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Abstract We consider self-avoiding walk, percolation and the Ising model with long and
finite range. By means of the lace expansion we prove mean-field behavior for these models
if d > 2(α ∧ 2) for self-avoiding walk and the Ising model, and d > 3(α ∧ 2) for percola-
tion, where d denotes the dimension and α the power-law decay exponent of the coupling
function. We provide a simplified analysis of the lace expansion based on the trigonometric
approach in Borgs et al. (Ann. Probab. 33(5):1886–1944, 2005).

Keywords Lace expansion · Ising model · Percolation · Self-avoiding walk · Critical
exponent · Mean-field behavior
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1 Introduction

1.1 Motivation and Overview

Since its invention in 1985 [16], the lace expansion has become a powerful tool for proving
mean-field behavior in various spatial stochastic systems, such as the self-avoiding walk,
percolation, oriented percolation, the contact process, lattice trees and -animals, and the
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Ising model. This paper provides a generalized lace expansion approach that holds for self-
avoiding walk, percolation and the Ising model. We consider the classical nearest-neighbor
model as well as various spread-out cases. Of particular interest are those spread-out models
where the underlying step distribution has infinite variance, so-called long-range models.
We show that a sufficiently long range can reduce the upper critical dimension, above which
the system shows mean-field behavior.

We shall not perform the complete lace expansion here, but rather use bounds on the
lace expansion coefficients proved elsewhere. Nevertheless, we give an analysis of the lace
expansion inspired by [14], which is simplified compared to previous work, and generalized
so that it deals with long-range models.

Using this generalized framework, we do the analysis of the lace expansion in such a
way that it holds for any model provided that the expansion has a specific form and certain
bounds on the lace expansion coefficients are satisfied (see Sect. 2). These bounds are proved
to follow from a related random walk condition, which is relatively simple to verify.

1.2 The Model

We study self-avoiding walk, percolation and the Ising model on the hypercubic lattice Z
d .

We consider Z
d as a complete graph, i.e., the graph with vertex set Z

d and corresponding
edge set Z

d × Z
d . We will refer to the edges as bonds and to the vertices as sites. We assign

each (undirected) bond {x, y} a weight D(x − y), where D is a probability distribution
specified in Sect. 1.2.1 below. If D(x − y) = 0, then we can omit the bond {x, y}.

Our analysis is based on Fourier analysis. Unless specified otherwise, k will always
denote an arbitrary element from the Fourier dual of the discrete lattice, which is the
torus [−π,π)d . The Fourier transform of a summable function f : Z

d → C is defined by
f̂ (k) =∑x∈Zd f (x) eik·x .

1.2.1 The Step Distribution D: 3 Versions

Let D denote a probability distribution on Z
d that is symmetric under reflections in coor-

dinate hyperplanes and rotations by π/2. We refer to D as a step distribution, having in
mind a random walker taking independent steps distributed according to D. Without loss of
generality we henceforth assume that there is no mass at the origin, i.e. D(0) = 0.

In this paper, we consider three different versions of D. While we explicitly state our
main results for these versions, they actually hold more generally under a random walk
condition formulated in Assumption 2.1 below. The first version is the nearest-neighbor
model, where D is the uniform distribution on the nearest neighbors, i.e.,

D(x) = 1

2d
1{|x|=1}, x ∈ Z

d . (1.1)

Here, and throughout the paper, we denote by | · | the Euclidian norm on Z
d and 1E repre-

sents the indicator function of the event E. This nearest-neighbor version of D corresponds
to the classical model for the study of self-avoiding walk, percolation, and the Ising model,
see e.g. [21, 24, 34].

We further consider two versions of spread-out models. They involve some spread-out
parameter L, which is typically chosen large. In order to stress the L-dependence of D we
will write DL in the definitions, but later omit the subscript. In the finite-variance spread-out
model we require DL to satisfy the following conditions1:

1These conditions coincide with Assumption D in [32].
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(D1) There is an ε > 0 such that
∑

x∈Zd

|x|2+εDL(x) < ∞.

(D2) There is a constant C such that, for all L ≥ 1,

‖DL‖∞ ≤ CL−d .

(D3) There exist constants c1, c2 > 0 such that

1 − D̂L(k) ≥ c1L
2|k|2 if ‖k‖∞ ≤ L−1, (1.2)

1 − D̂L(k) > c2 if ‖k‖∞ ≥ L−1, (1.3)

1 − D̂L(k) < 2 − c2, k ∈ [−π,π)d . (1.4)

Example. Let h be a non-negative bounded function on R
d which is almost everywhere

continuous, and symmetric under the lattice symmetries of reflection in coordinate hyper-
planes and rotations by ninety degrees. Assume that there is an integrable function H on
R

d with H(te) non-increasing in t ≥ 0 for every unit vector e ∈ R
d , such that h(x) ≤ H(x)

for all x ∈ R
d . Assume further that the (2 + ε)-th moment of h exists for some ε > 0. The

monotonicity and integrability hypotheses on H imply that
∑

x h(x/L) < ∞ for all L, with
x/L = (x1/L, . . . , xd/L). Then

DL(x) = h(x/L)
∑

y∈Zd h(y/L)
, x ∈ Z

d , (1.5)

obeys the conditions (D1)–(D3), whenever L is large enough (cf. [32, Appendix A]). For
h(x) = 1{0<‖x‖∞≤1} we obtain the uniform spread-out model with

DL(x) = 1

(2L + 1)d − 1
1{0<‖x‖∞≤L}, x ∈ Z

d . (1.6)

In the spread-out power-law model we replace assumptions (D1) and (D3) by the condi-
tion that there exists an α > 0 such that

(D1′) all ε > 0 satisfy
∑

x∈Zd

|x|α−εDL(x) < ∞;

(D3′) there exist constants c1, c2 > 0 such that

1 − D̂L(k) ≥ c1L
α|k|α if ‖k‖∞ ≤ L−1, (1.7)

1 − D̂L(k) > c2 if ‖k‖∞ ≥ L−1, (1.8)

1 − D̂L(k) < 2 − c2, k ∈ [−π,π)d . (1.9)

The condition (D2) = (D2′) remains unchanged.
As an example, let DL be of the form (1.5), but instead of the existence of the (2 + ε)-th

moment of h, require h to decay as |x|−d−α as |x| → ∞. In particular, there exist positive
constants ch and lh such that

h(x) ≥ ch|x|−d−α, whenever |x| ≥ lh. (1.10)
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In this setting, the κ th moment
∑

x∈Zd |x|κDL(x) does not exist if κ ≥ α, but exists and
equals O(Lα) if κ < α. Take e.g.

h(x) = (|x| ∨ 1)−d−α, (1.11)

so that DL has the form

DL(x) = (|x/L| ∨ 1)−d−α

∑
y∈Zd (|y/L| ∨ 1)−d−α

, x ∈ Z
d . (1.12)

Chen and Sakai [18, Proposition 1.1] showed that, analogously to the finite-variance spread-
out model, the spread-out power-law model (1.12) satisfies conditions (D1′)–(D3′).

Note that the spread-out power-law model with parameter α > 2 satisfies the finite vari-
ance condition (D1), and hence is covered in the finite variance case. For simplicity we
further write α ∧ 2 indicating the minimum of α and 2 in the spread-out power-law case,
and 2 in the nearest-neighbor case or in the finite-variance spread-out case.

For the finite-variance spread-out model and the spread-out power-law model we require
that the support of D contains the nearest neighbors of 0, see the discussion below (1.22).

We next introduce the models that we shall consider, i.e., self-avoiding walk, percolation
and the Ising model.

1.2.2 Self-Avoiding Walk

For every lattice site x ∈ Z
d , we denote by

Wn(x) = {(w0, . . . ,wn) | w0 = 0,wn = x,wi ∈ Z
d ,1 ≤ i ≤ n − 1} (1.13)

the set of n-step walks from the origin 0 to x. We call such a walk w ∈ Wn(x) self-avoiding
if wi �= wj for i �= j with i, j ∈ {0, . . . , n}. We define c0(x) = δ0,x and, for n ≥ 1,

cn(x) :=
∑

w∈Wn(x)

n∏

i=1

D(wi − wi−1)1{w is self-avoiding}, (1.14)

where D is as in Sect. 1.2.1.

1.2.3 Percolation

In percolation we consider the set of bonds, which are unordered pairs of lattice sites. We
set each bond {x, y} ∈ Z

d × Z
d occupied, independently of all other bonds, with probabil-

ity zD(y − x) and vacant otherwise. Thus for the nearest-neighbor model, each nearest-
neighbor bond is occupied with probability z/(2d). The corresponding product measure is
denoted by Pz with corresponding expectation Ez. We require z ∈ [0,‖D‖−1∞ ] to ensure that
zD(x − y) ≤ 1. We write {x ↔ y} for the event that there exists a path of occupied bonds
from x to y. When the event {x ↔ y} occurs we call the vertices x and y connected. For
x ∈ Z

d , the set C(x) := {y ∈ Z
d | y ↔ x} of connected vertices is called the cluster of x. It is

the size and geometry of these clusters that we are interested in. Due to the shift invariance
of the model, we can restrict attention to the cluster at the origin C := C(0).

For z small, C is Pz-a.s. finite, whereas for d ≥ 2 and large z, the probability that the size
of the cluster C is infinite,

θ(z) := Pz(|C| = ∞), (1.15)
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is strictly greater than zero. Since z → θ(z) is non-decreasing, there exists some critical
value zc where this probability turns positive (see e.g. [24]).

1.2.4 Ising Model

For the Ising model we consider the space {−1,1}Z
d

of spin configurations on the hyper-
cubic lattice, with a probability distribution thereon. For a formal definition, we consider
a finite subset � ⊂ Z

d , and for every spin configuration ϕ = {ϕx |x ∈ �} ∈ {−1,1}� the
energy given by the Hamiltonian

H�(ϕ) = −
∑

{x,y}∈�×�

J (y − x)ϕx ϕy, (1.16)

where J and D are related via the identity

D(x) = tanh(zJ (x))
∑

y∈Zd tanh(zJ (y))
, (1.17)

and z is the inverse temperature. For example, in the nearest-neighbor case, D = J . For the
Ising model, J is known as the spin-spin coupling. If J ≥ 0 (and hence D ≥ 0, as in the
cases we consider) then the model is called ferromagnetic.

1.2.5 Two-Point Function and Susceptibility

We study self-avoiding walk, percolation and the Ising model in a unified way. For this, we
need to introduce some notation. We consider the function Gz(x) for x ∈ Z

d with

Gz(x) =
∞∑

n=0

cn(x)zn (1.18)

being the Green’s function for self-avoiding walk, while for percolation

Gz(x) = Pz(0 ↔ x) (1.19)

being the probability of the event that there is a path consisting of occupied edges from 0 to
x. For the Ising model, we consider the spin correlation Gz as the thermodynamic limit

Gz(x) = lim
�↗Zd

∑
ϕ∈{−1,1}� ϕ0ϕx exp(−zH�(ϕ))
∑

ϕ∈{−1,1}� exp(−zH�(ϕ))
. (1.20)

Here the limit is taken over any non-decreasing sequence of �’s converging to Z
d . This

limit exists and is independent from the chosen sequence of �’s due to Griffiths’ second
inequality [23]. We will refer to Gz as the two-point function. This is inspired by the fact
that Gz(x) describes features of the models depending on the two points 0 and x.

We further introduce the susceptibility as

χ(z) :=
∑

x∈Zd

Gz(x). (1.21)

For percolation, the susceptibility is the expected cluster size χ(z) = Ez|C|.
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We define zc , the critical value of z, as

zc := sup{z | χ(z) < ∞}. (1.22)

For self-avoiding walk, zc is the convergence radius of the power series (1.18). For perco-
lation, zc is characterized by the explosion of the expected cluster size. Menshikov [35],
as well as Aizenman and Barsky [2], showed that this characterization coincides with the
critical value described in Sect. 1.2.3.

For the spread-out models, we require that the support of D contains the nearest neigh-
bors of 0. In percolation and the Ising model, this enables a Peierls type argument showing
that a (finite) critical threshold zc ∈ (0,∞) exists, where the susceptibility χ(z) diverges as
z ↗ zc . This is exemplified in [21, Sect. 2.1] for the Ising model, and [24, Sect. 1.4] for
percolation.

For the Ising model, we define the magnetization M to be

M(z,h) = lim
�↗Zd

∑
ϕ∈{−1,1}� ϕ0 exp{−zH�(ϕ) + h

∑
y∈� ϕy}

∑
ϕ∈{−1,1}� exp{−zH�(ϕ) + h

∑
y∈� ϕy} , (1.23)

and write M(z,0+) for the limit limh↘0 M(z,h). The magnetization gives rise to another
characterization of zc , namely zc = inf{z | M(z,0+) > 0}. As proved by Aizenman, Barsky
and Fernández [7], this is equivalent to (1.22).

1.2.6 Critical Exponents and Mean-Field Behavior

All three models, self-avoiding walk, percolation and the Ising model, exhibit a phase transi-
tion at some (model-dependent) critical value zc . One of the fundamental question in statis-
tical mechanics is how models behave at and nearby this critical value. We use the notion of
critical exponents to describe this behavior. While the existence of these critical exponents
is folklore, there is no general argument proving this.

We write f (z) � g(z) if the ratio f (z)/g(z) is bounded away from 0 and infinity, for
some appropriate limit. For self-avoiding walk, we define the critical exponents γS and ηS

by

χ(z) � (zc − z)−γS as z ↗ zc, (1.24)

Ĝzc (k) � 1

|k|(α∧2)−ηS
as k → 0. (1.25)

For percolation we define the critical exponents γP, βP, δP and ηP by

χ(z) � (zc − z)−γP as z ↗ zc, (1.26)

θ(z) � (z − zc)
βP as z ↘ zc, (1.27)

Pzc (|C| ≥ n) � 1

n1/δP
as n → ∞, (1.28)

Ĝzc (k) � 1

|k|(α∧2)−ηP
as k → 0. (1.29)

The exponent γP describes the asymptotic behavior in the subcritical regime {z < zc}, βP de-
scribes the behavior in the supercritical regime {z > zc}, and δP and ηP describe the behavior
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at criticality. For the Ising model, we consider the critical exponents γI, βI, δI, ηI defined by

χ(z) � (zc − z)−γI as z ↗ zc, (1.30)

M(z,0+) � (z − zc)
βI as z ↘ zc, (1.31)

M(zc,h) � h1/δI as h ↘ 0, (1.32)

Ĝzc (k) � 1

|k|(α∧2)−ηI
as k → 0. (1.33)

For a discussion on the construction of Ĝzc (k) we refer to Sect. 2.1 below.
It is believed that critical exponents are universal, i.e., minor modifications of the model,

like changes in the underlying graph, leave the general asymptotic behavior, as described by
the critical exponents, unchanged. Their values depend on the dimension d . However, it is
predicted that there is an upper critical dimension dc , such that the critical exponents take the
same value for all d > dc . These values are the mean-field values of the critical exponents.
For self-avoiding walk these are the values obtained for simple random walk, i.e., γS = 1
and ηS = 0, whereas for percolation the mean-field values are γP = 1, βP = 1, δP = 2 and
ηP = 0, which coincide with the corresponding critical exponents obtained for percolation
on an infinite regular tree, see [24, Sect. 10.1]. For the Ising model, these mean-field values
are γI = 1, βI = 1/2, δI = 3 and ηI = 0, as obtained for the Curie-Weiss model.

