
 

Instructions for use

Title Critical Modules of the Ring of Differential Operators of an Affine Semigroup Algebra

Author(s) Saito, Mutsumi

Citation Communications in Algebra, 38(2), 618-631
https://doi.org/10.1080/00927870902828603

Issue Date 2010-02

Doc URL http://hdl.handle.net/2115/44781

Rights
This is an electronic version of an article published in Communications in Algebra, 38(2), Feb. 2010, 618-631.
Communications in Algebra is available online at: http://www.informaworld.com/openurl?genre=article&issn=0092-
7872&volume=38&issue=2&spage=618

Type article (author version)

File Information CiA38-2_618-631.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp


CRITICAL MODULES
OF THE RING OF DIFFERENTIAL OPERATORS

OF AN AFFINE SEMIGROUP ALGEBRA

MUTSUMI SAITO

Abstract. Let D be the ring of differential operators of an affine semigroup algebra.
Regarding the Krull dimension of finitely generated Zd-graded D-modules, we charac-
terize critical Zd-graded D-modules. Moreover we explicitly describe cyclic ones.
Mathematics Subject Classification (2000): Primary 13N10; Secondary 16S32.
Keywords: Critical modules, rings of differential operators, affine semigroup algebras

1. Introduction

Critical modules were introduced by Hart (1971) and Goldie (1972). They are the
modules whose quotient by any nonzero submodule has strictly smaller Krull dimension
(in the sense of (Gabriel, 1962) and (Rentschler, Gabriel, 1967)). The critical modules
of Krull dimension 0 are precisely the simple modules. The notions of Krull dimension
and critical modules enable us to use Artinian type method to Noetherian rings (see e.g.
(Goodearl, Warfield, 1989; Lenagan, 2000; McConnel, Robson, 1987)).

Let F be an algebraically closed field of characteristic 0. Let A := {a1, a2, . . . , an } be a
finite subset of Zd. Let RA denote the semigroup algebra over F of the monoid generated
by A, and D(RA) the ring of differential operators of RA; both of them have natural Zd-
gradings. Musson, Van den Bergh (1998) classified the Zd-graded simple D(RA)-modules.
(See also (Saito, Traves, 2001).) In this paper, considering the Krull dimension of finitely
generated Zd-graded D(RA)-modules, we characterize critical Zd-graded D(RA)-modules.
Moreover we explicitly describe cyclic critical Zd-graded D(RA)-modules.

To consider the Krull dimension, it is convenient to assume the Noetherian property.
(Saito, Takahashi, 2008) proved that D(RA) is always right Noetherian. It also gave some
conditions for the left Noetherian property; for example, D(RA) is left Noetherian if RA

satisfies Serre’s (S2) condition. Throughout this paper, we assume that D(RA) is left
Noetherian when we consider left D(RA)-modules.

This paper is organized as follows. In Section 2, we recall some fundamental facts about
the rings of differential operators of affine semigroup algebras.

Let a, b ∈ F d. In (Saito, Traves, 2001), a preorder a ¹ b was defined; the equivalence
relation induced from ¹ was used for the classifications of Zd-graded simple modules
and A-hypergeometric systems (Musson, Van den Bergh, 1998; Saito, 2001; Saito, Traves,
2001; Saito, 2007). This preorder is for maximal ideals of the polynomial ring F [s1, . . . , sd].
In Section 3, we generalize this for prime ideals, suitable for considering critical modules.

In Section 4, we introduce Õ (resp. RÕ), the category of Zd-graded finitely generated

left (resp. right) D(RA)-modules. For an object M =
⊕

a∈Zd Ma ∈ Õ (resp. RÕ), we
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define δ(M) by

δ(M) := max
a

dimF [s] Ma.

In Section 5, we define deg(M) for M ∈ Õ (resp. RÕ) so that, for a descending chain

M = M0 ⊇ M1 ⊇ M2 ⊇ · · · ⊇ Mi ⊇ · · · ,

there exist at most deg(M) i’s such that δ(Mi/Mi+1) = δ(M).

In Section 6, we prove that δ gives the Krull dimension for the category Õ (resp. RÕ).
In Section 7, we characterize critical Zd-graded D(RA)-modules (Theorem 7.4), and

explicitly describe cyclic ones (Theorem 7.7).

