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THE SPECTRUM OF THE GRADED RING OF DIFFERENTIAL
OPERATORS OF A SCORED SEMIGROUP ALGEBRA

MUTSUMI SAITO

Abstract. We describe the set of Zd-graded prime ideals of the graded ring of the
ring D of differential operators of a scored semigroup algebra. Moreover we describe the
characteristic varieties of Zd-graded critical D-modules of a certain type.
Mathematics Subject Classification (2000): Primary 13N10; Secondary 16S32,
16W50.
Keywords: Prime ideals, scored semigroup algebras, graded ring of differential opera-
tors, characteristic varieties

1. Introduction

Let K be an algebraically closed field of characteristic 0. Let X be an affine algebraic
variety over K. Since the ring D(X) of differential operators on X is not commutative,
to do some algebraic geometry, we need to abelianize D(X). The ring D(X) has the
filtration {Dk(X)} by the order of differential operators. For a smooth algebraic variety
X, the abelianization GrD(X) =

⊕∞
k=0 Dk(X)/Dk−1(X) is the ring of regular functions

on the cotangent bundle T ∗X, and the geometric study is crucial for the theory of D-
modules (for example see (Borel et al, 1987; Hotta, Takeuchi, Tanisaki, 2008; Kashiwara,
2003)). In particular, the characteristic variety is one of the most fundamental invariants
for a D-module.

Let A be a finite set of column vectors in Zd, and RA the ring of regular funtions
on an affine toric variety XA defined by A. Then the ring GrD(RA) = GrD(XA) is
Noetherian if and only if RA is scored (Saito, Traves, 2004). The rings D(RA) and
GrD(RA) inherit the natural Zd-grading from RA. In this paper, we describe Zd-graded
prime ideals of GrD(RA) when RA is scored (Theorem 4.9). Moreover we describe the
characteristic varieties of Zd-graded critical D(RA)-modules when they are generated by
one 0-homogeneous element whose annihilator in D(RA)0 = K[s1, . . . , sd] is a translation
by a vector in Kd of a prime ideal homogeneous with respect to s1, . . . , sd (Theorem 6.2).

In Section 2, we recall some fundamental facts about the ring of differential operators
of an affine semigroup algebra and the scored property.

Since the semigroup is scored, we are able to reduce the problem to the case d = 1.
In Section 3, we investigate the multiplication structure of a quotient of GrD(RA) in the
case d = 1 .

In Section 4, applying the results in Section 3 to the general case, we describe the
Zd-graded prime ideals of GrD(RA).

After recalling the Zd-graded critical D(RA)-modules in Section 5, we describe the
characteristic varieties of Zd-graded critical D(RA)-modules of the above type in Section
6.

Date: 30 December 2008.
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The author is grateful to Kohji Yanagawa for fruitful conversations concerning graded
ring of differential operators.

2. The Ring of Differential Operators of an Affine Semigroup Algebra

In this section, we recall some fundamental facts about the ring of differential operators
of an affine semigroup algebra.

Let A := {a1, a2, . . . , an } be a finite set of column vectors in Zd. Sometimes we identify
A with the matrix (a1,a2, . . . , an). Let NA and R≥0A denote the monoid and the cone
generated by A, respectively. Throughout this paper, we assume that R≥0A is strongly
convex (for strong convexity, see e.g. (Fulton, 1993, p. 4)), and that

∑n
j=1 Zaj = Zd, for

simplicity.
Let K[t, t−1] denote the Laurent polynomial ring K[t±1

1 , . . . , t±1
d ]. Then its ring of

differential operators D(K[t, t−1]) is the ring

K[t±1
1 , . . . , t±1

d ]〈∂1, . . . , ∂d〉,
where [∂i, tj] = δij, [∂i, t

−1
j ] = −δijt

−2
j , and the other pairs of generators commute. Here

[ , ] denotes the commutator, and δij is 1 if i = j and 0 otherwise. The semigroup algebra
RA := K[NA] is the subalgebra

⊕
a∈NA Kta of K[t, t−1], where ta = ta1

1 ta2
2 · · · tad

d for
a = t(a1, a2, . . . , ad). The ring of differential operators D(RA) is a subring of D(K[t, t−1]),
namely

(2.1) D(RA) = {P ∈ K[t±1
1 , . . . , t±1

d ]〈∂1, . . . , ∂d〉 : P (RA) ⊆ RA}.
Put sj := tj∂j for j = 1, 2, . . . , d. Then it is easy to see that sj ∈ D(RA) for all j. We

introduce a Zd-grading on the ring D(RA); for a = t(a1, a2, . . . , ad) ∈ Zd, set

(2.2) D(RA)a := {P ∈ D(RA) : [sj, P ] = ajP for j = 1, 2, . . . , d}.
Then D(RA) =

⊕
a∈Zd D(RA)a. Given a ∈ Zd, it is not difficult to see that there exists

an ideal I of K[s] := K[s1, . . . , sd] such that D(RA)a = taI. To describe this ideal I
explicitly, we define a subset Ω(a) of the semigroup NA by

(2.3) Ω(a) = { b ∈ NA : b + a 6∈ NA } = NA \ (−a + NA).

Then D(RA)a is described as follows.

Theorem 2.1 (Musson, 1987, Theorem 2.3).

D(RA)a = taI(Ω(a)) for all a ∈ Zd,

where

I(Ω(a)) := {f(s) ∈ K[s] : f vanishes on Ω(a)}.

In particular, D(RA)a = taK[s] = K[s]ta for each a ∈ NA, since Ω(a) = ∅ in this case.

