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In the process of phase unwrapping for an image obtained by an interferometer or in-line holography,
noisy image data may pose difficulties. Traditional phase unwrapping algorithms used to estimate
a two-dimensional phase distribution include much estimation error, due to the effect of singular points.
This paper introduces an accurate phase-unwrapping algorithm based on three techniques: a rotational
compensator, unconstrained singular point positioning, and virtual singular points. The new algorithm
can confine the effect of singularities to the local region around each singular point. The phase-
unwrapped result demonstrates that accuracy is improved, compared with past methods based on
the least-squares approach. © 2010 Optical Society of America

OCIS codes:

1. Introduction

Interferometers or in-line holography techniques
are widely applied for the purpose of quantitative
measurement of two-dimensional optical distance
distribution. In these systems, fringe patterns are
measured by digital devices such as CCD cameras,
and then phase information is retrieved by Fourier
domain filtering [1-3] or phase shift techniques
[2,4,5]. The retrieved phase map is a distribution
of principal values of phase, derived from the natural
logarithm of a complex-valued function representing
a wavefront. This map is wrapped by the function
into the bounded range, such as (-z, z] radians. Be-
cause the optical distance is actually a continuous
function and its range is not bounded, the retrieved,
wrapped map must finally be unwrapped to estimate
optical distance distribution, by applying phase-
unwrapping algorithms. Many algorithms have been
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030.4280, 090.2880, 100.3175, 100.5088, 110.5086, 120.5050.

proposed for phase unwrapping. Some of them are
summarized in [6]. They are all based on the assump-
tion that no phase difference between adjoining
pixels exceeds a half cycle (r radians). When an ori-
ginal phase to be measured satisfies the sampling
theorem, unwrapped results are satisfactory regard-
less of the integration path. In actual experimental
data, however, some phase differences that do not
satisfy the criterion typically are included. Such cir-
cumstances are the result of noisy data where a lot of
speckle noise is observed, as well as that of real op-
tical gaps in an object to be measured. The proposed
phase-unwrapping algorithms are targeting to re-
move or to reduce the inconsistencies that cause var-
iations in phase-unwrapping results, depending on
the choice of unwrapping path. When there is a low
signal-to-noise ratio (SNR) in a fringe pattern, repre-
sented as a positive, real-valued function, the re-
trieved wavefront represented by a complex-valued
function has a correspondingly low SNR. In this case,
the wrapped phase as a principal value has a large
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error, of maximum z radians. The relation of error
between the complex function and the wrapped
phase is described in [7].

The phase-unwrapping algorithms are classified
into two types, according to the nature of the un-
wrapped result. The first is a reproducible type of
algorithm, in which the rewrapped phase of the
unwrapped result is identical to the original wrapped
phase map, such as for path-following methods
[8-14]. In these algorithms, the unwrapping opera-
tion is carried out along paths of successive pixels,
where the paths are taken to avoid inconsistent
pixels. When the SNR of the original wrapped phase
is relatively high, this category of algorithms can un-
wrap the wrapped phase successfully. The effect of
inconsistencies is distributed in a local narrow
region. However, in the case of a noisy image, it
sometimes creates unnatural, unintended gaps of
unwrapped phase with the theoretical error of 2nxz
radians, where n is an integer number. This is a seri-
ous problem for quantitative evaluation of two-
dimensional optical distance.

The other type of algorithm is based on the least-
squares approach [15-21], in which the rewrapped
result is not identical to the original wrapped phase.
In these algorithms, the unwrapped phase is defined
in a way that minimizes the difference of phase
between the rewrapped phase and the wrapped origi-
nal phase. This problem is considered to be described
by a solution of the Poisson equation [18]. By append-
ing symmetrical images outside the original image,
we can assume the Neumann condition as a bound-
ary condition [18,20,22]. Then we can apply the Four-
ier transform or discrete cosine transform (DCT) to
facilitate faster computation [20,21]. Another meth-
od, singularity-spreading phase unwrapping (SSPU),
distributes the inconsistencies [23]. It is also classi-
fied into the same type. In the computations of these
methods, the unwrapped phase maps do not contain
any continuous phase gaps, which had commonly
appeared in the path-following methods. The path
dependency, which is considered as an error or a con-
sequence of the inconsistencies, is spread throughout
the whole domain in order to avoid any large, loca-
lized errors [6,12]. The distributed error in the un-
wrapped result is considered acceptable, if it is
smaller than the noise level of the wrapped noisy
data in the measurement. However, the magnitude
of error depends on distribution of the singular
points that appear around inconsistent phase jump-
ing segments.