2. Rings of differential operators of affine semigroup algebras

In this section, we briefly recall some fundamental facts about the rings of differential
operators of affine semigroup algebras. Let F be an algebraically closed field of charac-
teristic 0. Let A := {a1, a2, . . . , an } be a finite set of column vectors in Zd, and NA the
monoid generated by A. Throughout this paper, we assume that Zd is generated by A as
an abelian group for simplicity.

The ring F [t±1
1 , . . . , t±1

d ]〈∂1, . . . , ∂d〉 of differential operators with Laurent polynomial
coefficients is the ring of differential operators on the algebraic torus (F×)d, where [∂i, tj] =
δij, [∂i, t

−1
j ] = −δijt

−2
j , and the other pairs of generators commute. Here [ , ] denotes the

commutator, and δij is 1 if i = j and 0 otherwise.
The semigroup algebra RA := F [NA] =

⊕
a∈NA Fta is the ring of regular functions on

the affine toric variety defined by A, where ta = ta1
1 ta2

2 · · · tad
d for a = t(a1, a2, . . . , ad). Its

ring of differential operators D(RA) can be realized as a subring of the ring

F [t±1
1 , . . . , t±1

d ]〈∂1, . . . , ∂d〉
of differential operators on the big torus as follows:

D(RA) = {P ∈ F [t±1
1 , . . . , t±1

d ]〈∂1, . . . , ∂d〉 : P (RA) ⊂ RA}.
Put sj := tj∂j for j = 1, 2, . . . , d. Then it is easy to see that sj ∈ D(RA) for all j. We

introduce a Zd-grading on the ring D(RA) as follows: For a = t(a1, a2, . . . , ad) ∈ Zd, set

D(RA)a := {P ∈ D(RA) : [sj, P ] = ajP for j = 1, 2, . . . , d}.
Then D(RA) =

⊕
a∈Zd D(RA)a.

By regarding D(RA)a as a subset of F [t±1
1 , . . . , t±1

d ]〈∂1, . . . , ∂d〉, we see that there exists
an ideal I of F [s] := F [s1, . . . , sd] such that D(RA)a = taI. To describe this ideal I
explicitly, we define a subset Ω(a) of the semigroup NA by

Ω(a) = { b ∈ NA : b + a 6∈ NA } = NA \ (−a + NA).

Then each D(RA)a is described as follows.

Theorem 2.1 (Theorem 2.3 in (Musson, 1987)).

D(RA)a = taI(Ω(a)) for all a ∈ Zd,

where

I(Ω(a)) := {f(s) ∈ F [s] := F [s1, . . . , sd] : f vanishes on Ω(a)}.
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In particular, we have for each a ∈ NA

D(RA)a = taF [s] = F [s]ta,

since Ω(a) = ∅ in this case.

3. Equivalence relations

In this section, for a prime ideal p of F [s], we define a preorder ¹[p] and an equivalence
relation ∼[p], which are generalizations of those considered in (Musson, Van den Bergh,
1998; Saito, 2001; Saito, Traves, 2001; Saito, 2007) for maximal ideals (Proposition 3.3
and Remark 3.4). This equivalence relation plays a central role in this paper.

Notation. For an ideal I of F [s] and c ∈ Zd, we define a new ideal I + c by

I + c := {f(s − c) : f(s) ∈ I}.

We clearly have the following.

Proposition 3.1. (1) I(V ) + c = I(V + c).
(2) ma + (b − a) = mb, where ma is the maximal ideal 〈s1 − a1, . . . , sd − ad〉 for

a = t(a1, . . . , ad) ∈ F d.
(3) If p is prime, then so is p + c.

Let p be a prime ideal of F [s]. We shall introduce an equivalence relation in

[p] := {p + c : c ∈ Zd}.

Notation. We write p ¹[p] p + c (or simply p ¹ p + c) if I(Ω(c)) 6⊆ p.

Recall that a binary relation is called a preorder if it is reflexive and transitive.

Proposition 3.2. The relation ¹[p] is a preorder in the set [p].

Proof. First, since I(Ω(0)) = (1) 6⊆ p, we have p ¹[p] p.
Second, let p ¹[p] p + a and p + a ¹[p] p + a + b. Then we have I(Ω(a)) 6⊆ p and

I(Ω(b)) 6⊆ p + a. The latter is equivalent to I(Ω(b) − a) 6⊆ p. Since p is prime, we have

I(Ω(a))I(Ω(b) − a) 6⊆ p.

