
 

Instructions for use

Title Senile reinforced random walks

Author(s) Holmes, M.; Sakai, A.

Citation Stochastic Processes and their Applications, 117(10), 1519-1539
https://doi.org/10.1016/j.spa.2007.02.003

Issue Date 2007

Doc URL http://hdl.handle.net/2115/44915

Type article (author version)

File Information senileRW.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp


Senile reinforced random walks

M. Holmes∗ and A. Sakai†

August 18, 2006‡

Abstract

We consider random walks with transition probabilities depending on the number of
consecutive traversals n of the edge most recently traversed. Such walks may get stuck
on a single edge, or have every vertex recurrent or every vertex transient, depending on
the reinforcement function f that characterises the model. We prove recurrence/transience
results when the walk does not get stuck on a single edge. We also show that the diffusion
constant need not be monotone in the reinforcement.
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1 Introduction

Random walks with edge reinforcement were introduced by Coppersmith and Diaconis [3]. Many
problems that are simple to state remain unsolved for edge-reinforced random walks on Zd,
however there are also many interesting existing results in the general theory of reinforced
random walks. There are strong results for example in 1 dimension [4], for linear reinforcement
on finite graphs [11] and for once-reinforcement on trees [5]. In the case of linear reinforcement
there is also an interesting connection with random walk in a random environment (see for
example [16]). The most recent survey that we know of is [17].

A nearest-neighbour senile reinforced random walk on Zd, {Sn}n≥0 begins at the origin and
initially steps to one of the 2d nearest-neighbours with equal probability. Subsequent steps
are defined in terms of a function f : N 7→ [−1,∞) such that if the current undirected edge
{Sn−1, Sn} has been traversed m consecutive times in the immediate past, then the probability

of traversing that edge in the next step is 1+f(m)
2d+f(m)

with the rest of the possible 2d−1 choices being
equally likely. The reinforcement of the current edge continues until a new edge is traversed,
at which point the reinforcement of the previous edge is forgotten (i.e. the weight of that edge
returns to its initial value). The special case f ≡ C, which we might call once-reinforced senile
random walk, or memory-1 reinforced random walk, is among the class of walks considered by
Gillis [7]. In [7], the natural recurrence and transience results were obtained for d = 1 and for
d an even integer by generating function analysis. The corresponding results for more general
memory-1 models in all dimensions have since been obtained (see for example [2] and references
therein). Further extensions to models with memory-m have also been studied extensively in the
literature (see for example [1, 8]), particularly in 1 dimension. A crucial ingredient in much of the
literature is the fact that these models can be described in terms of finite-state Markov chains.
For example, for memory-1 models the sequence of increments of the walk is a Markov chain
on the space of allowable steps. This is not true for senile random walks in general, although
it is implicit in our analysis and explicit in [9] that the senile random walk observed at certain
stopping times does have this property.

At the completion of our work we were made aware of two papers [10, 15] in which a different
model with a similar flavour was studied. Their model has the property that the walk prefers (as
defined by the reinforcement function) to continue in the same direction, rather than traverse the
same edge, and as such we might call their model senile persistent random walk. Our methods
are somewhat different to those used in [10, 15], and are much more complicated in the case
of the senile persistent random walk. On the other hand, due to the importance of the parity
(even/odd) of the number of times an edge is traversed by the senile reinforced random walk, the
methods used in [10, 15] are not immediately applicable to our model. It should be noted that
both the recurrence/transience criteria and the appropriate scaling limits of these two models
are not the same in general.

Let S be a finite subset of Zd such that o /∈ S, {y ∈ Zd : |y| = 1} ⊆ S and x ∈ S ⇒ −x ∈ S.
We say that there is an edge between x ∈ Zd and y ∈ Zd and write x ∼ y if x − y ∈ S.
Formally, a senile random walk (SeRWf ) is a sequence {Sn}n≥0 of Zd-valued random variables
on a probability space (Ω,F ,Pf ) (with corresponding filtration {Fn = σ(S0, . . . , Sn)}n≥0) defined
by:

• The walk begins at the origin of Zd, i.e. S0 = o, Pf -almost surely,

• Pf (S1 = x) = D(x), where D(x) = 1
|S|1{x∈S}.

• For n ∈ N, en = {Sn−1, Sn} is a random undirected edge (Fn-measurable) and

mn = max{k ≥ 1 : en−l+1 = en for all 1 ≤ l ≤ k} (1.1)
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is an N-valued (Fn-measurable) random variable.

• For n ∈ N and x ∈ S,

Pf (Sn+1 = Sn + x|Fn) =





1 + f(mn)

|S|+ f(mn)
, if {Sn, Sn + x} = en,

1

|S|+ f(mn)
, if {Sn, Sn + x} 6= en.

(1.2)

Examples of D satisfying the above definition include the usual nearest-neighbour model, where
S is the set of unit vectors in Zd and the spread-out model where S is the closed ball in Zd

of radius L for some L ≥ 1. Many of our results remain valid for more general classes of D,
however we at least require that the distribution of the number of times in succession that the
walk traverses the first edge traversed is the same for each edge incident to the origin. This is
ensured by the uniformity and symmetry conditions. The additional assumptions on S enable
us to avoid reducible cases such as where some vertices or edges of Zd may not be reachable by
the walk. For notational convenience we often write P for Pf when there is no ambiguity.

If f ≡ 0 then the model is nothing but random walk on Zd with transition kernel given by
D. If in addition S is the set of unit vectors in Zd we arrive at nearest-neighbour simple random
walk.

Let Nx denote the number of times the walk Sn visits x. If P(Nx = ∞) = 1 for all x we say
that the walk is recurrent(I). If P(Nx = ∞) = 0 for all x we say that the walk is transient(I).
If E[Nx] = ∞ for every x then we say that the walk is recurrent(II), and if E[Nx] < ∞ for
every x then we say that the walk is transient(II). For simple random walk (equivalently senile
random walk with f ≡ 0) the two characterisations of recurrence/transience are equivalent and
it is standard that simple random walk is recurrent for d ≤ 2 and transient otherwise. For senile
reinforced random walks the two notions of recurrence need not be the same.