The present paper uses the lace expansion to show that these critical exponents exist and
take their mean-field values in sufficiently high dimensions for the nearest-neighbor version
of D, or d exceeding some critical dimension dc and L sufficiently large for the spread-out
models, respectively.

1.3 Results

We introduce the (small) quantity β by β = K/d for the nearest-neighbor model (K is a
uniform constant), or β = KL−d for the spread-out models (K is a constant depending on
d and α). We make this relation more explicit in Proposition 2.2 below. Be aware that the
critical exponents βP and βI have no relation with the β introduced here.

We further introduce the function τ : z → τ(z), where τ(z) = z for self-avoiding walk
and percolation, and

τ(z) =
∑

y∈Zd

tanh(zJ (y)) (1.34)

for the Ising model, cf. (1.17).
Our main result is the following infrared behavior:

Theorem 1.1 (Infrared bound) Fix s = 2 for self-avoiding walk and the Ising model, and
s = 3 for percolation. Let d sufficiently large in the nearest-neighbor case (at least d > 4s),
or d > 2s and L sufficiently large in the finite-variance spread-out case, or d > (α ∧ 2)s

and L sufficiently large in the spread-out power-law case. Then

Ĝz(k) = 1 + O(β)

χ(z)−1 + τ(z)[1 − D̂(k)] (1.35)

uniformly for z ∈ [0, zc) and k ∈ [−π,π)d .
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The infrared bound is well-known in several cases. Hara and Slade proved the infrared bound
for the nearest-neighbor case and the finite-variance spread-out case, for self-avoiding walk
[27, 28] (see also [34, Theorem 6.1.6]) as well as for percolation [26]. Fröhlich, Simon
and Spencer [22] proved the upper bound in (1.35) for the Ising model under the reflection
positivity assumption, which holds e.g. for the nearest-neighbor case. We discuss reflection
positivity in more detail in Sect. 1.4.

By discarding the term χ(z)−1 in (1.35), we obtain from Theorem 1.1 that (under the
assumptions formulated there)

Ĝz(k) ≤ 1 + O(β)

τ(z)[1 − D̂(k)] (1.36)

uniformly for z < zc .
Note that the bound

Gz(x) − δ0,x ≤ τ(z) (D ∗ Gz) (x) (1.37)

holds in all our three models: for self-avoiding walk this is obvious, for percolation it follows
from the BK-inequality [11], and for the Ising model we use [38, (4.2)] in the infinite-volume
limit. Thus for s = 2,

B(z) :=
∑

x

Gz(x)2 ≤ 1 +
∑

x

τ (z)2 (D ∗ Gz) (x)2 ≤ 1 + τ(z)2
∫

[−π,π)d
D̂(k)2Ĝz(k)2 dk

(2π)d
.

(1.38)

A combination of (1.36) and (1.38) gives rise to

B(z) ≤ 1 + O(1)

∫

[−π,π)d

D̂(k)2

[1 − D̂(k)]2

dk

(2π)d
≤ 1 + O(β), (1.39)

where we use that the integrated term is O(β) by Assumption 2.1 and Proposition 2.2 below.
A similar calculation gives the corresponding result for s = 3. More specifically,

T (z) :=
∑

x,y

Gz(0, x)Gz(x, y)Gz(y,0) ≤ 1 + O(β) when s = 3. (1.40)

The bounds (1.38)–(1.40) hold uniformly for z < zc under the assumptions in Theorem 1.1.
Note that in (1.40) we write Gz(x, y) = Gz(x − y). We call B(z) the bubble diagram and
T (z) the triangle diagram.

The two-point function Gz(x) seen as a function of z (for fixed x) is continuous on
[0, zc]. For self-avoiding walk this fact follows from Abel’s Theorem, and for percolation it
is a consequence of Aizenman, Kesten and Newman [8]. A general argument that holds for
all our three models is the following: the quantity Gz(x) can be realized as an increasing
limit (finite volume approximation) of a function which is continuous and non-decreasing
in z, hence Gz(x) is left-continuous (cf. [25, Appendix A]). It follows that (1.38)–(1.40)
even hold at criticality, i.e. when z = zc . In particular, this implies the bubble condition (i.e.,
B(zc) < ∞) or the triangle condition (i.e., T (zc) < ∞) for s = 2 or 3, respectively. We
formulate this fact as a corollary:

Corollary 1.2 (Bubble/Triangle condition) Under the assumptions in Theorem 1.1, B(zc) ≤
1 + O(β) for s = 2 (self-avoiding walk and Ising model), and T (zc) ≤ 1 + O(β) for s = 3
(percolation).
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The bubble/triangle condition is important since it implies mean-field behavior of the model,
which is formulated in the next theorem. In fact, (1.35) extends to the critical case z = zc as

Ĝzc (k) = 1 + O(β)

1 − D̂(k)
, (1.41)

and we refer to the discussion around (2.7) below for a construction of Ĝzc (k) and a deriva-
tion of (1.41).

We now use Theorem 1.1 to establish the existence of the formerly introduced critical
exponents.

Theorem 1.3 (Critical exponents)

(i) Self-avoiding walk. Consider the self-avoiding walk model (s = 2). Under the assump-
tions in Theorem 1.1, the critical exponent γS = 1 for the self-avoiding walk exists.

(ii) Percolation. Consider the percolation model (s = 3). Under the assumptions in Theo-
rem 1.1, the critical exponents γP = 1, βP = 1 and δP = 2 for percolation exist.

(iii) Ising model. Consider the Ising model (s = 2). Under the assumptions in Theorem 1.1,
the critical exponents γI = 1, βI = 1/2 and δI = 3 for the Ising model exist.

(iv) For all three models, under the assumptions in Theorem 1.1 and if 1 − D̂(k) � |k|α∧2,
then

Ĝzc (k) � 1

|k|α∧2
as k → 0, (1.42)

i.e., the critical exponents ηS = ηP = ηI = 0 exist.

The derivation of the critical exponents from the bubble-/triangle condition (Corollary 1.2)
is well-known in the literature. However, the mode of convergence required for the existence
of the critical exponents varies, and some derivations are stated only for finite range models.
We therefore add a more detailed discussion of the literature here.

For self-avoiding walk, the existence (and the value) of the critical exponent γS is based
on the inequality

zc

zc − z
≤ χ(z) ≤ B(zc)

(
zc

zc − z
+ 1

)

. (1.43)

Thus the bubble condition (1.38) is sufficient to prove that γS exists and that γS = 1. The
inequality (1.43) is derived from a differential inequality in [41, Theorem 2.3], which was
proved there for uniform spread-out models. The derivation still holds for infinite-range
spread-out models due to the multiplicative structure of the weights of the self-avoiding
walks in (1.14). A version of (1.43) appeared earlier in [15, (5.30)–(5.33)].

The derivation of the exponents γP = 1, βP = 1 and δP = 2 from the triangle condition
is due to Aizenman–Newman [5] and Barsky–Aizenman [10]. To apply these results in our
settings, there are some subtle issues to be resolved, and we discuss these in more detail in
Appendix A.

For the Ising model, it has been proven by Aizenman [1, Proposition 7.1] that the bubble
condition implies γI = 1 as long as |J | =∑x J (x) < ∞ (which is equivalent to

∑
x D(x) <

∞). Under the same condition, Aizenman and Fernández [3] proved the existence and mean-
field values of the critical exponents βI and δI.

The statement in (iv) is an immediate consequence of (1.41). The lower bound in
1 − D̂(k) � |k|α∧2 follows from (D3)/(D3′). The upper bound indeed holds for a num-
ber of examples, and in particular if D is chosen as in the nearest-neighbor model (1.1),
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the finite-variance spread-out model (1.6) or the spread-out power-law model (1.12) with
α �= 2, cf. [18, 32]. However, if D is chosen as in (1.12) with α = 2, then 1 − D̂(k) �
(L|k|)2 log(π/(L|k|)), cf. [18, Proposition 1.1].

The proof of Theorem 1.1, as well as the proof of Corollary 1.2, is given at the end of
Sect. 2.

1.4 Discussion and Related Work

There is numerous work on the application of the lace expansion, see the lecture notes by
Slade [41] and references therein. We give more references below at places where we use
lace expansion methodology and need particular results. We now briefly summarize the
results known for long-range systems.

Long-range self-avoiding walk has rarely been studied. Klein and Yang [42] showed that
weakly self-avoiding walk in dimension d ≥ 3 jumping m lattice sites along the coordinate
axes with probability proportional to 1/m2 converges to a Cauchy process (as for ordinary
random walk with such step distribution). A similar result for strictly self-avoiding walk has
been obtained by Cheng [19].

For percolation, Hara and Slade [26] proved the infrared bound for the finite-variance
spread-out case when D has exponential tails. The study of long-range percolation with
power law spread-out bonds started in the 1980’s by considering the one-dimensional case
[6, 36, 39]. These papers study the case where occupation probabilities are given by (1.12)
with α ∈ (0,1] and prove criteria for the existence of an infinite cluster. For example,
Aizenman–Newman [6] show that if D(x)|x|2 → 1 as |x| → ∞ in one dimension, and
D(1) is sufficiently large, then there exists a critical infinite cluster and hence the percola-
tion probability z → θ(z) is discontinuous at zc . This is compatible with our results, which
imply that there is no infinite cluster at criticality for d > 3α (and here α = 1). Berger [12]
uses a renormalization argument to show that in dimension d = 1,2 the infinite cluster (if
it exists) is transient if 0 < α < d and recurrent if α ≥ d . He further concludes that in the
d-dimensional case (d ≥ 1) there is no infinite cluster at criticality if 0 < α < d . The ques-
tion whether there exists an infinite critical cluster for d ≥ 2 and α ≥ d [12, Question 6.4] is
answered negatively by the present paper for d > 6 and L sufficiently large.

In a recent paper, Chen and Sakai [18] study oriented percolation in the spread-out
power-law case. Using similar methods, they prove that the two-point function in oriented
percolation obeys an infrared bound if d > 2(α ∧ 2), which implies mean-field behavior of
the model.

A long-range Ising model in one dimension has been studied by Aizenman, Chayes,
Chayes, and Newman [9]. Similar to the percolation result in [6], they prove that in the
one-dimensional case where D(x)|x|2 → 1 as |x| → ∞, the spontaneous magnetization
M(z,0+) has a discontinuity at the critical point zc .

The infrared bound for the Ising model was proved in [22] for d > α ∧ 2 for a class
of models obeying the reflection positivity (RP) property. The class of models satisfying
(RP) includes the nearest-neighbor model (where D(x) = (2d)−11{|x|=1}), exponential de-
caying potentials (where D(x) ∝ exp{−μ‖x‖1} for μ > 0), power-law decaying interactions
(where D(x) ∝ |x|−s for s > 0), and combinations thereof. For a definition of (RP) and a
discussion of the above mentioned models, we refer to [13]. Nevertheless, (RP) fails in most
cases for small perturbations of these models, although it is believed that the asymptotics
still hold. Moreover, (RP) only implies the upper bound in (1.35), in that implying that
the critical exponent η (when it exists) is nonnegative. Our approach using the lace expan-
sion does not require reflection positivity, it is much more universal in the choice of D (cf.
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Sect. 1.2.1), and also gives a matching lower bound in (1.35), yielding η = 0. On the other
hand, our approach requires that the dimension d or the spread-out parameter L are suffi-
ciently large, a limitation that one may not expect to reflect the physics. The literature for
the long-range Ising model in higher dimensions based on (RP) arguments is summarized
by Aizenman and Fernández [4], who also identify 2(α ∧ 2) as upper critical dimension.2

Given (1.42) it is folklore that

Gzc(x) � |x|−d+(α∧2) (1.44)

holds in the general setting considered here. Partial results towards (1.44) have been ob-
tained. Indeed, Hara, van der Hofstad and Slade [29] proved (1.44) in the finite-range
spread-out setting for self-avoiding walk and percolation, Hara [25] proved it in the nearest-
neighbor setting, and Sakai [38] proved it for the Ising model in finite-range spread-out and
nearest-neighbor settings. We discuss the critical two-point function Gzc(x) at the end of
Sect. 2.1.

2 A General Framework

In order to study the various models in a unified way, we use this section to set up a gen-
eralized framework. We make two assumptions in terms of the general framework, and use
the subsequent two sections to show that our models actually satisfy these assumptions. We
then prove the results within the abstract setting, based on the two assumptions made.

2.1 An Expansion of the Two-Point Function

Given a step distribution D, we consider the random walk two-point function or Green’s
function of the random walk defined by

Cz(x) =
∞∑

n=0

D∗n(x)zn, (2.1)

where D∗n is the n-fold convolution of D and D∗0(x)z0 = δx,0. We write δ for the Kronecker
delta function. By conditioning on the first step we obtain

Cz(x) = δ0,x + z (D ∗ Cz) (x). (2.2)

Taking the Fourier transform and solving for Ĉz(k) yields

Ĉz(k) = 1

1 − zD̂(k)
, z < 1. (2.3)

Next we consider Gz(x) defined in (1.18)–(1.20). For each of the three models, i.e., for
self-avoiding walk, percolation and the Ising model, we use the lace expansion to obtain an
expansion formula of the form

Gz(x) = δ0,x + τ(z) (D ∗ Gz) (x) + (Gz ∗ �z) (x) + �z(x). (2.4)

2There is a typo in [4], the value of δ in [4, (1.2)] should be 3.
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The coefficients �z(x) and �z(x) depend on the model, but above their respective upper
critical dimension they obey similar bounds. Assuming the existence of �̂z(k) and �̂z(k),
Fourier transformation yields

Ĝz(k) = 1 + �̂z(k)

1 − τ(z)D̂(k) − �̂z(k)
, z < zc. (2.5)

The full derivation of the lace expansion will not be carried out in this paper. We discuss the
lace expansion briefly in Sect. 4, where we also define the lace expansion coefficients �z

and �z, and cite bounds on them from [14, 38, 41]. We will see that, for z = 0, �̂0(k) ≡ 0
and �̂0(k) ≡ 0 for all models. We recall that τ(z) = z for self-avoiding walk and percolation,
and τ(z) =∑y∈Zd tanh(zJ (y)) for the Ising model, see Sect. 1.3.