From the inclusion D(RA)bD(RA)a ⊆ D(RA)a+b, we obtain

I(Ω(a))I(Ω(b) − a) ⊆ I(Ω(a + b)).

Hence we have
I(Ω(a + b)) 6⊆ p,

or equivalently
p ¹[p] p + a + b.

¤
Let a, b ∈ F d. In (Saito, Traves, 2001, Definition 4.1.1) a preorder a ¹ b was defined

by Eτ (a) ⊆ Eτ (b) for all faces τ of the cone R≥0A generated by A, where

(3.1) Eτ (a) = {λ ∈ F (A ∩ τ)/Z(A ∩ τ) : a − λ ∈ NA + Z(A ∩ τ)}.
Here Z(A ∩ τ) and F (A ∩ τ) are the abelian group and the vector space generated by
A ∩ τ , respectively. Our preorder is its generalization in the following sense.

Proposition 3.3. ma ¹ mb if and only if a ¹ b.
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Proof.

ma ¹ mb ⇔ ma ¹ ma + (b − a)

⇔ I(Ω(b − a)) 6⊆ ma

⇔ a 6∈ ZC(Ω(b − a))

⇔ a ¹ b.

Here ZC stands for taking Zariski closure in F d, and the last equivalence follows from
(Saito, Traves, 2001, Lemma 4.1.4). ¤
Notation. The preorder ¹[p] induces an equivalence relation in [p]; we write p ∼[p] p + c
(or simply p ∼ p + c) if p ¹[p] p + c and p + c ¹[p] p.

Remark 3.4. In (Musson, Van den Bergh, 1998, Lemma 3.1.9 (3)), a similar preorder
a ⇒

c
b was defined by I(Ω(b − a) − (a − c))I(Ω(a − c)) 6⊆ I(Ω(b − c))mc. The preorders

a ¹ b and a ⇒
c

b induce the same equivalence relation (Musson, Van den Bergh, 1998,

Lemma 3.1.9 (5); Saito, 2007, Theorem 4.10).

Proposition 3.5. Let p ⊆ q be prime ideals. Then, for c ∈ Zd, q ¹[q] q + c implies
p ¹[p] p + c. Hence q ∼[q] q + c implies p ∼[p] p + c.

Proof. This follows from the fact that I(Ω(c)) 6⊆ q implies I(Ω(c)) 6⊆ p. ¤
Corollary 3.6. Let p be a prime ideal of F [s]. Then [p] has only a finite number of
equivalence classes.

Proof. Let ma be a maximal ideal containing p. Let mb ∈ [ma], or equivalently let
b ∈ a + Zd. Then, for a face τ and an element λ ∈ F (A ∩ τ),

a − λ ∈ Zd ⇔ b − λ ∈ Zd.

If such λ does not exist, then Eτ (a) = Eτ (b) = ∅ (see (3.1) for the definition of Eτ (a)).
If such λ exists, then Eτ (a) and Eτ (b) are contained in the finite set (λ + Q(A ∩ τ) ∩
Zd)/Z(A ∩ τ) (see the proof of (Saito, 2001, Proposition 2.3 (1))). Therefore [ma] has
only a finite number of equivalence classes by Proposition 3.3. Hence by Proposition 3.5
we conculde that [p] also has only a finite number of equivalence classes. ¤

4. Categories Õ

We say that a left (resp. right) D(RA)-module M is Zd-graded if M has a decomposition
M =

⊕
b∈Zd Mb satisfying D(RA)aMb ⊆ Ma+b (resp. MbD(RA)a ⊆ Ma+b) for all a ∈ Zd

and all b ∈ Zd.

Notation . Let Õ (resp. RÕ) denote the category of Zd-graded finitely generated left
(resp. right) D(RA)-modules M =

⊕
a∈Zd Ma.

Lemma 4.1. Let M =
⊕

a∈Zd Ma ∈ Õ (resp. M ∈ RÕ). Then each Ma is a finitely
generated F [s]-module.

Proof. Suppose that M is generated by v1, . . . , vm with vj ∈ Mbj
(j = 1, . . . ,m). Then

the assertion is clear from the fact that each D(RA)a−bj
is finitely generated as a F [s]-

module. ¤
4



Notation. For M =
⊕

a∈Zd Ma ∈ Õ (resp. RÕ), set

δ(M) := max
a

dimF [s] Ma.

