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Large-time asymptotics of the gyration radius for

long-range statistical-mechanical models∗

Akira Sakai†

December 28, 2009

Abstract

The aim of this short article is to convey the basic idea of the original paper [3],
without going into too much detail, about how to derive sharp asymptotics of the
gyration radius for random walk, self-avoiding walk and oriented percolation above
the model-dependent upper critical dimension.

1 Introduction

Let D be the Z
d-symmetric 1-step distribution for random walk (RW) and define the RW

2-point function as

ϕRW

t (x) =
∑

ω:o→x
|ω|=t

t∏

s=1

D(ωs − ωs−1) (x ∈ Z
d, t ∈ Z+). (1.1)

We also consider self-avoiding walk (SAW) and oriented percolation (OP) that are both
generated by D. The SAW 2-point function is defined as

ϕSAW

t (x) =
∑

ω:o→x
|ω|=t

t∏

s=1

D(ωs − ωs−1)
∏

0≤i<j≤t

(1 − δωi,ωj
), (1.2)

where the indicator
∏

0≤i<j≤t(1 − δωi,ωj
), which is absent in (1.1), is 1 if and only if ω

does not intersect to itself, hence accounting for the self-avoidance constraint. Oriented
percolation is a model for random media in space-time Z

d × Z+. A bond is an ordered
pair of vertices in Z

d × Z+, and each bond ((u, t), (v, t + 1)) is either occupied or vacant
with probability pD(v − u) and 1 − pD(v − u), respectively, independently of the other
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bonds. The parameter p equals the expected number of occupied bonds per vertex, and
it is known that there is a phase transition at p = pc. We say that (x, s) is connected to
(y, t) if either (x, s) = (y, t) or there is a time-increasing sequence of occupied bonds from
(x, s) to (y, t). The OP 2-point function ϕOP

t (x) is then defined as the probability that
the origin (o, 0) is connected to (x, t).

The models are said to be finite-range if D is supported on a finite set of Z
d. The main

property of a finite-range D is the existence of the variance σ2 ≡
∑

x∈Zd |x|2D(x), and
because of this, investigation of finite-range models is relatively easier. The situation is
basically the same for D that decays faster than any polynomials, such as an exponentially
decaying D. However, if D(x) ≈ |x|−d−α for large |x|, then the existence of the variance
depends on α > 0 and therefore we cannot always expect that the same results for finite-
range models also hold for this long-range models with index α. For example, take the
gyration radius of order r ∈ (0, α), which is defined as

ξ(r)

t =

(∑

x∈Zd |x|rϕt(x)
∑

x∈Zd ϕt(x)

)1/r

. (1.3)

The gyration radius represents a typical end-to-end distance of a linear structure of length
t or a typical spatial size of a cluster at time t. It may be natural to guess, at least for
random walk, that ξ(r)

t = O(
√

t) if α > 2 and ξ(r)

t = O(t1/α) if α < 2, for every real
r ∈ (0, α). As we state shortly, we have proved affirmative results [3] for random walk
in any dimension and for self-avoiding walk and critical/subcritical oriented percolation
above the common upper-critical dimension dc ≡ 2(α ∧ 2).

More precisely, we assume the following properties of D. Given an L ∈ [1,∞), we
suppose that D(x) ∝ |x/L|−d−α for large |x| such that its Fourier transform D̂(k) ≡
∑

x∈Zd eik·xD(x) exhibits the k → 0 asymptotics

1 − D̂(k) = vα|k|α∧2 ×
{

1 + O((L|k|)ǫ) (α 6= 2),

log 1
L|k| + O(1) (α = 2),

(1.4)

for some vα = O(Lα∧2) and ǫ > 0. If α > 2 (or D is finite-range), then vα = 1
2d

σ2. An
example that satisfies the above properties is the long-range Kac potential

D(x) =
h(y/L)

∑

y∈Zd h(y/L)
(x ∈ Z

d), (1.5)

defined by the rotation-invariant function

h(x) =
1 + O

(
(|x| ∨ 1)−ρ

)