Let τ = sup{n ≥ 1 : Sm = o or S1 ∀ m ≤ n} denote the (random) number of times that
the walk traverses the first edge before leaving that edge for the first time. Note that τ is not a
stopping time (however τ + 1 = inf{n ≥ 2 : Sn 6= Sn−2} is a stopping time). Intuitively if the
overall effect of the function f is one of positive reinforcement but such that the probability it
gets stuck on the first edge it traverses is 0, then the walk should in some sense be more recurrent
than simple random walk. Similar intuition suggests that if the overall effect of the function f
is one of negative reinforcement, the senile random walk should in some sense be more transient
than simple random walk.

By definition of τ we have for all n ≥ 1,

P(τ = n) =
n−1∏

l=1

1 + f(l)

|S|+ f(l)

|S| − 1

|S|+ f(n)
, P(τ ≥ n) =

n−1∏

l=1

1 + f(l)

|S|+ f(l)
, (1.3)

where an empty product is defined to be 1. Moreover the probability that the senile random
walk gets stuck on the first edge it traverses without ever traversing another edge is

P(τ = ∞) =
∞∏

l=1

1 + f(l)

|S|+ f(l)
. (1.4)

When f(l) = −1 for some l, the walk cannot traverse the same edge more than l times in
succession (so does not get stuck), and the definition of the function on integer values greater
than l is irrelevant. If f(1) = −1 then the walk never traverses the same edge on two consecutive
steps, a model that is sometimes called memory-2 self-avoiding walk. In particular for the
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nearest-neighbour model when d = 1, there are only two possible paths for the walk, and the
path is determined by the first step.

Obviously if f ≥ g then Pf (τ ≥ n) ≥ Pg(τ ≥ n), and similarly the probability of being stuck
on an edge is monotone in the reinforcement function f .

2 Results

In this section we state the main results of this paper and briefly discuss some interesting open
problems. As a first step towards recurrence/transience type results, the following proposition
immediately implies that the senile random walk visits either 0,2, or all vertices infinitely often.

Proposition 2.1. Let Ai be the event that the senile random walk traverses exactly i edges
infinitely often and let AZd be the event that every edge in the edge set of Zd generated by S
is traversed infinitely often. Then Pf (A0) + Pf (A1) + Pf (AZd) = 1 and each is a 0-1 event.
Furthermore, Pf (A1) = 1 if and only if (1 + f(l))−1 is summable.

The proof of Proposition 2.1 is easily adapted to show that for any edge-reinforced random
walk (or any senile random walk) on Zd such that the weight attached to any edge is bounded i.e.
supm f(m) < ∞, one must have that every site is recurrent almost surely or no site is recurrent
almost surely. The last statement of Proposition 2.1 is consistent with the results of [12, 13, 18]
for the edge reinforced random walk.

Recall that SeRWf denotes senile random walk with reinforcement function f and transition
kernel uniformly distributed over S. In particular SeRW0 denotes ordinary random walk with
this transition kernel. The following theorem, is one of the two main results of this paper.

Theorem 2.2. For f satisfying Pf (τ = ∞) = 0, but excluding the degenerate case where |S| = 2
and f(1) = −1, we have the following:

(1) SeRWf is recurrent(I)/transient(I) if and only if SeRW0 is recurrent(I)/transient(I).

(2) When Ef [τ ] < ∞, SeRWf is recurrent(II)/transient(II) if and only if simple random walk
is recurrent(II)/ transient(II).

(3) When Ef [τ ] = ∞, SeRWf is recurrent(II).

Our proof of Theorem 2.2 is via a time change of the process and ultimately by comparison
of the SeRWf and simple random walk Green’s functions. We will complete the proof in the
beginning of Section 4.

The following Corollary is a simple consequence of Theorem 2.2 applied to senile linearly
reinforced random walk.

Corollary 2.3. The senile random walk with linear reinforcement of the form f(m) = Cm is
recurrent(I),(II) when d = 1, 2 and transient(I) when d > 2. It is transient(II) for d > 2 if and
only if C < |S| − 1.

Definition 2.4. The diffusion constant v = vf ≥ 0 is defined as

v = lim
n→∞

1

n
E[|Sn|2] = lim

n→∞
1

n

∑

x∈Zd

|x|2P(Sn = x), (2.1)

whenever this limit exists.
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Note that when f ≡ 0 (simple random walk), Sn is a sum of independent random variables
with mean squared displacement σ2 =

∑
x |x|2D(x), and thus v0 = σ2 (=1 for the nearest-

neighbour model).
The second main result of the paper is the following Theorem.

Theorem 2.5. Suppose that there exists ε > 0 such that E[τ 1+ε] < ∞. Then the limit (2.1)
exists, and is given by

v =
P(τ odd)

1− 2
|S|P(τ odd)

σ2

E[τ ]
. (2.2)

In the degenerate case where |S| = 2 and f(1) = −1 we have |Sn|2 = σ2n2, Pf -almost surely,
and (2.2) should be interpreted as ∞ = 1/0. It is easy to show that for nearest-neighbour models
and for any fixed reinforcement function f , if there exists some d such that E[τ 1+ε] < ∞ for
some ε > 0, then v = v(d) → 1 as d → ∞. This holds for example when f(m) = Cm for any
fixed C > 0.

Our proof of Theorem 2.5 is based on the formula for the Green’s function, and a standard
Tauberian theorem, whose application requires the (1 + ε)th moment of τ to be finite. We
expect that (2.2) holds for all f by a time-change argument of similar flavour to what appears
in Section 3.3. When E[τ ] = ∞, the right-hand side of (2.2) is zero, which suggests that the
walk is subdiffusive. When P(τ = ∞) > 0, E[|Sn|2] is bounded uniformly in n.

The following corollary follows easily from Theorem 2.5 and implies that the diffusion con-
stant is not monotone in the reinforcement function f .

Corollary 2.6. For f for which there exists ε > 0 such that Ef [τ
1+ε] < ∞, the diffusion constant

is a decreasing function of x = f(j) for each odd j. However for each even j there exist f, g with
f(m) = g(m) for m 6= j and f(j) < g(j) but vg > vf .

Indeed for each even j there are examples where f is strictly positive and increasing yet an
increase in f(j) results in a decrease of the relevant diffusion constant.

Interestingly, when f(l) = l, special hypergeometric functions become relevant and various
well known properties of these functions enable a proof of the following proposition.