If 0 → L → M → N → 0 is an exact sequence of Zd-graded D(RA)-modules, then
0 → La → Ma → Na → 0 is exact for each a. Hence we have the following.

Lemma 4.2. Let 0 → L → M → N → 0 be an exact sequence in Õ (resp. RÕ). Then

δ(M) = max{δ(L), δ(N)}.

Lemma 4.3. Let M =
⊕

a∈Zd Ma ∈ Õ (resp. RÕ). Suppose that M is generated by
Mb1 , . . . ,Mbm. Then

δ(M) = max
1≤i≤m

dimF [s] Mbi
.

Proof. Let M ∈ Õ. It suffices to prove that dim Mb ≥ dim D(RA)aMb for all a, b ∈ Zd.
It follows from D(RA)a = taI(Ω(a)) ⊆ taF [s] that

(4.1)
(
AnnF [s](Mb) + a

)
⊆ AnnF [s](D(RA)aMb).(

resp.
(
AnnF [s](Mb) − a

)
⊆ AnnF [s](MbD(RA)a) for a right module.

)
(Here AnnF [s](Mb) denotes the annihilator of the F [s]-module Mb.) Hence p + a ∈
Supp(D(RA)aMb) (resp. p − a ∈ Supp(MbD(RA)a) for a right module) implies p ∈
Supp(Mb). We have thus proved the assertion. ¤

Notation. Let p be a prime ideal of F [s]. Let Õp (resp. RÕp) denote the subcategory of

Õ (resp. RÕ) consisting of M =
⊕

a∈Zd Ma such that, for all a ∈ Zd, all minimal primes
of the finitely generated F [s]-module Ma contain p + a (resp. p − a).

Remark 4.4. Let a ∈ Zd. Then by definition M ∈ Õp if and only if M [a] ∈ Õp+a (resp.

M ∈ RÕp if and only if M [a] ∈ RÕp−a), where M [a] is defined by M [a]b = Ma+b for all
b ∈ Zd.

Remark 4.5. Let β ∈ F d. Then the category Õm˛
consists of a finitely generated Zd-

graded D(RA)-module M =
⊕

a∈Zd Ma such that, for all a, (m˛+a)nMa = 0 (n À 0). An

object of Õm˛
is an object of the category O(∞)

˛+Zd in (Musson, Van den Bergh, 1998, p.

12).

Notation. Let M ∈ Õ (resp. RÕ), and δ ∈ N. Set

Suppδ(M) := {p ∈ Spec F [s] : dim F [s]/p = δ, p + a ∈ Supp(Ma) for some a}.

(resp. RSuppδ(M) := {p ∈ Spec F [s] : dim F [s]/p = δ, p − a ∈ Supp(Ma) for some a}.)

Proposition 4.6. Let M =
⊕

a∈Zd Ma ∈ Õ (resp. RÕ). Then the set Suppδ(M)(M)

(resp. RSuppδ(M)(M)) is finite.
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Proof. Let M ∈ Õ. Suppose that M is generated by Mb1 , . . . ,Mbj
. Let {pkl : l} be the

set of minimal primes of the F [s]-module Mbk
. Suppose that q ∈ SuppF [s](Ma). Then

there exists k such that q ∈ SuppF [s](D(RA)a−bk
Mbk

). By the inclusion (4.1), we have
q+bk−a ∈ Supp(Mbk

). Hence there exists l such that q+bk−a ⊇ pkl, or q ⊇ (pkl−bk)+a.
Hence we have

Suppδ(M)(M) = {pkl − bk : dim F [s]/pkl = δ(M)}.

(For M ∈ RÕ, RSuppδ(M)(M) = {pkl + bk : dim F [s]/pkl = δ(M)}, respectively.)

¤

5. Degree of modules

Let τ : R → R′ be an isomorphism of commutative rings. Let M be an R-module, N
an R′-module. A Z-module homomorphism f : M → N is called a τ -homomorphism if
f(am) = τ(a)f(m) for a ∈ R and m ∈ M .