(|x| ∨ 1)d+α
(x ∈ R

d), (1.6)

for some ρ > ǫ (cf., [3]). Under this assumption, we have proved the following sharp
asymptotics of a variant of the gyration radius:
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Theorem 1.1 ([3]). For random walk in any dimension with any L, and for self-avoiding
walk and critical/subcritical oriented percolation for d > dc with L ≫ 1, there is a model-
dependent constant Cα = 1 + O(L−d) (Cα ≡ 1 for random walk) such that, for every
r ∈ (0, α),

∑

x∈Zd |x1|rϕt(x)
∑

x∈Zd ϕt(x)
∼

t↑∞

2 sin rπ
α∨2

(α ∧ 2) sin rπ
α

Γ(r + 1)

Γ( r
α∧2

+ 1)
×

{

(Cαvαt)
r

α∧2 (α 6= 2),

(C2v2t log
√

t)r/2 (α = 2),
(1.7)

where x1 is the first coordinate of x ∈ Z
d.

We should emphasize that, except for the actual value of Cα, the expression (1.7) is
universal. The result also holds for finite-range models, for which α is considered to be
infinity. As far as we notice, even for random walk, the sharp asymptotic expression (1.7)
for all real r ∈ (0, α) is new.

Using |x1|r ≤ |x|r ≤ dr/2
∑d

j=1 |xj|r and the Z
d-symmetry of the models, we can

conclude the following:

Corollary 1.2 ([3]). Under the same condition as in Theorem 1.1,

ξ(r)

t =

{

O(t
1

α∧2 ) (α 6= 2),

O(
√

t log t) (α = 2).
(1.8)

for every r ∈ (0, α).

In his recent work [4], Heydenreich proved (1.8) for self-avoiding walk, but only for
small r < α ∧ 2, with no attempt to identify the proportional constant. Our results are
somewhat stronger, because we have derived the exact expression for the proportional
constant in (1.7) (also clarifying its model-dependence) and proved (1.8) for all r < α.

2 Sketch proof for random walk

In this section, we restrict our attention to random walk, which is obviously simpler than
the other two models, and explain the framework of the proof of Theorem 1.1.

First we consider the generating function (= the Fourier-Laplace transform) of the
2-point function. Recall that ϕRW

t (x) satisfies the convolution equation

ϕRW

t (x) = δt,0δx,o + (D ∗ ϕRW

t−1)(x) ≡ δt,0δx,o +
∑

y∈Zd

D(y) ϕRW

t−1(x − y), (2.1)

where we regard (D ∗ ϕRW
t−1)(x) for t ≤ 0 as zero. Taking the Fourier-Laplace transform of

both sides, we obtain that, for k ∈ [−π, π]d and m ∈ [0, mRW
c ),

ϕ̂RW

m (k) ≡
∑

t∈Z+

mt
∑

x∈Zd

eik·xϕRW

t (x) = 1 + mD̂(k) ϕ̂RW

m (k), (2.2)
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where mRW
c ≡ 1 is the radius of convergence for the sequence

{ ∑

x∈Zd ϕRW
t (x)

}

t∈Z+
. To

see this in a different way, take k = 0 in (2.2) so that

ϕ̂RW

m (0) = 1 + mϕ̂RW

m (0) =
1

1 − m
. (2.3)

The expansion of the right-hand side is
∑

t∈Z+
mt and the coefficient of mt is exactly 1

(≡
∑

x∈Zd ϕRW
t (x)) for every t ∈ Z+.

