CRITICAL MODULES
OF THE RING OF DIFFERENTIAL OPERATORS
OF AN AFFINE SEMIGROUP ALGEBRA

MUTSUMI SAITO

Abstract. Let \(D \) be the ring of differential operators of an affine semigroup algebra. Regarding the Krull dimension of finitely generated \(\mathbb{Z}^d \)-graded \(D \)-modules, we characterize critical \(\mathbb{Z}^d \)-graded \(D \)-modules. Moreover we explicitly describe cyclic ones.

Mathematics Subject Classification (2000): Primary 13N10; Secondary 16S32.

Keywords: Critical modules, rings of differential operators, affine semigroup algebras

1. Introduction

Critical modules were introduced by Hart (1971) and Goldie (1972). They are the modules whose quotient by any nonzero submodule has strictly smaller Krull dimension (in the sense of (Gabriel, 1962) and (Rentschler, Gabriel, 1967)). The critical modules of Krull dimension 0 are precisely the simple modules. The notions of Krull dimension and critical modules enable us to use Artinian type method to Noetherian rings (see e.g. (Goodearl, Warfield, 1989; Lenagan, 2000; McConnel, Robson, 1987)).

Let \(F \) be an algebraically closed field of characteristic 0. Let \(A := \{ a_1, a_2, \ldots, a_n \} \) be a finite subset of \(\mathbb{Z}^d \). The preorder \(a \preceq b \) was defined; the equivalence relation induced from \(\preceq \) was used for the classifications of \(\mathbb{Z}^d \)-graded simple modules and \(A \)-hypergeometric systems (Musson, Van den Bergh, 1998; Saito, 2001; Saito, Traves, 2001; Saito, 2007). This preorder is for maximal ideals of the polynomial ring \(F[s_1, \ldots, s_d] \).

In Section 3, we generalize this for prime ideals, suitable for considering critical modules.

In Section 4, we introduce \(\mathcal{O} \) (resp. \(R\mathcal{O} \)), the category of \(\mathbb{Z}^d \)-graded finitely generated left (resp. right) \(D(R_A) \)-modules. For an object \(M = \bigoplus_{a \in \mathbb{Z}^d} M_a \in \mathcal{O} \) (resp. \(R\mathcal{O} \)), we
define $\delta(M)$ by
\[
\delta(M) := \max_{a} \dim_{F[a]} M_a.
\]

In Section 5, we define $\deg(M)$ for $M \in O$ (resp. $R\tilde{O}$) so that, for a descending chain
\[M = M_0 \supseteq M_1 \supseteq M_2 \supseteq \cdots \supseteq M_i \supseteq \cdots, \]
there exist at most $\deg(M)$ i’s such that $\delta(M_i/M_{i+1}) = \delta(M)$.

In Section 6, we prove that δ gives the Krull dimension for the category \tilde{O} (resp. $R\tilde{O}$). In Section 7, we characterize critical \mathbb{Z}^d-graded $D(R_A)$-modules (Theorem 7.4), and explicitly describe cyclic ones (Theorem 7.7).

2. RINGS OF DIFFERENTIAL OPERATORS OF AFFINE SEMIGROUP ALGEBRAS

In this section, we briefly recall some fundamental facts about the rings of differential operators of affine semigroup algebras. Let F be an algebraically closed field of characteristic 0. Let $A := \{ a_1, a_2, \ldots, a_n \}$ be a finite set of column vectors in \mathbb{Z}^d, and $\mathcal{N}A$ the monoid generated by A. Throughout this paper, we assume that \mathbb{Z}^d is generated by A as an abelian group for simplicity.

The ring $F[t_1^{\pm1}, \ldots, t_d^{\pm1}][\partial_1, \ldots, \partial_d]$ of differential operators with Laurent polynomial coefficients is the ring of differential operators on the algebraic torus $(F^\times)^d$, where $[\partial_i, t_j] = \delta_{ij}$, $[\partial_i, t_j^{-1}] = -\delta_{ij}t_j^{-2}$, and the other pairs of generators commute. Here $[,]$ denotes the commutator, and δ_{ij} is 1 if $i = j$ and 0 otherwise.

The semigroup algebra $R_A := F[\mathcal{N}A] = \bigoplus_{a \in \mathcal{N}A} Ft^a$ is the ring of regular functions on the affine toric variety defined by A, where $t^a = t_1^{a_1}t_2^{a_2}\cdots t_d^{a_d}$ for $a = t(a_1, a_2, \ldots, a_d)$. Its ring of differential operators $D(R_A)$ can be realized as a subring of the ring
\[
F[t_1^{\pm1}, \ldots, t_d^{\pm1}][\partial_1, \ldots, \partial_d]
\]
of differential operators on the big torus as follows:
\[
D(R_A) = \{ P \in F[t_1^{\pm1}, \ldots, t_d^{\pm1}][\partial_1, \ldots, \partial_d] : P(R_A) \subset R_A \}.
\]

Put $s_j := t_j\partial_j$ for $j = 1, 2, \ldots, d$. Then it is easy to see that $s_j \in D(R_A)$ for all j. We introduce a \mathbb{Z}^d-grading on the ring $D(R_A)$ as follows: For $a = t(a_1, a_2, \ldots, a_d) \in \mathbb{Z}^d$, set
\[
D(R_A)_a := \{ P \in D(R_A) : [s_j, P] = a_jP \text{ for } j = 1, 2, \ldots, d \}.
\]
Then $D(R_A) = \bigoplus_{a \in \mathbb{Z}^d} D(R_A)_a$.