Next we explain the order filtration. A differential operator

P =
∑
a∈Nd

aa(t)∂a ∈ D(K[t, t−1])

is said to be of order k if aa 6= 0 for some a with |a| = k and aa = 0 for all a with |a| > k,
where |a| = a1 + a2 + · · · + ad. Let Dk(RA) denote the set of differential operators in
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D(RA) of order at most k. Then {Dk(RA)}k∈N is called the order filtration of D(RA). We
consider the graded ring G := Gr(D(RA)) of D(RA) with respect to the order filtration:

(2.4) G := Gr(D(RA)) :=
⊕
k∈N

Dk(RA)/Dk−1(RA),

where we put D−1(RA) = 0. For an operator P of order k, P denotes the element
of Dk(RA)/Dk−1(RA) represented by P . Sometimes we write simply P instead of P ,
especially when P = ta, or P = si. The graded ring G is a subring of the commutative
ring

Gr(D(K[t, t−1])) = K[t±1
1 , t±1

2 , . . . , t±1
d , ξ1, ξ2, . . . , ξd],

where ξj = ∂j. Since each Dk(RA) is Zd-graded by Dk(RA) =
⊕

d∈Zd Dk(RA) ∩ D(RA)d,
the graded ring G inherits the Zd-grading:

(2.5) G =
⊕
d∈Zd

Gd.

In (Saito, Traves, 2004), we proved that G = Gr(D(K[NA])) is Noetherian if and only
if the semigroup NA is scored .

Next we recall the definition of a scored semigroup from (Saito, Traves, 2001). We
denote by F the set of facets (maximal proper faces) of the cone R≥0A. Given σ ∈ F , we
denote by Fσ the primitive integral support function of σ, i.e., Fσ is the linear form on
Rd uniquely determined by the conditions:

(1) Fσ(R≥0A) ≥ 0,
(2) Fσ(σ) = 0,
(3) Fσ(Zd) = Z.

Definition 2.2. The semigroup NA is said to be scored if

(2.6) NA =
∩
σ∈F

{a ∈ Zd : Fσ(a) ∈ Fσ(NA) }.

Example 2.3. Let

A1 = (a1,a2,a3) =

(
1 1 1
0 2 3

)
.

Then
F = {σ1 = R≥0a1, σ3 = R≥0a3 },

Fσ1(s1, s2) = s2, Fσ3(s1, s2) = 3s1 − s2, and

N \ Fσ1(NA1) = { 1 }, N \ Fσ3(NA1) = ∅.
As illustrated in Figure 1, the semigroup NA1 is scored.

Next let

A2 = (a1,a2,a3) =

(
2 0 1
0 1 1

)
.

Then
F = {σ1 = R≥0a1, σ2 = R≥0a2 },

Fσ1(s1, s2) = s2, Fσ2(s1, s2) = s1, and

Fσ1(NA2) = N, Fσ2(NA2) = N.

Since NA2 6= N2, the semigroup NA2 is not scored.
3
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Figure 1. The semigroups in Example 2.3

Corollary 2.4 (Saito, Traves, 2004, Proposition 6.1). Suppose that the semigroup NA is
scored. Then

D(RA)a = PaK[s],

where

Pa := tapa(s), pa(s) :=
∏
σ∈F

∏
m∈Fσ(NA)\(−Fσ(a)+Fσ(NA))

(Fσ(s) − m).

Proof. We have

(2.7) Ω(a) = NA \ (−a + NA) =
∪
σ∈F

{ b ∈ NA : Fσ(b) /∈ −Fσ(a) + Fσ(NA) },

since −a + NA =
∩

σ∈F{ b ∈ Zd : Fσ(b) ∈ −Fσ(a) + Fσ(NA) } by (2.6). Hence the
ideal I(Ω(a)) of K[s] = K[s1, . . . , sd] is generated by the single polynomial pa(s), and the
assertion follows from Theorem 2.1. ¤

The following corollary is the graded version of Corollary 2.4 with respect to the order
filtration (see (2.4)):

Corollary 2.5 (Saito, Traves, 2004, Corollary 6.2). Suppose that the semigroup NA is
scored. Then the Zd-grading (2.5) of G = Gr(D(RA)) is described as follows:

G =
⊕
a∈Zd

taI(Ω(a)) =
⊕
a∈Zd

P aK[s]

⊆ K[t±1 , . . . , t±d , ξ1, . . . , ξd] = Gr(D(K[t, t−1])),

and

P a = ta ·
∏
σ∈F

Fσ(s)](Fσ(NA)\(−Fσ(a)+Fσ(NA))).

From now on, we always assume that the semigroup NA is scored.
Let SpecZd(G) denote the set of Zd-graded prime ideals of G. Since G0(= K[s]) is a

subalgebra of G, we have a natural map

(2.8) π : SpecZd(G) 3 P =
⊕
a∈Zd

Pa 7→ P0 ∈ Spec(K[s]).

Given a prime ideal p ∈ Spec(K[s]), we shall describe its fiber π−1(p).
4



3. The case d = 1

In this section, we assume d = 1. In this case, R≥0A = R≥0 or −R≥0 by the strong con-
vexity. We assume that R≥0A = R≥0. The cone R≥0 has only one facet {0}, F{0}(s) = s,

and NA is always scored. We consider the multiplication structure of G/Gs =
⊕

a∈Z KPa,
where Pa was defined in Corollary 2.4. Throughout this section, we set

(3.1) S := NA.

Since we assume that ZA = Z, the set N \ S is finite. We also set

(3.2) N \ S = {c1 < · · · < ch}
throughout this section. Then for a ∈ Z

Ω(a) = S \ (−a + S)

= ({n ∈ N : n < −a } ∪ {−a + cr ∈ N : 1 ≤ r ≤ h })(3.3)

\{ c1, . . . , ch }.
The following lemma is clear from (3.3).