For the critical case (i.e., z = zc) we have

1 ≤ τ(zc) ≤ 1 + O(β), (2.6)

where the lower bound is a consequence of (1.37), and the upper bound emerges from (2.18)
and (2.29) below. The function Gzc (x) = limz↗zc Gz(x) is not in �1(Zd), hence the Fourier
transform does not exist. However, diagrammatic bounds of the lace expansion coefficients
(Proposition 2.5) and the dominated convergence theorem guarantee the absolute conver-
gence of the various sums involved defining �̂z(k) and �̂z(k), which shows that the critical
quantities �̂zc (k) and �̂zc (k) are well-defined. This justifies the introduction of Ĝzc (k) as
a solution to (2.5) with z = zc . Note that we do not assume any continuity of z → �̂z(k)

and z → �̂z(k) to do this. Nevertheless, we can extend (1.35) to the critical case z = zc , and
further use (2.6) to obtain

Ĝzc (k) = 1 + O(β)

1 − D̂(k)
. (2.7)

An issue of interest is the (left-) continuity of Ĝz(k) at z = zc . In particular, the identity

Gzc (x) =
∫

[−π,π)d
e−ik·x Ĝzc (k)

dk

(2π)d
, x ∈ Z

d , (2.8)

would follow from the fact that �̂z(k) and �̂z(k) are left-continuous at z = zc , as explained
by Hara [25, Appendix A]. The left-continuity of �̂z(k) and �̂z(k) at z = zc indeed holds
for self-avoiding walk (by Abel’s Theorem) and for percolation (by [25, Lemma A.1]), but
a proof for the Ising model is not known.

2.2 The Random Walk Condition

Recall that the model parameter s is 2 for self-avoiding walk or Ising model, and 3 for
percolation. We now make an assumption on the step distribution D.

Assumption 2.1 (Random walk s-condition) There exists β > 0 sufficiently small such that

sup
x∈Zd

D(x) ≤ β (2.9)

and
∫

[−π,π)d

D̂(k)2

[1 − D̂(k)]s
dk

(2π)d
≤ β. (2.10)
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Fig. 1 Graphical representation of the random walk bubble diagram in (2.11) and the random walk triangle
diagram in (2.12). A line between two points, say x and y, represents the two-point function C1(y −x), a line
with a double dash in the middle requires at least one step, e.g. a line between 0 and x represents (D ∗C1)(x).
Vertices labeled in brackets are summed over Z

d

Remark The specific amount of smallness required in (2.9)–(2.10) will be specified in the
proofs in Sect. 5.

For s = 2 we call (2.10) the random walk bubble condition. This is inspired by the fact
that its x-space analogue reads

(D ∗ C1 ∗ D ∗ C1)(0) ≤ β. (2.11)

In other words, we have an (ordinary) random walk from 0 to x of at least one step, and a
second walk from x to 0 and subsequently sum over all x. Correspondingly, for s = 3, we
obtain the x-space representation

(C1 ∗ D ∗ C1 ∗ D ∗ C1)(0) ≤ β, (2.12)

and refer to (2.10) as the random walk triangle condition. See the graphical representation
in Fig. 1.

Proposition 2.2 Assumption 2.1 is satisfied for arbitrarily small β if d is chosen suffi-
ciently large in the nearest-neighbor model (at least d > 4s) or d > dc = s(α ∧ 2) and
L is sufficiently large in the spread-out models. More specifically, the assumption holds with
β = O(d−1) in the nearest-neighbor case, and β = O(L−d) in the spread-out cases.

We prove Proposition 2.2 in Sect. 3. We shall prove the following generalized version of
Theorem 1.1. By Proposition 2.2, Theorem 2.3 below immediately implies Theorem 1.1.

Theorem 2.3 Fix s = 2 for self-avoiding walk and the Ising model, and s = 3 for percola-
tion. If Assumption 2.1 is satisfied for β sufficiently small, then (1.35) holds uniformly for
z ∈ [0, zc) and k ∈ [−π,π)d .

We remark that Theorem 1.3 generalizes in the same way.

2.3 Diagrammatic Bounds

We introduce the quantity

λz := 1 − 1

Ĝz(0)
= 1 − 1

χ(z)
∈ [0,1]. (2.13)

Then λz satisfies the equality

Ĝz(0) = Ĉλz (0). (2.14)
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The idea of the proof of Theorem 2.3 is motivated by the intuition that Ĝz(k) and Ĉλz (k) are
comparable in size and, moreover, the discretized second derivative

�kĜz(l) := Ĝz(l − k) + Ĝz(l + k) − 2Ĝ(l) (2.15)

is bounded by

Uλz(k, l) := 200Ĉλz (k)−1
{
Ĉλz (l − k)Ĉλz (l) + Ĉλz (l)Ĉλz (l + k) + Ĉλz (l − k)Ĉλz (l + k)

}
.

(2.16)
More precisely, we will show that the function f : [0, zc) → R, defined by

f := f1 ∨ f2 ∨ f3 (2.17)

with

f1(z) := τ(z), f2(z) := sup
k∈[−π,π)d

Ĝz(k)

Ĉλz (k)
, (2.18)

and

f3(z) := sup
k,l∈[−π,π)d

|�kĜz(l)|
Uλz(k, l)

, (2.19)

is small, given that β in Assumption 2.1 is sufficiently small. To make this rigorous, we need
the following assumption:

Assumption 2.4 (Bounds on the lace expansion coefficients) If, for some K > 0, the in-
equality f (z) ≤ K holds uniformly for z ∈ (0, zc), then there exists a constant cK > 0 such
that, for all k ∈ [−π,π)d ,

|�̂z(k)| ≤ cKβ, |�̂z(k)| ≤ cKβ (2.20)

and
∑

x

[1 − cos(k · x)] |�z(x)| ≤ cKβĈλz (k)−1,

(2.21)∑

x

[1 − cos(k · x)] |�z(x)| ≤ τ(z)cKβĈλz (k)−1

where �z and �z refer to the model-dependent coefficients in the expansion formula (2.4).

The key to our results is that the bounds (2.20)–(2.21) imply Theorem 2.3 (and hence
Theorem 1.1):

Proof of Theorem 2.3 subject to (2.20)–(2.21) Let

mz = 1 − τ(z) − �̂z(0). (2.22)

Then,

Ĝz(k) = 1 + �̂z(k)

1 − τ(z)D̂(k) − �̂z(k)
= 1 + �̂z(k)

mz + τ(z)[1 − D̂(k)] + [�̂z(0) − �̂z(k)] . (2.23)
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By the first inequality in (2.20) and the second in (2.21) in Assumption 2.4,

Ĝz(k) = 1 + O(β)

mz + τ(z)[1 − D̂(k)] + τ(z)O(β)Ĉλz (k)−1
. (2.24)

Evaluating (2.23) for k = 0 yields

χ(z) = Ĝz(0) = 1 + �̂z(0)

mz

, (2.25)

and the first inequality in (2.20) implies

mz = (1 + O(β))χ(z)−1. (2.26)

Furthermore, by (2.3) and (2.13),

Ĉλz (k)−1 = 1 − λzD̂(k) = 1 − D̂(k) + χ(z)−1D̂(k). (2.27)

A combination of (2.24), (2.26), (2.27) and the bounds |D̂(k)| ≤ 1, τ(z) ≤ O(1) leads to

Ĝz(k) = 1 + O(β)

(1 + O(β))χ(z)−1 + τ(z)(1 + O(β))[1 − D̂(k)] , (2.28)

which implies (1.35). �

We proceed by validating (2.20)–(2.21). First we realize that Assumption 2.4 indeed
holds for the models under consideration:

Proposition 2.5 Under the assumptions in Theorem 1.1, Assumption 2.4 holds for self-
avoiding walk, percolation and the Ising model.

The relevant bounds have been proven by Slade [41] for self-avoiding walk, by Borgs et al.
[14] for percolation (on finite graphs), and by Sakai [38] for the Ising model. In Sect. 4 we
state the diagrammatic bounds proved in these papers, and relate them to our version of �z

and �z, thus proving Proposition 2.5 using [14, 38, 41].

2.4 Completion of the Argument and Organization of Proofs

The proof of Theorem 2.3 will follow from the following proposition:

Proposition 2.6 Suppose we are given a model with some model-dependent constant
s ∈ {2,3, . . .}, and a two-point function Gz of the form (2.4), where the step distribution
D satisfies Assumption 2.1, and �z and �z satisfy Assumption 2.4, both for the same suffi-
ciently small β > 0. Assume further that χ ′(z) ≤ O(χ(z)2), z ∈ [0, zc). Then

f (z) ≤ 1 + O(β) (2.29)

uniformly for z < zc .
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The assumption χ ′(z) ≤ constχ(z)2 in Proposition 2.6 can be replaced by assuming that
f is continuous on [0, zc), cf. Lemma 5.3 below. It is known as a mean-field bound, and a
proof of it can be found in [41, Theorem 2.3] for self-avoiding walk, and in [41, Proposition
9.2] for percolation. For the Ising model, this mean-field bound is a consequence of the
Lebowitz inequality [33].

In order for Theorem 2.3 (and hence Theorem 1.1 and Corollary 1.2) to hold, we need to
show (2.20)–(2.21). Indeed, (2.20)–(2.21) follow from the statements above, as we explain
now. Propositions 2.2 and 2.5 validate Assumptions 2.1 and 2.4. With these assumptions,
the prerequisites of Proposition 2.6 are satisfied and (2.29) holds for β sufficiently small by
Proposition 2.2. The latter can be achieved by taking d or L large enough. Then we again
use Assumption 2.4 to obtain (2.20)–(2.21), thus proving (1.35).

The remainder of the paper is organized as follows. In Sect. 3 we prove Proposition 2.2 by
showing that Assumption 2.1 is satisfied for our versions of D. For the proof of Proposition
2.5 we need the lace expansion. The diagrammatic bounds are not derived in the present
paper; instead we explain in Sect. 4 how to obtain the statement of Proposition 2.5 from
the diagrammatic bounds in [41] for self-avoiding walk, [14] for percolation, and [38] for
the Ising model. Finally, the proof of Proposition 2.6 is contained in the last Sect. 5, and
this completes the proof of Theorem 2.3 (and hence of Theorem 1.1 and Corollary 1.2).
Appendix A contains a derivation of the existence and the mean-field values of the critical
exponents γP and δP for percolation. In Appendix B we show how the bounds on the lace
expansion in Assumption 2.4 for the Ising model can be obtained from the diagrammatic
bounds in [38]. Our account in Appendix B follows the proof of [38, Proposition 3.2], but
with a modified bootstrap hypothesis.

3 The Random Walk Two-Point Function

In this section we prove Proposition 2.2. The estimates below are contained in [14, Sect.
2.2.2], where finite tori are considered. Restriction to the infinite lattice gives rise to a note-
worthy simplification, which we shall present in the following.

Proof of Proposition 2.2 for the nearest-neighbor model. We follow [14, Sect. 2.2.2]. Since
‖D‖∞ = (2d)−1, the bound (2.9) is satisfied for d sufficiently large, and it remains to prove
(2.10).

By the symmetry of D we have

D̂(k) =
∑

x∈Zd

D(x) cos(k · x) = 1

d

d∑

j=1

cos(kj ), k = (k1, . . . , kd) ∈ [−π,π)d . (3.1)

Since 1 − cos t ≥ 2π−2t2 for |t | ≤ π , this implies the infrared bound

1 − D̂(k) ≥ 2

π2

|k|2
d

. (3.2)
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The Cauchy-Schwarz inequality3 yields

∫

[−π,π)d

D̂(k)2

[1 − D̂(k)]s
dk

(2π)d
≤
(∫

[−π,π)d
D̂(k)4 dk

(2π)d

)1/2

×
(∫

[−π,π)d

1

[1 − D̂(k)]2s

dk

(2π)d

)1/2

(3.3)

First we show that the first term on the right hand side of (3.3) is small if d is large. Note that∫
[−π,π)d

D̂(k)4 (2π)−d dk = D∗4(0) is the probability that a nearest-neighbor random walk

returns to its starting point after the fourth step. This is bounded from above by c(2d)−2 with
c being a well-chosen constant, because the first two steps must be compensated by the last
two. Finally, the square root yields the upper bound O(d−1).

It remains to show that the second term on the right of (3.3) is bounded uniformly in d .
The infrared bound (3.2) gives

∫

[−π,π)d

1

[1 − D̂(k)]2s

dk

(2π)d
≤ π4s

22s

∫

[−π,π)d

d2s

|k|4s

dk

(2π)d
. (3.4)

The right hand side of (3.4) is finite if d > 4s. For A > 0 and m > 0,

1

Am
= 1

�(m)

∫ ∞

0
tm−1 e−tA dt. (3.5)

Applying this with A = |k|2/d and m = 2s yields

1

�(2s)

π4s

22s

∫ ∞

0
t2s−1

(∫ π

−π

(
e−tθ2 )1/d dθ

2π

)d

dt (3.6)

as an upper bound for (3.4). This is non-increasing in d , because ‖f ‖p ≤ ‖f ‖q for 0 < p ≤
q ≤ ∞ on a probability space by Lyapunov’s inequality. �

Proof of Proposition 2.2 for the spread-out models. We again follow [14, Sect. 2.2.2]. Ob-
viously (2.9) is implied by condition (D2)/(D2′) for sufficiently large L, hence it remains to
prove (2.10).

The power-law spread-out model with α > 2 satisfies the finite variance condition (D1)
with ε < α − 2. Note further that (D3) and (D3′) agree when the exponent in the first in-
equality is taken α ∧ 2.

We separately consider the regions ‖k‖∞ ≤ L−1 and ‖k‖∞ > L−1. By (1.2), (1.7) and
the bound D̂(k)2 ≤ 1, the corresponding contributions to the integral are

∫

k:‖k‖∞≤L−1

D̂(k)2

[1 − D̂(k)]s
dk

(2π)d
≤ 1

cs
1L

(α∧2)s

∫

k:‖k‖∞≤L−1

1

|k|(α∧2)s

dk

(2π)d
≤ Cd,c1L

−d (3.7)

if d > (α ∧ 2)s, where Cd,c1 is a constant depending (only) on d and c1, and by (1.3), (1.8),

∫

k:‖k‖∞>L−1

D̂(k)2

[1 − D̂(k)]s
dk

(2π)d
≤ c2

−s

∫

k:‖k‖∞>L−1
D̂(k)2 dk

(2π)d
≤ constL−d , (3.8)

3The Hölder inequality gives better bounds here. In particular, it requires d > 2s only, cf. (2.19) in [14].
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for some positive constant. In the last step we used assumption (D2) / (D2′) to see that
∫

k∈[−π,π)d
D̂(k)2 dk

(2π)d
= (D ∗ D)(0) =

∑

y∈Zd

D(y)2 ≤
∑

y∈Zd

D(y)‖D‖∞

= ‖D‖∞ ≤ constL−d . (3.9)

�

4 The Lace Expansion

In this section, we discuss the lace expansion which obtains an expansion of the two-point
function of the form

Gz(x) = δ0,x + τ(z) (D ∗ Gz) (x) + (Gz ∗ �z) (x) + �z(x),

cf. (2.4). The key point is to identify the lace-expansion coefficients �z and �z in a way that
allows for sufficient bounds, known as diagrammatic bounds. The derivation is not carried
out in this paper; full expansions and detailed derivations of the diagrammatic bounds are
performed in [31, 41] for self-avoiding walk, in [14] for percolation and in [38] for the Ising
model.