In this paper, we propose a new method to compen-
sate the inconsistencies and to confine the effect of
each one in a local region. The unwrapped result
of this method is similar to that of the methods based
on the least-squares methods; i.e., the rewrapped re-
sult is not identical to the original phase map. How-
ever, the unwrapping is carried out along successive
pixels, similar to the path-following methods. The
algorithm is based on a combination of three ap-
proaches, which are named RC, USP, and VSP in this
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paper. The first is the rotational compensator (RC).
The idea of the compensator is proposed in [23], as
the singular points are spread by an iterative proce-
dure. In our method, it can be evaluated directly
without any iteration. However, the accuracy is not
much improved by only the RC itself. The other
two, unconstrained singular point (USP) positioning
and virtual singular point (VSP), are additional ap-
proaches in order to improve accuracy. The purpose
of USP is to confine the effect of the compensator to
the smaller region and to determine the dipole pairs.
The last approach is VSP, which is located outside
the measured area in which the wrapped phase is ob-
tained. These details are shown in Section 2 together
with a comparison of past studies. The applicability
of the proposed algorithm is demonstrated by numer-
ical examples in Section 3. Finally, the conclusion is
shown in Section 4.

2. Phase Unwrapping Algorithm

A. Singular Point

The wrapped phase distribution, ®, which is esti-
mated from the fringe pattern, is defined at discrete
points called pixels. It is a real-valued distribution
between (-, z] radians as the principal value of an
unbounded phase. Phase unwrapping in the path-
following type is normally carried out by compari-
sons of adjoining pixels. When the true, unbounded
phase distribution is continuous, then, because the
difference between the phases of adjoining pixels is
sufficiently small, it does not exceed a half-cycle. This
condition is considered as the sampling theorem.
When the difference is larger than a half-cycle, the
wrapped phase is shifted one cycle, so that the
shifted difference is again smaller than a half-cycle.
This shifting operation is the same as the wrapping
operation used to obtain the principal value of the
unbounded phase. The wrapping operator is defined
as follows:

® = W{p}2¢ - Int [2%} or, (1)

where ¢ expresses the unbounded phase and Int[|
means a function that returns the nearest integer.
The difference vector between adjoining pixels is de-
fined using the wrapping operator W{} as follows:

g(r.r)EW{D() - D(r)}s(r ~r), (2)

where r, ¥, and § show the position of the pixel of in-
terest, position of the adjoining pixel, and unit vector
of direction ¥ — r, respectively. When the pixels satis-
fy the sampling theorem, because the integral of the
phase difference is independent of choice of the path,
then the integral of g along a closed path c is zero:

%g-ﬁdl:O. (3)



It should be noted that the closed path c is a polygon
with which line elements are along the grid because
both g and § are piecewise constant functions be-
tween two adjoining pixels. When we take the poly-
gon-shaped path, the integral can be considered as
the sum of discrete elements.

In contrast to Eq. (3), when some pixels violate the
sampling theorem, the integral can take a nonzero
value:

fg -8dl = Zﬂzmk = 2zM, my, € {-1,0,1},
¢ k
(4)

where the right-hand side, M, corresponds to a sum
of the number of segments not satisfying the sam-
pling theorem, and m, is the residue, the detail of
which is shown below. Consider one of the smallest
closed paths consisting of four pixels aligned to a
square shape and evaluated in a counterclockwise di-
rection, i.e., along the path of successive order of
points (i,j), (i + 1.j), (i + 1,j +1), (i,j + 1), and (i,j).
We refer to this as the “elementary loop” in the later
discussion. In the case where the wrapped phases
are (@, @1/, D141, Diji1) = (0,7/2,7,-7/2), be-
cause all the shifted differences are z/2, then the
sum of them is 2z, which corresponds to the integral
of the shifted difference. This means that either one
or three of the segments do not satisfy the sampling
condition, and there is a singular point (SP) with a
positive residue in the area surrounded by the closed
path. In the path-following methods, the SPs are po-
sitioned at the center of four pixels. In the case where
the wrapped phases have opposite signs, a SP with a
negative residue is found. In [24], it is shown that the
residue defined as the integral normalized by 27 of
any elementary loop is always -1, 0, or +1.