Proposition 2.7. The diffusion constant v of the senile random walk with reinforcement f(l) = l
satisfies 0 < v < σ2 when |S| > 2. For the 1-dimensional nearest-neighbour model,

lim
n→∞

log n

n
E[|Sn|2] =

1− log 2

2 log 2− 1
. (2.3)

We expect that (2.3) holds with a different constant whenever f(l) = (|S| − 1)l, and that
some other scaling is appropriate when the reinforcement becomes stronger, depending on which
moments of τ are finite. Note that when f(l) = (|S| − 1)l, since P(τ = n) = O(n−2) (see (3.10)
below), it is easy to show that E[τ(log(τ + 1))−2] < ∞ but E[τ(log(τ + 1))−1] = ∞.

3 Proofs of qualitative results

In this section we prove Proposition 2.1 which in particular shows that when P(τ = ∞) = 0,
SeRW is almost surely recurrent(I) or almost surely transient(I). Two further lemmas, in-
troduced in this section will be used in the proof of Theorem 2.2. Lemma 3.1 shows that
recurrence(I)/transience(I) and recurrence(II)/transience(II) are equivalent when E[τ ] < ∞.
Lemma 3.2 shows that provided P(τ = ∞) = 0, the quantity E[τ ] is irrelevant in determining
recurrence(I)/transience(I) of a senile random walk.
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Lemma 3.1. If E[τ ] < ∞ then P(No = ∞) = 1 if and only if E[No] = ∞.

Lemma 3.2. For every f : N 7→ [−1,∞) such that Pf (τ = ∞) = 0, there exists g : N 7→ [−1,∞)
satisfying Eg[τ ] < ∞ such that SeRWf is recurrent(I)/transient(I) if and only if SeRWg is
recurrent(I)/transient(I).

3.1 Proof of Proposition 2.1

The number of edges that the walk leaves before getting stuck is Geometric with parameter
P(τ = ∞), and thus P(A1) ∈ {0, 1} and is equal to 1 if and only if P(τ = ∞) > 0.

If |S| = 2 and f(1) = −1 then trivially P(A0) = 1.
Therefore we may assume that P(τ < ∞) = 1 and |S|+ f(1) > 1. Suppose that a fixed edge

{y, y′} ∈ Zd is traversed infinitely often (for which we write {y, y′} i.o.) and fix {x, x′} ∈ Zd,
x 6= y, y′. Since S contains the unit vectors, there is a finite set of edges connecting x and
y. Since the walk does not get stuck on any edge P-almost surely, it leaves the edge {y, y′}
infinitely often and returns infinitely often, P-almost surely. In particular, there are infinitely
many times (not necessarily every time, e.g. consider the one dimensional nearest-neighbour
case) at which the walk leaves {y, y′} from (without loss of generality) y with probability at
least q > 0 (depending on |x−y|, |S|, f(1)) of traversing the edge {x, x′} before returning. Note
that in the nearest-neighbour case in 1 dimension this does hold for exactly one of y or y′ (the
one nearest x) using the fact that f(1) > −1. Each time the walk leaves the edge {y, y′} at y,
the event that the walk traverses {x, x′} before the next traversal of {y, y′} is independent of
previous departures from {y, y′} at y. Thus, P-almost surely, {x, x′} is traversed infinitely often
if {y, y′} is. Since there are countably many edges we have that

P(AZd |{y, y′} i.o.) = 1, (3.1)

whenever P({y, y′} i.o.) > 0.
Now the number of times that the walk leaves the first edge traversed is Geometric with

parameter p ∈ [0, 1], and therefore P({o, S1} i.o.) ∈ {0, 1}. If P({o, S1} i.o.) = 1 then by (3.1)
we must have P(AZd) = 1. Similarly if P({o, S1} i.o.) = 0 then P(AZd) = 0 and (3.1) implies
that P({y, y′} i.o.) = 0 for each {y, y′} and therefore that P(A0) = 1.

For the last claim of the Proposition, if any f(l) = −1 then P(A1) = 0. Otherwise we may
assume that f > −1. The product (1.4) converges to a non-zero constant if and only if

∞∑

l=1

log

( |S|+ f(l)

1 + f(l)

)
< ∞. (3.2)

Now

|S| − 1

|S|+ f(l)
≤ log

( |S|+ f(l)

1 + f(l)

)
≤ |S| − 1

1 + f(l)
. (3.3)

Since f > −1, the lower bound is summable if and only if the upper bound is summable, so that
(3.2) is finite if and only if 1/(1 + f(l)) is summable.

3.2 Proof of Lemma 3.1

Fix f such that E[τ ] < ∞ (whence P(τ < ∞) = 1) and recall that No is the number of times
that the walk visits the origin. From Proposition 2.1 we have that P(No = ∞) ∈ {0, 1}.
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If P(No = ∞) = 1 then E[No] = ∞ holds trivially. Now suppose that E[No] = ∞, and let
T1 = inf{n > 0 : Sn 6= o, Sn−1 6= o} denote the first time that the walk traverses an edge not
incident to the origin. Let τi be the random number of consecutive traversals of the ith edge
traversed. Then the τi are independent, each with the same distribution as τ . Since

T1 − 1 ≡
∞∑

n=1

n∑
i=1

τi

n−1∏
j=1

1{τj even}1{τn odd} ≤ τ1 +
∞∑

n=2

n∑
i=1

τi

n−1∏
j=1
(j 6=i)

1{τj even}, (3.4)

we have

E[T1]− 1 ≤ E[τ ] +
∞∑

n=2

n∑
i=1

E[τi]
n−1∏
j=1
(j 6=i)

P(τj even) = E[τ ] + E[τ ]
∞∑

n=2

nP(τ even)n−2, (3.5)

which is finite since E[τ ] < ∞ and f(1) < ∞ (so that P(τ even) < 1). In particular T1 is almost
surely finite.

Let σ0 = 0, and σ1 = inf{n > T1 : Sn = o} denote the first time after T1 that the walk
returns to the origin. We then define for i ≥ 2,

Ti = inf{n > σi−1 : Sn 6= o, Sn−1 6= o}, σi = inf{n > Ti : Sn = o}. (3.6)

As explained above, T1 is almost surely finite. This is also true of Ti − σi−1, conditionally on
{σi−1 < ∞}. In the degenerate case f(1) = −1 and |S| = 2 the claim of the Lemma holds
trivially since N0 = 1, Pf -almost surely. Otherwise P(σi < ∞) > 0 for every i, and an easy
exercise in conditioning shows that P(σi < ∞) = P(σ1 − T1 < ∞)i.

