Nitric oxide stimulates IP$_3$ production via a cGMP/PKG-dependent pathway in rat pancreatic acinar cells

Amira Moustafa1,2, Kentaro Q. Sakamoto1 and Yoshiaki Habara1,*

1Laboratory of Physiology, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan.
2Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt.

Received for publication, November 1, 2010; accepted, November 25, 2010

Abstract
In an attempt to explore the functioning of nitric oxide (NO) in pancreatic exocrine cells, we have recently obtained several lines of circumstantial evidence indicating that one of molecular targets of NO is phospholipase C (PLC), the activation of which leads to an increase in the cytosolic Ca$^{2+}$ concentration ([Ca$^{2+}$])$_i$ via inositol 1, 4, 5-trisphosphate, IP$_3$. However, whether IP$_3$ is actually produced by NO has not yet been substantiated. The present study was therefore designed to directly measure the intracellular IP$_3$ concentration ([IP$_3$])$_i$ for better understanding of the underlying mechanisms with the help of pharmacological tools. [IP$_3$]$_i$ was measured using a fluorescence polarization technique (HitHunter™). We obtained the following results: 1) varying concentrations of an NO donor, sodium nitroprusside (SNP), elevated [IP$_3$]$_i$, 2) this elevation was completely inhibited in the presence of the soluble guanylyl cyclase (sGC) inhibitor, 1H-[1, 2, 4] oxadiazolo [4, 3-a] quinoxalin-1-one (ODQ), 3) varying concentrations of the cGMP analogue, 8-Br-cGMP, also increased [IP$_3$]$_i$, 4) the cGMP analogue-induced IP$_3$ production was abolished by pretreatment with either a PLC inhibitor, U73122, or a G-protein inhibitor, GP2A, and 5) KT5823, a potent and highly selective inhibitor of cGMP-dependent protein kinase G (PKG), also abolished the IP$_3$ production induced by 8-Br-cGMP. These results suggest that the NO-induced [Ca$^{2+}$]$_i$ increase is triggered by an increase in [IP$_3$]$_i$ located downstream from intracellular cGMP elevation. In this intracellular pathway, each sGC, cGMP-dependent PKG, G-protein and PLC were suggested to be involved. The present work provides new insights into the intracellular signaling accelerated by NO. NO triggers a [Ca$^{2+}$]$_i$ increase via cGMP and IP$_3$ in pancreatic acinar cells.

Key words: Ca$^{2+}$, cGMP, IP$_3$, nitric oxide, pancreatic acini

*Corresponding author: Yoshiaki Habara, Laboratory of Physiology, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
Phone: +81-11-706-5199. Fax: +81-11-706-5202. E-mail: habara@vetmed.hokudai.ac.jp
Introduction

Nitric oxide (NO) plays critical roles in various biological systems. This bioactive gas is formed from an amino acid, L-arginine, via a reaction catalyzed by NO synthases (NOSs) that are either constitutive or inducible in the presence of molecular oxygen. Physiologically diverse effects exerted by this gaseous radical are regarded to be intermedian largely by soluble guanylyl cyclase (sGC), which is considered to be a receptor for NO. Cyclic GMP produced by catalytic action of sGC activates cGMP-dependent protein kinase G (PKG) to phosphorylate an array of proteins.