4.1 The Lace Expansion for the Self-Avoiding Walk

The lace expansion for the self-avoiding walk was first presented by Brydges and Spencer
[16]. They provide an algebraic expansion using graphs. A special class of graphs that play
an important role here, the laces, gave the lace expansion its name. An alternative approach
is based on an inclusion-exclusion argument, and was first presented by Slade [40].

We refer the reader to [31, Sect. 2.2.1] or [41, Sect. 3] for a full derivation of the expan-
sion. For example, in [31, Sect. 2.2.1] it is shown that

cn+1(x) = (D ∗ cn)(x) +
n+1∑

m=2

(πm ∗ cn+1−m) (x) (4.1)

for suitable πm(x). We multiply (4.1) by zn+1 and sum over n ≥ 0. By letting �z(x) =∑∞
m=2 πm(x)zm and recalling Gz(x) =∑∞

n=0 cn(x)zn this yields

Gz(x) = δ0,x + z(D ∗ Gz)(x) + (Gz ∗ �z)(x), (4.2)

see also [41, (3.27)]. For the lace expansion coefficient �z the following diagrammatic
bound is proven:

Proposition 4.1 (Diagrammatic estimates for self-avoiding walk from [41]) Fix z ∈ (0, zc).
If f (z) of (2.17) obeys f (z) ≤ K , then there are positive constants cK and β0 = β0(K), such
that the following holds: If Assumption 2.1 holds for some β ≤ β0, then

∑

x∈Zd

|�z(x)| ≤ cKβ, (4.3)

∑

x∈Zd

[1 − cos(k · x)] |�z(x)| ≤ cKβĈλz (k)−1, k ∈ [−π,π)d . (4.4)
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The term diagrammatic estimate originates from the fact that �z is expressed in terms of
diagrams. The underlying structure expressed in terms of these diagrams is heavily used to
obtain the bounds in (4.3) and (4.4).

A proof of Proposition 4.1 can be found in [41, Lemma 5.11], and we do not repeat it
here. In fact, the proof in [41] can be modified to obtain

∑

x∈Zd

[1 − cos(k · x)] |�z(x)| ≤ zcKβĈλz (k)−1, k ∈ [−π,π)d, (4.5)

instead of (4.4). This is achieved by leaving the factor z in [41, (5.42) and (5.43)] explicit
(rather then bounding above by K).

We choose τ(z) = z, �z(x) = �z(x) and �z(x) = 0, which makes (4.2) equivalent to
(2.4). Hence Proposition 4.1 along with (4.5) is sufficient to prove Proposition 2.5 for self-
avoiding walk.

4.2 The Lace Expansion for Percolation

The lace expansion for percolation was first derived in [26]. It is based on an inclusion-
exclusion argument, and holds quite generally for any connected graph, finite or infinite.
The graph does not even need to be transitive or regular.

In [14, Sect. 3.2], the identity

Gz(x) = δ0,x + z (D ∗ Gz) (x) + z (�M ∗ D ∗ Gz) (x) + �M(x) + RM(x) (4.6)

is derived for M = 0,1,2, . . . . The z-dependence of �M and RM is left implicit. The function
�M : Z

d → R is the central quantity in the expansion, and RM(x) is a remainder term. When
the expansion converges, one has

lim
M→∞

∑

x

|RM(x)| = 0. (4.7)

The subscript M denotes the level to which the (inclusion-exclusion) expansion is carried
out, and we shall later fix M so large that (4.12) and (4.13) below are satisfied for K = 4.
The equality (4.6) is equivalent to (2.4) if we let τ(z) = z, and

�z(x) = z(D ∗ �M)(x), x ∈ Z
d , (4.8)

�z(x) = �M(x) + RM(x), x ∈ Z
d . (4.9)

The key point is that �M and RM satisfy useful diagrammatic bounds:

Proposition 4.2 (Diagrammatic estimates for percolation from [14]) Fix z ∈ (0, zc). If f (z)

of (2.17) obeys f (z) ≤ K , then there are positive constants cK and β0 = β0(K), such that
the following holds: If Assumption 2.1 holds for some β ≤ β0, then for all M = 0,1,2, . . . ,

∑

x

|�M(x)| ≤ cKβ, (4.10)

∑

x

[1 − cos(k · x)]|�M(x)| ≤ cKβĈλz (k)−1, (4.11)
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and for M sufficiently large (depending on K and z),

∑

x

|RM(x)| ≤ β, (4.12)

∑

x

[1 − cos(k · x)]|RM(x)| ≤ βĈλz (k)−1. (4.13)

In fact, the bounds in Proposition 4.2 are not exactly as phrased in [14]. In the following we
explain how the proof of [14, Proposition 5.2] can be modified to obtain Proposition 4.2.
There are two differences to consider. First, in the definition of f3 there is a factor 16 in
the denominator, whereas we have a factor 200, cf. (2.19). This can be controlled easily by
changing the factor appropriately throughout the proof of [14, Proposition 5.2]. This changes
the specific value of cK , but the statement of [14, Proposition 5.2] remains unchanged. The
second (and more important) issue is the replacement of 1 − D̂(k) = Ĉ1(k)−1 in [14, Propo-
sition 5.2] by 1 − λzD̂(k) = Ĉλz (k)−1 in Proposition 4.2. We need to do this replacement to
achieve continuity of the function f3. Wherever the bound on f3 is used in the proof of [14,
Proposition 5.2], which is in [14, (5.63)], [14, (5.77)], below [14, (5.93)] and in [14, (5.97)],
we replace the factor [1 − D̂(k)] by Ĉλz (k)−1. Other occurrences of [1 − D̂(k)], as in [14,
(5.75)] and [14, (5.91)], can be treated with the bound

0 ≤ 1 − D̂(k) ≤ 2Ĉλz (k)−1, k ∈ [−π,π)d, (4.14)

which itself is a consequence of

0 ≤ Ĉλz (k)[1 − D̂(k)] = 1 + λz − 1

1 − λzD̂(k)
D̂(k) ≤ 2. (4.15)

Again, this increases the value of the constant cK , but leaves the statement of [14, Proposi-
tion 5.2] otherwise unchanged.

For a sketch of the argument of how f (z) ≤ K actually implies (4.10)–(4.13) we refer to
[37, Sect. 3.2]. In the following we show how Proposition 4.2 implies Proposition 2.5 in the
percolation case.

Proof of Proposition 2.5 for percolation. Recall (4.8)–(4.9). The bounds on �z(x) in (2.20)–
(2.21) follow directly from Proposition 4.2 if M is chosen so large that (4.12)–(4.13) is
satisfied.

For the bounds on �z(x) = z(D ∗ �M)(x) we use the estimate

[1 − cos(t1 + t2)] ≤ 5 ([1 − cos t1] + [1 − cos t2]) , t1, t2 ∈ R, (4.16)

(see [14, (4.51)]) to obtain

∑

x

[1 − cos(k · x)] |�z(x)|

≤ 5
∑

x

z
∑

y

([1 − cos(k · y)] + [1 − cos(k · (x − y))])D(y) |�M(x − y)|

≤ 5z
∑

x

[1 − D̂(k)] |�M(x − y)|
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+ 5z
∑

x

[1 − cos(k · (x − y))] |�M(x − y)|

≤ 5z(2cKβĈλz (k)−1 + cKβĈλz (k)−1) (4.17)

by (4.10)–(4.11) and (4.14). �

4.3 The Lace Expansion for the Ising Model

The lace expansion for the Ising model has been established recently by Sakai [38]. It is
similar in spirit to a high-temperature expansion. A key point is to rewrite the two-point
function (spin-spin correlation) using the random-current representation. This gives rise to
a representation involving bonds, in that showing some similarities to a percolation con-
figuration. The lace expansion is then performed using ideas from the lace expansion for
percolation, however, it is considerably more involved.

For the Ising model on a finite graph �, Sakai in [38, Proposition 1.1] proved the expan-
sion formula

G�
z (x) = δ0,x + τ(z)

(
D ∗ G�

z

)
(x) + τ(z)

(
D ∗ ��

M
∗ G�

z

)
(x) + ��

M
(x) + R�

M(x), (4.18)

where the z-dependence of ��
M

and R�
M

is omitted from the notation. Note that R�
M

in this
paper is (−1)M+1R

(M+1)

p;� in [38]. Here M refers to the level of the expansion, and G�
z denotes

the finite-volume two-point function. This is equivalent to (2.4) if we let

��
z (x) = τ(z)(D ∗ ��

M
)(x), x ∈ Z

d , (4.19)

��
z (x) = ��

M
(x) + R�

M(x), x ∈ Z
d , (4.20)

then choose M so large that (4.23) and (4.24) below are satisfied for a certain K , say K = 4,
and subsequently taking the thermodynamic limit � ↗ Z

d . Note that, if comparing (4.18) to
[38, (1.11)], we explicitly extract the δ0,x -term from the �-term in [38], i.e., �

(M)

p;�(x) in [38]
corresponds to ��

M
(x) + δ0,x in this paper. For ��

M
and R�

M
we have the following bounds:

Proposition 4.3 (Diagrammatic estimates for the Ising model from [38]) Fix z ∈ (0, zc).
If f (z) of (2.17) obeys f (z) ≤ K , then there are positive constants cK and β0 = β0(K),
such that the following holds: If Assumption 2.1 holds for some β ≤ β0, then for all M =
0,1,2, . . . ,

∑

x

|��
M
(x)| ≤ cKβ, (4.21)

∑

x

[1 − cos(k · x)]|��
M
(x)| ≤ cKβĈλz (k)−1, (4.22)

and for M sufficiently large (depending on K and z),

∑

x

|R�
M
(x)| ≤ β, (4.23)

∑

x

[1 − cos(k · x)]|R�
M
(x)| ≤ βĈλz(k)−1. (4.24)

These bounds hold uniformly in �.
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Since the bootstrapping hypothesis used in Sect. 5 in this paper is different from that in
[38], it is not so obvious how Proposition 4.3 follows from the results in [38]. In Appendix B
we explain how the statement in [38, Proposition 3.2] can be modified to obtain the desired
bounds (4.21)–(4.24).

We prove Proposition 2.5 for the Ising model as in the percolation case, now using Propo-
sition 4.3 instead of Proposition 4.2. We refrain from repeating the argument.

5 Analysis of the Lace Expansion

5.1 The Bootstrap Argument

In this section we prove Proposition 2.6 and, by doing so, complete the proof of Theorem
1.1. The proof is based on the following lemma:

Lemma 5.1 (The bootstrap/forbidden region argument) Let f be a continuous function on
the interval [0, zc), and assume that f (0) ≤ 3. Suppose for each z ∈ (0, zc) that if f (z) ≤ 4,
then in fact f (z) ≤ 3. Then f (z) ≤ 3 for all z ∈ [0, zc).

Proof This is a straightforward application of the intermediate value theorem for continuous
functions, see also [41, Lemma 5.9]. �

The bootstrap argument in Lemma 5.1 is often used in lace expansion, see e.g. [34, Sect. 6.1].
An alternative approach that involves an induction argument has been applied in [32], see
also the lecture notes by van der Hofstad [31].

In the remainder of the section, we prove that the function f defined in (2.17) obeys the
prerequisites of Lemma 5.1. We therefore have to show that f (0) ≤ 3, that f is continuous
on [0, zc), and that f (z) ≤ 4 implies f (z) ≤ 3 for z ∈ (0, zc). The latter is referred to as the
improvement of the bounds.

Let us first check that f (0) ≤ 3. Clearly, f1(0) = 0. Note that �̂0(k) ≡ 0 and �̂0(k) ≡ 0.
This leads to Ĝ0(k) ≡ 1 and λ0 = 0, hence f2(0) = 1 and f3(0) = 0.

Next we want to prove continuity of f . To this end, we need the following lemma:

Lemma 5.2 (Continuity of equicontinuous functions) Let (fα)α∈A be an equicontinuous
family of functions on an interval [t1, t2], i.e., for every given ε > 0, there is a δ > 0 such
that |fα(s) − fα(t)| < ε whenever |s − t | < δ, uniformly in α ∈ A. Furthermore, suppose
that supα∈A fα(t) < ∞ for each t ∈ [t1, t2]. Then t → supα∈A fα(t) is continuous on [t1, t2].

A proof of this standard result can be found e.g. in [41, Lemma 5.12].

Lemma 5.3 (Continuity) Assume that, for z ∈ (0, zc), χ ′(z) ≤ cχ(z)2 for some constant c.
Then, the function f defined in (2.17) is continuous on (0, zc).

Proof It is sufficient to show that f1, f2 and f3 are continuous. The continuity of f1 is
obvious. We show that f2 and f3 are continuous on the closed interval [0, zc − ε] for any
ε > 0 by taking derivatives with respect to z and bound it uniformly in k on [0, zc − ε].

We do f2 first. To this end, we consider the derivative

d

dz

Ĝz(k)

Ĉλz (k)
= 1

Ĉλz (k)2

[

Ĉλz (k)
dĜz(k)

dz
− Ĝz(k)

dĈλ(k)

dλ

∣
∣
∣
∣
λ=λz

dλz

dz

]

. (5.1)
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We proceed by showing that each of the terms on the right hand side is uniformly bounded
in k and z ∈ [0, zc − ε], and hence the derivative is bounded. First we recall the definition of
λz in (2.13) to see that

1

2
≤ 1

1 − λzD̂(k)
= Ĉλz (k) ≤ Ĉλz (0) = χ(z). (5.2)

Furthermore, χ(z) ≤ χ(zc − ε), and the latter is finite by the definition of zc in (1.22). For
every k ∈ [−π,π)d , the two-point function is bounded from above by

|Ĝz(k)| ≤ |Ĝz(0)| = χ(z) ≤ χ(zc − ε). (5.3)

For the derivative of the two-point function, we bound

∣
∣
∣
∣

d

dz
Ĝz(k)

∣
∣
∣
∣=
∣
∣
∣
∣
∣

∑

x

eik·x d

dz
Gz(x)

∣
∣
∣
∣
∣
≤
∑

x

d

dz
Gz(x) = d

dz

∑

x

Gz(x) = χ ′(z), (5.4)

where the exchange in the order of sum and derivative is validated by the fact that both∑
x eik·x Gz(x) and

∑
x Gz(x) are uniformly convergent series of functions. By the assumed

mean-field bound χ ′(z) ≤ cχ(z)2, (5.4) is bounded above by cχ(zc − ε)2.
Moreover, we obtain from (2.3) that |dĈλ(k)/dλ| ≤ Ĉλ(k)2, and, for λ = λz, this is in

turn bounded by χ(zc − ε)2, cf. (5.2). Finally, |dλz/dz| = χ ′(z)/χ(z)2 ≤ c by (2.13) and our
assumption.