With probability one,

No ≤ T1 +
∞∑
i=2

(Ti − σi−1)1{σi−1<∞}. (3.7)

Therefore

E[No] ≤E[T1] +
∞∑
i=2

E
[
(Ti − σi−1)1{σi−1<∞}

]
(3.8)

=E[T1] +
∞∑
i=2

E
[Ti − σi−1

∣∣{σi−1 < ∞}]P(σi−1 < ∞)

=E[T1] +
∞∑
i=2

E
[T2 − σ1

∣∣{σ1 < ∞}]P(σ1 − T1 < ∞)i−1. (3.9)

It follows as in (3.5) (with minor modifications) that E[T2 − σ1|{σ1 < ∞}] < ∞. The left-hand
side of (3.8) is infinite by assumption, which implies that P(σ1−T1 < ∞) = 1. Since this is true
if and only if Pf (No = ∞) = 1, we have the result.

3.3 Proof of Lemma 3.2

First observe that, since f is such that Pf (τ < ∞) = 1, the sequence of edges {en}n≥1 ≡{{Sn−1, Sn}
}

n≥1
has the property that, almost surely, for every n0 there exists n1 ≥ n0 such

that en1+1 6= en1 . Define a subsequence of edges {enk
}k≥0 ⊆ {en}n≥0 by the following algorithm:
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Whenever an edge e appears exactly 2m (resp., 2m− 1) times in succession in {en}n≥1, for any
m ≥ 1, only the first 2 (resp., 1) successive occurrences of this edge are listed in the subsequence
{enk

}k≥1. This sequence is almost surely well defined by the previous observation, and depends
only on the parity of the number of consecutive traversals of each edge by the walk {Sn}n≥0.

The sequence {enk
}k≥1 defines a random walk {Rf

k}k≥0 by setting Rf
0 = 0 and {Rf

k−1, R
f
k} =

enk
. Since {Sn} spends an (i.i.d.) almost surely finite amount of time traversing each edge before

moving on, the walk {Rf
k} visits a vertex infinitely often if and only if {Sn} does, and therefore

by Proposition 2.1, {Rf
k} is recurrent(I)/transient(I) if and only if {Sn} is (0-1 events). Now

by construction, and the fact that Pf (τ < ∞) = 1, the law of the walk {Rf
k} is completely

determined by ρ = Pf (τ odd) > 0.
If ρ = 1, which is possible only when f(1) = −1, then Ef [τ ] = 1 so that g ≡ f satisfies

the statement of the Lemma. Otherwise ρ < 1, and let g(1) = 1
ρ
(|S| − 1) − |S| > −1 and

g(2) = −1. Then Pg(τ odd) = Pg(τ = 1) = |S|−1
|S|+g(1)

= ρ and Eg[τ ] ≤ 2 < ∞. The walk {Rg
k} is

recurrent(I)/transient(I) if and only if SeRWg is. However {Rg
k} has the same law as {Rf

k} since
it depends only on ρ, and hence {Rg

k} is recurrent(I)/transient(I) if and only if SeRWf is.

3.4 Proof of Corollary 2.3

From Theorem 2.2 we know that the senile random walk with f(m) = Cm is recurrent(I)
(and therefore also recurrent (II)) in dimensions d = 1, 2 and transient(I) in dimensions d > 2.
Moreover it is transient(II) for d > 2 unless E[τ ] = ∞ in which case it is recurrent(II). Since
E[τ ] is monotone increasing in the reinforcement, to complete the proof it is enough to show
that E[τ ] < ∞ when C < |S| − 1 and E[τ ] = ∞ when C = |S| − 1.

For the latter, observe that when C = |S| − 1,

E[τ ] =
∞∑

n=1

n

( n−1∏
i=1

1 + (|S| − 1)i

|S|+ (|S| − 1)i

) |S| − 1

|S|+ (|S| − 1)n

=
∞∑

n=1

|S|n
|S|+ (|S| − 1)(n− 1)

|S| − 1

|S|+ (|S| − 1)n
= ∞, (3.10)

where we have used the fact that |S| + (|S| − 1)i = 1 + (|S| − 1)(i + 1) to cancel terms in the
numerator and denominator of the product to obtain the second equality.

When (|S| − 1)/C = 1 + 2α > 1, observe that

E[τ 1+α]

1 + 2α
=

∞∑
n=1

n1+α

1 + 2α

( n−1∏
i=1

1 + Ci

|S|+ Ci

) |S| − 1

|S|+ Cn
≤

∞∑
n=1

nα

n−1∏
i=1

(
1− |S| − 1

|S|+ Ci

)

≤
∞∑

n=1

nα exp

(
−

n−1∑
i=1

1 + 2α

i + |S|/C
)
≤

∞∑
n=1

nα

(
1 + |S|/C
n + |S|/C

)1+2α

< ∞, (3.11)

where we compared the sum in the exponential with an integral. Thus E[τ ] is finite as soon as
C < |S| − 1.

4 Generating function analysis: the proof of Theorem 2.2

For z ∈ [0, 1] we define

Gz(x) =
∞∑

n=0

zn P(Sn = x). (4.1)
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This is the Green’s function for senile random walk, and is obviously convergent for z < 1. Note
that G1(x) = E[Nx], so that the behaviour of Gz near z = 1 has implications for the recurrence
and transience properties of the walk. For an absolutely summable function F : Zd 7→ R and
k ∈ [−π, π]d we write

F̂ (k) =
∑

x∈Zd

eik·xF (x) (4.2)

for the Fourier transform of F . Note in particular that for any |z| < 1, Gz is absolutely summable
and Ĝz(0) = (1−z)−1. Our analysis of the generating function will essentially involve the parity
of τ .

In this section we analyse the Green’s function and prove Theorem 2.2. We first expand Gz(x)
in terms of two other quantities: uz(x) and vz(x) (Section 4.1). We use inclusion-exclusion on
those quantities (Section 4.2). After taking the Fourier transform we are left with three equations
in three unknowns (i.e., Ĝz(k), ûz(k) and v̂z(k)) and that we can solve for Ĝz(k) (Section 4.3),
the result of which appears in Proposition 4.1. From this formula together with Lemmas 3.1–3.2
we easily obtain Theorem 2.2.