G-protein-mediated intracellular Ca\(^{2+}\) signaling has long been depicted as a key event that initiates exocrine secretion in pancreatic acini. The signaling commences from binding of G-protein-coupled receptors with a variety of agonists followed by activation of phospholipase C (PLC), which promotes elevation of the intracellular IP\(_3\) concentration ([IP\(_3\)]\(_i\)) in such a way that this phosphoinositide metabolite triggers the release of Ca\(^{2+}\) from intracellular stores. Lines of evidence have demonstrated that NO could induce Ca\(^{2+}\) release in several cell types either via PKG-coupled activation of ADP-ribosyl cyclase, resulting in increased synthesis of a potent Ca\(^{2+}\) mobilizing agent, cyclic ADP-ribose, or via direct nitrosylation of regulatory thiol groups of ryanodine receptors. Thus, in some cells, Ca\(^{2+}\) and NO appear to work synergistically in the regulation of cellular homeostasis. However, some controversial findings have also been reported regarding the effect of cGMP on the intracellular Ca\(^{2+}\) concentration ([Ca\(^{2+}\)]\(_i\)) depending on the type of cell. Elevation of [Ca\(^{2+}\)]\(_i\) has been described in hepatocytes and sea urchin eggs and suppression of [Ca\(^{2+}\)]\(_i\) was noted in cardiac myocytes, cerebellar neurons and vascular smooth muscle cells. The idea that phosphorylation of the IP\(_3\) receptor by PKG potentiates IP\(_3\)-dependent Ca\(^{2+}\) release was proposed for hepatocytes, whereas it was hypothesized that phosphorylation of ADP ribosyl cyclase stimulates the synthesis of cyclic ADP-ribose, which potentiates Ca\(^{2+}\)-induced Ca\(^{2+}\) release from ryanodine-sensitive stores in sea urchin eggs. For G-protein-coupled receptors, negative modulation by cGMP has been shown. Decreased generation of the two major second messengers, IP\(_3\) and diacylglycerol, and blunting of Ca\(^{2+}\) release from intracellular stores were demonstrated. In these receptors, the site of modulation was presumed to be at the G-protein/PLC interface.

NO is well known to have a functional inhibitory role on IP\(_3\) production in anterior pituitary cells, megakaryocytes and ciliary and iris sphincter smooth muscle cells. In the pancreatic exocrine gland, where it is known that NOSs exist, however, the functional role of NO in the machinery of exocrine secretion, especially in terms of [IP\(_3\)]\(_i\), is unclear. Recent studies in our laboratory suggested that NO could mobilize Ca\(^{2+}\) from IP\(_3\)-sensitive stores via cGMP and/or a PLC pathway in pancreatic acinar cells but its detailed cascade is not known. Accordingly, the present work was designed to further explore the NO-related signaling pathway by especially focusing on actual changes in [IP\(_3\)]\(_i\) and to obtain insights into the overall signaling pathway accelerated by NO mediating [Ca\(^{2+}\)]\(_i\) dynamics in pancreatic acinar cells.

Materials and Methods

Chemicals: Chromatographically purified collagenase (CLSPA) was purchased from Worthington Biochemical (Lakewood, NJ, USA). U-73122, dimethyl sulfoxide (DMSO), bovine serum albumin (BSA), Dulbecco’s phosphate-buffered saline containing neither CaCl\(_2\) nor MgCl\(_2\) (PBS), soybean trypsin inhibitor (type1-S) and the cGMP analogue, 8-Br-cGMP, were from Sigma (St. Louis, MO, USA). HEPES was from Dojindo (Kumamoto, Japan). Eagle’s essential amino acid (MEM) without L-glutamine was
performed by gentle suction through pipettes with decreasing orificial size. The acinar suspension was then filtrated through 150 μm nylon mesh, rinsed at least twice with PBS, pelleted (x60 g) and resuspended in a suitable amount of PBS. Acinar cell viability was virtually 100% when assessed by the trypan blue exclusion test.