Next we differentiate ϕ̂RW
m (k) with respect to k1 (= the first coordinate of k) to yield

the generating function of the sequence
{∑

x∈Zd |x1|rϕRW
t (x)

}

t∈Z+
. For example, if r = 2j

with j ∈ N (hence α > 2), then

∇2j
1 ϕ̂RW

m (0) ≡ ∂2j

∂k2j
1

ϕ̂RW

m (k)

∣
∣
∣
∣
k=0

= (−1)j
∑

t∈Z+

mt
∑

x∈Zd

x2j
1 ϕRW

t (x). (2.4)

On the other hand, by differentiating (2.2) and using the Z
d-symmetry of the model,

∇2j
1 ϕ̂RW

m (0) = m∇2j
1 ϕ̂RW

m (0) + m

j
∑

l=1

(
2j

2l

)

∇2l
1 D̂(0)∇2(j−l)

1 ϕ̂RW

m (0)

=
m

1 − m

j
∑

l=1

(
2j

2l

)

∇2l
1 D̂(0)∇2(j−l)

1 ϕ̂RW

m (0). (2.5)

Solving this recursion by induction under the initial condition (2.3), we obtain (see [3] for
more details)

∇2j
1 ϕ̂RW

m (0) =

(
2j

2

)
m∇2

1 D̂(0)

1 − m
∇2(j−1)

1 ϕ̂RW

m (0) + O
(
(1 − m)−j

)

=

(
2j

2

)(
2(j − 1)

2

)(
m∇2

1 D̂(0)

1 − m

)2

∇2(j−2)
1 ϕ̂RW

m (0) + O
(
(1 − m)−j

)

...

=

j
∏

l=1

(
2l

2

)(
m∇2

1 D̂(0)

1 − m

)j

ϕ̂RW

m (0) + O
(
(1 − m)−j

)

=
(2j)!

2j

(
m∇2

1 D̂(0)
)j

(1 − m)j+1
+ O

(
(1 − m)−j

)
. (2.6)

Comparing this with (2.4) and using vα ≡ 1
2d

σ2 = −1
2
∇2

1 D̂(0) for α > 2, we arrive at

∑

t∈Z+

mt
∑

x∈Zd

x2j
1 ϕRW

t (x) = (2j)!
(mvα)j

(1 − m)j+1
+ O

(
(1 − m)−j

)
. (2.7)

4



However, by the general binomial expansion,

mj

(1 − m)j+1
= mj

∞∑

l=0

(−j − 1

l

)

(−m)l = mj
∞∑

l=0

(
j + l

j

)

ml =
∞∑

t=j

(
t

j

)

mt. (2.8)

Therefore,

∑

x∈Zd

x2j
1 ϕRW

t (x) ∼
t↑∞

(2j)!

(
t

j

)

vj
α ∼ Γ(2j + 1)

Γ(j + 1)
(vαt)j. (2.9)

This completes the proof of (1.7) for r = 2j < α.
In order to consider the other values of r < α, we use the following integral represen-

tation for |x1|q with q ∈ (0, 2) (cf., [3]):

|x1|q =
1

Kq

∫ ∞

0

1 − cos(ux1)

u1+q
du, (2.10)

where

Kq =

∫ ∞

0

1 − cos u

u1+q
du =

π

2 sin qπ
2

1

Γ(q + 1)
. (2.11)

Let r = 2j + q with j ∈ Z+ and q ∈ (0, 2). Then, by (2.10), the generating function for
the fractional moment

{ ∑

x∈Zd |x1|2j+qϕRW
t (x)

}

t∈Z+
can be written as

∑

t∈Z+

mt
∑

x∈Zd

|x1|2j+qϕRW

t (x) =
1

Kq

∫ ∞

0

du

u1+q

∑

t∈Z+

mt
∑

x∈Zd

(
1 − cos(ux1)

)
x2j

1 ϕRW

t (x)

=
(−1)j

Kq

∫ ∞

0

du

u1+q

(

∇2j
1 ϕ̂RW

m (0) −∇2j
1 ϕ̂RW

m (~u)
)

, (2.12)

where ~u = (u, 0, . . . , 0) ∈ R
d. Therefore, similarly to the above case of r = 2j, it suffices

to investigate the “derivative”

∆̄~u∇2j
1 ϕ̂RW

m (0) ≡ ∇2j
1 ϕ̂RW

m (0) −∇2j
1 ϕ̂RW

m (~u). (2.13)

However, by “differentiating” both sides of (2.2) and using the Z
d-symmetry, we obtain