Let τ : R → R be an automorphism, and f : M → N a τ -homomorphism. Let p be a
prime ideal of R. Then τ(p) is also a prime ideal of R, and

τp : Rp 3
a

s
7→ τ(a)

τ(s)
∈ Rτ(p)

is an isomorphism of rings. Furthermore f induces τp-homomorphism

(5.1) fp : Mp 3
m

s
7→ f(m)

τ(s)
∈ Nτ(p).

Clearly, if L is an R-submodule of M , then fp(Lp) is an Rτ(p)-submodule of Nτ(p).

Example 5.1. Let a ∈ Zd, and let τa be an automorphism of F [s] defined by f(s) 7→
f(s+a). Let Q = taq(s) ∈ D(RA)a, and let M be a Zd-graded left D(RA)-module. Then
Q× : Mb 3 m 7→ Qm ∈ Ma+b is a τ−a-homomorphism; for g(s) ∈ F [s] and m ∈ Mb

Q(g(s)m) = taq(s)g(s)m = g(s − a)taq(s)m = g(s − a)Q(m).

For a Zd-graded right D(RA)-module M , ×Q : Mb 3 m 7→ mQ ∈ Ma+b is a τa-
homomorphism.

Let R be a commutative Noetherian ring, and N a finitely generated R-module. If p
is a minimal prime of N , then Np is an Artinian Rp-module, and Np has a composition
series (see e.g. Eisenbud, 1995, Corollary 2.18); we denote its length by lengthRp(Np).

Lemma 5.2. Let M be a Zd-graded left (resp. right) D(RA)-module. Let p be a prime
ideal of F [s] with dim F [s]/p = δ(M). Suppose that p + a ∼ p + b (resp. p − a ∼ p − b).
Then

lengthF [s]p+a
(Ma)p+a = lengthF [s]p+b

(Mb)p+b,(
resp. lengthF [s]p−a

(Ma)p−a = lengthF [s]p−b
(Mb)p−b

)
.

Proof. From now on, we prove assertions only in the left module case. The proofs in the
right module case are similar.

Since p + a ∼ p + b, we have

I(Ω(b − a)) 6⊆ p + a, I(Ω(a − b)) 6⊆ p + b.
6



Take

qa(s) ∈ I(Ω(b − a)) \ (p + a), qb(s) ∈ I(Ω(a − b)) \ (p + b),

and put

Qa := tb−aqa(s), Qb := ta−bqb(s).

Then

Qa : Ma → Mb, Qb : Mb → Ma

are a τa−b-homomorphism and a τb−a-homomorphism, respectively. They induce

(5.2) (Qa)p+a : (Ma)p+a → (Mb)p+b, (Qb)p+b : (Mb)p+b → (Ma)p+a.

Furthermore we have

QbQa = ta−bqb(s)t
b−aqa(s) = qb(s + b − a)qa(s).

Since qb(s) /∈ p + b means qb(s + b − a) /∈ p + a, we have

QbQa = qb(s + b − a)qa(s) /∈ p + a.

Similarly

QaQb = qa(s + a − b)qb(s) /∈ p + b.

Hence from (5.2) we obtain

lengthF [s]p+a
(Ma)p+a = lengthF [s]p+b

(Mb)p+b.

¤
Let M ∈ Õ. We know that the set Suppδ(M)(M) is finite by Proposition 4.6. Let

p ∈ Suppδ(M)(M). Then by Lemma 5.2 if p + a ∼[p] p + b, then lengthF [s]p+a
Ma =

lengthF [s]p+b
Mb.

Notation. Let M ∈ Õ (resp. RÕ). Set

deg M :=
∑

p∈Suppδ(M)(M)

∑
p+a∈[p]/∼[p]

lengthF [s]p+a
Ma.

(resp. deg M :=
∑

p∈RSuppδ(M)(M)

∑
p−a∈[p]/∼[p]

lengthF [s]p−a
Ma.)

The following lemma is clear from the definitions.

Lemma 5.3. Let M ∈ Õ (resp. RÕ).

(1) If M 6= 0, then deg M 6= 0.

(2) Let 0 → L → M → N → 0 be an exact sequence in Õ (resp. RÕ). Then
(a) If δ(M) = δ(N), then deg M ≥ deg N .
(b) If δ(M) = δ(N) and deg M = deg N , then δ(L) < δ(M).
(c) If δ(L) = δ(M), then deg L ≤ deg M .
(d) If δ(L) = δ(M) and deg L = deg M , then δ(N) < δ(M).