Measurement of \([\text{IP}_3]\): The amount of \([\text{IP}_3]\) was measured using HitHunter™ \([\text{IP}_3]\) Fluorescence Polarization Assay Kits (DiscoveRx Tech, Fremont, CA, USA), a reliable and convenient methodology based on competitive binding between an \([\text{IP}_3]\) fluorescence tracer and unlabeled \([\text{IP}_3]\) from the cell lysates or standards. Free \([\text{IP}_3]\) competes at the \([\text{IP}_3]\) binding protein and allows the \([\text{IP}_3]\) tracer to rotate freely upon excitation with plane polarized light. The polarized signal is inversely proportional to the amount of the free unlabelled \([\text{IP}_3]\); thus, as the concentration of \([\text{IP}_3]\) is increased the polarization signal is decreased\(^{25}\). Black 384-well plates (Greiner Bio-One, Frickenhausen, Germany) were used for measurement of \([\text{IP}_3]\). Briefly, cells were treated with different agonists (SNP or 8-Br-cGMP) for designated periods in the presence or the absence of various inhibitors. The cellular reaction was terminated by placing cells on ice followed by addition of 0.2 N perchloric acid to lyse the cells. The plate was then shaken at 650 rpm for 5 min. The \([\text{IP}_3]\) tracer was subsequently added to each well and the \([\text{IP}_3]\) binding protein was finally added to the plate. The polarized fluorescence from the \([\text{IP}_3]\) tracer (fluorescein) was read using a Synergy™ 4 Multi-Mode Microplate Reader (BioTek Instruments, Winooski, VT) with a polarization mirror, and 485 nm excitation filter and 530 nm emission filter. The \([\text{IP}_3]\) was calculated from the \([\text{IP}_3]\) standard curve, which was prepared from 3-fold serial dilutions of \([\text{IP}_3]\) standards ranging from \(1.33 \times 10^{-6}\) to \(6.7 \times 10^{-11}\) M and fitted with a four-parameter Hill equation.
Statistical analysis: Data obtained from triplicate assays were collected from at least three independent experiments. The \([\text{IP}_3]\) was expressed as the percent of prestimulated basal \([\text{IP}_3]_0\) (nM) by setting the basal \([\text{IP}_3]\) concentration as 100% (baseline). The area under the curve (AUC) was also calculated for the whole time course (300 sec) to assess \([\text{IP}_3]\) production (% change) and represented as (AUC percent·sec). Data are presented as mean ± SE. The statistical analysis was performed using Student’s t-test with a value of \(P < 0.05\) being considered significant.

Results

SNP-induced \([\text{IP}_3]\) production

Pancreatic acini were stimulated with the NO donor, SNP, and \([\text{IP}_3]\) production was directly measured. As shown in Fig. 1a, SNP (50 μM) induced a marked increase in \([\text{IP}_3]\) and this increase appeared to be oscillatory with a frequency of approximately one spike per 2 min, which was equivalent to that of NO-induced \(\text{Ca}^{2+}\) oscillation\(^{21}\). Different concentrations of SNP from 20 μM to 1 mM also elevated \([\text{IP}_3]\) (Fig. 1b). All concentrations of SNP tested induced almost the same degree of elevation with some decrease at a higher concentration. This finding suggested that NO activated PLC as \([\text{IP}_3]\) was produced from PLC-mediated hydrolysis of \(\text{PIP}_2\).

Involvement of sGC/cGMP in NO-induced \([\text{IP}_3]\) production

Generally, a guanylyl cyclase, especially sGC, is considered to be one of the most essential proteins activated by NO and a consequence of activation of this enzyme is an increase in the intracellular cGMP concentration. We therefore next tried to evaluate the possible involvement of sGC/cGMP in the NO-activated intracellular pathway from the viewpoint of \([\text{IP}_3]\) production. Two prominent inhibitors were applied. First, isolated acini were pretreated with ODQ, a potent and selective inhibitor of NO-sensitive guanylyl cyclase (GC). Pretreatment with ODQ at 100 μM for 30 min before and 5 min during SNP application almost completely inhibited the 50 μM SNP-induced \([\text{IP}_3]\) increase as shown in Fig. 2a. The AUC of \([\text{IP}_3]\) production was found to decrease by 97% in the presence of ODQ (Fig. 2b). This result implied a principal role of GC, mainly sGC, in the pathway of NO-induced \([\text{IP}_3]\) production. As the downstream product of sGC is cGMP, we next applied 8-Br-cGMP, a membrane-permeable and stable analogue of cGMP, and examined whether, as with the NO donor, \([\text{IP}_3]\) production could be induced to further...
substantiate the potential involvement of sGC. As expected, application of 8-Br-cGMP at varying concentrations ranging from 0.1 μM to 1 mM was also found to induce oscillatory \([IP_3]\), increases (Fig. 3a–d). The \([IP_3]\) level was increased by 1.7- to 2.4-fold over the basal level. These results indicated that NO stimulated \([IP_3]\) formation via the sGC/cGMP signaling pathway.