Before stating Proposition 4.1, we introduce a number of quantities. For any z ∈ [0, 1] we
define 




az =
∞∑

n=2

znP(τ ≥ n)1{n even},

bz =
∞∑

n=2

znP(τ ≥ n)1{n odd},





pz =
∞∑

n=1

znP(τ = n)1{n even}
|S| − 1

,

qz =
∞∑

n=1

znP(τ = n)1{n odd}
|S| − 1

.

(4.3)

The quantities az and bz converge for |z| < 1 trivially, and pz and qz converge for |z| ≤ 1. It is
easy to show that

z + az + bz = E
[
z(1− zτ )

1− z
1{τ<∞}

]
,

{
bz ≤ zaz,

az ≤ z2 + zbz,
(4.4)

and that a1 = E[b τ
2
c], b1 = E[b τ−1

2
c] and

1 + a1 + b1 = E[τ ]. (4.5)

Moreover, by definition we have p1 = 1
|S|−1

P(τ even), q1 = 1
|S|−1

P(τ odd) and

(|S| − 1)(p1 + q1) = P(τ < ∞). (4.6)

Next we define

Uz = 1 + pz − (|S| − 1)(pz(1 + pz)− q2
z),

{
Xz = az(1 + pz)− (z + bz)qz + Uz,

Yz = (z + bz)(1 + pz)− azqz − |S|qz.
(4.7)

Note that all of these quantities converge at z = 1 if E[τ ] < ∞, and that U1 converges for any
f . Moreover,

Uz − |S|qz = (1 + pz − qz)
(
1− (|S| − 1)(pz + qz)

)
≥ 0 (= 0 iff z = 1, P(τ < ∞) = 1), (4.8)

and

Xz + Yz = (1 + pz − qz)(z + az + bz) + Uz − |S|qz ≥ 0 (= 0 iff z = 1, |S| = 2, f(1) = −1).
(4.9)

The importance of the quantities discussed thus far in this section is given by the form of
the generating function presented in the following Proposition.
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Proposition 4.1. For z < 1 and k ∈ [−π, π]d,

Ĝz(k) =
Xz + YzD̂(k)

Uz − |S|qzD̂(k)
. (4.10)

When f ≡ 0 we easily get that zUz = |S|qz, Xz = Uz and Yz = 0 which yields the standard
result for Ĝz(k) for simple random walk. It follows from (4.10) and the definition of Ĝz(0) that

Xz + Yz

Uz − |S|qz

=
1

1− z
(z < 1). (4.11)

Proof of Theorem 2.2 using Lemmas 3.1–3.2 and Proposition 4.1. Let f be such that P(τ =
∞) = 0, and that f(1) 6= −1 if |S| = 2.

We first prove Theorem 2.2(2)–(3) using Proposition 4.1. For z ∈ (0, 1), Uz is strictly positive,
due to (4.8) and qz > 0. By rearranging (4.10), it follows from (4.8) that for z ∈ (0, 1),

Ĝz(k) =
Xz

Uz

+

(
Xz

Uz
+ Yz

|S|qz

) |S|qz

Uz
D̂(k)

1− |S|qz

Uz
D̂(k)

=
Xz

Uz

+

(
Xz

Uz

+
Yz

|S|qz

) ∞∑
m=1

( |S|qz

Uz

)m

D̂(k)m. (4.12)

By Fourier inversion we obtain

Gz(x) =
Xz

Uz

δ0,x +

(
Xz

Uz

+
Yz

|S|qz

) ∞∑
m=1

( |S|qz

Uz

)m

D∗m(x), (4.13)

where D∗m denotes the m-fold convolution of D, and |S|qz/Uz tends to 1 as z → 1 by (4.8).
If E[τ ] < ∞, then a1 and b1 are both finite, and so are X1 and Y1. Therefore G1(x) is finite

if and only if
∑∞

m=1 D∗m(x) is finite. This completes the proof of Theorem 2.2(2).
If E[τ ] = ∞, then a1 and b1 are both +∞. Moreover, by the inequalities in (4.4), az and

bz both diverge in the same manner. Let Bz denote any quantity (which may change in each
expression) that is bounded uniformly in z ∈ [0, 1]. Since pz and qz are bounded uniformly, so
is Uz. Using the inequalities in (4.4), we have

{
az(1 + pz − qz) + Bz ≤ Xz ≤ bz(1 + pz − qz) + Bz,

bz(1 + pz − qz) + Bz ≤ Yz ≤ az(1 + pz − qz) + Bz,
(4.14)

where (1 + pz − qz) > 0 for all z ∈ [0, 1] (since E[τ ] = ∞ excludes the degenerate case).
Therefore, Xz and Yz both diverge to +∞ as z ↑ 1, and G1(x) is infinite. This completes the
proof of Theorem 2.2(3).

It remains to prove Theorem 2.2(1). First we note that, by Lemma 3.2, there is a rein-
forcement function g with Eg[τ ] < ∞ such that SeRWf and SeRWg are type-I equivalent.
By Lemma 3.1, the two types of recurrence/transience are equivalent for SeRWg. Then, by
Theorem 2.2(2) proved above, SeRWg is recurrent(II)/transient(II) if and only if SeRW0 is
recurrent(II)/transient(II). The proof is completed by collecting these statements.

We prove Proposition 4.1 in the remainder of this section.

4.1 First stage of the expansion

In this subsection we explain the first stage of the expansion, in which we use the notation

Py(· · · ) = P(· · · |S0 = y). (4.15)
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By definition, we have

Gz(x) = δo,x + zD(x) +
∑
n≥2

zn

(
Po(Sn = x, τ ≥ n) + Po(Sn = x, τ < n)

)

= δo,x + zD(x) +
∑
n≥2

zn Po(Sn = x, τ ≥ n) +
∑

l≥1

∑

n≥l+1

zn Po(Sn = x, τ = l). (4.16)

First we consider the third term on the right-hand side. Since

Po(Sn = x, τ ≥ n) = Po(τ ≥ n)×
{

δo,x if n is even,

D(x) if n is odd,
(4.17)

we have
∑
n≥2

zn Po(Sn = x, τ ≥ n) = azδo,x + bzD(x), (4.18)

where az and bz are given by (4.3).
Next we consider the last term on the right-hand side of (4.16). First we note that

Po(Sn = x, τ = l) =
∑
y∼o

Po(Sn = x, τ = l, S1 = y). (4.19)