(3) Let

M = M0 ⊇ M1 ⊇ M2 ⊇ · · · ⊇ Mi ⊇ · · ·
be a descending chain in Õ (resp. RÕ). Then there exist at most deg M i’s such
that δ(Mi/Mi+1) = δ(M).
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6. Krull dimension

In this section we consider the Krull dimension for the category Õ (resp. RÕ) in the
sense of (Gabriel, 1962) and (Rentschler, Gabriel, 1967), which we simply call it Krull
dimension.

Notation. Let M ∈ Õ (resp. RÕ). Then we denote by Kdim M the Krull dimension for
the lattice of Zd-graded D(RA)-submodules.

Theorem 6.1. Let M ∈ Õ (resp. RÕ). Then

Kdim M = δ(M).

Proof. Let M ∈ Õ.
First δ(M) < 0 if and only if M = 0 if and only if Kdim M < 0.
Next let M 6= 0, and let δ := δ(M). We prove Kdim M = δ by induction on δ.
By Lemma 4.2 and (McConnel-Robson, 1987, Lemma 6.2.4) we may assume that M

is cyclic. Furthermore, by shifting its grading if necessary, we may assume that M =
D(RA)M0. We know δ = dimF [s] M0 by Lemma 4.3.

Let p1, . . . , pl be the minimal primes of M0 with dim F [s]/pj = δ for j ≤ k, and < δ
for j > k. Then Suppδ(M) = {p1, . . . , pk}. By Lemma 4.2 and (McConnel-Robson, 1987,
Lemma 6.2.4) again, we may assume that k = 1 and deg M = 1.

Let
M = M0 ⊇ M1 ⊇ · · · ⊇ Mm ⊇ · · ·

be a descending chain of Zd-graded D(RA)-modules. Suppose that δ(Mi/Mi+1) = δ. Then
clearly δ(M/Mi+1) = δ. Since deg M/Mi+1 = 1 = deg M , by Lemma 5.3 δ(Mi+1) < δ.
Hence δ(Mj/Mj+1) < δ for all j > i. By the induction hypothesis, Kdim (Mj/Mj+1) < δ
for all j > i. Therefore we have proved that Kdim M ≤ δ.

Finally we prove the inequality Kdim M ≥ δ. Let N1 ( N2 be proper F [s]-submodules
of M0. Then D(RA)N1 ( D(RA)N2 are proper Zd-graded D(RA)-submodules of M , since
(D(RA)Ni)0 = Ni (i = 1, 2). Hence

Kdim M ≥ dimF [s] M0 = δ.

¤
The following is clear from Theorem 6.1, and also from the non-graded version (Musson,

Van den Bergh, 1998, Theorem 8.1.2).

Corollary 6.2. As D(RA) ∈ Õ (resp. RÕ),

Kdim D(RA) = d.

7. Critical modules

Let R be a left (resp. right) Noetherian ring. An R-module M of Krull dimension δ
is said to be δ-critical if Kdim (M/N) < δ for all nonzero R-submodules N of M . The
0-critical modules are precisely the simple modules. Hence critical modules play a funda-
mental role in the theory of Noetherian modules. (See for example (Goodearl, Warfield,
1989; Lenagan, 2000; McConnel, Robson 1987).) In this section, we characterize critical
Zd-graded D(RA)-modules (Theorem 7.4), and explicitly describe cyclic ones (Theorem
7.7).

The following lemma is clear from the definitions.
8



Lemma 7.1. Let R be a commutative Noetherian ring, and M a finitely generated R-
module. Then M is critical if and only if there exists a prime ideal p of R such that
Ass(M) = {p}, and lengthRp(Mp) = 1, where Ass(M) denotes the set of associated primes
of M . If this is the case, then AnnRM = p.

Lemma 7.2. Suppose that M is a δ-critical Zd-graded left (resp. right) D(RA)-module.
Then for each a ∈ Zd the F [s]-module Ma is δ-critical if it is not zero.

Proof. First suppose that dim Ma = δ. Let N be a nonzero F [s]-submodule of Ma with
dim Ma/N = δ′. Then by Theorem 6.1

Kdim (M/D(RA)N) ≥ dimF [s](M/D(RA)N)a = dimF [s](Ma/N) = δ′.