We treat f3 in exactly the same way as f2, and omit the details here. �

5.2 Improvement of the Bounds

The following lemma covers the remaining prerequisite of Lemma 5.1 and thus proves the
final ingredient needed for the proof of Proposition 2.6.

Lemma 5.4 (Improvement of the bounds) If the assumptions of Proposition 2.6 are satisfied
for some sufficiently small β , and if f (z) ≤ 4, then there exists a constant c > 0 such that
f (z) ≤ 1 + cβ for all z ∈ (0, zc). In particular, if β is small enough, then f (z) ≤ 3.

The following lemma will help us for the improvement of the bound on f3.

Lemma 5.5 (Slade [41]) Suppose that a(x) = a(−x) for all x ∈ Z
d , and let

Â(k) = 1

1 − â(k)
. (5.5)

Then, for all k, l ∈ [−π,π)d ,

|�kÂ(l)| ≤ (Â(l − k) + Â(l + k))Â(l)
(|̂a|(0) − |̂a|(k)

)

+ 8Â(l − k)Â(l)Â(l + k)
(|̂a|(0) − |̂a|(l)) (|̂a|(0) − |̂a|(k)

)
. (5.6)

By |̂a| we denote the Fourier transform of the absolute value of a. The proof of Lemma 5.5
uses several bounds on trigonometric quantities, and can be found in [41, Lemma 5.7].
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Proof of Lemma 5.4 Fix z ∈ (0, zc) arbitrarily and assume f (z) ≤ 4. Our general strategy
will be to show that fi for i = 1,2,3 is smaller then (1 + constβ) and thus, by taking β

small, f (z) ≤ 3.
The bound on f1 is easy. First note that λz = 1 − χ(z)−1 ≤ 1. Using (2.13) along with

(2.22)–(2.25) and Proposition 2.5 (with K = 4) we obtain

f1(z) = λz

(
1 + �̂z(0)

)
− �̂z(0) − �̂z(0)

≤ λz

(
1 + |�̂z(0)|

)
+ |�̂z(0)| + |�̂z(0)| ≤ 1 + 3c4β. (5.7)

The bound on f2 is slightly more involved. We write Ĝz = N̂/F̂ , with

N̂(k) = 1 + �̂z(k)

1 + �̂z(0)
, F̂ (k) = 1 − τ(z)D̂(k) − �̂z(k)

1 + �̂z(0)
. (5.8)

Recall from (2.3) that Ĉλz (k) = [1 − λzD̂(k)]−1 and, by (2.5) and (2.13),

λz = 1 − 1 − τ(z) − �̂z(0)

1 + �̂z(0)
. (5.9)

This yields

Ĝz(k)

Ĉλz (k)
= N̂(k) + Ĝz(k)

[
1 − λzD̂(k) − F̂ (k)

]
, (5.10)

where

1 − λzD̂(k) − F̂ (k) = [1 − D̂(k)]�̂z(0) + [�̂z(k) − �̂z(0)]D̂(k) + [1 − D̂(k)]�̂z(k)

1 + �̂z(0)
.

By taking c4β ≤ 1/2, we obtain the bound

1 + �c4β

1 − c4β
≤ 1 + (2� + 2)c4β, � = 0,1,2, . . . , (5.11)

which we use frequently below. For example, together with Assumption 2.4, it enables us to
bound

∣
∣
∣N̂(k)

∣
∣
∣=
∣
∣
∣
∣
∣

1 + �̂z(k)

1 + �̂z(0)

∣
∣
∣
∣
∣
≤ 1 + |�̂z(k)|

1 − |�̂z(0)| ≤ 1 + 4c4β.

Together with (4.14) we obtain in the same fashion that

∣
∣
∣1 − λzD̂(k) − F̂ (k)

∣
∣
∣ ≤ [1 − D̂(k)]|�̂z(0)| + |�̂z(k) − �̂z(0)| + [1 − D̂(k)]|�̂z(k)|

1 − |�̂z(0)|

≤ 2c4β[1 − D̂(k)] + c4βĈλz (k)−1

1 − c4β
≤ 12c4βĈλz (k)−1
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By our assumption that Ĝz(k) ≤ 4Ĉλz (k) (which follows from f (z) ≤ 4) and the above
inequalities, we can bound (5.10) from above by

∣
∣
∣
∣
∣

Ĝz(k)

Ĉλz (k)

∣
∣
∣
∣
∣
≤ 1 + 4c4β + 4 · 12c4β

∣
∣
∣Ĉλz (k)Ĉλz (k)−1

∣
∣
∣= 1 + 52c4β (5.12)

for every k ∈ [−π,π)d . This proves the bound on f2.

It remains to show the bound on f3. In the following, we write K for a positive constant,
whose value may change from line to line. Furthermore, we write

Ĝz(k) = b̂(k)

1 − â(k)
, where b̂(k) = 1 + �̂z(k), â(k) = τ(z)D̂(k) + �̂z(k). (5.13)

A straightforward calculation (see also [18, (4.18)]) shows that

�kĜz(l) = �kb̂(l)

1 − â(l)
+

∑

σ∈{1,−1}

(
â(l + σk) − â(l)

)(
b̂(l + σk) − b̂(l)

)

(
1 − â(l)

) (
1 − â(l + σk)

) + b̂(l)�k

[
1

1 − â(l)

]

.

(5.14)
We now bound all three summands in (5.14), and start with the first one:
∣
∣
∣
∣
∣

�kb̂(l)

1 − â(l)

∣
∣
∣
∣
∣
=
∣
∣
∣
∣
∣

�kb̂(l)

b̂(l)

∣
∣
∣
∣
∣

∣
∣
∣Ĝz(l)

∣
∣
∣=
∣
∣
∣
∣
∣

�k�̂z(l)

1 + �̂z(l)

∣
∣
∣
∣
∣

∣
∣
∣Ĝz(l)

∣
∣
∣≤
∣
∣
∣�k�̂z(l)

∣
∣
∣2(1 + Kβ)Ĉλz (l),

(5.15)
where the last bound uses (2.21) to bound the denominator, and (5.12). A basic calculation
shows that any function g : Z

d → R with g(x) = g(−x) satisfies

∣
∣�kĝ(l)

∣
∣≤
∑

x

[1 − cos(k · x)] |g(x)| , (5.16)

cf. [14, (5.32)]. We apply this bound with g(x) = �z(x), combine it with (5.15) and (2.21),
and use Ĉλz (l ± k) ≥ 1/2 and the definition of Uλz(l, k) in (2.16) to obtain

∣
∣
∣
∣
∣

�kb̂(l)

1 − â(l)

∣
∣
∣
∣
∣
≤ KβĈλz(k)−1Ĉλz (l) ≤ O(β)Uλz(l, k). (5.17)

The second term in (5.14) is bounded as follows. First, since

| eil·x(ei(±k·x) −1)| ≤ | sin(k · x)| + 1 − cos(k · x), (5.18)

we obtain
∣
∣b̂(l ± k) − b̂(l)

∣
∣ = ∣∣�̂z(l ± k) − �̂z(l)

∣
∣

≤
∑

x

| sin(k · x)|∣∣�z(x)
∣
∣+
∑

x

[1 − cos(k · x)]∣∣�z(x)
∣
∣. (5.19)

The second term on the right hand side of (5.19) is bounded by O(β)Ĉλz (k)−1; on the first
term we apply the Cauchy-Schwarz inequality and (2.20)–(2.21):

∑

x

| sin(k · x)|∣∣�z(x)
∣
∣ ≤
(∑

x �=0

|�z(x)|
)1/2(∑

x �=0

sin(k · x)2|�z(x)|
)1/2
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≤ O(β)1/2
(∑

x �=0

[1 − cos(k · x)]|�z(x)|
)1/2

≤ O(β)Ĉλz (k)−1/2. (5.20)

Furthermore,

â(l ± k) − â(l) = τ(z)
(
D̂(l ± k) − D̂(l)

)
+
(
�̂z(l ± k) − �̂z(l)

)
. (5.21)

In a similar fashion as (5.19)–(5.20), we bound |�̂z(l ± k) − �̂z(l)| ≤ O(β)Ĉλz (k)−1/2 and

∣
∣
∣D̂(l ± k) − D̂(l)

∣
∣
∣ ≤

(∑

x

D(x)
)1/2(∑

x

[1 − cos(k · x)]D(x)
)1/2

+
∑

x

[1 − cos(k · x)]D(x)

= 1 · [1 − D̂(k)]1/2 + [1 − D̂(k)]
≤ 2Ĉλz (k)−1/2 + 2Ĉλz (k)−1 ≤ O(1)Ĉλz (k)−1/2, (5.22)

where the last line uses (4.14). The combination of (5.19)–(5.22) and (5.7) yields

(
â(l ± k) − â(l)

)(
b̂(l ± k) − b̂(l)

)≤ O(β)Ĉλz (k)−1. (5.23)

On the other hand, by (5.12)–(5.13),

1

1 − â(l + σk)
= 1

b̂(l + σk)
Ĝ(l +σk) ≤ (1+O(β))Ĉλz (l +σk), σ ∈ {−1,0,1}. (5.24)

Combining (5.23) and (5.24) yields

∣
∣
∣
∣
(â(l ± k) − â(l))(b̂(l ± k) − b̂(l))

(1 − â(l))(1 − â(l ± k))

∣
∣
∣
∣≤ O(β)Ĉλz (k)−1Ĉλz (l)Ĉλz (l ± k) ≤ O(β)Uλz(l, k).

(5.25)
For the third term in (5.14) we argue that |b̂(l)| = 1+|�̂z(l)| ≤ 1+c4β by our assumption

on �̂z. In order to apply Lemma 5.5 to bound �k(1 − â(l))−1, we estimate

Â(l) := 1

1 − â(l)
= 1

b̂(l)
Ĝz(l) ≤ (1 + 2c4β)(1 + 51c4β)Ĉλz (l) ≤ (1 + Kβ)Ĉλz (l) (5.26)

by Assumption 2.4 and (5.12), and

|̂a|(0) − |̂a|(k) =
∑

x

[1 − cos(k · x)]∣∣τ(z)D(x) + �z(x)
∣
∣

≤ τ(z)[1 − D̂(k)] +
∑

x

[1 − cos(k · x)]∣∣�z(x)
∣
∣

≤ (2(1 + c4β) + c4β) Ĉλz (k)−1 ≤ 5Ĉλz (k)−1,
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where the last line uses again (4.14) and, as usual, requires a certain smallness of β (here
we need c4β ≤ 1). Plugging these estimates into (5.6) yields

∣
∣
∣
∣�k

1

1 − â(l)

∣
∣
∣
∣ ≤ (1 + Kβ)3 · 8 · 52 · Ĉλz (k)−1

{
Ĉλz (l − k)Ĉλz (l)

+ Ĉλz (l)Ĉλz (l + k) + Ĉλz (l − k)Ĉλz (l + k)
}

, (5.27)

so that finally

|�kĜz(l)|
Uλz(k, l)

≤ (1 + Kβ), (5.28)

as required. In conclusion f3(z) ≤ 1 + Kβ , and thus we obtain the improved bound f (z) ≤
1 + O(β). �

Proof of Proposition 2.6 Note first that f is continuous on (0, zc) by Lemma 5.3 and the
assumed mean-field bound χ(z)′ ≤ constχ(z)2. Whence the prerequisites of Lemma 5.1
are satisfied by Lemma 5.4 and the fact that f (0) = 1. Therefore, f (z) ≤ 3 for all z < zc .
Moreover, Lemma 5.4 shows that, if f ≤ 4, then in fact f ≤ 1 + O(β). Hence f (z) ≤
1 + O(β), uniformly for z < zc . �
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Appendix A: Derivation of Critical Exponents for Percolation

A.1 Derivation of γP = 1

Aizenman and Newman [5] prove that the triangle condition T (zc) < ∞ implies that the
critical exponent γP for percolation exists, and satisfies γP = 1. That is to say, they show
χ(z) � (zc − z)−1 as z ↗ zc . The lower bound γP ≥ 1 in [5, Proposition 3.1] holds for any
homogeneous bond percolation model. On the other hand, the upper bound γP ≤ 1 is stated
in [5, Proposition 3.1] for the nearest-neighbor model only. The aim of this section is to
show how the derivation in [5] can be extended to long range systems.

The argument requires a finite volume and range approximation in order to apply Russo’s
formula. We denote by

Tr := [−r, r]d ∩ Z
d

a cube of sidelength 2r + 1. In order to achieve translation invariance, we equip the cube
with periodic boundary conditions, that is, Tr is a torus. In [5] free boundary conditions
were used. We write G

(R)

z,Tr
(x, y) for the probability that the points x and y are connected

on the torus using only bonds {u,v} of length |u − v| ≤ R. For r > R (which we always
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assume), this is equivalent to removing all bonds from Tr with length larger than R. Define
accordingly the restricted expected cluster size by

χ
(R)

Tr
(z) :=

∑

x∈Tr

G
(R)

z,Tr
(0, x), (A.1)

and the restricted triangle diagram by

∇(R)

Tr
(z) :=

∑

v,s,t∈Tr|v|≤R

D(v)G
(R)

z,Tr
(v, s)G

(R)

z,Tr
(s, t)G

(R)

z,Tr
(t,0). (A.2)

We proceed as follows. We fix ε > 0 small, and first show that for z < zc − ε,

(
1 − ∇(R)

Tr
(zc − ε) − eR

)
(zc − z − ε) ≤ 1

χ
(R)

Tr
(z)

− 1

χ
(R)

Tr
(zc − ε)

≤ (zc − z − ε) (A.3)

holds uniformly in r and R, where eR = o(1) as R → ∞. We argue that indeed, for z <

zc − ε,

lim
R→∞

lim
r→∞χ

(R)

Tr
(z) = χ(z), (A.4)

and, for every R > 0,

∇(R)

Tr
(zc − ε) ≤ ∇(zc − ε) + o(1) as r ↗ ∞, (A.5)

where ∇(z) = (D ∗ Gz ∗ Gz ∗ Gz)(0). Note that ∇(z) differs from T (z) by the extra dis-
placement D. Then, taking r → ∞ followed by R → ∞, we obtain for every ε > 0,

(1 − ∇(zc − ε))(zc − z − ε) ≤ 1

χ(z)
− 1

χ(zc − ε)
≤ zc − z − ε. (A.6)

The limit ε ↘ 0 then yields

(1 − ∇(zc))(zc − z) ≤ 1

χ(z)
≤ zc − z (A.7)

since χ(zc − ε)−1 ↘ 0 as ε ↘ 0.
It follows from the infrared bound (1.35) and (2.10), together with the Cauchy-Schwarz

inequality, that ∇(zc) ≤ O(β1/2). Thus (A.7) implies γP = 1 if β in Theorem 1.1 is suffi-
ciently small, which suffices for our needs. It is possible to extend the argument to any finite
triangle diagram (rather than small triangle diagrams only) by using ultraviolet regulariza-
tion, as done in [5, Lemma 6.3].