Lemma 3.1. Let a ∈ N. Then

(1) Ω(a) = {cr − a ∈ S : 1 ≤ r ≤ h},
(2) Ω(−a) = {n ∈ S : n < a} ∪ {a + cr ∈ S : 1 ≤ r ≤ h}.

Notation 3.2. For a ∈ Z, set
deg(a) := ]Ω(a).

By definition (see Corollary 2.4),

(3.4) pa =
∏

k∈Ω(a)

(s − k),

and hence deg(a) = deg(pa).

Corollary 3.3. Let a ∈ N. Then a ∈ S if and only if deg(a) = 0.

Proof. Since S is a semigroup, a ∈ S implies Ω(a) = ∅. If a /∈ S, that is a = ci for some
i, then 0 ∈ Ω(a) by Lemma 3.1 (1). ¤
Proposition 3.4. Let a ∈ N. Then

deg(−a) = a + deg(a).

Proof. Let ci < a ≤ ci+1. (Here c0 = −1, ch+1 = +∞.) We have ]{n ∈ S : n < a} = a− i,
and

]{r : a + cr ∈ S} = h − ]{r : a + cr /∈ S}
= h − ]{l ≥ i + 1 : cl = a + cr (for some r)}
= h − ]{l ≥ i + 1 : cl − a /∈ S}
= h − ((h − i) − ]{l ≥ i + 1 : cl − a ∈ S})
= i + ]{l ≥ i + 1 : cl − a ∈ S}
= i + deg(a).

Hence, by Lemma 3.1 (2), deg(−a) = a + deg(a). ¤
5



For a ∈ Z, we call

(3.5) expdeg(a) =

{
0 if a ≥ 0
|a| if a ≤ 0

the expected degree of a.

Corollary 3.5. Let a ∈ Z. Then we have the following:

(1) deg(a) ≥ expdeg(a).
(2) deg(a) = expdeg(a) if and only if |a| ∈ S.

Proof. Let a ∈ N. Then by definition deg(a) = ]Ω(a) ≥ 0 = expdeg(a), and deg(a) = 0 if
and only if a ∈ S by Corollary 3.3.

By Proposition 3.4, deg(−a) = a + deg(a) ≥ a = expdeg(−a), and the equality holds
if and only if a ∈ S again by Corollary 3.3. ¤
Theorem 3.6. Let a, b ∈ Z. Then

(1) deg(a) + deg(b) ≥ deg(a + b).
(2) For a, b 6= 0, deg(a) + deg(b) = deg(a + b) if and only if a, b ∈ S or a, b ∈ −S.
(3) If a = 0 or b = 0, then deg(a) + deg(b) = deg(a + b).

Proof. Since D(RA) is a subalgebra of an integral domain D(K[t, t−1]) (2.1), D(RA) is
also an integral domain. Recall that D(RA)a = tapaK[s] (Corollary 2.4). We have 0 6=
tapa · tbpb ∈ D(RA)a+b = ta+bpa+bK[s]. Recalling that deg(c) = deg(pc) for all c ∈ Z (see
(3.4)), we have deg(a) + deg(b) ≥ deg(a + b).

(3) follows from deg(0) = 0.
By Corollary 3.3 and Proposition 3.4, the if-part of (2) holds.
We prove the only-if part of (2) in Lemmas 3.7, 3.9, and 3.11. ¤

Lemma 3.7. Let a, b ∈ Z>0. If a /∈ S, then deg(a) + deg(b) > deg(a + b).

Proof. We divide the proof into three cases.
(Case 1) Suppose a + b ∈ S. Then by Corollary 3.3 deg(a + b) = 0 and deg(a) > 0.
(Case 2) Suppose a + b /∈ S and b ∈ S. By Corollary 3.3 deg(b) = 0. Let a = ci and
a + b = cj with i < j.

Suppose cr − cj ∈ S. Note that, in this case, cr − cj ∈ Ω(a + b). Then cr − ci =
(cr−cj)+b ∈ S. Hence ]Ω(cj) ≤ ]Ω(ci) by Lemma 3.1 (1). Furthermore, since ci−cj /∈ S,
we have ]Ω(cj) < ]Ω(ci). We thus have deg(a + b) = deg(cj) < deg(ci) = deg(a) + 0 =
deg(a) + deg(b).
(Case 3) Suppose a + b /∈ S and b /∈ S. Let a = ci, b = ci′ , and a + b = cj with i, i′ < j.

We show the following:

Claim 3.8.

{cr : cr − cj ∈ S, r 6= j}
⊆ {cr : cr − ci′ ∈ S, r 6= i′}

∐
{cl + ci′ : cl − ci ∈ S, r 6= i}.

(Proof of Claim 3.8) Suppose cr − ci′ ∈ S and cr = cl + ci′ . Then cl ∈ S, which is a
contradiction. Hence the union is disjoint.

Next suppose cr − cj ∈ S (r > j) and cr − ci′ /∈ S. Let cl = cr − ci′ . Then cr = cl + ci′ ,
and cj = ci +ci′ . Since S 3 cr−cj = (cr−ci′)−ci = cl−ci, the claim has been proved. ¤
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(Continuation of the proof of Lemma 3.7) By Lemma 3.1 (1) and Claim 3.8, deg(cj)−
1 ≤ (deg(ci) − 1) + (deg(ci′) − 1), hence deg(cj) < deg(ci) + deg(ci′). ¤

Lemma 3.9. If a, b ∈ Z, a > b > 0, then deg(a) + deg(−b) > deg(a − b).