∆̄~u∇2j
1 ϕ̂RW

m (0) = m∆̄~u∇2j
1 ϕ̂RW

m (0) + m

j
∑

l=1

(
2j

2l

)

∇2l
1 D̂(0) ∆̄~u∇2(j−l)

1 ϕ̂RW

m (0)

+ m

2j
∑

n=0

(
2j

n

)

∇2j−n
1 ϕ̂RW

m (~u) ∆̄~u∇n
1 D̂(0)

=
m

1 − m

( j∑

l=1

(
2j

2l

)

∇2l
1 D̂(0) ∆̄~u∇2(j−l)

1 ϕ̂RW

m (0)

+

2j
∑

n=0

(
2j

n

)

∇2j−n
1 ϕ̂RW

m (~u) ∆̄~u∇n
1 D̂(0)

)

, (2.14)
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where we regard the sum over l ∈ {1, . . . , j} in the last expression as zero when j = 0.
Substituting this back to (2.12), performing the integration with respect to u ∈ (0,∞)
and then reorganizing the resulting terms (see [3] for more details), we will end up with

∑

t∈Z+

mt
∑

x∈Zd

|x1|rϕRW

t (x) =
2 sin rπ

α∨2

(α ∧ 2) sin rπ
α

Γ(r + 1)
(mvα)

r
α∧2

(1 − m)1+ r
α∧2

×







1 + O((1 − m)ǫ) (α 6= 2),
(
log 1√

1−m

)r/2
+ O(1) (α = 2),

(2.15)

for some ǫ > 0. The proof of (1.7) is completed by expanding the right-hand side of the
above expression in powers of m and comparing the coefficient of mt in both sides, for
large t.

3 The model-dependence

The key to the proof for self-avoiding walk and oriented percolation is the following lace
expansion (see, e.g., [1, 5]):

ϕt(x) = It(x) +
t∑

s=1

(Js ∗ ϕt−s)(x), (3.1)

where

It(x) =

{

δx,oδt,0 (SAW),

πOP
t (x) (OP),

Jt(x) =

{

D(x)δt,1 + πSAW
t (x) (SAW),

p(D ∗ πOP
t−1)(x) (OP).

(3.2)

Recall (2.1) for random walk, so that IRW
t (x) = δx,oδt,0 and JRW

t (x) = D(x)δt,1. The
model-dependent πt(x) in (3.2), which accounts for difference from random walk, is an
alternating sum of the lace-expansion coefficients and obey the following diagrammatic
bounds (cf., [1, 5]):

|πSAW

t (x)| ≤
x=o

+

x

o

+

o x

+ · · · , (3.3)

|πOP

t (x)| ≤
(x,t)

(o,0)

+

(x,t)

(o,0)

+

(x,t)

(o,0)

+

(x,t)

(o,0)

+ · · · , (3.4)

where each line corresponds to a 2-point function. For self-avoiding walk, the first diagram
represents self-avoiding loop of length t ≥ 2, i.e., (D ∗ ϕSAW

t−1 )(x), and the second diagram
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represents the product of three 2-point functions, ϕSAW
s1

(x) ϕSAW
s2

(x) ϕSAW
s3

(x), summed over
all possible combinations of s1, s2, s3 ≥ 1 satisfying s1 + s2 + s3 = t, and so on. For
oriented percolation, the first diagram represents ϕOP

t (x)2, where the upward direction
is the time-increasing direction, and the second diagram represents the product of five
2-point functions concatenated in a depicted way, where unlabeled vertices are summed
over Z

d × Z+, and so on. For more details, we refer to [1, 5].
Because of the similarity between (2.1) and (3.1), it is natural to expect that the

strategy in §2 for random walk may also work for self-avoiding walk and oriented perco-
lation. To see if it really works, we first take the Fourier-Laplace transform of (3.1). For
k ∈ [−π, π]d and m ∈ [0, mc),