By regarding $D(R_A)_a$ as a subset of $F[t_1^{\pm1}, \ldots, t_d^{\pm1}][\partial_1, \ldots, \partial_d]$, we see that there exists an ideal I of $F[\mathcal{N}A] := F[s_1, \ldots, s_d]$ such that $D(R_A)_a = t^aI$. To describe this ideal I explicitly, we define a subset $\Omega(a)$ of the semigroup $\mathcal{N}A$ by
\[
\Omega(a) = \{ b \in \mathcal{N}A : b + a \not\in \mathcal{N}A \} = \mathcal{N}A \setminus (-a + \mathcal{N}A).
\]
Then each $D(R_A)_a$ is described as follows.

Theorem 2.1 (Theorem 2.3 in [Musson, 1987]).
\[
D(R_A)_a = t^a\mathbb{I}(\Omega(a)) \quad \text{for all } a \in \mathbb{Z}^d,
\]
where
\[
\mathbb{I}(\Omega(a)) := \{ f(s) \in F[\mathcal{N}A] := F[s_1, \ldots, s_d] : f \text{ vanishes on } \Omega(a) \}.
\]
In particular, we have for each \(a \in NA \)
\[
D(R_A)_a = t^a F[s] = F[s] t^a,
\]
since \(\Omega(a) = \emptyset \) in this case.

3. Equivalence relations

In this section, for a prime ideal \(p \) of \(F[s] \), we define a preorder \(\preceq_{[p]} \) and an equivalence relation \(\sim_{[p]} \), which are generalizations of those considered in (Musson, Van den Bergh, 1998; Saito, 2001; Saito, Traves, 2001; Saito, 2007) for maximal ideals (Proposition 3.3 and Remark 3.4). This equivalence relation plays a central role in this paper.

Notation. For an ideal \(I \) of \(F[s] \) and \(c \in \mathbb{Z}^d \), we define a new ideal \(I + c \) by
\[
I + c := \{ f(s - c) : f(s) \in I \}.
\]

We clearly have the following.

Proposition 3.1.

1. \(\mathbb{I}(V) + c = \mathbb{I}(V + c) \).
2. \(m_a + (b - a) = m_b \), where \(m_a \) is the maximal ideal \(\langle s_1 - a_1, \ldots, s_d - a_d \rangle \) for \(a = t^i(a_1, \ldots, a_d) \in F^d \).
3. If \(p \) is prime, then so is \(p + c \).

Let \(p \) be a prime ideal of \(F[s] \). We shall introduce an equivalence relation in
\[
[p] := \{ p + c : c \in \mathbb{Z}^d \}.
\]

Notation. We write \(p \preceq_{[p]} p + c \) (or simply \(p \preceq p + c \)) if \(\mathbb{I}(\Omega(c)) \nsubseteq p \).

Recall that a binary relation is called a *preorder* if it is reflexive and transitive.

Proposition 3.2. The relation \(\preceq_{[p]} \) is a preorder in the set \([p]\).

Proof. First, since \(\mathbb{I}(\Omega(0)) = (1) \nsubseteq p \), we have \(p \preceq_{[p]} p \).

Second, let \(p \preceq_{[p]} p + a \) and \(p + a \preceq_{[p]} p + b \). Then we have \(\mathbb{I}(\Omega(a)) \nsubseteq p \) and \(\mathbb{I}(\Omega(b)) \nsubseteq p + a \). The latter is equivalent to \(\mathbb{I}(\Omega(b) - a) \nsubseteq p \). Since \(p \) is prime, we have
\[
\mathbb{I}(\Omega(a)) \mathbb{I}(\Omega(b) - a) \nsubseteq p.
\]

From the inclusion \(D(R_A)_b D(R_A)_a \subseteq D(R_A)_{a+b} \), we obtain
\[
\mathbb{I}(\Omega(a)) \mathbb{I}(\Omega(b) - a) \subseteq \mathbb{I}(\Omega(a + b)).
\]

Hence we have
\[
\mathbb{I}(\Omega(a + b)) \nsubseteq p,
\]
or equivalently
\[
p \preceq_{[p]} p + a + b.
\]

Let \(a, b \in F^d \). In (Saito, Traves, 2001, Definition 4.1.1) a preorder \(a \preceq b \) was defined by \(E_\tau(a) \subseteq E_\tau(b) \) for all faces \(\tau \) of the cone \(\mathbb{R}_{\geq 0} A \) generated by \(A \), where
\[
E_\tau(a) = \{ \lambda \in F(A \cap \tau)/\mathbb{Z}(A \cap \tau) : a - \lambda \in NA + \mathbb{Z}(A \cap \tau) \}.
\]

Here \(\mathbb{Z}(A \cap \tau) \) and \(F(A \cap \tau) \) are the abelian group and the vector space generated by \(A \cap \tau \), respectively. Our preorder is its generalization in the following sense.

Proposition 3.3. \(m_a \preceq m_b \) if and only if \(a \preceq b \).
Proof.\[m_a \preceq m_b \iff m_a + (b - a) \preceq m_a \preceq (b - a) \]
\[\iff \mathbb{I}(\Omega(b - a)) \not\subseteq m_a \]
\[\iff a \not\in ZC(\Omega(b - a)) \]
\[\iff a \preceq b.\]

Here ZC stands for taking Zariski closure in \(F^d\), and the last equivalence follows from (Saito, Traves, 2001, Lemma 4.1.4). \(\square\)

Notation. The preorder \(\preceq_{[p]}\) induces an equivalence relation in \([p]\); we write \(p \sim_{[p]} p + c\) (or simply \(p \sim p + c\)) if \(p \preceq_{[p]} p + c\) and \(p + c \preceq_{[p]} p\).