Proof. First we show the following:

Claim 3.10.

{cr − (a − b) ∈ S}
⊆ {n ∈ S : n < b}

∐
{cr + b ∈ S}

∐
{cr − a + b : cr − a ∈ S}.

Here by Lemma 3.1 the number of the elements of the set on the left hand side is deg(a−b),
while the union of the first two sets on the right hand side has deg(−b) elements, and the
third set has deg(a) elements.

(Proof of Claim 3.10) It is clear that the union is disjoint.
Let cr − (a− b) ∈ S. If this does not belong to the first set on the right hand side, then

cr ≥ a. If cr−(a−b) ∈ S does not belong to the second set either, then cr−(a−b)−b ∈ S,
or cr − a ∈ S. Hence cr − (a − b) = cr − a + b belongs to the third set. ¤
(Continuation of the proof of Lemma 3.9) ch+b does not belong to the left hand side
of Claim 3.10, but belongs to (the second set of) the right hand side. Hence deg(a− b) <
deg(−b) + deg(a). ¤

Lemma 3.11. deg(a) + deg(−b) > deg(a − b) for b > a > 0.

Proof. By Proposition 3.4 and Lemma 3.9, deg(a)+deg(−b) = deg(−a)−a+deg(b)+b >
deg(b − a) + b − a = deg(a − b). ¤

4. General Case

We return to the general case. In this section, applying the results in Section 3 to
the general case, for p ∈ Spec(K[s]), we describe its fiber π−1(p) of π (2.8), the set of
Zd-graded prime ideals P of G with P0 = p.

For a facet σ ∈ F , let

(4.1) N \ Fσ(NA) = { c(σ)1 < · · · < c(σ)h(σ) }.

We can apply the results in §3 to the subsemigroup Fσ(NA) of N. For σ ∈ F and a ∈ Zd,
as in Notation 3.2 and (3.5), set

degσ(a) := ] (Fσ(NA) \ (−Fσ(a) + Fσ(NA))) ,(4.2)

expdegσ(a) :=

{
0 if Fσ(a) ≥ 0
|Fσ(a)| if Fσ(a) ≤ 0.

(4.3)

By Corollary 2.5, we have

(4.4) Pa = ta
∏
σ∈F

F degσ(a)
σ .

Lemma 3.1, Corollary 3.3, Proposition 3.4, Corollary 3.5, and Theorem 3.6 read as follows:
7



Lemma 4.1. Let a ∈ Zd.

Fσ(NA) \ (−Fσ(a) + Fσ(NA))

=


{c(σ)r − Fσ(a) ∈ Fσ(NA) : 1 ≤ r ≤ h(σ)} if Fσ(a) ≥ 0,

{c(σ)r − Fσ(a) ∈ Fσ(NA) : 1 ≤ r ≤ h(σ)}
∪{n ∈ Fσ(NA) : n < −Fσ(a)} if Fσ(a) < 0.

Corollary 4.2. Let a ∈ Zd. Then Fσ(a) ∈ Fσ(NA) if and only if degσ(a) = 0.

Proposition 4.3. Let a ∈ Zd. If Fσ(a) ≥ 0, then

degσ(−a) = Fσ(a) + degσ(a).

Corollary 4.4. Let a ∈ Zd. Then we have the following:

(1) degσ(a) ≥ expdegσ(a).
(2) degσ(a) = expdegσ(a) if and only if |Fσ(a)| ∈ Fσ(NA).

Theorem 4.5. Let a, b ∈ Zd.

(1) degσ(a) + degσ(b) ≥ degσ(a + b).
(2) Suppose that Fσ(a), Fσ(b) 6= 0. Then degσ(a)+degσ(b) = degσ(a+b) if and only

if Fσ(a), Fσ(b) ∈ Fσ(NA) or Fσ(a), Fσ(b) ∈ −Fσ(NA).
(3) If Fσ(a) = 0 or Fσ(b) = 0, then degσ(a) + degσ(b) = degσ(a + b).

Let p be a prime ideal of K[s] = K[s1, . . . , sd]. Define a set F(p) of facets by

(4.5) F(p) = {σ ∈ F : Fσ ∈ p}.
Let Σ(p) denote the fan determined by the hyperplane arrangement

(4.6) {Rσ : σ ∈ F(p) },
i.e., Σ(p) is the set of intersections

(4.7)
∩

σ∈F ′

(Fσ ≥ 0) ∩
∩

σ∈F ′′

(Fσ ≤ 0)

for subsets F ′,F ′′ of F(p) with F ′ ∪ F ′′ = F(p). For fans, see e.g. (Fulton, 1993).
Set

(4.8) S(p) := {a ∈ Zd : |Fσ(a)| ∈ Fσ(NA) for all σ ∈ F(p) }.
For a ∈ Zd, we define the degree and the expected degree of a with respect to p by

degp(a) :=
∑

σ∈F(p)

degσ(a),(4.9)

expdegp(a) :=
∑

σ∈F(p)

expdegσ(a).(4.10)

Then by Corollary 2.4
degm(a) = deg(pa),

where m = (s1, . . . , sd). By Corollary 4.4, we have the following corollary.

Corollary 4.6. Let a ∈ Zd. Let p be a prime ideal of K[s].

(1) degp(a) ≥ expdegp(a).
8



(2) degp(a) = expdegp(a) if and only if a ∈ S(p).

Recall from Corollary 2.5 that

G = Gr(D(RA)) =
⊕
a∈Zd

P aK[s].