ϕ̂m(k) = Îm(k) + Ĵm(k) ϕ̂m(k), (3.5)

where mc ≥ 1 is the model-dependent radius of convergence for
{∑

x∈Zd ϕt(x)
}

t∈Z+
for

self-avoiding walk and critcal/subcritical oriented percolation (mOP
c is a non-increasing

function of p ≤ pc and mOP
c = 1 at p = pc [1]). Due to the diagrammatic bounds (3.3)–

(3.4), it has been proved [1, 2, 4] that, for d > dc and L ≫ 1, there are ǫ, δ > 0 such
that

∑

t∈Zd

t1+ǫmt
∑

x∈Zd

|πt(x)|,
∑

t∈Zd

mt
∑

x∈Zd

|x1|α∧2+δ|πt(x)|, (3.6)

both converge, even at m = mc. This implies that Ĵmc(0) = 1 and, as m ↑ mc,

ϕ̂m(0) =
Îm(0)

1 − Ĵm(0)
=

Îm(0)

Ĵmc(0) − Ĵm(0)
∼ Îmc(0)

mc∂mĴmc(0)
(
1 − m

mc

)

=
Îmc(0)

mc∂mĴmc(0)

∑

t∈Z+

( m

mc

)t

. (3.7)

On the other hand, for r = 2j < α with j ∈ N,

∇2j
1 ϕ̂m(0) = ∇2j

1 Îm(0) +

j
∑

l=0

(
2j

2l

)

∇2l
1 Ĵm(0)∇2(j−l)

1 ϕ̂m(0)

=
1

1 − Ĵm(0)

(

∇2j
1 Îm(0) +

j
∑

l=1

(
2j

2l

)

∇2l
1 Ĵm(0)∇2(j−l)

1 ϕ̂m(0)

)

. (3.8)

Suppose that the leading contribution is due to the l = 1 term (this is far from trivial
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and needs to be proved, as in [3]). Then, by induction and using (3.7),

∇2j
1 ϕ̂m(0) ∼

(
2j

2

) ∇2
1 Ĵm(0)

1 − Ĵm(0)
∇2(j−1)

1 ϕ̂m(0)

...

∼ (2j)!

2j

( ∇2
1 Ĵm(0)

1 − Ĵm(0)

)j

ϕ̂m(0)

∼ (2j)!

2j

( ∇2
1 Ĵmc(0)

mc∂mĴmc(0)
(
1 − m

mc

)

)j
Îmc(0)

mc∂mĴmc(0)
(
1 − m

mc

) . (3.9)

However, similarly to (2.8),

(

1 − m

mc

)−j−1

=
∑

t∈Z+

(
t + j

j

)( m

mc

)t

, (3.10)

hence

∇2j
1 ϕ̂m(0) ∼ (2j)!

( ∇2
1 Ĵmc(0)

2mc∂mĴmc(0)

)j
Îmc(0)

mc∂mĴmc(0)

∑

t∈Z+

(
t + j

j

)( m

mc

)t

. (3.11)

Therefore, by (3.7) and (3.11),
∑

x∈Zd x2j
1 ϕt(x)

∑

x∈Zd ϕt(x)
∼ (2j)!

j!

( −∇2
1 Ĵmc(0)

2mc∂mĴmc(0)
t

)j

=
Γ(2j + 1)

Γ(j + 1)

(
1

mc∂mĴmc(0)

∇2
1 Ĵmc(0)

∇2
1 D̂(0)

︸ ︷︷ ︸

Cα

−∇2
1 D̂(0)

2
︸ ︷︷ ︸

vα

t

)j

. (3.12)

This completes a sketch proof for r = 2j.
The case for the other values of r < α is more involved, but can be proved by following

the same strategy as in §2 for random walk. However, since Cα in (3.12) is ill-defined for
α ≤ 2 due to the divergence of ∇2

1 D̂(0), it is replaced by

Cα =
1

mc∂mĴmc(0)
lim
k→0

∆̄kĴmc(0)

∆̄kD̂(0)
≡ 1

mc∂mĴmc(0)
lim
k→0

Ĵmc(0) − Ĵmc(k)

D̂(0) − D̂(k)
. (3.13)

We refrain from showing further details and refer the readers to the original paper [3].
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