When we take some longer closed path that
includes SPs with positive residues and the same
number of SPs with negative residues, because the
integral is equal to zero, the unwrapping is carried
out successfully. Most of the phase unwrapping algo-
rithms of the path-following type [9—14] are based on
this approach. In these methods, branch cuts, which
are lines between SPs with different signed residues,
are first introduced in a way that minimizes the total
length of each branch cut using various approaches,
such as the simulated annealing method [11,13], the
Hungarian algorithm [10], the minimum cost flow of
network [12], and the genetic algorithm [14]. After
that, the unwrapping is carried out so that the inte-
gration path does not cross the branch cuts. It is
noteworthy that because the border of the measure-
ment area can be considered as sinks of any SPs with
arbitrary residue in the methods based on the path-
following approaches, there is no problem even in the
case where the number of positive SPs in the whole
measurement area and that of negative ones are dif-
ferent. In contrast, in the methods based on the least-
squares method, there is no such feature to cancel

the effects of unbalanced SPs. If the measurement
area is infinite, because the integral along the closed
infinity path must be zero, the number of positive
SPs and that of the negative SPs is always balanced.
Otherwise, in order to establish a balance, some SPs
are placed outside the area. The RC itself, shown be-
low, has similar properties of the methods based on
the least-squares method. As described in later
subsections, however, it can be solved by appending
virtual SPs outside the area so that the number of
SPs is balanced.

B. Rotational Compensator

Yamaki and Hirose proposed the idea of introducing
a compensator to cancel singularity [23]. In their
method, SSPU, an original SP with residue m is sub-
stituted by four fractional SPs located at adjoining
points with residue m/4. At this time, four compen-
sators of —(27m)/4 are appended to compensate the
singularity. In the next step, the four new SPs are
distributed again together with appending compen-
sators. Repeating these procedures, the intensity of
residue decreases and the SPs spread to the border
of the measurement area. After the fractional resi-
dues become sufficiently small, unwrapping is car-
ried out along successive pixels with the addition of
the compensators. In the example in the previous
section, the compensators of —(27)/4 are appended
for each segment of the path, so that the total of
the wrapped phases becomes 0, which is not singular.
As a consequence of this operation, new inconsisten-
cies appear along paths, including the segments,
where each of them belongs in the points adjacent
to the elementary loop, and the other compensators
are evaluated for the new inconsistencies. By con-
trast, in our approach, the compensators are evalu-
ated directly without any iteration.

According to the Helmholtz theorem [25], any vec-
tor is represented by the sum of two kinds of vectors:
i.e., an irrotational vector that is a gradient of some
scalar potential and a rotational vector that is a ro-
tation of a vector potential. Because the unwrapped
phase ¢ must be a scalar field, the difference vector g
in Eq. (2) satisfies the following equation:

g=V¢+VxA. (5)
Applying the Stokes theorem to an integral of the ro-

tation of the above equation over a domain enclosed
by a path ¢, we obtain the following relation:

%g.ﬁdzzfvm-@dz. (6)

Comparing this equation with Eq. (4), we find that
the source of the singularity is the rotation of A:

f{ VxA-3dl=27) my. (7)
¢ k

Because this relation is satisfied even for any ele-
mentary loop, the vector potential is considered as
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the superposed result of each vector potential corre-
sponding to each SP:

A=A (8)
k

Rearranging Egs. (5), (6), and (8), we obtain the dif-
ference of the unwrapped phase between two points
as follows:

pr) - plr) = / Vep-sdl = [ <g-;v xAk) sdl.
9)

This equation shows that the singularity of the
wrapped difference vector g is compensated by the
rotation of the vector potential A,. Thus, we refer
to the integral of rotation of A, as the RC.

In order to evaluate each RC, let us consider the
cylindrical coordinate of (R, 6,z), where the kth SP
is located at the origin. Each vector potential satis-
fies the following relation:

}[ V x A, -§dl = 27m;. (10)

Each source of singularity has an axial symmetry
where every component of the vector A, is repre-
sented only in terms of a function of radial distance
R as A}, = (ag(R),ay(R),a,(R)). Furthermore, the z
component of the unit tangential vector § is zero.
Therefore, the integrand is reduced as follows:

Jda,

Jda
VxA o= _% e = —
XAp S eép Xéeé,*§ BR

oR

€R 'ﬂa (11)

where e and e, are unit vectors for the R axis and z
axis, respectively, and 72 denotes the outward normal
unit vector to the path (7 = § x e,). Because the inte-
grand in the left-hand side in Eq. (10) is a regular
function except at the origin, the integral path can
be modified to an arbitrary path that surrounds
the origin. In the case where the path is taken as
a circular path with radius R, because 7 is identical
to eg, the left-hand side of Eq. (10) is readily obtained
as —2zR(0da,/0R). Therefore, the partial derivative is
represented as

oa, my,

o0R R’

(12)

Consequently, the integral along an arbitrary closed
path expressed in Eq. (10) is rewritten as

7{ V x Ay -$dl = %83 adl. (13)

The integral along a segment of which ends are ry

and ry is evaluated by taking the closed path ¢ as
shown in Fig. 1. Because there is no SP in the domain
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Fig. 1.