Lemma 4.7. Let a, b ∈ Zd. Let p be a prime ideal of K[s]. Then

(1) Pa · Pb ∈ Gp unless a and b belong to the same cone in Σ(p).
(2) Pa · Pb /∈ Gp if a, b ∈ S(p) ∩ τ for some cone τ ∈ Σ(p).
(3) Let a, b ∈ τ ∈ Σ(p). Then Pa · Pb /∈ Gp if and only if |Fσ(a)|, |Fσ(b)| ∈ Fσ(NA)

for all σ ∈ F(p) with Fσ(a), Fσ(b) 6= 0.

Proof. By (4.4)

(4.11) Pa · Pb = Pa+b

∏
σ∈F

F degσ(a)+degσ(b)−degσ(a+b)
σ .

(Here degσ(a) + degσ(b) − degσ(a + b) ≥ 0 by Theorem 4.5 (1).) Hence Pa · Pb ∈ Gp if
and only if there exists a facet σ ∈ F(p) such that degσ(a) + degσ(b) > degσ(a + b) (see
(4.5) for the definition of F(p)).

(1) Suppose that a and b does not belong to the same cone in Σ(p). Then there exists a
facet σ0 ∈ F(p) such that Fσ0(a) ·Fσ0(b) < 0. By Theorem 4.5 (2), degσ0

(a)+degσ0
(b) >

degσ0
(a + b).

(2) Let a, b ∈ S(p) ∩ τ for some cone τ ∈ Σ(p). Then, for any facet σ ∈ F(p), we have
Fσ(a), Fσ(b) ∈ Fσ(NA) or Fσ(a), Fσ(b) ∈ −Fσ(NA). By Theorem 4.5 (2), for any facet
σ ∈ F(p), we have degσ(a + b) = degσ(a) + degσ(b).

(3) Let a, b ∈ τ ∈ Σ(p). Then Fσ(a) · Fσ(b) ≥ 0 for all σ ∈ F(p). Hence, by Theorem
4.5 (2) and (3), for a facet σ ∈ F(p), degσ(a) + degσ(b) > degσ(a + b) if and only if
Fσ(a), Fσ(b) 6= 0, and |Fσ(a)| or |Fσ(b)| does not belong to Fσ(NA). ¤

In the rest of this section, we fix a prime ideal p of K[s]. We shall describe all the
Zd-graded prime ideals P =

⊕
a∈Zd Pa of G with P0 = p.

For a cone τ ∈ Σ(p), define a K-subspace P(p, τ) =
⊕

a∈Zd P(p, τ)a of G by

(4.12) P(p, τ)a :=

{
Gap (a ∈ τ ∩ S(p))
Ga (otherwise).

Proposition 4.8. The K-subspace P(p, τ) is a Zd-graded prime ideal of G.

Proof. In order to prove that P(p, τ) is an ideal, we need to check

(4.13) GaP(p, τ)b ⊆ P(p, τ)a+b

for all a, b ∈ Zd. If a ∈ τ ∩ S(p) or b ∈ τ ∩ S(p) or a + b /∈ τ ∩ S(p), then (4.13) is clear
from (4.12).

Suppose that a /∈ τ ∩ S(p), b /∈ τ ∩ S(p), and a + b ∈ τ ∩ S(p). Furthermore we may
assume that a and b belong to the same cone by Lemma 4.7 (1). Then a and b must
belong to τ , since a + b ∈ τ . Suppose that Pa · Pb /∈ Gp. Then by Lemma 4.7 (3) there
exists a facet σ ∈ F(p) such that Fσ(a) = 0 and |Fσ(b)| /∈ Fσ(NA) (or Fσ(b) = 0 and
|Fσ(a)| /∈ Fσ(NA)), since a /∈ τ ∩ S(p) and b /∈ τ ∩ S(p). Then |Fσ(a + b)| /∈ Fσ(NA),
which contradicts a + b ∈ S(p). Hence Pa · Pb ∈ Gp, and we have proved that P(p, τ) is
an ideal.
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We have G/P(p, τ) =
⊕

a∈τ∩S(p) RPa, where R = K[s]/p is an integral domain. By

Lemma 4.7 (2), G/P(p, τ) is an integral domain. Hence P(p, τ) is prime. ¤

Theorem 4.9. Suppose that P =
⊕

a∈Zd Pa is a Zd-graded prime ideal of G with P0 = p.
Then there exists τ ∈ Σ(p) such that P = P(p, τ). Hence

π−1(p) = {P(p, τ) : τ ∈ Σ(p)},

where π was defined in (2.8).

Set

(4.14) S(P) := {a ∈ Zd : P a /∈ Pa}.

We prove three lemmas to prove Theorem 4.9.

Lemma 4.10. Suppose that P =
⊕

a∈Zd Pa is a Zd-graded prime ideal of G with P0 = p.
Then

S(P) ⊆ S(p),

where S(p) was defined in (4.8).

Proof. Let a /∈ S(p). Then there exists a facet σ0 ∈ F(p) such that degσ0
(a) >

expdegσ0
(a) ≥ 0 by Corollary 4.4. By Theorem 4.5 (2),

2degσ0
(a) > degσ0

(2a).

Hence

Fσ0P 2a|P
2

a.

Since Fσ0 ∈ p ⊆ P, we have P
2

a ∈ P. By the primality of P, we have P a ∈ P. ¤

Lemma 4.11. Suppose that P =
⊕

a∈Zd Pa is a Zd-graded prime ideal of G with P0 = p.
Then there exists a cone τ ∈ Σ(p) such that S(P) ⊆ τ ∩ S(p).