If l is even, then the right-hand side is
∑
y,u∼o
u6=y

Po(Sn = x, Sl+1 = u, τ = l, Sl = o, S1 = y)

=
∑
y,u∼o
u6=y

Po(Sn = x, Sl+1 = u | τ = l, Sl = o, S1 = y)Po(τ = l, Sl = o, S1 = y)

=
∑
y,u∼o
u6=y

Po(Sn−l = x, S1 = u |S1 6= y)︸ ︷︷ ︸
= |S|

|S|−1
Po(Sn−l = x, S1 = u)

Po(τ = l, Sl = o, S1 = y)︸ ︷︷ ︸
= 1

|S| P
o(τ = l)

=
Po(τ = l)

|S| − 1

∑
y∼o

Po(Sn−l = x, S1 6= y), (4.20)

where we have used the fact that Po(S1 6= y) = (|S| − 1)/|S| in the penultimate line.
If l is odd, then the right-hand side of (4.19) is

∑
y∼o

∑
u∼y
u6=o

Po(Sn = x, Sl+1 = u, τ = l, Sl = S1 = y)

=
∑
y∼o

∑
u∼y
u6=o

Po(Sn = x, Sl+1 = u | τ = l, Sl = S1 = y)︸ ︷︷ ︸
= |S|

|S|−1
Py(Sn−l = x, S1 = u)

Po(τ = l, Sl = S1 = y)︸ ︷︷ ︸
= 1

|S| P
o(τ = l)

=
Po(τ = l)

|S| − 1

∑
y∼o

Py(Sn−l = x, S1 6= o). (4.21)

Define

uz(x) =
∑

l≥1

zl
∑
y∼o

Po(Sl = x, S1 6= y), vz(x) =
∑

l≥1

zl
∑
y∼o

Py(Sl = x, S1 6= o). (4.22)
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Then, by the above computation, the last term on the right-hand side of (4.16) is rewritten as

∑

l≥1

∑

n≥l+1

znPo(Sn = x, τ = l) =
∑

l≥1

zlPo(τ = l)

|S| − 1

(
uz(x)1{l even} + vz(x)1{l odd}

)

= pzuz(x) + qzvz(x), (4.23)

where pz and qz are given by (4.3). Together with (4.16) and (4.18), we arrive at

Gz(x) = (1 + az) δo,x + (z + bz) D(x) + pzuz(x) + qzvz(x). (4.24)

4.2 Second stage of the expansion

In this subsection we derive equations for uz and vz in terms of Gz. By definition, it is easy to
see that

uz(x) =
∑

l≥1

zl
∑
y∼o

(
Po(Sl = x)− Po(Sl = x, S1 = y)

)

= |S|(Gz(x)− δo,x

)−
∑

l≥1

zl
∑
y∼o

Po(Sl = x, S1 = y) = (|S| − 1)
(
Gz(x)− δo,x

)
. (4.25)

Similarly, we can write vz as

vz(x) =
∑

l≥1

zl
∑
y∼o

(
Py(Sl = x)− Py(Sl = x, S1 = o)

)

=
∑
y∼o

(
Gz(x− y)− δy,x

)−
(

zδo,x +
∑

l≥2

zl
∑
y∼o

Py(Sl = x, S1 = o)

)
, (4.26)

where Py(Sl = x, S1 = o) can be written as

Py(Sl = x, S1 = o) = Py(Sl = x, τ ≥ l, S1 = o) +
l−1∑
m=1

Py(Sl = x, τ = m, S1 = o). (4.27)

By the uniformity of D and translation invariance, the contribution from the first term to (4.26)
equals

∑

l≥2

zl
∑
y∼o

Py(Sl = x, τ ≥ l, S1 = o)

=
∑

l≥2

zl
∑
y∼o

Py(τ ≥ l, S1 = o)︸ ︷︷ ︸
= 1

|S| P
y(τ ≥ l)

(
δy,x1{l even} + δo,x1{l odd}

)

=
∑

l≥2

zlPo(τ ≥ l)
1

|S|
∑
y∼o

(
δy,x1{l even} + δo,x1{l odd}

)
= azD(x) + bzδo,x. (4.28)

For the sum over m in (4.27), we follow a similar course to the proof of (4.23). If m is even,
then by translation invariance we have

Py(Sl = x, τ = m, S1 = o) = Py(Sl = x, τ = m, Sm = y, S1 = o)

=
∑
u∼y
u6=o

Py(Sl = x, Sm+1 = u | τ = m, Sm = y, S1 = o)︸ ︷︷ ︸
= |S|

|S|−1
Py(Sl−m = x, S1 = u)

Py(τ = m, Sm = y, S1 = o)︸ ︷︷ ︸
= 1

|S| P
y(τ = m)

=
Po(τ = m)

|S| − 1
Py(Sl−m = x, S1 6= o). (4.29)
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Similarly, if m is odd, then we have

Py(Sl = x, τ = m, S1 = o) = Py(Sl = x, τ = m, Sm = S1 = o)

=
∑
u∼o
u6=y

Py(Sl = x, Sm+1 = u | τ = m, Sm = S1 = o)︸ ︷︷ ︸
= |S|

|S|−1
Po(Sl−m = x, S1 = u)

Py(τ = m, Sm = S1 = o)︸ ︷︷ ︸
= 1

|S| P
y(τ = m)

=
Po(τ = m)

|S| − 1
Po(Sl−m = x, S1 6= y). (4.30)

Therefore, the contribution to (4.26) from the sum over m in (4.27) equals

∑
m≥1

zmPo(τ = m)

|S| − 1

∑

l≥m+1

zl−m
∑
y∼o

(
Py(Sl−m = x, S1 6= o)1{m even}

+Po(Sl−m = x, S1 6= y)1{m odd}
)

= pzvz(x) + qzuz(x). (4.31)

Summarizing the above and using (4.25), we obtain

vz(x) =
∑
y∼o

(
Gz(x− y)− δy,x

)− zδo,x −
(
azD(x) + bzδo,x

)− (
pzvz(x) + qzuz(x)

)
. (4.32)

4.3 Completion of the expansion

Now we solve (4.24), (4.25) and (4.32) in terms of Gz. Taking the Fourier transform of these
expressions, we have

Ĝ− 1 = a + (z + b)D̂ + pû + qv̂, (4.33)