Remark 3.4. In (Musson, Van den Bergh, 1998, Lemma 3.1.9 (3)), a similar preorder \(a \Rightarrow b\) was defined by \(\mathbb{I}(\Omega(b - a) - (a - c))\mathbb{I}(\Omega(a - c)) \subseteq \mathbb{I}(\Omega(b - c))\mathbb{I}c\). The preorders \(a \preceq b\) and \(a \Rightarrow b\) induce the same equivalence relation (Musson, Van den Bergh, 1998, Lemma 3.1.9 (5); Saito, 2007, Theorem 4.10).

Proposition 3.5. Let \(p \subseteq q\) be prime ideals. Then, for \(c \in \mathbb{Z}^d\), \(q \preceq_{[q]} q + c\) implies \(p \preceq_{[p]} p + c\). Hence \(q \sim_{[q]} q + c\) implies \(p \sim_{[p]} p + c\).

Proof. This follows from the fact that \(\mathbb{I}(\Omega(c)) \not\subseteq q\) implies \(\mathbb{I}(\Omega(c)) \not\subseteq p\). \(\square\)

Corollary 3.6. Let \(p\) be a prime ideal of \(F[s]\). Then \([p]\) has only a finite number of equivalence classes.

Proof. Let \(m_a\) be a maximal ideal containing \(p\). Let \(m_b \in [m_a]\), or equivalently let \(b \in a + \mathbb{Z}^d\). Then, for a face \(\tau\) and an element \(\lambda \in F(A \cap \tau)\),
\[a - \lambda \in \mathbb{Z}^d \iff b - \lambda \in \mathbb{Z}^d.\]

If such \(\lambda\) does not exist, then \(E_s(a) = E_s(b) = \emptyset\) (see (3.1) for the definition of \(E_s(a)\)). If such \(\lambda\) exists, then \(E_s(a)\) and \(E_s(b)\) are contained in the finite set \((\lambda + \mathbb{Q}(A \cap \tau) \cap \mathbb{Z}^d) / \mathbb{Z}(A \cap \tau)\) (see the proof of (Saito, 2001, Proposition 2.3 (1))). Therefore \([m_a]\) has only a finite number of equivalence classes by Proposition 3.3. Hence by Proposition 3.5 we conclude that \([p]\) also has only a finite number of equivalence classes. \(\square\)

4. Categories \(\widetilde{O}\)

We say that a left (resp. right) \(D(R_A)\)-module \(M\) is \(\mathbb{Z}^d\)-graded if \(M\) has a decomposition \(M = \bigoplus_{b \in \mathbb{Z}^d} M_b\) satisfying \(D(R_A)aM_b \subseteq M_{a+b}\) (resp. \(M_bD(R_A)a \subseteq M_{a+b}\)) for all \(a \in \mathbb{Z}^d\) and all \(b \in \mathbb{Z}^d\).

Notation. Let \(\widetilde{O}\) (resp. \(R\widetilde{O}\)) denote the category of \(\mathbb{Z}^d\)-graded finitely generated left (resp. right) \(D(R_A)\)-modules \(M = \bigoplus_{a \in \mathbb{Z}^d} M_a\).

Lemma 4.1. Let \(M = \bigoplus_{a \in \mathbb{Z}^d} M_a \in \widetilde{O}\) (resp. \(M \in R\widetilde{O}\)). Then each \(M_a\) is a finitely generated \(F[s]\)-module.

Proof. Suppose that \(M\) is generated by \(v_1, \ldots, v_m\) with \(v_j \in M_{a_j}\) \((j = 1, \ldots, m)\). Then the assertion is clear from the fact that each \(D(R_A)a_{-b_j}\) is finitely generated as a \(F[s]\)-module. \(\square\)
Notation. For $M = \bigoplus_{a \in \mathbb{Z}^d} M_a \in \tilde{\mathcal{O}}$ (resp. $^R\tilde{\mathcal{O}}$), set
$$\delta(M) := \max_a \dim_{F[s]} M_a.$$ If $0 \to L \to M \to N \to 0$ is an exact sequence of \mathbb{Z}^d-graded $D(R_A)$-modules, then $0 \to L_a \to M_a \to N_a \to 0$ is exact for each a. Hence we have the following.

Lemma 4.2. Let $0 \to L \to M \to N \to 0$ be an exact sequence in $\tilde{\mathcal{O}}$ (resp. $^R\tilde{\mathcal{O}}$). Then
$$\delta(M) = \max\{\delta(L), \delta(N)\}.$$

Lemma 4.3. Let $M = \bigoplus_{a \in \mathbb{Z}^d} M_a \in \tilde{\mathcal{O}}$ (resp. $^R\tilde{\mathcal{O}}$). Suppose that M is generated by M_{b_1}, \ldots, M_{b_m}. Then
$$\delta(M) = \max_{1 \leq i \leq m} \dim_{F[s]} M_{b_i}.$$

Proof. Let $M \in \tilde{\mathcal{O}}$. It suffices to prove that $\dim M_b \geq \dim D(R_A)_a M_b$ for all $a, b \in \mathbb{Z}^d$. It follows from $D(R_A)_a = t^a \mathbb{I}(\Omega(a)) \subseteq t^a F[s]$ that
$$\text{(Ann}_{F[s]}(M_b) + a) \subseteq \text{Ann}_{F[s]}(D(R_A)_a M_b).$$ (Here $\text{Ann}_{F[s]}(M_b)$ denotes the annihilator of the $F[s]$-module M_b.) Hence $p + a \in \text{Supp}(D(R_A)_a M_b)$ (resp. $p - a \in \text{Supp}(M_b D(R_A)_a)$ for a right module) implies $p \in \text{Supp}(M_b)$. We have thus proved the assertion. \hfill \Box

Notation. Let p be a prime ideal of $F[s]$. Let $\tilde{\mathcal{O}}_p$ (resp. $^R\tilde{\mathcal{O}}_p$) denote the subcategory of $\tilde{\mathcal{O}}$ (resp. $^R\tilde{\mathcal{O}}$) consisting of $M = \bigoplus_{a \in \mathbb{Z}^d} M_a$ such that, for all $a \in \mathbb{Z}^d$, all minimal primes of the finitely generated $F[s]$-module M_a contain $p + a$ (resp. $p - a$).