Since M is δ-critical, δ′ < δ. Hence Ma is δ-critical.
Next suppose that 0 6= dimF [s] Ma < δ. Then there exists b such that Kdim M =

dimF [s] Mb = δ. Consider the submodule D(RA)Ma of M . Then

Kdim M/D(RA)Ma ≥ dimF [s](M/D(RA)Ma)b = dimF [s](Mb/D(RA)b−aMa).

We know by the proof of Lemma 4.3

dimF [s] D(RA)b−aMa ≤ dimF [s] Ma < δ.

Hence
Kdim M/D(RA)Ma ≥ dimF [s] Mb = δ,

which contradicts the fact that M is critical. Hence there exists no nonzero Ma with
dimF [s] Ma < δ. ¤

Let M be a critical Zd-graded left (resp. right) D(RA)-module with Ma 6= 0. Then by
Lemmas 7.1 and 7.2 there exists a prime ideal p of F [s] such that Ass(Ma) = {p}. By
considering the shift M [a], we may assume that M0 6= 0.

Proposition 7.3. Let p be a prime ideal of F [s] with dim F [s]/p = δ. Suppose that M is
a δ-critical Zd-graded left (resp. right) D(RA)-module with Ass(M0) = {p}. Then

(1) M ∈ Õp (resp. M ∈ RÕp).
(2) Ma = 0 if p 6∼ p + a (resp. p 6∼ p − a).
(3) Ass(Ma) = {p + a} if p ∼ p + a. (resp. Ass(Ma) = {p − a} if p ∼ p − a.)

Proof. Suppose that D(RA)−aMa = 0. Then

dimF [s](M/D(RA)Ma)0 = dimF [s](M0/D(RA)−aMa) = dimF [s](M0) = δ,

which means Kdim (M/D(RA)Ma) = δ. Since M is δ-critical, D(RA)Ma = 0, and hence
Ma = 0.

Let Ma 6= 0, and q ∈ Ass(Ma). Then by Lemmas 7.1 and 7.2 we have Ass(Ma) = {q}
and q = AnnF [s]Ma. By (4.1)

AnnF [s](D(RA)−aMa) ⊇ AnnF [s]Ma − a = q − a.

By the first paragraph of the proof, D(RA)−aMa 6= 0. Since AnnF [s](x) = p for each
nonzero element x ∈ D(RA)−aMa ⊆ M0, we have

AnnF [s](D(RA)−aMa) = p.

Hence q ⊆ p + a. Then q = p + a, since dim F [s]/p = Kdim M , and thus Ass(Ma) =
{p + a}.
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Suppose that p ∼ p + a. Then by Lemma 5.2 Ma 6= 0. Hence Ass(Ma) = {p + a} by
the previous paragraph.

Finally suppose that p 6∼ p + a. Then I(Ω(a)) ⊆ p or I(Ω(−a)) ⊆ p + a. Hence
I(Ω(−a) − a)I(Ω(a)) ⊆ p. Consider the submodule D(RA)(D(RA)aM0) of M . We have

(D(RA)(D(RA)aM0))0 = D(RA)−aD(RA)aM0

= t−aI(Ω(−a))taI(Ω(a))M0

= I(Ω(−a) − a)I(Ω(a))M0

⊆ pM0 = 0.

Since Kdim (M/D(RA)(D(RA)aM0)) ≥ dim(M/D(RA)(D(RA)aM0))0 = dim M0 = δ =
Kdim M , and since M is critical, D(RA)(D(RA)aM0) = 0. Hence D(RA)aM0 = 0. If
Ma 6= 0, then Ass(Ma) = {p + a}, and

Kdim M/D(RA)M0 ≥ dim(M/D(RA)M0)a = dim Ma/D(RA)aM0 = dim Ma = δ.

This contradicts the fact that M is critical. Therefore Ma = 0 in this case. ¤
Theorem 7.4. Let M be a finitely generated left (resp. right) Zd-graded D(RA)-module
with M0 6= 0. Then M is critical if and only if there exists a prime ideal p of F [s] such
that

(1) M ∈ Õp (resp. M ∈ RÕp).
(2) Ma = 0 if p 6∼ p + a (resp. p 6∼ p − a).
(3) Ma is a critical F [s]-module with Ass(Ma) = {p+a} if p ∼ p+a (resp. Ass(Ma) =

{p − a} if p ∼ p − a).