Stimulation of PLC by cGMP

A general understanding that \([IP_3]\) is formed by catalytic activity of PLC would raise the question of whether the cGMP-induced \([IP_3]\) production found in the foregoing experiments was mediated by PLC. To address this question, acini were pretreated with a PLC inhibitor, U73122, and cGMP-induced \([IP_3]\) production was measured. The \([IP_3]\) elevation induced by 0.1 μM 8-Br-cGMP was significantly inhibited (by 66%) by the pretreatment of acini with 2 μM U73122 for 30 min when compared with the untreated control value (Fig. 4a, b). This result indicated that cGMP was able to activate PLC and induce subsequent \([IP_3]\) production. The next question is by what mechanism cGMP activates PLC. We focused on G-protein, as PLC is activated by an \(\alpha\)-subunit cleaved from trimeric G-protein. The acini were preincubated with a \(G_\alpha\)-protein antagonist peptide (10 μM), GP2A, for 30 min before and 5 min during stimulation with 0.1 μM 8-Br-cGMP. As depicted in Fig. 4b, \([IP_3]\) production induced by 8-Br-cGMP was markedly diminished in the presence of GP2A, which was also obvious in the time course of 8-Br-cGMP-induced changes in \([IP_3]\), (Fig. 4a). The \([IP_3]\) production was found to decrease by 72% (Fig. 4b). From these results, we speculated that cGMP most likely stimulated \([IP_3]\) production, not completely but largely, via a well-characterized G-protein/PLC pathway.

Effect of KT5823 on cGMP-induced \([IP_3]\) production

It is documented that the intracellular action of cGMP is primarily mediated by a cGMP-dependent PKG, but several types of cyclic nucleotide-activated ion channels are also reported to be involved\(^7,17\). Thus, whether PKG mediated cGMP-induced \([IP_3]\) production was examined by using a highly cell-permeable and selective inhibitor of PKG, KT5823\(^10,13\). Pretreatment with 10 μM KT5823 for 30 min significantly blocked cGMP-induced \([IP_3]\), elevation by 86% (Fig. 4b), indicating that the stimulatory effect of the cGMP analogue depended upon activation of PKG to elicit \([IP_3]\) production.

Discussion

NO-induced \([IP_3]\) production

NO is an essential intracellular messenger involved in a variety of crucial physiological events. Previous work from our group...
NO stimulates IP₃ production via cGMP

10

exocrine cells, no reports are available in which the [IP₃]ᵢ was directly measured after NO/cGMP stimulation. In the current study, we attempted to actually measure the IP₃ level in isolated rat pancreatic acini in order to examine the effects of NO on IP₃ production and tried to better understand the underlying mechanism of NO-induced Ca²⁺ release. First, we found that an NO donor, SNP, induced oscillatory changes in [IP₃]ᵢ with a frequency of approximately one spike per two minutes, which appeared to be mostly identical to the frequency of NO-induced Ca²⁺ dynamics in pancreatic acinar cells.

This would indicate that NO-induced [Ca²⁺]ᵢ oscillation occurred due to oscillatory changes in [IP₃]ᵢ. In other words, this implies a strong correlation between IP₃ and Ca²⁺ in the NO effect. Thus, as in chromaffin cells but not in other cells, an essential action of NO in pancreatic acinar cells would be to stimulate IP₃ production.

A stimulatory effect by NO gas on IP₃ formation has been reported only in chromaffin cells. On the other hand, an inhibitory action has been documented in anterior pituitary cells, megakaryocytes and ciliary and iris sphincter smooth muscle cells. For pancreatic

demonstrated a novel NO/PLC signaling pathway relaying NO-induced Ca²⁺ oscillation and activation of cGMP, PLC, IP₃ and resultant Ca²⁺ release from IP₃-sensitive stores in rat pancreatic acini. Several reports have shown that NO, through PKG activation, modulates phosphoinositide metabolism, sensitivity of the IP₃ receptor and PLC activation, which results in production of IP₃, triggering Ca²⁺ release from nonmitochondrial intracellular stores. However, little is known about the mechanisms of the NO action on inositol phosphate metabolism in pancreatic acinar cells.

In this study, we especially focused on actual IP₃ production by NO or cGMP in pancreatic acini to further substantiate our previous assumption.