Remark 4.4. Let $a \in \mathbb{Z}^d$. Then by definition $M \in \tilde{\mathcal{O}}_p$ if and only if $M[a] \in \tilde{\mathcal{O}}_{p+a}$ (resp. $M \in ^R\tilde{\mathcal{O}}_p$ if and only if $M[a] \in ^R\tilde{\mathcal{O}}_{p-a}$), where $M[a]$ is defined by $M[a]_b = M_{a+b}$ for all $b \in \mathbb{Z}^d$.

Remark 4.5. Let $\beta \in F^d$. Then the category $\tilde{\mathcal{O}}_{M\beta}$ consists of a finitely generated \mathbb{Z}^d-graded $D(R_A)$-module $M = \bigoplus_{a \in \mathbb{Z}^d} M_a$ such that, for all a, $(m_{\beta+a})^n M_a = 0$ ($n \gg 0$). An object of $\tilde{\mathcal{O}}_{M\beta}$ is an object of the category $\mathcal{O}_{\beta+Z^d}$ (Musson, Van den Bergh, 1998, p. 12).

Notation. Let $M \in \tilde{\mathcal{O}}$ (resp. $^R\tilde{\mathcal{O}}$), and $\delta \in \mathbb{N}$. Set
$$\text{Supp}_\delta(M) := \{p \in \text{Spec } F[s] : \text{dim } F[s]/p = \delta, \ p + a \in \text{Supp}(M_a) \text{ for some } a\}.\ (\text{resp. } ^R\text{Supp}_\delta(M) := \{p \in \text{Spec } F[s] : \text{dim } F[s]/p = \delta, \ p - a \in \text{Supp}(M_a) \text{ for some } a\}).$$

Proposition 4.6. Let $M = \bigoplus_{a \in \mathbb{Z}^d} M_a \in \tilde{\mathcal{O}}$ (resp. $^R\tilde{\mathcal{O}}$). Then the set $\text{Supp}_\delta(M)$ (resp. $^R\text{Supp}_\delta(M)$) is finite.
Lemma 5.2. Suppose that M is generated by M_{b_1}, \ldots, M_{b_l}, and let $\{\mathfrak{p}_{kl} : l\}$ be the set of minimal primes of the $F[s]$-module M_{b_k}. Suppose that $q \in \text{Supp}_{F[s]}(M_{a})$. Then there exists k such that $q \in \text{Supp}_{F[s]}(D(R_A)_{a-b_k}M_{b_k})$. By the inclusion (4.1), we have $q + b_k - a \in \text{Supp}(M_{b_k})$. Hence there exists l such that $q + b_k - a \supseteq \mathfrak{p}_{kl}$, or $q \supseteq \left(\mathfrak{p}_{kl} - b_k\right) + a$.

Hence we have

$$\text{Supp}_{\delta(M)}(M) = \{\mathfrak{p}_{kl} - b_k : \dim F[s]/\mathfrak{p}_{kl} = \delta(M)\}.$$

(For $M \in R\tilde{\Omega}$, $R\text{Supp}_{\delta(M)}(M) = \{\mathfrak{p}_{kl} + b_k : \dim F[s]/\mathfrak{p}_{kl} = \delta(M)\}$, respectively.) □

5. Degree of Modules

Let $\tau : R \to R'$ be an isomorphism of commutative rings. Let M be an R-module, N an R'-module. A Z-module homomorphism $f : M \to N$ is called a τ-homomorphism if $f(um) = \tau(a)f(m)$ for $a \in R$ and $m \in M$.

Let $\tau : R \to R$ be an automorphism, and $f : M \to N$ a τ-homomorphism. Let \mathfrak{p} be a prime ideal of R. Then $\tau(\mathfrak{p})$ is also a prime ideal of R, and

$$\tau_p : R_p \ni \frac{a}{s} \mapsto \frac{\tau(a)}{\tau(s)} \in R_{\tau(\mathfrak{p})}$$

is an isomorphism of rings. Furthermore f induces τ_p-homomorphism

$$(5.1) \quad f_p : M_p \ni \frac{m}{s} \mapsto \frac{f(m)}{\tau(s)} \in N_{\tau(\mathfrak{p})}.$$

Clearly, if L is an R-submodule of M, then $f_p(L_p)$ is an $R_{\tau(\mathfrak{p})}$-submodule of $N_{\tau(\mathfrak{p})}$.

Example 5.1. Let $a \in \mathbb{Z}^d$, and let τ_a be an automorphism of $F[s]$ defined by $f(s) \mapsto f(s+a)$. Let $Q = t^a q(s) \in D(R_A)_a$, and let M be a \mathbb{Z}^d-graded left $D(R_A)$-module. Then $Q \times : M_b \ni m \mapsto Qm \in M_{a+b}$ is a τ_a-homomorphism; for $g(s) \in F[s]$ and $m \in M_b$

$$Q(g(s)m) = t^a q(s)g(s)m = g(s-a)t^a q(s)m = g(s-a)Q(m).$$

For a \mathbb{Z}^d-graded right $D(R_A)$-module M, $\times Q : M_b \ni m \mapsto Qm \in M_{a+b}$ is a τ_a-homomorphism.