We start by proving (A.3). We call an (occupied or vacant) bond (u, v) pivotal for an
increasing event E, if E occurs if and only if (u, v) is occupied. A crucial tool in the proof
is Russo’s formula [24, Theorem 2.25], stating that

d

dz
G

(R)

z,Tr
(x, y) =

∑

(u,v)∈Tr×Tr|u−v|≤R

D(v − u)P
(R)

z,Tr
((u, v) is pivotal for x ↔ y), x, y ∈ Tr .

(A.8)
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The factor D(v − u) arises from the chain rule and the fact that the bond (u, v) is occupied
with probability zD(v − u). Since

{
(u, v) is pivotal for x ↔ y

}⊂ {{x ↔ u} ◦ {v ↔ y}}∪ {{x ↔ v} ◦ {u ↔ y}}, (A.9)

(A.8) and the BK-inequality [11] imply

d

dz
G

(R)

z,Tr
(x, y) ≤

∑

u,v∈Tr

D(v − u)P
(R)

z,Tr
(x ↔ u)P

(R)

z,Tr
(v ↔ y). (A.10)

Summing over y yields the upper bound

d

dz
χ

(R)

Tr
(z) ≤

(∑

u∈Tr

G
(R)

z,Tr
(x, u)

)(∑

v∈Tr

D(v − u)
)(∑

y∈Tr

G
(R)

z,Tr
(v, y)

)

≤ χ
(R)

Tr
(z)2. (A.11)

Therefore,

d

dz

[

− 1

χ
(R)

Tr
(z)

]

≤ 1. (A.12)

Integration over the interval (z, zc − ε) yields

1

χ
(R)

Tr
(z)

− 1

χ
(R)

Tr
(zc − ε)

≤ zc − z − ε. (A.13)

For the lower bound in (A.3) we use arguments as in [41, Sect. 9.4] to obtain

P
(R)

z,Tr
((u, v) is pivotal for x ↔ y)

≥ G
(R)

z,Tr
(x, u)G

(R)

z,Tr
(v, y) −

∑

s,t∈Tr

G
(R)

z,Tr
(x, t)G

(R)

z,Tr
(t, s)G

(R)

z,Tr
(t, u)G

(R)

z,Tr
(s, v)G

(R)

z,Tr
(s, y).

= −
(A.14)

(The contribution to the second line in (A.14) with u and v interchanged is hidden there,
but is incorporated in the next line when we sum over both, u and v.) With Russo’s formula
(A.8),

d

dz
χ

(R)

Tr
(z) ≥ χ

(R)

Tr
(z)2

∑

|v|≤R

D(v) − χ
(R)

Tr
(z)2

∑

v,s,t∈Tr|v|≤R

D(v)G
(R)

z,Tr
(v, s)G

(R)

z,Tr
(s, t)G

(R)

z,Tr
(t,0).

(A.15)
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Since
∑

v∈Zd D(v) = 1, the quantity eR :=∑|v|>R D(v) is o(1) as R → ∞. Recalling the

definition of ∇(R)

Tr
(z) in (A.2) we arrive at

d

dz

[

− 1

χ
(R)

Tr
(z)

]

≥ (1 − eR) − ∇(R)

Tr
(z) ≥ 1 − ∇(R)

Tr
(zc − ε) − eR (A.16)

for z < zc − ε, and an integrated version of this proves (A.3).
We now consider (A.4) and fix z < zc − ε. We write E

(R)

z,Tr
|C| for the expected cluster size

under the measure P
(R)

z,Tr
, i.e., E

(R)

z,Tr
|C| = χ

(R)

Tr
(z). We further denote by ∂RTr := Tr+R \ Tr

the boundary of Tr of thickness R. Hence,

E
(R)

z,Tr+R
|C| = E

(R)

z,Tr+R
|C|1{0�∂RTr } + E

(R)

z,Tr+R
|C|1{0↔∂RTr }. (A.17)

In the first summand, E
(R)

z,Tr+R
can be replaced by E

(R)
z (the expected cluster size on the infi-

nite lattice, where bonds are restricted to have length ≤ R), because the indicator guarantees
C ⊂ Tr . This leads to

E
(R)

z,Tr+R
|C| = E

(R)
z |C| − E

(R)
z |C|1{0↔∂RTr } + E

(R)

z,Tr+R
|C|1{0↔∂RTr }. (A.18)

By the tree graph bound [5] and the monotonicity of E
(R)
z |C| in R,

E
(R)
z |C|2 ≤ (E(R)

z |C|)3 ≤ χ(z)3, (A.19)

and hence the Cauchy-Schwarz inequality yields

E
(R)
z |C|1{0↔∂RTr } ≤ χ(z)3/2

Pz(0 ↔ ∂RTr )
1/2. (A.20)

For z < zc − ε, the first factor on the right is finite, and the latter vanishes as r → ∞. For
the last summand in (A.18), we bound as follows:

E
(R)

z,Tr+R
|C|1{0↔∂RTr } ≤ (2(r + R) + 1)d

P
(R)

z,Tr+R
(0 ↔ ∂RTr ), (A.21)

but, for r > R,

P
(R)

z,Tr+R
(0 ↔ ∂RTr ) ≤ Pz,Tr+R

(|C| ≥ r/R) ≤ Pz(|C| ≥ r/R) ≤ exp

{

− r

2Rχ(z)2

}

, (A.22)

where in the first bound we use the fact that occupied bonds have length ≤ R in the restricted
model, the second bound utilizes the fact that clusters on the torus are a.s. smaller than
clusters in the infinite lattice [30, Proposition 2.1], and in the third bound uses [5, Proposition
5.1]. The expression on the right hand side of (A.22) decays exponentially as r increases,
hence the right hand side of (A.21) vanishes and (A.4) is established once we have shown
that E

(R)
z |C| → Ez|C| as R → ∞.

This is done as follows. We write G(R)
z and χ(R) for the model on the infinite lattice where

bonds are restricted to have length ≤ R. Then obviously χ(z) ≥ χ(R)(z). Furthermore,

Gz(x) − G(R)
z (x) = Pz (0 ↔ x,∃ pivotal bond (u, v) for {0 ↔ x} with |u − v| > R) ,
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hence, using the BK-inequality,

χ(z) − χ(R)(z) ≤ χ(z)2

⎛

⎝z
∑

v:|v|>R

D(v)

⎞

⎠ .

Again, this vanishes as R → ∞, because z < zc − ε and
∑

v D(v) = 1.
It remains to prove (A.5). We use again the coupling of [30, Proposition 2.1] to write

P
(R)

zc−ε,Tr+R
(0 ↔ x) ≤ Pzc−ε(0 ↔ x) + Pzc−ε(0 ↔ ∂RTr ). (A.23)

Since the contribution from terms involving Pzc−ε(0 ↔ ∂RTr ) is again exponentially small
in r (cf. (A.22)), we readily obtain (A.5).

A.2 Derivation of δP = 2

Barsky and Aizenman [10] showed that the triangle condition implies also βP = 1 and
δP = 2, where they used the general bounds βP ≤ 1 and δP ≥ 2 due to [17] and [2], respec-
tively. It should be noted, that in these references a different version of δP is considered,
namely δ̂P given by

M(zc,h) :=
∞∑

k=1

[1 − e−kh]Pzc (|C| = k) � h1/δ̂P as h → ∞. (A.24)

The quantity M is known as magnetization. If we consider the critical exponents in terms of
slowly varying functions only (and not our stronger version �), then the equivalence of δP

and δ̂P can be seen directly via a Tauberian Theorem (e.g. [20, Theorem XIII.5.2]).
Our version of δP can be derived from (A.24), as we show now for the mean-field value

δP = 2. In particular, we show that

c/
√

n ≤ M(zc,1/n) ≤ C/
√

n, 0 < c ≤ C < ∞, (A.25)

implies c̃/
√

n ≤ Pzc (|C| ≥ n) ≤ C̃/
√

n for certain constants c̃, C̃ ∈ (0,∞).
For an upper bound on Pzc (|C| ≥ n) we bound

Pzc (|C| ≥ n) =
∞∑

k=n

Pzc (|C| = k) ≤
∞∑

k=n

1 − e−k/n

1 − e−1
Pzc (|C| = k)

≤ [1 − e−1
]−1

∞∑

k=1

[
1 − e−k/n

]
Pzc (|C| = k)

= [1 − e−1
]−1

M(pc,1/n), (A.26)

and hence Pzc (|C| ≥ n) ≤ C̃/
√

n for C̃ = [1 − e−1]−1C.
The lower bound is more involved. For every ε > 0 we obtain

Pzc (|C| ≥ n) ≥
∞∑

k=n

[
1 − e−εk/n

]
Pzc (|C| = k)

= M(pc, ε/n) −
n−1∑

k=1

[
1 − e−εk/n

]
Pzc (|C| = k).
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We exploit 1 − e−x ≤ x to bound further

n−1∑

k=1

[
1 − e−εk/n

]
Pzc (|C| = k) ≤ ε

n

n−1∑

k=1

kPzc (|C| = k).

Note

n−1∑

k=1

kPzc (|C| = k) =
n−1∑

k=1

k∑

l=1

Pzc (|C| = k) =
n−1∑

l=1

n−1∑

k=l

Pzc (|C| = k) ≤
n−1∑

l=1

Pzc (|C| ≥ l),

whence

Pzc (|C| ≥ n) ≥ M(pc, ε/n) − ε

n

n−1∑

k=1

Pzc (|C| ≥ k).

We apply (A.26) and compare with (A.25) to obtain

Pzc (|C| ≥ n) ≥ c
√

ε√
n

− ε

n

n−1∑

k=1

C

[1 − e−1]√k
︸ ︷︷ ︸

≤2C[1−e−1]−1√
n

. (A.27)

This proves that Pzc (|C| ≥ n) ≥ c̃/
√

n with c̃ = c
√

ε − 2εC[1 − e−1]−1, and c̃ > 0 as long as
ε is small enough. With a modification in (A.27), the argument can be extended to the case
δP �= 2, but we refrain from giving this argument.

Appendix B: Diagrammatic Bounds for the Ising Model

This appendix is devoted to the proof of Proposition 4.3 for the Ising model. We proceed by
considering the quantities π

(M)
� (M = 0,1,2, . . .) defined in [38], which give rise to ��

M
and

R�
M+1 by [38, (1.12) and (1.13)]:

δ0,x + ��
M
(x) =

M∑

N=0

(−1)Nπ
(N)

� (x), 0 ≤ ∣∣R�
M(x)

∣
∣≤ τ(z)

∑

u,v

π
(M)
� (u)D(v − u)G(v, x).

(B.1)
We first discuss a bound on π

(N)

� , and use this to prove Proposition 4.3.

Proposition B.1 (Diagrammatic bounds for the Ising model) Suppose that, for the Ising
model, f (z) ≤ K for some z ∈ (0, zc), K > 1. Then there exists a constant c̄K > 0, such
that

δ0,N ≤
∑

x

π
(N)

� (x) ≤
{

1 + c̄Kβ2 (N = 0),

(c̄Kβ)N (N ≥ 1),
(B.2)

and
∑

x

[1 − cos(k · x)]π(N)

� (x) ≤ Ĉλz (k)−1(c̄Kβ)N∨1, (B.3)

uniformly in �.
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This proposition is a variation of [38, Proposition 3.2]. However, it is important that
the bounds of the type

∑
x |x|2π(N)

� (x) in [38] have been replaced by bounds involving the
factor 1 − cos(k · x), as in (B.3). This replacement is a basic philosophy for this paper. The
following heuristic reasoning explains why the factor |x|2 is not sufficient in the case of
infinite variance spread-out models.

By (B.28) below, π(0)
z (x) ≤ Gz(x)3. Let us assume that Gz(x) ≈ Cλz(x), as suggested by

Theorem 1.1. For z = zc , and using that C1(x) ≈ const/|x|d−(α∧2), that would lead to

∑

x

|x|2π(0)
zc

(x) ≈
∑

x

|x|2 1

|x|3(d−(α∧2))
,

and this is finite if and only if d < 3(d − (α ∧2))−2. In particular, this suggests that for α <

2 and 2(α ∧ 2) < d < 1 + 3/2(α ∧ 2),
∑

x |x|2π(0)
zc

(x) = ∞ but
∑

x[1 − cos(k · x)]π(0)
zc

(x) <

∞. Thus, using
∑

x |x|2π(0)
zc

(x) < ∞ as a criterion for d > dc suggests a wrong value for the
critical dimension. Rather, it appears that we must assume

∑
x |x|α∧2π(0)

zc
(x) < ∞ instead.

We first show how Proposition B.1 implies Proposition 4.3, and afterwards discuss its
proof.

Proof of Proposition 4.3 subject to Proposition B.1 We proceed as in the proof of [14,
Proposition 5.2]. The bounds (4.21)–(4.22) follow immediately with cK = 2c̄K , where the
extra 1 in the (N = 0)-case is compensated by the substraction of δ0,x , and the factor 2
comes from summing the geometric series (where we required β small enough to ensure
c̄Kβ ≤ 1/2). For the bounds on the remainder term RM , we see by (B.1) that

∑

x

|R�
M(x)| ≤ Kπ̂

(M)
� (0)χ(z). (B.4)

However, by (B.2), (4.23) follows if z < zc and M = M(z) is so large that (cKβ)Mχ(z) ≤
cKβ . Finally, for (4.24), we use (B.58) below with j = 3 to see that

∑

x∈Zd

[1 − cos(k · x)]|R�
M(x)| ≤ 7K[1 − D̂(k)]π̂ (M)

� (0)χ(z) + 7K
(
π̂

(M)
� (0) − π̂

(M)
� (k)

)
χ(z)

+ 7Kπ̂
(M)
� (0)

(
Ĝz(0) − Ĝz(k)

)
. (B.5)

For the first term, we use (4.14) and (B.2) to bound

7K[1 − D̂(k)]π̂ (M)
� (0)χ(z) ≤ 14K(c̄Kβ)Mχ(z)Ĉλz (k)−1.

For the second term, we use (B.3) to see that π̂
(M)
� (0) − π̂

(M)
� (k) ≤ Ĉλz (k)−1(c̄Kβ)M∨2.

Finally, for the third term in (B.5), we use the upper bound on f3 and the uniform bound
Ĉλz (k) ≤ (1 − λz)

−1 = χ(z) to obtain

|Ĝz(0) − Ĝz(k)| = 1

2
|�kĜz(0)| ≤ 16KĈλz(k)−1

(
3 (1 − λz)

−2
)= 48KĈλz(k)−1χ(z)2.