Integration path to evaluate the RC.

surrounded by the closed path rq, ry, re , and r,, the
integral along the closed path vanishes. Each of the
integrals along the two straight lines also vanishes
because the normal unit vector is perpendicular to
the eg. Thus, the compensator for the SP that is the
integral along the segment may be estimated from
the integral along the semicircle as follows:

Ch(ry,re)2 = / V xA,-sdl — -/'Z%e,% -hdl
r1 T

1

reem R 05, M
:[ fkeR-ndl:A T g (e )edo

€l Lsy,

=-—mg (92,sk - el,sk )7 (14)

where 6 denotes the unbounded azimuthal angle
from the x axis and also 0y, > 0;,.

Taking r; and ry in Eq. (14) as the adjoining pixels
r and 7/, respectively, we can unwrap the wrapped
phase by applying the wrapped difference vector g
and the compensators C; as follows:

$(r') = p(r) +g(r,r') -8 =r) + Y _Ca(rr).  (15)
k

The compensator of a SP spreads throughout the
whole measurement area. It seems to share a similar
nature with the methods based on the least-squares
approach, in which the effect of singular points also
spreads [6]. However, it is found that the compensa-
tor decreases with increasing R because the distance
between r' and r is always kept constant at one pixel
width. This characteristic is similar to path-following
methods, in which the effect of a singular point is con-
fined into the region that surrounds the branch cut.

C. Unconstrained Singular Point Positioning

The RC can remove the inconsistency by the cancel-
lation of the singularity. However, it introduces an
undesired distortion of phase in a wide area. In order



to limit the distorted area in the narrower region
around the SP, we propose an USP.

The RC, Cy, defined in Eq. (14) cancels a single SP.
The effect of the single SP that appears in the kernel
of the integral can be considered as a monopole,
which is proportional to the reciprocal of the distance
R:

1

Emonopole = _EeR- (16)
Let us consider the case in which another SP with an
opposite-signed residue is located near the original
one. This case corresponds to a dipole, which is often
found in the literature of electromagnetics. The effect
of the dipole in two-dimensional space is evaluated
as follows:

1
Egipole = ] (2(d - eg)er - d),

(17)
where d is the difference vector from the negative SP
to the positive SP, and the origin is taken at the cen-
ter of the two SPs. The decay of effect induced by a
dipole is faster than that by a monopole. It is known
that the distance of the nearest SP with an opposite-
signed residue is shorter than that with a same-
signed residue from analysis of an actual noisy
experimental wrapped phase [11]. Therefore, if every
SP belongs to a dipole, the effect of compensator is
|d|/R times smaller than that of a single compensa-
tor, it means the effect is confined in a local region
around the dipole.

The SP is generally positioned at the center point
of an elementary path that consists of four pixels
aligned with a square shape, and the minimum |d| is
limited to the pixel size. If we can obtain the position
accurately and if the distance of the dipole is closer
than the pixel size, the effect of the compensator is
limited to a narrower region. Ideally, the affected re-
gion approaches that in the method of the branch cut.

The approach to find an SP position that is not con-
strained at the center point at an elementary loop is
as follows. It is found from Eq. (14) that the compen-
sator of a segment is represented as the difference of
the azimuthal angle between the ends of the seg-
ment. This means that we can consider the following
model of wrapped phase maps with singularities:

D(r) = W{m(r,ry) + d + 5¢(r)},

where ¢ and 6¢(r) are a phase average and a nonsin-
gular phase fluctuation, respectively. Let us consider
the following wrapped difference between adjacent
pixels:

AEWW{D - D} —m(0 - 0)}, (19)

in which the prime mark means quantities at adja-
cent pixels. Substituting Eq. (18) to the difference
and applying a characteristic of the wrapping opera-

tor as W{W{¥P}} =W{¥}, we can reduce the
wrapped difference to

A = W{s¢/ - 5¢}. (20)
Because this relation suggests that a solution mini-
mizing |A| is equivalent to a solution minimizing
IW{é¢' - 5¢}|, then when we can assume the un-
known phase fluctuation 6¢ is small, the problem
to determine r, is reduced to the problem to find
the solution with minimized |A|in Eq. (19). Thus, we
define the problem by means of a nonlinear least-
squares problem as follows:

minimize 23: A? = zg:(W{W{A‘Dz} - mAb(ry)})?,

=0 =0
(21)
A@lé®l+1 - q)l, (I)4 = q)Oa (22)
A =0, (r) = 01(rs) >0, Oy =09 +27,  (23)

where [ denotes the identifier of a segment or a pixel
in an elementary loop, shown in Fig. 2, and
[ €{0,...,3}. Because this nonlinear minimization
problem is difficult to solve analytically, we
applied a numerical method based on a genetic
algorithm [26].