Let R be a commutative Noetherian ring, and N a finitely generated R-module. If \mathfrak{p} is a minimal prime of N, then $N_{\mathfrak{p}}$ is an Artinian $R_{\mathfrak{p}}$-module, and $N_{\mathfrak{p}}$ has a composition series (see e.g. Eisenbud, 1995, Corollary 2.18); we denote its length by $\text{length}_{R_{\mathfrak{p}}}(N_{\mathfrak{p}})$.

Lemma 5.2. Let M be a \mathbb{Z}^d-graded left (resp. right) $D(R_A)$-module. Let \mathfrak{p} be a prime ideal of $F[s]$ with $\dim F[s]/\mathfrak{p} = \delta(M)$. Suppose that $\mathfrak{p} + a \sim \mathfrak{p} + b$ (resp. $\mathfrak{p} - a \sim \mathfrak{p} - b$). Then

$$\text{length}_{F[s]_{\mathfrak{p}+a}}(M_{a})_{\mathfrak{p}+a} = \text{length}_{F[s]_{\mathfrak{p}+b}}(M_{b})_{\mathfrak{p}+b},$$

(resp. $\text{length}_{F[s]_{\mathfrak{p}-a}}(M_{a})_{\mathfrak{p}-a} = \text{length}_{F[s]_{\mathfrak{p}-b}}(M_{b})_{\mathfrak{p}-b}$).

Proof. From now on, we prove assertions only in the left module case. The proofs in the right module case are similar.

Since $\mathfrak{p} + a \sim \mathfrak{p} + b$, we have

$$\mathbb{I}(\Omega(b-a)) \not\subseteq \mathfrak{p} + a, \quad \mathbb{I}(\Omega(a-b)) \not\subseteq \mathfrak{p} + b.$$
Lemma 5.3.\]

Let $M \in \tilde{O}$. We know that the set $\text{Supp}_{\delta(M)}(M)$ is finite by Proposition 4.6. Let $p \in \text{Supp}_{\delta(M)}(M)$. Then by Lemma 5.2 if $p + a \sim_p p + b$, then $\text{length}_{F[s]}(M)$.

Let $M \in \tilde{O}$ (resp. $R\tilde{O}$). Set

$$\text{deg } M := \sum_{p \in \text{Supp}_{\delta(M)}(M)} \text{length}_{F[s]}(M).$$

(resp. $\text{deg } M := \sum_{p \in \text{Supp}_{\delta(M)}(M)} \text{length}_{F[s]}(M)$.)

The following lemma is clear from the definitions.

Lemma 5.3. Let $M \in \tilde{O}$ (resp. $R\tilde{O}$).

1. If $M \neq 0$, then $\text{deg } M \neq 0$.
2. Let $0 \to L \to M \to N \to 0$ be an exact sequence in \tilde{O} (resp. $R\tilde{O}$). Then
 a. If $\delta(M) = \delta(N)$, then $\text{deg } M \geq \text{deg } N$.
 b. If $\delta(M) = \delta(N)$ and $\text{deg } M = \text{deg } N$, then $\delta(L) < \delta(M)$.
 c. If $\delta(L) = \delta(M)$, then $\text{deg } L \leq \text{deg } M$.
 d. If $\delta(L) = \delta(M)$ and $\text{deg } L = \text{deg } M$, then $\delta(N) < \delta(M)$.
3. Let $M = M_0 \supseteq M_1 \supseteq M_2 \supseteq \cdots \supseteq M_i \supseteq \cdots$ be a descending chain in \tilde{O} (resp. $R\tilde{O}$). Then there exist at most $\text{deg } M$'s such that $\delta(M_i/M_{i+1}) = \delta(M)$.

7
6. KRULL DIMENSION

In this section we consider the Krull dimension for the category \mathcal{O} (resp. $R\mathcal{O}$) in the sense of (Gabriel, 1962) and (Rentschler, Gabriel, 1967), which we simply call it Krull dimension.

Notation. Let $M \in \mathcal{O}$ (resp. $R\mathcal{O}$). Then we denote by $\text{Kdim} M$ the Krull dimension for the lattice of \mathbb{Z}^d-graded $D(R_A)$-submodules.

Theorem 6.1. Let $M \in \mathcal{O}$ (resp. $R\mathcal{O}$). Then

$$\text{Kdim} M = \delta(M).$$

Proof. Let $M \in \mathcal{O}$.

First $\delta(M) < 0$ if and only if $M = 0$ if and only if $\text{Kdim} M < 0$.

Next let $M \neq 0$, and let $\delta := \delta(M)$. We prove $\text{Kdim} M = \delta$ by induction on δ.

By Lemma 4.2 and (McConnel-Robson, 1987, Lemma 6.2.4) we may assume that M is cyclic. Furthermore, by shifting its grading if necessary, we may assume that $M = D(R_A)M_0$. We know $\delta = \dim_{F[s]} M_0$ by Lemma 4.3.

Let p_1, \ldots, p_l be the minimal primes of M_0 with $\dim F[s]/p_j = \delta$ for $j \leq k$, and $< \delta$ for $j > k$. Then $\text{Supp}_s(M) = \{p_1, \ldots, p_k\}$. By Lemma 4.2 and (McConnel-Robson, 1987, Lemma 6.2.4) again, we may assume that $k = 1$ and $\deg M = 1$.