(B.6)

Together with (B.2), this yields the desired bound. �

We now prove Proposition B.1 subject to the diagrammatic bounds in [38], which will
occupy the remainder of the paper. Our proof is an adaptation of the proof of [38, Proposition
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3.2], with a modified bootstrap hypothesis. In particular, the factor |x|2 at various places in
that proof is replaced by the factor 1 − cos(k · x) here. We fix z ∈ (0, zc) and throughout
the remainder of the section omit it from the notation (e.g., we write τ for τ(z)). Also we
fix some subset � containing the origin. We keep in mind that we are interested in the
thermodynamic limit � ↗ Z

d , and in fact our bounds hold uniformly in �. We elaborate on
this after Proposition B.2 below. All sums below are taken over Z

d , unless stated otherwise.
We define the quantity

G̃(x) := τ(D ∗ G)(x), (B.7)

and note the basic estimate

G(x) ≤ δ0,x + G̃(x) (B.8)

resulting from the random-current representation and the source switching lemma (cf. [38,
(4.2)]).

In line with (1.38), we write B = (G ∗ G)(0) =∑x G(x)2 for the bubble diagram, and
similarly B̃ = (G̃ ∗ G̃)(0) for the “non-vanishing bubble diagram”. For the latter we bound

B̃ = τ 2
∫

[−π,π)d

(
D̂(k)Ĝ(k)

)2 dk

(2π)d
≤ K4

∫

[−π,π)d

(
D̂(k)Ĉλz (k)

)2 dk

(2π)d

≤ 4K4
∫

[−π,π)d

D̂(k)2

[1 − D̂(k)]2

dk

(2π)d
≤ 4K4β (B.9)

using that τ = f1(z) ≤ K and f2(z) ≤ K in the first line, and (4.14) and Assumption 2.1 in
the second line. On the other hand, by (B.8),

B =
∑

x

G(x)2 = 1 +
∑

x �=0

G(x)2 ≤ 1 +
∑

x

G̃(x)2 = 1 + B̃ ≤ 1 + 4K4β. (B.10)

Furthermore, it is easy to see that, by the Cauchy-Schwarz inequality, “open bubbles” are
bounded by a “closed bubble”, i.e., for all x ∈ Z

d ,

(G ∗ G)(x) =
∑

v

G(v)G(x − v) ≤ B, (G̃ ∗ G̃)(x) ≤ B̃. (B.11)

Here is an outline of the proof. We bound certain diagrams to be defined below in terms
of B and B̃ . In turn, these diagrams bound the lace expansion coefficients π(j), [38]. Hence,
by exploiting (B.9) and (B.10), we prove a sufficient decay of the lace expansion coefficients
subject to β being sufficiently small.

We now define various quantities needed to describe the bounding diagrams. All notation
is chosen consistently with [38], which provides our basic estimates. In order to emphasize
the diagrammatic structure, we write G and G̃ with two arguments, with the understanding
that G(y,x) = G(x − y), and for G̃ appropriately.

Let

ψ(y, x) :=
∞∑

j=0

(G̃2)∗j (y, x) = δy,x +
∞∑

j=1

∑

u0,u1,...,uj ∈
{x}×(Zd )j−1×{y}

j∏

l=1

G̃(ul−1, ul)
2 (B.12)

denote a “chain of bubbles”, and

ψ̃(y, x) = ψ(y, x) − δy,x . (B.13)
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If β is so small that B̃ < 1/2 (which we shall assume from now on), then a basic calculation
shows that

ψ̃ := sup
y

∑

x

ψ̃(y, x) ≤ 2B̃ = O(β). (B.14)

Let

P ′(0)
u (y, x) := G(y,x)2G(y,u)G(u,x) = , (B.15)

P ′′(0)
u,v (y, x) := G(y,x)G(y,u)G(u,x)

∑

v′
G(y, v′)G(v′, x)ψ(v′, v) = .

(B.16)

In the last equalities of (B.15)–(B.16) we used the pictorial representation introduced in
Fig. 1. Recall that a line between two points, say y and x, represents the two-point function
G(y,x), and vertices in brackets are summed over. The quantities P ′(0) and P ′′(0) are the
leading terms in the quantities P ′ and P ′′, defined in (B.23) below.

We further define

P (1)(v1, v
′
1) := 2ψ̃(v1, v

′
1)G(v1, v

′
1), (B.17)

and, for j = 2,3, . . . ,

P (j)(v1, v
′
j ) :=

∑

v2,...,vj

v′
1,...,v′

j−1

G(v1, v2)G(v2, v
′
1)

(
j∏

i=1

ψ̃(v1, v
′
1)

)

×
(

j−1∏

i=2

G(v′
i−1, vi+1)G(vi+1, v

′
i )

)

G(vj , v
′
j−1). (B.18)

The first three elements of the sequence look diagrammatically like

P (1)(v1, v
′
1) = ,

P (2)(v1, v
′
2) = ,

P (3)(v1, v
′
3) = .

Recall that vertices in brackets are summed over.
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We now obtain quantities P ′ and P ′′ as variations on P . To this end, we define
P

′(j)
u (v1, v

′
j ) by replacing one of the 2j − 1 two-point functions, say G(z, z′), on the right-

hand side of (B.17)–(B.18) by the product of two two-point functions, G(z,u)G(u, z′), and
then summing over all 2j − 1 choices of this replacement. For example, we define

P ′(1)
u (v1, v

′
1) = 2ψ̃(v1, v

′
1)G(v1, u)G(u, v′

1) = , (B.19)

and

P ′(2)
u (v1, v

′
2) =

∑

v2,v′
1

( 2∏

i=1

ψ̃(vi, v
′
i )

)(
G(v1, u)G(u, v2)G(v2, v

′
1)G(v′

1, v
′
2)

+ G(v1, v2)G(v2, u)G(u, v′
1)G(v′

1, v
′
2)

+ G(v1, v2)G(v2, v
′
1)G(v′

1, u)G(u, v′
2)
)
. (B.20)

We define P
′′(j)
u,v (v1, v

′
j ) similarly as follows. First we take two two-point functions in

P (j)(v1, v
′
j ), one of which (say, G(y1, y

′
1) for some y1, y

′
1) is among the aforementioned

2j − 1 two-point functions, and the other (say, G̃(y2, y
′
2) for some y2, y

′
2) is among those of

which ψ(vi, v
′
i ) − δvi ,v

′
i

for i = 1, . . . , j are composed. The product G(y1, y
′
1)G̃(y2, y

′
2) is

then replaced by
(∑

v′
G(y1, v

′)G(v′, y ′
1)ψ(v′, v)

)(
G(y2, u)G̃(u, y ′

2) + G̃(y2, y
′
2)δu,y′

2

)

+G(y1, u)G(u,y ′
1)
∑

v′

(
G(y2, v

′)G̃(v′, y ′
2) + G̃(y2, y

′
2)δv′,y′

2

)
ψ(v′, v). (B.21)

In our pictorial representation,

is replaced by + .

Finally, we define P
′′(j)
u,v (v1, v

′
j ) by taking account of all possible combinations of G(y1, y

′
1)

and G̃(y2, y
′
2). For example, we define P ′′(1)

u,v (v1, v
′
1) as

P ′′(1)
u,v (v1, v

′
1) =

∑

u′,u′′,v′

(
2ψ(v1, u

′)G̃(u′, u′′)
(
G(u′, u)G̃(u,u′′) + G̃(u′, u′′)δu,u′′

)
ψ(u′′, v′

1)

× G(v1, v
′)G(v′, v′

1)ψ(v′, v) + (permutation of u and v′)
)

= + , (B.22)

where the permutation term corresponds to the second diagram.
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We let

P ′
u(y, x) =

∑

j≥0

P ′(j)
u (y, x) = ,

P ′′
u,v(y, x) =

∑

j≥0

P ′′(j)
u,v (y, x) = , (B.23)

where P ′(0)
u (y, x) and P ′′(0)

u,v (y, x) are the leading contributions to P ′
u(y, x) and P ′′

u,v(y, x),
respectively.

Finally, we define

Q′
u(y, x) =

∑

z

(
δy,z + G̃(y, z)

)
P ′

u(z, x) = , (B.24)

Q′′
u,v(y, x) =

∑

z

(
δy,z + G̃(y, z)

)
P ′′

u,v(z, x)

+
∑

v′,z

(
δy,v′ + G̃(y, v′)

)
G̃(v′, z)P ′

u(z, x)ψ(v′, v), (B.25)

that is, pictorially,

Q′′
u,v(y, x) = = + . (B.26)

Based on the lace expansion, Sakai proved the following diagrammatic bound:

Proposition B.2 (Diagrammatic bounds [38, Proposition 4.1]) For the ferromagnetic Ising
model,

π
(N)

� (x) ≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

P
′(0)

0 (0, x) (N = 0),

∑
b1,...,bj
v1,...,vj

P ′(0)
v1

(0, b1)
(∏N−1

i=1 τD(bi)Q
′′
vi ,vi+1

(bi, bi+1)
)

τD(bj )Q
′
vi ,vi+1

(bi, x)

(N ≥ 1),

(B.27)

where the sum is taken over vertices vi and (directed) bonds bi = (bi, bi), i = 1, . . . , j . We
denote D(bi) = D(bi − bi) and regard the empty product as 1 by convention. The bound
(B.27) holds uniformly in �.

It should be noted that Sakai [38] proved the bound (B.27) on a finite graph �, where
in particular all quantities on the right hand side are defined on �. By Griffith’s second
inequality [23], the two-point correlation function Gz is monotonically increasing in �, and
thus so are P ′, Q′ and Q′′. Hence, the right hand side in (B.27) is monotonically increasing
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in �, and we consider the thermodynamic limit � ↗ Z
d as a uniform upper bound on

π
(N)

� (x). However, it is not obvious how to obtain the thermodynamic limit on the left hand
side directly, since the quantities π

(N)

� (x) are not monotone in �.

Proof of (B.2). We first show that 1 ≤∑x π
(0)
� (x) ≤ 1+O(β2). By the definition of π

(0)
� (x)

and (B.15), δ0,x ≤ π
(0)
� (x) ≤ G(x)3. Whence

1 ≤
∑

x

π
(0)
� (x) ≤ 1 +

∑

x �=0

G(x)3 ≤ 1 +
(

sup
x �=0

G(x)
)∑

x �=0

G̃2(x). (B.28)

The term
∑

x �=0 G̃2(x) is bounded above by a non-vanishing bubble B̃ , yielding a factor
O(β) by (B.9). The term supx �=0 G(x) can be bounded as follows. We first apply (1.37), to
obtain

sup
x �=0

G(x) ≤ τ‖D‖∞ + ‖τD ∗ G̃‖∞. (B.29)

The first summand is bounded by Kβ , by our bound on f1 and (2.9). Furthermore,
‖τD ∗ G̃‖∞ ≤ 4K3β by a calculation similar to (B.9) and using 1 ≤ 2[1 − D̂(k)]−1. We
thus obtain the bound on

∑
x π

(0)
� (x).

We next consider the bound on
∑

x π
(N)

� (x) for N ≥ 1. Here is a diagrammatic represen-
tation of the bounds on

∑
x π

(N)

� (x) for N = 3:

where all vertices v1, v2, v3 and bonds b1, b2, b3 are summed over. Since the diagrammatic
bound (B.27) implies

∑

x

π
(N)

� (x) ≤
(
∑

v,x

P ′(0)
v (0, x)

)(

sup
y

∑

w,v,x

τD(w − y)Q′′
0,v(w,x)

)N−1

×
(

sup
y

∑

w,x

τD(w − y)Q′
0(w,x)

)

, (B.30)

it is sufficient to show that

(i)
∑

v,x P ′(0)
v (0, x) ≤ O(1),

(ii) supy

∑
w,x τD(w − y)Q′

0(w,x) ≤ O(β),
(iii) supy

∑
w,v,x τD(w − y)Q′′

0,v(w,x) ≤ O(β).

We will now prove these bounds one at a time.
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(i) We first show that
∑

v,x P ′(0)
v (0, x) is uniformly bounded. Indeed, by (B.11) and

(B.15),

∑

v,x

P ′(0)
v (0, x) =

∑

v,x

G(x)2G(v)G(v − x) ≤
(

sup
y

∑

v

G(v)G(v − y)

)
∑

x

G(x)2 ≤ B2.

(B.31)
(ii) We bound

∑

w,x

τD(w − y)Q′
0(w,x) =

∑

u,x

(
∑

w

τD(w − y)
(
δw,u + G̃(u − w)

)
)

P ′
0(u, x), (B.32)

cf. (B.24). The factor β comes from the nonzero line segment
∑

w τD(w − y)
(
δw,u +

G̃(u − w)
)
, as we have seen in the discussion around (B.29).

It remains to show that
∑

u,x P ′
0(u, x) =∑u,x

∑∞
j=0 P

′(j)

0 (u, x) is uniformly bounded.

Claim B.3 (Bound on P ′)

∑

u,x

P ′
0(u, x) ≤ O(1). (B.33)

Proof To this end, it suffices to show

∑

u,x

P
′(j)

0 (u, x) ≤ (2j − 1)O(β)j , (j ≥ 1), (B.34)

since the case j = 0 has been treated in (B.31). The bound (B.34) will be achieved by
decomposing the diagrams describing P ′(j) into bubble diagrams, and we demonstrate this
for the case j = 4 explicitly.

Recall from (B.18) that

P (4)(u, x) = , (B.35)

and we obtain P ′(4)(u, x) from P (4)(u, x) by replacing one of the 7(= 2j − 1) factors of the
form G(u,v) by

∑
w G(u,w)G(w,v). In terms of diagrams, there is an extra vertex added

to either of the 7 straight lines in (B.35). This explains the factor (2j − 1) in (B.34).
In case this extra vertex falls to one of the horizontal lines, say the lower one, we bound

as follows. We first extend our diagrammatical notation in the following way: we mark
vertices that are summed over by a full dot, and fixed vertices (possibly with a supremum)
are marked with an open dot, i.e.,

= .
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By multiple use of translation invariance of the model, we obtain

=
∑

x1,x2,x3,x4,
x5,x6,x7,x8

=
∑

x1,x2,x3,x4,
x5,x6,x7,x8

G(x1, x2)G(x2, x3)G(x3, y)G(y, x4)G(x4, x5)G(x5, x6)

× G(x6, x7)G(x7, x8)ψ̃(x1, x3)ψ̃(x2, x5)ψ̃(x4, x7)ψ̃(x6, x8)

=
∑

x1,x2,y,x4,
x5,x6,x7,x8

· · · (expression as above with x3 fixed)

≤
(
∑

x1

ψ̃(x1, x3)

)(

sup
x̄1

∑

x2

G(x̄1, x2)G(x2, x3)

)

×
(

sup
x̄2

∑

x5

ψ̃(x̄2, x5)

)(

sup
x̄4

∑

y

G(x3, y)G(y, x̄4)

)

×
(

sup
x5

∑

x4,x6,x7,x8

G(x4, x5)G(x5, x6)G(x6, x7)G(x7, x8)

× ψ̃(x4, x7)ψ̃(x6, x8)

)

= (B.36)

For the remaining component on the right hand side, we again use translation invariance and
bound further as

= ≤ , = ≤ ≤ ψ̃B.