D. Virtual Singular Point

As described in the previous subsection, the compen-
sator effect of a dipole decreases rapidly with an
increasing distance from the dipole. However, be-
cause the measurement area is finite, there are some
isolated SPs or SPs of dipoles with long distances.
The isolated SPs spread error throughout the entire
measurement area. When we put virtual SPs having
an opposite sign of the isolated SPs outside the area,
the virtual SPs and the isolated SPs make dipoles,
and then the error may be reduced. In the case where
the isolated SP is located near the border of the area,

Fig. 2. Elementary path including an USP: A¢, means the facing
angle of the side with the ends r; and r;,; and A®; means the dif-
ference of the wrapped phases.
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the virtual SP is put at the symmetrical point to the
border outside the area so that the center of the di-
pole is located just on the border. It should be noted
that there is no empirical basis to take the virtual SP
at the symmetrical point. It is intuitively guessed
that the probability of a virtual SP to be located in
a region far from the border is small. In contrast,
the case where a virtual SP is located just on the bor-
der is also rare. If we could know the probability dis-
tribution of the size of dipoles that are located around
the border, we would be able to statistically deter-
mine the position. Gutmann and Weber [13] used the
distance distribution of SPs inside the whole mea-
surement area in their paper, and this is applied
to the search for branch cuts. However, we do not ap-
ply their method because the distance distribution
may depend on the condition around the local area
and it may be smaller than one pixel width under
the use of the unconstrained SP positioning.

To find isolated SPs near the border, we attempt
the following approach; a schematic example is
shown in Fig. 3.

1. Preparation:

Mark all SPs as “isolated.”

For each SP, locate the symmetrical point to
the nearest border point. The symmetrical
point is defined and marked as a virtual SP
candidate with an opposite sign. The virtual
SP candidates are shown as the end of the
dashed arrows in Fig. 3(a).

2. Find the nearest singular point:

For every SP with the mark “isolated,” find
the nearest SP with an opposite sign among
SPs marked as “isolated,” also including the
virtual SP candidate corresponding to the ori-
ginal SP.

3. Virtual SP determination:

If the nearest SP is the virtual SP candidate,
the original SP is marked as “dipole with vir-
tual,” and the virtual SP candidate is marked
as “virtual.” The pair of them is shown as an
encircled pair with single-headed arrows, in
Fig. 3(b).

4. Dipole determination:

For each positive SP with the mark “iso-
lated,” if the nearest negative SP has no other
positive SP that is closer than the original one,
then both of the SPs are marked as “internal
dipole.” The pair of them is depicted as an en-
circled pair with double-headed arrows, as
shown in Fig. 3(b). The virtual candidates cor-
responding to these SPs, which have ticked
symbols in Fig. 3(b), are removed from the vir-
tual candidates list.

5. Repetition:
Repeat procedures 2 to 4, until no more SPs
marked with “isolated” are found. After these
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Fig. 3. Determination of dipole pairs. (a) Definition of the virtual
SP candidates: Square frame shows the measurement area. Open
and solid circles show positive and negative SPs, respectively. Each
dashed arrow shows the correspondence between original and
virtual SP. (b) Nearest SP search and pairing in the first iteration:
Each arrow shows the nearest opposite-signed SP. The SPs en-
circled are paired as dipoles. The ticked virtual candidate is
removed from the list of candidates in subsequent steps. (c) Second
iteration: SPs enclosed with dashed ellipses have been already
paired. (d) Elimination of removable virtual SP pairs.

steps, all SPs are marked as “internal dipole,”
“dipole with virtual,” or “virtual.” See Fig. 3(c).

6. Elimination of removable VSP pair:

For each SP marked “dipole with virtual,” if
the nearest opposite-signed SP within the SPs
located inside the border is also marked as “di-
pole with virtual,” let us examine whether this
pair can become a new pair. If twice the dis-
tance of the new pair is shorter than the
sum of the distances between the SP and the
current partner with the mark “virtual,” the to-
tal branch-cut length is shorter than the cur-
rent pairs. In this case, the new pair is
coupled and the marks of the old partners “vir-
tual” are removed. This elimination is shown
in Fig. 3(d).

The idea of step (6) is found in [27].

3. Numerical Example of Phase Unwrapping Noisy,
Wrapped Phase Map

A. Unwrapping Simulation for Known Phase Map

True phase in experimental results is unknown.
Using a wrapped phase map that is a result of a
known unwrapped phase map instead of a wrapped
phase map obtained by an experiment, we can exam-
ine the characteristics of unwrapping methods.