Let $M = M_0 \supseteq M_1 \supseteq \cdots \supseteq M_m \supseteq \cdots$ be a descending chain of \mathbb{Z}^d-graded $D(R_A)$-modules. Suppose that $\delta(M_i/M_{i+1}) = \delta$. Then clearly $\delta(M_i/M_{i+1}) = \delta$. Since $\deg M/M_{i+1} = 1 = \deg M$, by Lemma 5.3 $\delta(M_{i+1}) < \delta$. Hence $\delta(M_j/M_{j+1}) < \delta$ for all $j > i$. By the induction hypothesis, $\text{Kdim} (M_j/M_{j+1}) < \delta$ for all $j > i$. Therefore we have proved that $\text{Kdim} M \leq \delta$.

Finally we prove the inequality $\text{Kdim} M \geq \delta$. Let $N_1 \subsetneq N_2$ be proper $F[s]$-submodules of M_0. Then $D(R_A)N_1 \subsetneq D(R_A)N_2$ are proper \mathbb{Z}^d-graded $D(R_A)$-submodules of M, since $(D(R_A)N_i)_0 = N_i (i = 1, 2)$. Hence

$$\text{Kdim} M \geq \dim_{F[s]} M_0 = \delta.$$

The following is clear from Theorem 6.1, and also from the non-graded version (Musson, Van den Bergh, 1998, Theorem 8.1.2).

Corollary 6.2. As $D(R_A) \in \mathcal{O}$ (resp. $R\mathcal{O}$),

$$\text{Kdim} D(R_A) = d.$$

7. CRITICAL MODULES

Let R be a left (resp. right) Noetherian ring. An R-module M of Krull dimension δ is said to be δ-critical if $\text{Kdim} (M/N) < \delta$ for all nonzero R-submodules N of M. The 0-critical modules are precisely the simple modules. Hence critical modules play a fundamental role in the theory of Noetherian modules. (See for example (Goodearl, Warfield, 1989; Lenagan, 2000; McConnel, Robson 1987).) In this section, we characterize critical \mathbb{Z}^d-graded $D(R_A)$-modules (Theorem 7.4), and explicitly describe cyclic ones (Theorem 7.7).

The following lemma is clear from the definitions.
Lemma 7.1. Let R be a commutative Noetherian ring, and M a finitely generated R-module. Then M is critical if and only if there exists a prime ideal p of R such that $\Ass(M) = \{p\}$, and $\length_{R_p}(M_p) = 1$, where $\Ass(M)$ denotes the set of associated primes of M. If this is the case, then $\Ann_R M = p$.

Lemma 7.2. Suppose that M is a δ-critical \mathbb{Z}^d-graded left (resp. right) $D(R_A)$-module. Then for each $a \in \mathbb{Z}^d$ the $F[s]$-module M_a is δ-critical if it is not zero.

Proof. First suppose that $\dim M_a = \delta$. Let N be a nonzero $F[s]$-submodule of M_a with $\dim M_a/N = \delta'$. Then by Theorem 6.1

$$K\dim (M/D(R_A)N) \geq \dim_{F[s]}(M/D(R_A)N_a) = \dim_{F[s]}(M_a/N) = \delta'.$$

Since M is δ-critical, $\delta' < \delta$. Hence M_a is δ-critical.

Next suppose that $0 \neq \dim_{F[s]} M_a < \delta$. Then there exists b such that $K\dim M = \dim_{F[s]} M_b = \delta$. Consider the submodule $D(R_A)M_a$ of M. Then

$$K\dim M/D(R_A)M_a \geq \dim_{F[s]}(M/D(R_A)M_a)_b = \dim_{F[s]}(M_b/D(R_A)_b-aM_a).$$

We know by the proof of Lemma 4.3

$$\dim_{F[s]} D(R_A)_b-aM_a \leq \dim_{F[s]} M_a < \delta.$$

Hence

$$K\dim M/D(R_A)M_a \geq \dim_{F[s]} M_b = \delta,$$

which contradicts the fact that M is critical. Hence there exists no nonzero M_a with $\dim_{F[s]} M_a < \delta$. \hfill \Box

Let M be a critical \mathbb{Z}^d-graded left (resp. right) $D(R_A)$-module with $M_a \neq 0$. Then by Lemmas 7.1 and 7.2 there exists a prime ideal p of $F[s]$ such that $\Ass(M_a) = \{p\}$. By considering the shift $M[a]$, we may assume that $M_0 \neq 0$.

Proposition 7.3. Let p be a prime ideal of $F[s]$ with $\dim F[s]/p = \delta$. Suppose that M is a δ-critical \mathbb{Z}^d-graded left (resp. right) $D(R_A)$-module with $\Ass(M_0) = \{p\}$. Then

1. $M \in \tilde{O}_p$ (resp. $M \in \tilde{R}_p$).
2. $M_a = 0$ if $p \not\sim p + a$ (resp. $p \not\sim p - a$).
3. $\Ass(M_a) = \{p + a\}$ if $p \sim p + a$. (resp. $\Ass(M_a) = \{p - a\}$ if $p \sim p - a$.)

Proof. Suppose that $D(R_A)_{-a}M_a = 0$. Then

$$\dim_{F[s]}(M/D(R_A)M_a)_0 = \dim_{F[s]}(M_0/D(R_A)_{-a}M_a) = \dim_{F[s]}(M_0) = \delta,$$

which means $K\dim (M/D(R_A)M_a) = \delta$. Since M is δ-critical, $D(R_A)M_a = 0$, and hence $M_a = 0$.

