. On the other hand, the
swallowtail points are isolated points, therefore (2) holds. This completes the proof.

Example 8.3. Let f : (U,0) −→ R, f(0) = fui
(0) = 0 and spacelike submanifold M = X(U)

in Sn
1 by

Xf (u1, u2) =

(
f(u), 0,

√
1 + f(u)2 − u2

1 − u2
2 , u1, u2

)
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If f = 1
2
(u2

1 − u2
2 + 2uk+1

1 ) for some k = 2, 3, 4, then LH+
M and LH−

M have Ak-type singu-
larities at λ±

0 = LH±
M(0, 1). In this case, the corresponding tangent lightcone indicatrix germs

(X−1
f (LCλ±

0
),0) are {(u1, u2) | u2

1 + uk+1
1 = 0 }.

If f = 1
2
(u2

1 + u2
2 + u3

1 + ±u1u
2
2), then LH+

M and LH−
M have D±

4 -type singularities at λ+
0 =

LH+
M(0,−1), λ−

0 = LH−
M(0,−1). The corresponding tangent lightcone indicatrix germs are

{(u1, u2) | u3
1 ± u1u

2
2 = 0 }.

If f = 1
2
u2
1 − 1

k
uk+1
2 for some k = 2, 3, then both L+ and L− have Ak-type singularities at

the origin. The corresponding tangent lightlike cylindrical indicatrix germs are ordinal cusp
(k = 2) and tachnode (k = 3).
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