Proof. Suppose the contrary. Then there exist a, b ∈ S(P) and a facet σ0 ∈ F(p) such
that Fσ0(a) > 0, Fσ0(b) < 0. By Theorem 4.5 (2),

degσ0
(a + b) < degσ0

(a) + degσ0
(b).

Hence

Fσ0P a+b|P aP b.

Since Fσ0 ∈ p ⊆ P, we have P aP b ∈ P. By the primality of P, we have P a or P b ∈ P,
contradicting a, b ∈ S(P). ¤

Lemma 4.12. Suppose that P =
⊕

a∈Zd Pa is a Zd-graded prime ideal of G with P0 = p.
Then

Pa = Gap for all a ∈ S(P).

Proof. Let a ∈ S(P), and let P af(s) ∈ Pa. By the primality of P, we have f(s) ∈ P.
Hence f(s) ∈ P0 = p. ¤

Now we prove Theorem 4.9.
10



Proof. By Lemma 4.11, there exists a cone τ ∈ Σ(p) such that S(P) ⊆ τ ∩ S(p).
For ε ∈ {±1}F\F(p), put

τε = {a ∈ τ : Fσ(a) ∈ Rεσ for σ /∈ F(p)},
where R+1 = R≥0 and R−1 = R≤0. Then τε ∩ S(p) is finitely generated by the similar
argument to that in (Saito, Traves, 2004, §4). Hence τ ∩ S(p) =

∪
ε τε ∩ S(p) is also

finitely generated, i.e., an affine semigroup. Since K[τ ∩ S(p)] :=
⊕

a∈τ∩S(p) KP a is a

subalgebra of G, P ∩ K[τ ∩ S(p)] is a prime of K[τ ∩ S(p)]. Hence by the standard
argument (e.g. see (Ishida, 1987, Proposition 1.3)), there exists a face ν of τ such that
S(P) = ν ∩ τ ∩ S(p) = ν ∩ S(p). Hence P = P(p, ν). ¤

The following proposition is straightforward.

Proposition 4.13. P(p, τ) ⊆ P(p′, τ ′) if and only if p ⊆ p′ and τ ⊇ τ ′.

The semigroup algebra RA = K[NA] is a Zd-graded subalgebra of G. Hence we have a
natural map

(4.15) πRA
: SpecZd(G) 3 P 7→ P ∩ RA ∈ SpecZd(RA).

We know (see e.g. (Ishida, 1987, Proposition 1.3))

SpecZd(RA) = {pτ : τ is a face of the cone R≥0A},
where pτ =

⊕
a∈NA\τ Kta.

Proposition 4.14.
π−1

RA
(pτ ) = {P(q, ν) : ν ∩ R≥0A = τ}.

Proof. By definition,
P a ∈ P(q, ν) ⇔ a /∈ S(q) ∩ ν.

Hence
P(q, ν) ∩ RA =

⊕
a∈NA\S(q)∩ν

Kta =
⊕

a∈NA\ν

Kta.

Here the latter equality holds, since a ∈ NA implies a ∈ S(q). Therefore,

P(q, ν) ∩ RA = pτ ⇔ NA \ ν = NA \ τ ⇔ R≥0A ∩ ν = τ.

¤

5. Critical Modules

Let R be a left Noetherian ring. An R-module M of Krull dimension δ is said to be
δ-critical if the Krull dimension of M/N is less than δ for all nonzero R-submodules N
of M . The 0-critical modules are precisely the simple modules. Critical modules play
a fundamental role in the theory of Noetherian modules. (See for example (Goodearl,
Warfield, 1989; Lenagan, 2000; McConnel, Robson, 1987).) In this section, we recall the
critical Zd-graded D(RA)-modules studied in (Saito, 2008).

Let M =
⊕

a∈Zd Ma be a Zd-graded finitely generated left D(RA)-module. Then its
Krull dimension KdimM in the category of Zd-graded finitely generated left D(RA)-
modules is given by KdimM = maxa dimK[s] Ma (Saito, 2008, Theorem 6.1).

For an ideal I of K[s] and β ∈ Kd, we define a new ideal I + β by

(5.1) I + β := {f(s − β) : f(s) ∈ I}.
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Let p be a prime ideal of K[s].
For c ∈ Zd, we write p ¹ p+ c if I(Ω(c)) 6⊆ p, and p ∼ p+ c if p ¹ p+ c and p+ c ¹ p.

Then ∼ is an equivalence relation in

[p] := {p + c : c ∈ Zd},
and [p]/ ∼ is finite (Saito, 2008, Corollary 3.6).

Let δ = dim K[s]/p. Let L(p) =
⊕

a∈Zd L(p)a be the cyclic Zd-graded left D(RA)-
module L(p) = D(RA)/I(p) with

(5.2) I(p)a =

{
ta(I(Ω(a)) ∩ p) (p ∼ p + a)
D(RA)a (otherwise).

Then L(p) is δ-critical (Saito, 2008, Example 7.5).
Conversely, let M be a δ-critical Zd-graded left D(RA)-module generated by one element

v ∈ M0 with AnnK[s](v) = p. Then M is isomorphic to L(p) (Saito, 2008, Theorem 7.7).

6. Characteristic Varieties of Critical Modules

For a cyclic D-module D/I, the support of the GrD-module GrD/GrI, where GrI =⊕∞
k=0 I ∩ Dk/I ∩ Dk−1, is called the characteristic variety of D/I. For details about

characteristic varieties, see any textbook of the theory of D-modules, for example, (Björk,
1979; Borel et al, 1987; Coutinho, 1995; Hotta, Takeuchi, Tanisaki, 2008; Kashiwara,
2003).