The prepared original continuous phase map is a
noisy phase map with a constant gradient; the image
size is 100 pixels x 100 pixels, the gradient is
(0.1,-0.1) cycle/pixel, and the noise has a normal
distribution with 0.15 cycle standard deviation.
The phase map is an unlimited function as a true so-
lution. It is shown in Fig. 4(a) together with its
wrapped phase. The wrapped phase is the input
for unwrapping algorithms. In this wrapped phase,
the numbers of positive and negative SPs are 453
and 456, respectively, overall comprising almost
9% of the number of all pixels, the distribution of
which is shown in Fig. 5. It should be noted that there
are three unbalanced SPs, which cannot make pairs,
even when coupling with a longer distance is per-
mitted. The magnified distribution of SPs around
the region that includes the VSP at the bottom right
border is shown in Fig. 6. In this figure, the USPs are
determined by the approach described in Subsection
2.C, and the VSP found by the approach described in
Subsection 2.D are also shown. The distances of some
USP dipoles are shorter than those of the original di-
poles, which consist of the constrained SPs.

The distribution of distances between each posi-
tive SP and its nearest negative SP is shown in
Fig. 7. From the distribution of the constrained
SPs that are located in the center of the elementary
loops, it is found that most of the distances are con-
centrated at 1 or v/2. In contrast, the average dis-
tance of USPs is significantly shorter than that of
constrained SPs. This suggests that the effect of
the compensator with the use of USPs is confined
in a narrower region than with constrained SP
positioning.

In order to compare the characteristics, we applied
several algorithms: the Goldstein path-following

(a)

Fig. 4. Unwrapped and rewrapped phase map: In each figure, the left-hand side figure shows the unwrapped or original phase map,
where the phase increases with the increase of brightness, and the right-hand side figure shows a rewrapped or wrapped phase map. (a)
Original phase map. (b) Goldstein path-following method. (¢) LS-DCT. (d) Proposed method using all the RC, the USP, and the VSP.

method [8], the least-squares method with discrete co-
sine transform (LS-DCT) [21], SSPU [23], and the pro-
posed algorithm with several options in this article.
Some results of the unwrapped phase maps together
with rewrapped phases are shown in Figs. 4(b)—-4(d).
Some continuous phase gaps are found in the un-
wrapped phase map obtained by the Goldstein
method in Fig. 4(b). Although the unwrapped phase
maps by both the LS-DCT and the proposed method
[Fig. 4(c) and 4(d)] have no phase gap, we found a
smaller number of stripes in the rewrapped phase
than in the original wrapped phase. This indicates
that the gradient of the unwrapped phase was under-
estimated. Although unwrapped or rewrapped phase
maps for the other algorithms are not shown as
images, they show similar properties.

To demonstrate a quantitative comparison, gradi-
ents of the unwrapped phase maps are shown in
Table 1. In the table, the gradients are obtained by
fitting to a planar function; i.e., ¢(r) = Vg - r + ¢y,
and ¢ denotes the mean residual that is defined as
a square root of a mean square residual from ¢. Even
in the original data, the ¢ is not equal to zero because
the original data contain the noise with the given
standard deviation. The errors of gradient and mean
residual, A(V¢) and Ao, are estimated as the nor-
malized difference between the unwrapped result
and the original one, where the normalizing factor
is the reciprocal of the original one. From the table it
is found that the gradients are underestimated by all
of the algorithms. The best result in terms of A(V¢)
and Ac is found in Table 1 (g), in which all of the
proposed approaches (the RC, USP, and VSP) are ap-
plied. The Goldstein method in (a) has a large Ac.
The reason of this is evident from the unwrapped im-
age shown in Fig. 4(b); there is a continuous set of

(b)

a]
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Fig. 5. Distribution of SPs: All of the SPs are coupled with
another SP. In the legend, both “Nearest dipole” and “Not nearest
dipole” mean that both SPs of a pair are located inside the mea-
surement area; “Nearest” shows that the SPs are nearest each
other; Alternately, pairs are formed from “Dipole with virtual
SP” located inside the area and “Virtual SP” located outside
the area.

gaps. From the comparison (b)-(d) in Table 1, it is
found that the errors in the methods of LS-DCT,
SSPU, and RC are nearly the same. Using these
three methods, the inconsistencies by SPs are can-
celed; however, imbalance of the number of positive
and negative SPs is not considered. From a compar-
ison among (d)—(f), it seems that the VPS is more ef-
fective for improving the accuracy of the gradient,
and the USP is more effective for reducing the error

4 :Constrained ’+4’ 4 :Unconstrained ’+°’

v :Constrained ’—’ v:Unconstrained ’—’
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A
Alv v v
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Fig. 6. SP around the bottom border: Pixels where the wrapped
data are defined are located at intersections on the grid. The points
denoted by solid symbols are constrained SPs located at the center
of the smallest grid; i.e., the elementary loop. The points denoted
by open symbols are unconstrained SPs. The regular and the in-
verted triangle symbols express positive and negative SPs, respec-
tively. The thick line at the bottom is the border of the
measurement area. The SPs outside the area (under the border)
correspond to VSPs.
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Fig. 7. Frequency histogram for distance from a positive SP to
the nearest negative SP.