Let $M_a \neq 0$, and $q \in \Ass(M_a)$. Then by Lemmas 7.1 and 7.2 we have $\Ass(M_a) = \{q\}$ and $q = \Ann_{F[s]} M_a$. By (4.1)

$$\Ann_{F[s]}(D(R_A)_{-a}M_a) \supseteq \Ann_{F[s]} M_a - a = q - a.$$

By the first paragraph of the proof, $D(R_A)_{-a}M_a \neq 0$. Since $\Ann_{F[s]}(x) = p$ for each nonzero element $x \in D(R_A)_{-a}M_a \subseteq M_0$, we have

$$\Ann_{F[s]}(D(R_A)_{-a}M_a) = p.$$

Hence $q \subseteq p + a$. Then $q = p + a$, since $\dim F[s]/p = K\dim M$, and thus $\Ass(M_a) = \{p + a\}$.

9
Suppose that $p \sim p + a$. Then by Lemma 5.2 $M_a \neq 0$. Hence Ass(M_a) = $\{p + a\}$ by the previous paragraph.

Finally suppose that $p \not\sim p + a$. Then $\mathbb{I}(\Omega(a)) \subseteq p$ or $\mathbb{I}(\Omega(-a)) \subseteq p + a$. Hence $\mathbb{I}(\Omega(-a) - a) \mathbb{I}(\Omega(a)) \subseteq p$. Consider the submodule $D(R_A)(D(R_A)_aM_0)$ of M. We have

\[
(D(R_A)(D(R_A)_aM_0))_0 = D(R_A)D(R_A)_aM_0
\]

\[
= t^{-a}\mathbb{I}(\Omega(-a))t^a\mathbb{I}(\Omega(a))M_0
\]

\[
= \mathbb{I}(\Omega(-a) - a)\mathbb{I}(\Omega(a))M_0
\]

\[
\subseteq pM_0 = 0.
\]

Since Kdim ($M/D(R_A)(D(R_A)_aM_0)$) \geq dim($M/D(R_A)(D(R_A)_aM_0)$)$_0$ = dim M_0 = δ = Kdim M, and since M is critical, $D(R_A)(D(R_A)_aM_0) = 0$. Hence $D(R_A)_aM_0 = 0$. If $M_a \neq 0$, then Ass(M_a) = $\{p + a\}$, and

Kdim $M/D(R_A)M_0 \geq$ dim($M/D(R_A)M_0$)$_a$ = dim $M_a/D(R_A)_aM_0$ = dim $M_a = \delta$.

This contradicts the fact that M is critical. Therefore $M_a = 0$ in this case. \hfill \square

Theorem 7.4. Let M be a finitely generated left (resp. right) \mathbb{Z}^d-graded $D(R_A)$-module with $M_0 \neq 0$. Then M is critical if and only if there exists a prime ideal p of $F[s]$ such that

1. $M \in \mathcal{O}_p$ (resp. $M \in \mathcal{R}_p$).
2. $M_a = 0$ if $p \not\sim p + a$ (resp. $p \not\sim p - a$).
3. M_a is a critical $F[s]$-module with Ass(M_a) = $\{p + a\}$ if $p \sim p + a$ (resp. Ass(M_a) = $\{p - a\}$ if $p \sim p - a$).

Proof. Proposition 7.3 is the only-if part.

Assume the conditions (1) through (3). Suppose that $p \sim p + a$. Let N be a nonzero $F[s]$-submodule of M_a. Consider the quotient $M/D(R_A)N$.

First let $p \not\sim p + b$. Then $(M/D(R_A)N)_b = 0$, since $M_b = 0$.

Next let $p \sim p + b$. Then $p + a \sim p + b$. By Lemma 5.2

\[
\text{length}_{F[s]_p+b}((D(R_A)N)_b)_{p+b} = \text{length}_{F[s]_p+(a)}((D(R_A)N)_a)_{p+a} = \text{length}_{F[s]_{p+a}}N_{p+a}
\]

\[
= 1 = \text{length}_{F[s]_{p+a}}(M_a)_{p+a} = \text{length}_{F[s]_{p+b}}(M_b)_{p+b}.
\]

Hence

\[
\text{dim}_{F[s]}(M/D(R_A)N)_b < \text{dim}_{F[s]} M_b = \text{Kdim } M.
\]

Therefore Kdim $M/D(R_A)N$ < Kdim M. \hfill \square

Example 7.5. Let p be a prime ideal of $F[s]$, and let $\delta = \dim F[s]/p$. Let $^L L(p) = \bigoplus_{a \in \mathbb{Z}^d}^L L(p)_a$ (resp. $^R L(p) = \bigoplus_{a \in \mathbb{Z}^d}^R L(p)_a$) be the cyclic \mathbb{Z}^d-graded left (resp. right) $D(R_A)$-module $^L L(p) = D(R_A)/^L L(p)$ (resp. $^R L(p) = D(R_A)/^R L(p)$) with

\[
^L L(p)_a = \begin{cases} t^a(\mathbb{I}(\Omega(a)) \cap p) & (p \sim_p p + a) \\ D(R_A)_a & \text{(otherwise)} \end{cases}
\]

\[
^R L(p)_a = \begin{cases} (\mathbb{I}(\Omega(a) + a) \cap p)t^a & (p \sim_p p - a) \\ D(R_A)_a & \text{(otherwise)} \end{cases}
\]

Then $^L L(p)$ (resp. $^R L(p)$) is δ-critical by Theorem 7.4.
If \(\mathfrak{p} = \mathfrak{m}_\beta \), then

\[
L\mathcal{L}(\mathfrak{m}_\beta)_\mathfrak{a} = \begin{cases}
\left(\begin{array}{l}
t^\alpha \mathcal{P}(\Omega(\mathfrak{a}))/t^\alpha \mathcal{P}(\Omega(\mathfrak{a})) \cap \mathfrak{m}_\beta \\
0
\end{array}\right)
(\beta \sim \beta + \mathfrak{a}) \\
(\text{otherwise})
\end{cases} = L\mathcal{L}(\beta)_{\beta + \mathfrak{a}}.
\]