In this section, we fix a prime ideal p of K[s] homogeneous with respect to
s1, . . . , sd, and a vector β ∈ Kd, and we consider the characteristic variety of the critical
Zd-graded D(RA)-module L(p + β) (for the definition, see (5.1) and (5.2)). Note that

(6.1) p ⊆ m := (s1, . . . , sd).

By definition,

I(p + β)a =

{
ta(I(Ω(a)) ∩ (p + β)) (p + β ∼ p + β + a)
D(RA)a (p + β 6∼ p + β + a).

If p+β ∼ p+β+a, then I(Ω(a)) 6⊆ p+β. Recall that I(Ω(a)) is generated by pa (Corollary
2.4). Hence, if p+β ∼ p+β+a, then pa /∈ p+β, and I(Ω(a))∩(p+β) = I(Ω(a))·(p+β).
Thus

I(p + β)a =

{
D(RA)a · (p + β) (p + β ∼ p + β + a)
D(RA)a (p + β 6∼ p + β + a).

We have Gr L(p + β) = Gr D(RA)/Gr I(p + β) = G/Gr I(p + β), and

(6.2) Gr I(p + β)a =

{
Ga · p (p + β ∼ p + β + a)
Ga (p + β 6∼ p + β + a).

Lemma 6.1. The equivalence class of p + β + a with respect to ∼ is determined by the
sets {σ ∈ F(p) : Fσ(β + a) ∈ Fσ(NA)} and {σ ∈ F(p) : Fσ(β + a) ∈ Z \ Fσ(NA)},
namely, for a, b ∈ Zd, p + β + a ∼ p + β + b if and only if

{σ ∈ F(p) : Fσ(β + a) ∈ Fσ(NA)} = {σ ∈ F(p) : Fσ(β + b) ∈ Fσ(NA)}
and

{σ ∈ F(p) : Fσ(β + a) ∈ Z \ Fσ(NA)} = {σ ∈ F(p) : Fσ(β + b) ∈ Z \ Fσ(NA)}.
12



Proof. Put

(6.3) F(p,β)Z := {σ ∈ F(p) : Fσ(β) ∈ Z}.

By definition, p + β + a ∼ p + β + b means pb−a /∈ p + β + a and pa−b /∈ p + β + b,
since I(Ω(b−a)) and I(Ω(a−b)) are generated by pb−a and pa−b, respectively (Corollary
2.4).

First note that Fσ − l /∈ p + β + a for any l ∈ Z if Fσ(β) /∈ Z, since in this case
Fσ(β + a) 6= l, or equivalently Fσ − l /∈ m + β + a (see (6.1) for m). Next note that
Fσ − l /∈ p + β + a for any σ /∈ F(p) and any l ∈ Z, since otherwise we have Fσ ∈ p by
taking Gr.

Hence pb−a /∈ p + β + a if and only if∏
σ∈F(p,˛)Z

∏
k∈Fσ(NA)\(Fσ(a)−Fσ(b)+Fσ(NA))

(Fσ − k) /∈ p + β + a.

This is equivalent to the condition: If σ ∈ F(p, β)Z, k ∈ Fσ(NA), and k /∈ Fσ(a) −
Fσ(b) + Fσ(NA), then Fσ(s + β + a) − k /∈ p. Since Fσ(s + β + a) − k /∈ p is equivalent
to Fσ(β + a) 6= k, it follows that pb−a /∈ p + β + a is equivalent to the condition: For
each σ ∈ F(p, β)Z, Fσ(β + a) ∈ Z \ Fσ(NA) or Fσ(β + a) ∈ Fσ(a)− Fσ(b) + Fσ(NA) (or
Fσ(β + b) ∈ Fσ(NA)).

Therefore p + β + a ∼ p + β + b if and only if for each σ ∈ F(p,β)Z (Fσ(β + a) ∈
Z\Fσ(NA) or Fσ(β+b) ∈ Fσ(NA)) and (Fσ(β+b) ∈ Z\Fσ(NA) or Fσ(β+a) ∈ Fσ(NA)).

Hence p+β+a ∼ p+β+b if and only if for each σ ∈ F(p, β)Z (Fσ(β+a) ∈ Z\Fσ(NA)
and Fσ(β + b) ∈ Z \ Fσ(NA)) or (Fσ(β + a) ∈ Fσ(NA) and Fσ(β + b) ∈ Fσ(NA)). ¤

Let τ(p + β) denote the cone defined by

(6.4) τ(p + β) :=
∩

σ∈F(p,˛)Z; Fσ(˛)∈Fσ(NA)

(Fσ ≥ 0) ∩
∩

σ∈F(p,˛)Z; Fσ(˛) 6∈Fσ(NA)

(Fσ ≤ 0),

where F(p, β)Z was defined in (6.3). Then τ(p + β) is a union of some cones in Σ(p) by
definition (4.7).

Theorem 6.2. (1)

(6.5)
√

Gr I(p + β) =
∩

τ∈Σ(p), τ⊆τ(p+˛)

P(p, τ),

namely

(6.6) (
√

Gr I(p + β))a =

{
Ga · p (a ∈ τ(p + β) ∩ S(p))
Ga (otherwise).

(2) The characteristic variety of L(p+β) = D(RA)/I(p+β) is irreducible if and only
if τ(p + β) ∈ Σ(p). In this case,√

Gr I(p + β) = P(p, τ(p + β)).

(3) If Fσ(β) ∈ Z for all σ ∈ F(p), then the characteristic variety of L(p + β) is
irreducible.