û = (|S| − 1)(Ĝ− 1), (4.34)

qû + (1 + p)v̂ = |S|D̂(Ĝ− 1)− (z + b + aD̂), (4.35)

where we have abbreviated z and k (e.g. Ĝ for Ĝz(k)). Let

M =

(
1 0
q 1 + p

)
, (4.36)

so that (4.34) and (4.35) are combined as

M
(

û
v̂

)
= (Ĝ− 1)

(|S| − 1

|S|D̂
)
−

(
0

z + b + aD̂

)
. (4.37)

Since 1 + p > 0, the inverse M−1 exists and hence
(

û
v̂

)
= (Ĝ− 1)M−1

( |S| − 1

|S|D̂
)
−M−1

(
0

z + b + aD̂

)
. (4.38)

Substituting this to (4.33), we obtain

Ĝ− 1 = a + (z + b)D̂ +

(
p
q

)
·
(

û
v̂

)

= a + (z + b)D̂ + (Ĝ− 1)

(
p
q

)
· M−1

(|S| − 1

|S|D̂
)
−

(
p
q

)
· M−1

(
0

z + b + aD̂

)

= a + (z + b)D̂ + (Ĝ− 1)

(
(|S| − 1)p− |S| − 1

1 + p
q2 +

|S|q
1 + p

D̂

)
−

(
z + b

1 + p
q +

aq

1 + p
D̂

)
,

(4.39)
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which is equivalent to

(Ĝ− 1)

(
1− (|S| − 1)p +

|S| − 1

1 + p
q2 − |S|q

1 + p
D̂

)
= a− z + b

1 + p
q +

(
z + b− aq

1 + p

)
D̂, (4.40)

or, by multiplying both sides by 1 + p > 0 and using U,X, Y in (4.7),

Ĝ(U − |S|qD̂) = X + Y D̂. (4.41)

Since U − |S|q > 0 for z < 1 (cf., (4.8)), this completes the proof of Proposition 4.1.

5 Diffusion constant: the proof of Theorem 2.5

In this section we discuss the diffusion constant assuming E[τ 1+ε] < ∞ for some ε > 0 and
excluding the degenerate case where |S| = 2 and f(1) = −1 (see below Theorem 2.5 for the
degenerate case).

First we note that, since Gz(x) = δ0,x +
∑∞

n=1 zn P(Sn = x), it is easy to see that −∇2Ĝz(0)
is the generating function of

∑
x |x|2P(Sn = x):

−∇2Ĝz(0) =
∞∑

n=1

zn
∑

x∈Zd

|x|2P(Sn = x) (z < 1). (5.1)

However, by differentiating (4.10) twice with respect to ki and using the fact that ∇D̂(0) = 0
(by the symmetry of D), we obtain

−∇2Ĝz(0) =
−∇2D̂(0) Yz

Uz − |S|qzD̂(0)
+
−∇2D̂(0)

(
Xz + YzD̂(0)

)|S|qz(
Uz − |S|qzD̂(0)

)2 =
|S|qzXz + UzYz

(Uz − |S|qz)2
σ2, (5.2)

where σ2 =
∑

x |x|2D(x). Using (4.11), we obtain

−∇2Ĝz(0) =
czσ

2

(1− z)2
, where cz =

|S|qzXz + UzYz

(Xz + Yz)2
, (5.3)

with the denominator (Xz + Yz)
2 strictly positive, as explained in (4.9).

Now we investigate (5.3) using a Tauberian theorem to derive the formula (2.2) for the
diffusion constant. First we rewrite cz, by simple algebra and using (4.11), as

cz =
|S|q1

X1 + Y1

+
|S|q1((X1 + Y1)− (Xz + Yz))

(X1 + Y1)(Xz + Yz)
+
|S|(qz − q1)

Xz + Yz

+
Yz(1− z)

Xz + Yz

. (5.4)

Note that a1 − az and b1 − bz are O((1− z)ε), while p1 − pz and q1 − qz are O(1− z), since for
example,

0 ≤ a1 − az =
∑
n≥2

(1− zn)P(τ ≥ n)1{n even} ≤ (1− z)ε
∑
n≥2

nε P(τ ≥ n) ≤ (1− z)εE[τ 1+ε], (5.5)

where we have used the inequality 1 − zn ≤ (1 − z)εnε, which holds for all n ≥ 1, z ∈ [0, 1]
and ε ∈ [0, 1] as follows. For z = 1 the inequality is trivial so we may assume that z < 1. Let
h(x) = ((1− z)n)x− (1− zn). Then h(0) ≥ 0 and h(1) ≥ 0, and h′(x) = ((1− z)n)x log((1− z)n)
is nonnegative if and only if (1 − z)n ≥ 1. Thus for each fixed n, z, the function h(x) is either
nonincreasing or nondecreasing, and thus is never negative. The term b1 − bz can be handled in
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the same way, and p1− pz and q1− qz are handled similarly using ε = 1. Therefore, the last two
terms in (5.4) are O(1− z). Also, the second term of (5.4) is O((1− z)ε) because X1 −Xz and
Y1 − Yz are sums of factors of a1 − az and b1 − bz, as well as factors of p1 − pz and q1 − qz.

We have proved that

−∇2Ĝz(0) =
c1σ

2

(1− z)2
+O((1− z)−2+ε), where c1 =

|S|q1

X1 + Y1

. (5.6)

The error term has radius of convergence at least 1 and it follows from [14, Lemma 6.3.3] that
its coefficients in zn satisfy |an| ≤ O(n1−ε/2). Since (1− z)−2 =

∑
n≥0(n + 1)zn, we obtain

v = lim
n→∞

1

n

∑

x∈Zd

|x|2P(Sn = x) = c1σ
2 =

|S|q1

X1 + Y1

σ2. (5.7)

Now use (4.5), (4.9) and the expressions for p1, q1 (stated above (4.6)) to complete the result.
Proof of Corollary 2.6. For the first claim, observe that for j odd, P(τ even) is an increasing
function of x = f(j), and therefore P(τ odd) is a decreasing function of x = f(j). Since E[τ ] is
an increasing function of x = f(j), the first claim follows from (2.2).