(resp. \(R\mathcal{L}(\mathfrak{m}_\beta)_\mathfrak{a} = \begin{cases}
\left(\begin{array}{l}
\mathcal{P}(\Omega(\mathfrak{a}) + \mathfrak{a})t^\alpha /\mathcal{P}(\Omega(\mathfrak{a}) + \mathfrak{a}) \cap \mathfrak{m}_\beta t^\alpha \\
0
\end{array}\right)
(\beta \sim \beta - \mathfrak{a}) \\
(\text{otherwise})
\end{cases} = R\mathcal{L}(\beta)_{-\beta + \mathfrak{a}}.\)

Thus \(L\mathcal{L}(\mathfrak{m}_\beta) = L\mathcal{L}(\beta)[\beta] \) (resp. \(R\mathcal{L}(\mathfrak{m}_\beta) = R\mathcal{L}(\beta)[-\beta] \)). (See (Saito, 2007) for \(L\mathcal{L}(\beta) \) and \(R\mathcal{L}(\beta) \).

Example 7.6. Let \(n = d = 2 \), and let \(\mathcal{A} = \{ (1, 0), (0, 1) \} \). Then \(D = D(\mathcal{A}) \) is the second Weyl algebra \(F(t_1, t_2, \partial_1, \partial_2) \). Let \(\mathfrak{p} \) be the prime ideal \(\langle s_1 \rangle \) of \(F[s] \). We know

\[
\mathcal{P}(\Omega(c)) = \left\langle \prod_{c_i < 0} \prod_{m=0}^{-c_i-1} (s_i - m) \right\rangle.
\]

Hence

\[
\mathcal{P}(\Omega(c)) \subseteq \mathfrak{p} \iff c_1 < 0,
\]

or equivalently

\[
\mathfrak{p} \subseteq \mathfrak{p} + \mathfrak{c} \iff c_1 \geq 0.
\]

Similarly we see that we always have \(\mathfrak{p} + \mathfrak{c} \leq \mathfrak{p} \). Therefore

\[
\mathfrak{p} \sim \mathfrak{p} + \mathfrak{c} \iff c_1 \geq 0.
\]

Set

\[
L\mathcal{L}(\mathfrak{p})_\mathfrak{c} = \begin{cases}
\left(\begin{array}{l}
t^\mathfrak{c} \mathcal{P}(\Omega(c))/t^\mathfrak{c} \mathcal{P}(\Omega(c)) \cap \mathfrak{p} \\
0
\end{array}\right)
(c_1 \geq 0) \\
(\text{otherwise})
\end{cases} = L\mathcal{L}(\mathfrak{p})_\mathfrak{c}.
\]

Then \(L\mathcal{L}(\mathfrak{p}) = D/(Ds_1 + \sum_{c_1 < 0} Dc) = D/D\partial_1 \) is 1-critical.

Theorem 7.7. Let \(M \) be a \(\delta \)-critical \(\mathbb{Z}^d \)-graded left (resp. right) \(D(\mathcal{A}) \)-module generated by one element \(v \) in \(M_0 \) with \(\text{Ann}_{F[\mathfrak{a}])(v) = \mathfrak{p} \). Then \(M \) is isomorphic to \(L\mathcal{L}(\mathfrak{p}) \) (resp. \(R\mathcal{L}(\mathfrak{p}) \)).

Proof. Let \(K = \text{Ann}_{D(\mathcal{A})}(v) \). Hence \(M \simeq D(\mathcal{A})/K \).

First we prove that \(K \subseteq L\mathcal{I}(\mathfrak{p}) \). Let \(\mathfrak{p} + \mathfrak{a} \not\subset \mathfrak{p} \). Then \(K_\mathfrak{a} = L\mathcal{I}(\mathfrak{p})_\mathfrak{a} = D(\mathcal{A})_\mathfrak{a} \). Let \(\mathfrak{p} + \mathfrak{a} \sim \mathfrak{p} \). Let \(P = t^\mathfrak{a} p(s) \in D(\mathcal{A})_\mathfrak{a} \) annihilate \(v \). Suppose that \(p \notin \mathfrak{p} \). Then, since \(\mathfrak{p} + \mathfrak{a} \sim \mathfrak{p} \), by the proof of Lemma 5.2 there exists \(Q \in D(\mathcal{A})_{-\mathfrak{a}} \) such that \(v = PQv \) as elements in \((M_0)_\mathfrak{p} \). This is a contradiction; \(v \) is not zero, while \(P \) annihilate \(v \). Hence \(p \in \mathfrak{p} \). Thus we have proved the inclusion \(K \subseteq L\mathcal{I}(\mathfrak{p}) \).

Next suppose that \(K \subseteq L\mathcal{I}(\mathfrak{p}) \). Let \(x \in L\mathcal{I}(\mathfrak{p})_\mathfrak{a} \setminus K_\mathfrak{a} \), and \(\mathcal{P} \) its image in \(D(\mathcal{A})/K \simeq M \).

Since \(M \) is \(\delta \)-critical,

\[
\delta = \text{Kdim} L\mathcal{L}(\mathfrak{p}) \leq \text{Kdim} M/D(\mathcal{A})/\mathcal{P} < \text{Kdim} M = \delta.
\]

Hence we conclude that \(K = L\mathcal{I}(\mathfrak{p}) \).
REFERENCES

DEPARTMENT OF MATHEMATICS
GRADUATE SCHOOL OF SCIENCE
HOKKAIDO UNIVERSITY
SAPPORO, 060-0810 JAPAN

E-mail address: saito@math.sci.hokudai.ac.jp