of the mean residual. These results can be explained
by the nature of each approach. The error of the gra-
dient shows global error, while the mean residual
shows local error from the global distribution of the
unwrapped phase. If isolated SPs that are not SPs
containing dipoles are found in the measured area,
the compensator affects the entire area, which
should otherwise be confined into a local area. Be-
cause the VSP is applied to avoid the existence of
such isolated SPs, the global error is reduced. On
the other hand, because it is found that the USP can
make dipoles with a shorter range, as shown in
Fig. 7, the compensator to remove the dipole affects
only a narrower region.

We consider the following two reasons why the pro-
posed method with all the approaches still has some
error. The first is the position of the VSP. As de-
scribed in Subsection 2.D, there is no empirical basis
to put the VSP at a symmetrical point to the nearest
border. However, this factor is not critical to the error.
Even if the position of a VSP differs slightly from the
true SP outside the region, the VSP still makes a
dipole; therefore, the effect to the global error corre-
sponding to the error of the gradient may be small. A
more significant source of error in terms of VSP is
induced by incorrect coupling through the method
shown in Subsection 2.D. If the detected isolated
SPs are incorrect, the position of each VSP is taken
at a more distant point from the true SP, and then it
can induce the global error. The second source is the
model to determine the wrapped phase shown in Eq.
(18). If the fluctuation 6¢ is not sufficiently small, the
approach to determine the USP is not suitable. This
may affect the local error corresponding to the error
of the mean residual.

Figure 8 shows a comparison of the required
computational time. This comparison between algo-
rithms is not strictly meaningful because the compu-
tational time depends on implementations of each
algorithm. However, the computational time depen-
dency on the measurement area size is considered in-
dependent of implementation type. In the method
based on the RC, the computational time is almost
proportional to N* with N > 200, where N denotes
the one-dimensional area size in units of pixels.
This trend is reasonable. In these cases, when the



Table 1. Accuracy Comparison among Algorithms by Planar Function Fitting
Algorithm Gradient (V ¢) A(V) %] o Ao [%]
Original (0.1000, —0.1000) (—, —) 0.149 —

(a) Goldstein (0.0892, -0.0826) (-10.8, -17.4) 0.425 +184.9
(b) LS-DCT (0.0742, -0.0731) (-25.8, -27.0) 0.179 +20.0
(c) SSPU (0.0743, -0.0730) (-25.7, -27.0) 0.178 +19.7
(d) RC (0.0816, -0.0722) (-18.4, -27.9) 0.182 +21.7
(e) RC + USP (0.0860, —0.0756) (-14.1, -24.5) 0.173 +15.9
® RC + VSP (0.0870, —0.0862) (-13.0, -13.7) 0.187 +25.6
(2 RC + USP + VSP (0.0912, -0.0896) (-8.7, -10.4) 0.168 +12.9

overhead to the main computation is negligible, most
of the time is elapsed in evaluations of compensation.
The amount of evaluation time is proportional to
both the number of SPs and the number of the seg-
ments of path to be compensated. Because both are
proportional to the area size (x N2), the total evalua-
tion time is proportional to N“. In contrast, the com-
putational time increases with N3 in the method
using LS-DCT. In this computation, we used a simple
algorithm, not a fast Fourier transform, but we use a
two-dimensional buffer. Through the use of the
buffer, the computational time of two-dimensional co-
sine transforms needs only N2 multiplications. Thus,
the method based on the RC is more time consuming
than that of LS-DCT, unfortunately.

B. Unwrapping for Interferogram by Experiment

In order to demonstrate validity of the proposed
method to the actual experimental data, we applied
the method to measuring the phase shift in candle
flames. The result is shown in Fig. 9. The fringes,
I i and Iy, are obtained by a Mach—Zehnder inter-
ferometer. The fringe [,; is a superposed result of ob-
ject light passing through the candle flame upon the
reference light. The fringe Iy, is a result from the
same system, but there is no flame. These results
are measured by a digital video camera (PixeLINK,
A741). At the bottom of I ;,; and 11,4, a shadow of a core
of the candle is found. Because the fringe information
is not obtained in the shadow, in order to exclude the
shadow, we set the region of interest (ROI) with
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Fig. 8. Computational time: The horizontal axis N denotes the
one-dimensional area size in pixels. “RC + USP + VSP” shows
the result by the proposed method. The computational time is mea-
sured with a PC including an Intel Core 2 DUO CPU with
2.13 GHz clock in a single CPU operation mode.