Proof. Proposition 7.3 is the only-if part.
Assume the conditions (1) through (3). Suppose that p ∼ p + a. Let N be a nonzero

F [s]-submodule of Ma. Consider the quotient M/D(RA)N .
First let p 6∼ p + b. Then (M/D(RA)N)b = 0, since Mb = 0.
Next let p ∼ p + b. Then p + a ∼ p + b. By Lemma 5.2

lengthF [s]p+b
((D(RA)N)b)p+b = lengthF [s]p+a

((D(RA)N)a)p+a = lengthF [s]p+a
Np+a

= 1

= lengthF [s]p+a
(Ma)p+a = lengthF [s]p+b

(Mb)p+b.

Hence

dimF [s](M/D(RA)N)b < dimF [s] Mb = Kdim M.

Therefore Kdim M/D(RA)N < Kdim M . ¤
Example 7.5. Let p be a prime ideal of F [s], and let δ = dim F [s]/p. Let LL(p) =⊕

a∈Zd
LL(p)a (resp. RL(p) =

⊕
a∈Zd

RL(p)a) be the cyclic Zd-graded left (resp. right)
D(RA)-module LL(p) = D(RA)/LI(p) (resp. RL(p) = D(RA)/RI(p)) with

LI(p)a =

{
ta(I(Ω(a)) ∩ p) (p ∼[p] p + a)
D(RA)a (otherwise).(

resp. RI(p)a =

{
(I(Ω(a) + a) ∩ p)ta (p ∼[p] p − a)
D(RA)a (otherwise).

)
Then LL(p) (resp. RL(p)) is δ-critical by Theorem 7.4.
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If p = m˛, then

LL(m˛)a =

{
taI(Ω(a))/ta(I(Ω(a)) ∩ m˛) (β ∼ β + a)
0 (otherwise)

= LL(β)˛+a.

(
resp. RL(m˛)a =

{
I(Ω(a) + a)ta/(I(Ω(a) + a) ∩ m˛)ta (β ∼ β − a)
0 (otherwise)

= RL(β)−˛+a.

)
Thus LL(m˛) = LL(β)[β] (resp. RL(m˛) = RL(β)[−β]). (See (Saito, 2007) for LL(β)
and RL(β).)

Example 7.6. Let n = d = 2, and let A = {t(1, 0), t(0, 1)}. Then D = D(RA) is the
second Weyl algebra F 〈t1, t2, ∂1, ∂2〉. Let p be the prime ideal 〈s1〉 of F [s]. We know

I(Ω(c)) = 〈
∏
ci<0

−ci−1∏
m=0

(si − m)〉.

Hence

I(Ω(c)) ⊆ p ⇔ c1 < 0,

or equivalently

p ¹ p + c ⇔ c1 ≥ 0.

Similarly we see that we always have p + c ¹ p. Therefore

p ∼ p + c ⇔ c1 ≥ 0.

Set

LL(p)c =

{
tcI(Ω(c))/tc(I(Ω(c)) ∩ p) (c1 ≥ 0)
0 (otherwise).

Then LL(p) = D/(Ds1 +
∑

c1<0 Dc) = D/D∂1 is 1-critical.

Theorem 7.7. Let M be a δ-critical Zd-graded left (resp. right) D(RA)-module generated
by one element v ∈ M0 with AnnF [s](v) = p. Then M is isomorphic to LL(p) (resp.
RL(p)).

Proof. Let K = AnnD(RA)(v). Hence M ' D(RA)/K.
First we prove that K ⊆ LI(p). Let p + a 6∼ p. Then Ka = LI(p)a = D(RA)a. Let

p + a ∼ p. Let P = tap(s) ∈ D(RA)a annihilate v. Suppose that p /∈ p. Then, since
p + a ∼ p, by the proof of Lemma 5.2 there exists Q ∈ D(RA)−a such that v = QPv as
elements in (M0)p. This is a contradiction; v is not zero, while P annihilate v. Hence
p ∈ p. Thus we have proved the inclusion K ⊆ LI(p).

Next suppose that K ( LI(p). Let x ∈ LI(p)a \Ka, and x its image in D(RA)/K ' M .
Since M is δ-critical,

δ = Kdim LL(p) ≤ Kdim M/D(RA)x < Kdim M = δ.

Hence we conclude that K = LI(p). ¤
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