Proof. (1) By the definition of P(p, τ) (4.12), (6.5) immediately follows from (6.6). We
prove (6.6). Let a /∈ τ(p + β) and a ∈ S(p) (see (4.8) for the definition of S(p)). Then
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by Lemma 6.1 there exists m ∈ N such that p + β + ma 6∼ p + β. Hence Pma ∈ I(p + β)

by definition. Since Pm
a = Pma · f(s) for some f(s) ∈ K[s], we have Pa ∈

√
Gr I(p + β).

Next let a /∈ S(p). Then, by Theorem 4.5 (2), P 2
a = P2a · g(s) with (Fσ − k)|g(s) for

some σ ∈ F(p) and k ∈ Z. Hence Pa
2

= P2a · g(s), and Fσ|g(s) for some σ ∈ F(p). Hence

g(s) ∈ p, and Pa
2 ∈ Gr I(p+β) by (6.2). Therefore we have proved that

√
Gr I(p + β)

a
=

Ga for a /∈ τ(p + β) ∩ S(p).
Finally let a ∈ τ(p + β) ∩ S(p). We claim that p + β + ma ∼ p + β for all m ∈ N.
Let σ ∈ F(p,β)Z. Since a ∈ τ(p+β)∩S(p), Fσ(β) /∈ Fσ(NA) implies Fσ(a) ∈ −Fσ(NA)

and hence Fσ(ma) ∈ −Fσ(NA). Hence in this case we have Fσ(β + ma) /∈ Fσ(NA).
Similarly Fσ(β) ∈ Fσ(NA) implies Fσ(a) ∈ Fσ(NA) and hence Fσ(β + ma) ∈ Fσ(NA).
Thus by Lemma 6.1 p + β + ma ∼ p + β.

Since p+β+a ∼ p+β, we have, by (6.2), Gr I(p+β)a = Ga ·p for a ∈ τ(p+β)∩S(p).

Suppose that Paf(s) ∈
√

Gr I(p + β) for a homogeneous polynomial f(s). Then there

exists m ∈ N such that Pa
m

f(s)m ∈ Gr I(p + β)ma. Hence by (6.2) there exists a
polynomial g(s) ∈ p such that Pa

m
f(s)m = Pmag(s). Since a ∈ S(p), by Theorem 4.5

(2), Pa
m

= Pmah(s) for some h(s) /∈ p. Hence h(s)f(s)m = g(s) ∈ p. Since p is prime,

f(s) ∈ p. This proves
√

Gr I(p + β)
a
⊆ Ga · p for a ∈ τ(p + β) ∩ S(p), and completes

the proof of (1).
(2) immediately follows from (1).
If Fσ(β) ∈ Z for all σ ∈ F(p), then τ(p + β) ∈ Σ(p) by definition. Hence (3) follows

from (2). ¤

Example 6.3. Let n = d = 1, and A = (1). In this case, D(RA) is the first Weyl algebra
K〈t, ∂〉, and G = GrD(RA) is the polynomial algebra K[t, ξ]:

D(RA)a = PaK[s], Pa =

{
ta (a ≥ 0)
∂−a (a < 0),

where s = t∂. Note that ∂a = t−ap−a, where p−a = s(s − 1) · · · (s − a + 1) for a ∈ N.
The cone R≥0A = R≥0 has only one facet {0}, and F{0}(s) = s. Let m be the maximal

ideal (s) of K[s]. Then Σ(m) is the fan consisting of {0}, R≥0, and R≤0. Then

P(m, {0}) = (t, ξ, s) = (t, ξ),

P(m, R≥0) = (ξ, s) = (ξ),

P(m, R≤0) = (t, s) = (t),

where s = tξ in G.
Let β /∈ Z, and consider I(m + β) = D(RA)(s − β). Since τ(m + β) = R, we have

Gr I(m + β) = (s) = P(m, R≥0) ∩ P(m, R≤0) by Theorem 6.2. Thus the characteristic
variety of L(m + β) has two irreducible components.

Example 6.4. Let A =

1 1 1 1 1 1
0 3 4 0 3 4
0 0 0 1 1 1

 = (a1, . . . , a6). There are four facets: σ14,

σ36, σ123, σ456, where σ14 = R≥0a1 + R≥0a4, and so on. The primitive integral support
functions are Fσ14(s) = s2, Fσ36(s) = 4s1 − s2, Fσ123(s) = s3, Fσ456(s) = s1 − s3. We have

Fσ14(NA) = 3N + 4N = N \ {1, 2, 5}, Fσ36(NA) = Fσ123(NA) = Fσ456(NA) = N.
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We have the relation
Fσ14 + Fσ36 = 4s1 = 4(Fσ123 + Fσ456).

The set

Z3 ∩ F−1
σ14

(Z \ [3N + 4N]) ∩ F−1
σ36

(Z \ N) ∩ F−1
σ123

(N) ∩ F−1
σ456

(N)

=


0

1
0

 ,

0
2
0

 ,

0
5
0

 ,

1
5
0

 ,

1
5
1


is an equivalence class (with respect to m = (s1, s2, s3)) by Lemma 6.1.

Since τ(m + t(0, 1, 0)) = {0},√
Gr I(m + t(0, 1, 0)) = P(m, {0})

by Theorem 6.2. In this case, Gr I(m + t(0, 1, 0)) is not radical.

For β = 0, we do not need to take the radical.

Proposition 6.5.
Gr I(p) = P(p, τ(p)).

Proof. By Lemma 6.1, p ∼ p + a if and only if Fσ(a) ∈ Fσ(NA) for all σ ∈ F(p), which
means a ∈ τ(p) ∩ S(p). Hence the proposition follows from (4.12) and (6.2). ¤
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