Fig. 3. 8-Br-cGMP-induced IP₃ production. Typical examples of time courses of IP₃ production induced by 0.1 (a), 10 (b), 100 μM (c) and 1 mM (d) 8-Br-cGMP. IP₃ concentration was measured every 30 sec for 5 min.
sGC and cGMP in NO-induced IP₃ production

The next question would be whether the cGMP pathway intermediates NO-induced IP₃ production. In many biological systems, it is known that the effects of NO are mediated by cGMP. In the present study, the possible relevance of this cascade was assessed in two ways; first, acini were pretreated with ODQ, a highly selective and irreversible inhibitor of guanylyl cyclase, and we found that SNP-induced IP₃ production was significantly attenuated, indicating that activation of guanylyl cyclase, most likely sGC, by NO is an essential step of the pathway of IP₃ production. Second, instead of SNP, we utilized 8-Br-cGMP to examine if IP₃ production was stimulated by the sGC product, cGMP, and found that this analogue also increased [IP₃]. This evidence indicated that, in addition to sGC, cGMP production was a subsequent step following sGC activation in NO-induced IP₃ production and the resultant Ca²⁺ response in pancreatic acinar cells. A similar idea was also proposed for parotid acinar cells and chromaffin cells[32,34].

PLC mediates NO-induced IP₃ production

The finding of involvement of cGMP in NO-induced IP₃ production then led us to further investigate how cGMP elicits IP₃ production. It has been previously reported that NO might modulate PLC activity through cGMP[4,37]. We tested this possibility by using U73122 and found that the 8-Br-cGMP-induced increase in [IP₃]ₙ was significantly inhibited. To our knowledge this is the first evidence to indicate the activation of PLC by cGMP leading to production of IP₃ in pancreatic acinar cells. A similar pathway was also proposed in parotid acinar cells, in which NO could activate PLC, IP₃ synthesis and Ca²⁺ release through cGMP[32].
G-protein is involved in NO-induced IP₃ production

Our findings indicated that NO triggered a rise in cGMP followed by activation of PLC and subsequent IP₃ production and Ca²⁺ release from IP₃-sensitive stores. It is widely recognized that PLC activation is commenced by binding of the α-subunit of the trimeric G-protein molecule. If this step also occurs in the process discussed above, 8-Br-cGMP-induced IP₃ production should be inhibited by G-protein inhibitors. In the current study, we utilized the G-protein antagonist peptide, GP2A. Interestingly, as 8-Br-cGMP-induced IP₃ production was totally abolished in the presence of GP2A, we speculated that NO activated G-protein which is downstream of cGMP formation. The G-protein α-subunit could then bind with PLC, which accelerated IP₃ production and Ca²⁺ release.

PKG participates in NO-induced IP₃ production

The effects of cGMP are known to be mediated by multiple factors; one of which is PKG. To investigate the possible involvement of this kinase, we applied a PKG inhibitor, KT5823, to examine its effect on 8-Br-cGMP-induced IP₃ production. The result showed a marked decrease in cGMP-induced IP₃ production in the presence of KT5823, suggesting that a PKG-dependent pathway was involved in cGMP-stimulated IP₃ production.

Considering these results together, we presume that NO activates sGC and elevates the intracellular cGMP level. This cyclic nucleotide then binds with PKG and affects its catalytic potential, which then could phosphorylate PLC as demonstrated by Huang et al. and Xia et al., though the end effect reported by them was not potentiation but inhibition of [Ca²⁺]. Processing of this signaling finally induces IP₃ production and the resultant [Ca²⁺] increase. Unlike other cells, ADP-riboseylation and/or nitrosylation may be a minor step even if it occurs in pancreatic acinar cells.

In conclusion, the present study is the first to show that an NO-PKG signaling pathway may be coupled to IP₃ production in pancreatic acinar cells and that this cascade is mediated by cGMP/G-protein/PLC activation, which, we think, is a novel signaling pathway functioning between NO and Ca²⁺ mobilization in these cells. This may provide a better understanding of the mechanism of the action of NO in the exocrine pancreas.

Acknowledgements

The authors thank K. Yamaguchi, S. Murakami and T. Tatebe for their technical assistance. A part of this study was financially supported by the Egyptian government (oversea scholarship to A. M.).

References