(B.37)

Hence,

≤ B4ψ̃4, (B.38)

and this can be made smaller than O(β)4, cf. (B.10) and (B.14).



Mean-Field Behavior for Long- and Finite Range Ising Model 1041

However, if the extra vertex falls to one of the vertical lines, then the details are slightly
different:

= ≤

≤ B2ψ̃2 . (B.39)

The remaining diagram in (B.39) is bounded by multiple use of translation invariance, as we
will show now:

= sup
w

∑

v,x,y,z

= sup
w

∑

x,y,z,v

≤
⎛

⎝sup
w,y

∑

v

⎞

⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∑

x,y,z

⎞

⎟
⎟
⎟
⎟
⎟
⎠

≤ B2 · ψ̃2. (B.40)

This proves (B.34) for j = 4. The cases j /∈ {0,4} are omitted, since the same methods
will lead to the desired bounds. �

(iii) We now turn to the bounds involving Q′′, i.e., we prove

sup
y

∑

w,v,x

τD(w − y)Q′′
0,v(w,x) ≤ O(β). (B.41)

Recalling the definition of Q′′ in (B.25), (B.41) is established once we have shown

sup
y

∑

w,v,v′,z,x
τD(w − y)

(
δw,v′ + G̃(w,v′)

)
G̃(v′, z)P ′

0(z, x)ψ(v′, v) ≤ O(β) (B.42)

and

sup
y

∑

w,v,z,x

τD(w − y)
(
δw,z + G̃(w, z)

)
P ′′

0,v(z, x) ≤ O(β). (B.43)

A decomposition of the left hand side of (B.42) yields as an upper bound

⎛

⎝sup
z

∑

w,v′
τD(w − y)

(
δw,v′ + G̃(w,v′)

)
G̃(v′, z)

⎞

⎠

(

sup
v′

∑

v

ψ(v′, v)

)(
∑

z,x

P ′
0(z, x)

)

,

(B.44)
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where the first term is bounded by O(β), the second term is bounded by 1 + ψ̃ = O(1) and
the final term is bounded by O(1), by Claim B.3.

It thus remains to show the following claim:

Claim B.4 (Bound on P ′′) The estimate (B.43) is true.

Proof In our pictorial representation, (B.43) can be expressed like

≤ O(β). (B.45)

Similarly to the proof of (B.33), it is sufficient to show

sup
y

∑

w,v,z,x

τD(w − y)
(
δw,z + G̃(w, z)

)
P

′′(j)

0,v (z, x) ≤ O(β)j∨1 (B.46)

for j = 0,1,2, . . . . We explicitly perform this bound for j = 0,1, and omit the details for
j ≥ 2.

For j = 0, we bound

≤ , (B.47)

i.e.,

sup
y

∑

w,v,z,x

τD(w − y)
(
δw,z + G̃(w, z)

)
P

′′(0)

0,v (z, x) ≤ O(β)B2(1 + ψ̃), (B.48)

where the O(β)-factor arises from the open bubble involving the extra vertex, and the chain
of bubbles hanging off from the top produces a factor 1 + ψ̃ .

For j = 1 we proceed similarly by recalling the definition of P ′′(1) in (B.22) and bound

sup
y

∑

w,v,z,x

τD(w − y)
(
δw,z + G̃(w, z)

)
P

′′(1)

0,v (z, x)

= +

≤ + ,

where the numbers indicate the order in the decomposition. A calculation similar to (B.40)
shows that ≤ = B(1 + ψ̃) (if the initial two-point
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function is dashed, then we obtain B̃(1 + ψ̃) as an upper bound). Hence (B.46) for j = 1
follows. The terms for j ≥ 2 are bounded in the same fashion. �

This completes the proof of (B.2). �

Proof of (B.3). We now turn towards the proof of the bound (B.3) in Proposition B.1, which
we restate here for convenience:

∑

x

[1 − cos(k · x)]π(N)

� (x) ≤ Ĉλz (k)−1(c̄Kβ)N∨1.

We start by considering the case N = 0. By (B.27) and (B.15),

∑

x

[1 − cos(k · x)]π(0)
� (x) ≤

∑

x �=0

[1 − cos(k · x)]G3(x). (B.49)

This is bounded above by

(

sup
x

[1 − cos(k · x)]G(x)

)
⎛

⎝
∑

x �=0

G2(x)

⎞

⎠≤
(

sup
x

[1 − cos(k · x)]G(x)

)

B̃. (B.50)
�

Then the desired bound follows from (B.10) and the following lemma:

Lemma B.5 If for some model we have that f (z) ≤ K for some z ∈ (0, zc), K > 1, then

sup
x

[1 − cos(k · x)]G(x) ≤ 300KĈλz(k)−1(Cλz ∗ Cλz)(0). (B.51)

Casually speaking, the multiplication by [1 − cos(k · x)] yields a factor Ĉλz (k)−1 at the
expense of adding an extra vertex in the bounding (C-)diagram. In fact, we need only that
Ĉλz (k)−1O(1) is an upper bound. Although the lemma is applied to the Ising model here, it
is valid for any model as long as f3(z) ≤ K .

Proof of Lemma B.5 Since

sup
x

[1 − cos(k · x)]G(x) = sup
x

∫

[−π,π)d
e−il·x

(

Ĝz(l) − 1

2

(
Ĝz(l − k) + Ĝz(l + k)

)) d l

(2π)d

≤
∫

[−π,π)d

∣
∣
∣
∣Ĝz(l) − 1

2

(
Ĝz(l − k) + Ĝz(l + k)

)∣∣
∣
∣

d l

(2π)d

=
∫

[−π,π)d

∣
∣
∣
∣
1

2
�kĜ(l)

∣
∣
∣
∣

d l

(2π)d
, (B.52)

our bound f3 ≤ K implies that

sup
x

[1 − cos(k · x)]G(x)

≤ 100KĈλz(k)−1
∫

[−π,π)d

(
Ĉλz (l − k)Ĉλz (l + k) + Ĉλz (l − k)Ĉλz (l)

+ Ĉλz (l)Ĉλz (l + k)
)

× d l

(2π)d
. (B.53)
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Denoting Cλz,k(x) := cos(k · x)Cλz(x), we observe that |Cλz,k(x)| ≤ Cλz(x) and

Ĉλz,k(l) = 1

2

(
Ĉλz (l − k) + Ĉλz (l + k)

)
. (B.54)

Hence,

∫

[−π,π)d

(
Ĉλz (l − k)Ĉλz (l) + Ĉλz (l)Ĉλz (l + k)

) d l

(2π)d

= 2
∫

[−π,π)d
Ĉλz (l)Ĉλz,k(l)

d l

(2π)d
= 2(Cλz ∗ Cλz,k)(0) ≤ 2(Cλz ∗ Cλz)(0). (B.55)

Furthermore,

Ĉλz (l − k)Ĉλz (l + k) = 1

4

[
Ĉλz (l − k) + Ĉλz (l + k)

]2 − 1

4

[
Ĉλz (l − k) − Ĉλz (l + k)

]2

≤ 1

4

[
Ĉλz (l − k) + Ĉλz (l + k)

]2 = Ĉλz,k(l)
2, (B.56)

so that
∫

[−π,π)d
Ĉλz (l − k)Ĉλz (l + k)

d l

(2π)d
≤
∫

[−π,π)d
Ĉλz,k(l)

2 d l

(2π)d

= (Cλz,k ∗ Cλz,k)(0) ≤ (Cλz ∗ Cλz)(0). (B.57)

The combination of the above inequalities implies the claim. �

For N > 0, our strategy is to break the term 1 − cos(k · x) into parts using

1 − cos t ≤ (2N + 3)

N∑

n=0

[1 − cos tn] for t =
N∑

n=0

tn (B.58)

from [14, (4.51)], which is reminiscent of the decomposition of squares in [38, (5.39)].
In the case N = 1 this allows for the following calculation. Recall from Proposition B.2

the upper bound on π
(1)
� (x). An application of (B.58) for N = 1 yields

∑

x

[1 − cos(k · x)]π(1)
� (x) ≤

∑

x

[1 − cos(k · x)]

≤ 5

⎛

⎝ +
⎞

⎠ . (B.59)

In (B.59) we extend our pictorial representation to incorporate factors of the form
[1 − cos(k · x)]. Here a double line between two points, say y1 and y2, represents a fac-
tor [1 − cos(k · (y1 − y2))]G(y1 − y2), while, as before, a normal line represents a factor
G(y1 − y2). For the second summand in (B.59) , there is not a single two-point function
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between the two endpoints of the double line. Here our understanding is that

=
∑

x,y

[1 − cos(k · (x − y))] . (B.60)

In other words, the double line between the two points y and x gives rise to the factor
[1 − cos(k · (x − y))].

The first term in (B.59) is estimated like

≤ , (B.61)

which yields factors BĈλz(k)−1 arising from (i) by Lemma B.5, B from (ii), B̃ from (iii),
and O(1) from (iv) by Claim B.3. Thus,

≤ Ĉλz (k)−1O(β). (B.62)

For the second term in (B.59) we bound

≤ ≤ B2 · . (B.63)

The remaining factor supy

∑
w,x[1 − cos(k · x)]τD(w − y)Q′

0(w,x) is bounded by the fol-
lowing claim:

Claim B.6 Under the assumptions of Proposition B.1,

= sup
y

∑

w,x

[1 − cos(k · x)]τD(w − y)Q′
0(w,x) ≤ Ĉλz (k)−1O(β). (B.64)

Proof By (B.24),

sup
y

∑

w,x

[1 − cos(k · x)]τD(w − y)Q′
0(w,x)

= sup
y

∑

w,x,z

[1 − cos(k · x)]τD(w − y)

∞∑

j=0

(
δw,z + G̃z(w, z)

)
P

′(j)

0 (z, x). (B.65)
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In diagrams, that is

≤

+ +
⎛

⎜
⎝ + +

⎞

⎟
⎠+ · · · ,

(B.66)

where contributions according to j = 0,1,2 are shown explicitly and higher order contribu-
tions are indicated by dots. When we have a series of connected double lines (like in the first
term in parenthesis), this indicates a factor [1 − cos(k · (y1 − y2))], where y1 is the starting
point of the lines, and y2 is the endpoint. We then use (B.58) to decompose the series of
double lines. For example, for the first term in parenthesis we obtain

≤ 7

⎛

⎜
⎝ + +

⎞

⎟
⎠ ,

and a similar bound holds for the second term. With Lemma B.5 it follows that the contri-
bution from j = 2 in (B.66) (the term in parenthesis) is bounded by O(β)3Ĉλz (k)−1. The
method can be generalized to j ≥ 3 showing

sup
y

∑

w,x,z

[1−cos(k ·x)]τD(w−y)
(
δw,z + G̃z(w, z)

)
P

′(j)

0 (z, x) ≤ O(j 2)O(β)j+1Ĉλz (k)−1.

(B.67)

By (B.65), this is sufficient for (B.64). �

For N > 1, we proceed by distributing the spatial displacement 1 − cos(k · x) along the
“bottom line” of the diagram. E.g., for N = 3, this yields

∑

x

[1 − cos(k · x)]π(3)
� (x) ≤

∑

x

[1 − cos(k · x)]

= . (B.68)

By (B.58), the right hand side of (B.68) is bounded above by 9 times
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+

+ + .

(B.69)

In the following we refer by (I), (II), (III) and (IV) to the four terms in (B.69), respectively.
In fact, all 4 terms are bounded by Ĉλz (k)−1O(β)N , as we will show now.

The bound on (IV) is an immediate consequence of (i) and (iii) below (B.30), and Claim
B.6. For the bound on (I), we use translation invariance to obtain the factorization

. (B.70)

The terms indicated by
←−
Q ′′ in the diagram are obtained from Q′′ by shifting the two-point

functions hanging off the left side of the Q′′-box to the next factor on the left hand side, i.e.
(compare with (B.26))

←−
Q ′′

0,v(y, x) =
∑

z,z′
P ′′

0,v(y, z)τD(z′ − z)
(
δz′,x + G̃(z′, x)

)

+
∑

z,z′,w
G̃(y,w)P ′

0(w, z)ψ(y, v)τD(z′ − z)
(
δz′,x + G̃(z′, x)

)

= . (B.71)

The first factor (I-1) is bounded by Ĉλz (k)−1O(β) as in (B.61). The middle terms (I-2) and

(I-3) are equal to supx

∑
v,y

←−
Q ′′

0,v(y, x). Performing calculations as in (B.41)–(B.43), it can
be shown that actually

sup
x

∑

v,y

←−
Q ′′

0,v(y, x) ≤ O(β), (B.72)

and this term occurs N − 1 times in (I). The last term (I-4) is bounded by O(1), cf. Claim
B.3. The bounds on (I-1)–(I-4) show that (I) ≤ Ĉλz (k)−1O(β)N .

The terms (II) and (III) are bounded in a similar fashion by product structures:

(II) ≤ , (B.73)
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(III) ≤ . (B.74)

The term
∑

v,x P ′(0)
v (0, x) on the left hand side is bounded by O(1) by (B.31); the term∑

u,x P ′
0(u, x) (the gray triangle on the right) is bounded by O(1) by Claim B.3. The terms

involving Q′′ and
←−
Q ′′ are bounded by O(β) by (B.41) and (B.72), and together there are

N − 2 of these terms.
It remains to show that

≤ Ĉλz (k)−1O(β)2, ≤ Ĉλz (k)−1O(β)2. (B.75)

Here the dashed arrow indicates that the supremum is taken over the difference between
the two vertices at top and bottom of the arrow; see also [38, (5.46)]. In order to achieve
the bounds in (B.75) we proceed as follows. First we use (B.58) to distribute the spatial dis-
placement of 1− cos(k ·x) to single two-point functions G or G̃. Secondly, from each of the
emerging summands, we eliminate the term of the form supx,y[1 − cos(k · (y − x))]G(x,y)

(where x and y are chosen appropriately), and bound it by Ĉλz (k)−1O(1), cf. Lemma B.5.
Finally, we bound the remaining quantity in the same fashion as in (B.41)–(B.43). Note that
the removed bond is compensated by an extra bond hanging off the lower / upper right cor-
ner. The factor β2 arises from the bubbles involving the two non-zero two-point functions
hanging off the box. This finally leads to the required bound

(II) + (III) ≤ Ĉλz (k)−1O(β)N, (B.76)

and thus proves (B.3). This completes the proof of Proposition B.1.
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