256 pixels x 170 pixels size. In this measurement
we cannot set the exposure time long enough because
the flame is varying in time by convection flow
around the flame itself. Therefore, we set the expo-
sure time to 1 ms. This setting induces two difficul-
ties: (i) the fringe has low SNR, (ii) we cannot apply
the phase shift techniques [2,4,5] that use several
fringes with different reference lights to obtain a

Ton; Iig

Fig. 9. Unwrapped phase of fringe by Mach—Zehnder interferom-
eter for candle flame: The I, ®, M, ¢, and W{} show observed
fringe patterns with enhancement of contrast, wrapped phase
maps by Fourier domain method, distributions of SPs (positive
and negative SPs are represented by white and black dots, respec-
tively), unwrapped phase maps by the proposed method (RC, USP,
and VSP), and wrapping operators, respectively. The subscripts
“obj” and “bg” mean object and background, respectively. The un-
wrapped phase difference, A¢ = ¢op; — g, shows the actual phase
shift by the flame.
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wrapped phase. The aim of this paper is to solve the
first difficulty. The second difficulty in the calculation
of a wrapped phase can be solved by applying the
Fourier domain method [1-3]. It is useful to obtain
the wrapped phase map from a single fringe pattern;
however, it contains some distortion of the map. For
example, it is found around the candle core from the
comparison between I;; and ®,,;. This problem can-
not be solved by any unwrapping approaches. Both of
the residue maps, M,,; and My, show that many SPs
are found around the border, where the SNR is low in
fringe patterns. The difference between the simula-
tion data in the previous section and the experimen-
tal data is found in this distribution. The amount of
SPs in all pixels within the ROI reaches as near as
6% in M ,,; and 4% in My,,. The unwrapped results by
the proposed method using all the RC, the USP, and
the VSP are shown as ¢,,; and ¢y,. The actual phase
shift can be evaluated by the difference between ¢,,;
and g, A = Popj — prg. To evaluate the characteris-
tics of the phase-unwrapping method, the rewrapped
phases, W{¢}, are also shown. From a comparison
between the original wrapped phase ® and the re-
wrapped phase W{¢}, we can find that the number
of stripes in W{¢} is less than that in ®, which is
similar to the simulated result in the previous sec-
tion. Furthermore, we can find the result with noisy
distribution around the low SNR region.

We also computed the unwrapped phase by the LS-
DCT [21]. Although the images by the LS-DCT are
not shown because of a lack of space, the number
of fringes is also less than that in @, and it is less
than W{¢} by the proposed method (RC + USP+
VSP). Figure 10 shows the comparison of A¢ be-
tween the RC + USP + VSP and the LS-DCT along
y = 85 (the half height in the ROI). The phase shifts
around the center (x = 100 ~ 150) are almost 3.9 in
the RC + USP + VSP and 2.7 in the LS-DCT, smaller
than the phase shift around the edge. We can esti-
mate roughly by reading the original fringe pattern
I ;. The number of fringes along y = 85 from x = 0 to
x = 128, it reaches almost four to five cycles. Thus,
the unwrapped results in both methods are underes-
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g 1}
Sy
= -2
<
4 _3 |

0 50 100 150 200 250

(y = 85)

Fig. 10. Comparison of unwrapped phase differences:
“RC + USP + VSP” shows the unwrapped phase difference, Ag,

along y = 85 in Fig. 9, and the “LS-DCT” shows it by the LS-
DCT method.

x [pixel]
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timated; however, the underestimation in the RC +
USP + VSP is smaller than that in the LS-DCT.

4. Conclusion

For the purpose of more accurate phase unwrapping
for noisy wrapped phase maps, we propose a new
method based on a combination of three approaches:
RC, USP, and VSP. The RC acts to compensate the
singularity of each SP for all unwrapping paths.
The USP provides freedom to adjust the SP position-
ing in order to improve the accuracy of compensation.
Because it can make some dipoles that have shorter
distances than the pixel size, the undesired, longer
effect of the compensator is suppressed. The VSPs
for unpaired, isolated SPs are taken outside the area
to confine the effect of the compensator in local nar-
row regions around SPs. In the comparisons of sev-
eral methods of phase unwrapping through both a
numerical simulation and an analysis of the experi-
mental fringe pattern, the proposed method demon-
strates better accuracy of unwrapping (compared to
the Goldstein method, the LS-DCT, and SSPU),
although it does not eliminate the phase error with
underestimation. One drawback of the proposed
method is a greater computational time require-
ment, compared to the other methods.

This research was supported in part by the Japan
Society for the Promotion of Science, Grant-in-Aid for
Scientific Research (C), 21560197, 2009.
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