For the second claim, for a fixed even j and reinforcement function F such that EF [τ 1+ε] < ∞
for some ε > 0, let Fx denote the reinforcement function with Fx(i) = F (i) when i 6= j and
Fx(j) = x. Let v(x) ≡ vFx , and Px ≡ PFx . By (2.2) for every x,

v(x) =
Px(τ odd)

1− 2
|S|Px(τ odd)

σ2

Ex[τ ]
, (5.8)

and elementary differentiation rules show that v′(x) S 0 is equivalent to

|S|
2
Ex[τ ]Px(τ odd, τ ≥ j + 1) S Px(τ odd)

( |S|
2
− Px(τ odd)

)
Ex[(τ − j)1{τ≥j+1}]. (5.9)

Fix 0 < η ≤ 1
2
. Let F (j+1) = −1 so that PF (τ ≤ j+1) = 1, and choose F (1), . . . , F (j−1) and

F (j) = x0 sufficiently large such that PF (τ = j+1) > 1−η. Since j is even, 1−η < Px(τ odd) < 1
whenever x ≥ x0, so that the “>” inequality in (5.9) holds for all x ≥ x0 if

|S|
2

(j + 1)(1− η)2 >
|S|
2
− (1− η), (5.10)

which holds by our choice of η. Thus for this choice of F we have shown that v(x) is increasing
for x ≥ x0 and therefore f = Fx0 and g = Fx0+1 are reinforcement functions satisfying the second
claim of the corollary.

6 Critical Senile linearly reinforced random walk in 1 di-

mension

In this section we fix the reinforcement function to be f(m) = m. As long as |S| > 2 it follows
from (3.11) that this senile random walk is such that E[τ 1+α] < ∞ for some α > 0. In particular
by Theorem 2.5 the diffusion constant for this walk is given by (2.2). The critical case for
f(m) = m is when |S| = 2 which corresponds to the nearest-neighbour model in 1 dimension.
In analyzing this model we will use the fact that for all |S| ≥ 2, when f(m) = m special
hypergeometric functions enter the analysis. Special properties of the hypergeometric functions
will be used to prove Proposition 2.7 in the following subsections.
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6.1 Special hypergeometric functions and analytic continuation

We begin by investigating the quantities in (4.3) and (4.7) using the hypergeometric function

2F1(c, c
′, c′′; z) defined as

2F1(c, c
′, c′′; z) =

∞∑
n=0

zn

n!

(c)n (c′)n

(c′′)n

, (6.1)

where (c)n is defined by (c)0 = 1 and (c + n− 1) · (c)n−1 for n ≥ 1.
When f(m) = m, we can rewrite az, bz, pz and qz for |S| ≥ 2 and z ∈ (0, 1) as





az = |S|
∑

n≥2, even

zn

n!

(1)n(1)n

(|S|)n

= a−z,

bz = |S|
∑

n≥2, odd

zn

n!

(1)n(1)n

(|S|)n

= −b−z,





pz =
∑

n≥1, even

zn

n!

(1)n(1)n

(|S|+ 1)n

= p−z,

qz =
∑

n≥1, odd

zn

n!

(1)n(1)n

(|S|+ 1)n

= −q−z,
(6.2)

where, as in the proof of Corollary 2.3, a1 and b1 do not converge in the critical case |S| = 2.
Let

Fz = 2F1(1, 1, |S|+ 1; z), F ∗
z = 2F1(1, 1, |S|; z). (6.3)

Represented in terms of these hypergeometric series, az and pz are given respectively by

az = |S|
∑
n≥2

zn

n!

(1)n (1)n

(|S|)n

1 + (−1)n

2
=
|S|
2

((
F ∗

z − 1− z

|S|
)

+

(
F ∗
−z − 1 +

z

|S|
))

=
|S|
2

(F ∗
z + F ∗

−z)− |S|, (6.4)

pz =
∑
n≥1

zn

n!

(1)n (1)n

(|S|+ 1)n

1 + (−1)n

2
=

1

2

(
(Fz − 1) + (F−z − 1)

)
=

1

2
(Fz + F−z)− 1. (6.5)

Similarly we have

bz =
|S|
2

(F ∗
z − F ∗

−z)− z, qz =
1

2
(Fz − F−z). (6.6)

Further arithmetic shows that





Uz = U−z = −(|S| − 1)FzF−z +
|S|
2

(Fz + F−z),

Xz = X−z = −(|S| − 1)FzF−z +
|S|
2

(F ∗
z F−z + F ∗

−zFz),

Yz = −Y−z =
|S|
2

(F ∗
z F−z − F ∗

−zFz).

(6.7)

Of course, the parity of these az, bz, pz, qz, Uz, Xz and Yz are invariant for any reinforcement
function.

Euler’s formula for the hypergeometric function shows that

2F1(1, 1, c; z) = (c− 1)

∫ 1

0

(1− t)c−2

1− tz
dt (6.8)

16



is the analytic continuation of 2F1(1, 1, c; z) to C\ [1,∞), and 2F1(1, 1, c; 1) < ∞ whenever c > 2.
It follows that az, bz, pz, qz and hence Uz, Xz, Yz have analytic continuation (determined by (6.8))
to the region ∆ ≡ C \ {(−∞,−1] ∪ [1,∞)}. In addition (6.8) shows that for z ∈ [0, 1]

Fz ≤ |S|
|S| − 1

, with equality only when z = 1. (6.9)

Also, (6.8) shows that F−z > 0 for z ∈ [−1, 1]. It is easy to show that
(|S|+n
|S|

) ≡ (|S|+1)n/(1)n is

an increasing sequence and thus taking the first two terms in the series for F−1 (the remainder
is guaranteed to be positive) we have

F−1 =
∞∑

n=0

(−1)n (1)n

(|S|+ 1)n




≤ 1,

≥ 1− 1

|S|+ 1
.

(6.10)

One of Gauss’ relations for contiguous functions is that for z ∈ C \ [1,∞),

γ(1− z) · 2F1(α, β, γ; z) + (γ − β)z · 2F1(α, β, γ + 1; z) = γ · 2F1(α− 1, β, γ; z). (6.11)

At α = β = 1 and γ = |S| we have

|S|(1− z)F ∗
z − |S|+ (|S| − 1)zFz = 0. ∴ |S|F ∗

z − (|S| − 1)Fz

|S| − (|S| − 1)Fz

=
1

1− z
. (6.12)

This is equivalent to (4.11), with qz, Uz, Xz and Yz in (6.6)–(6.7). It may be of interest to see
what formulae the relation (4.11) gives for |z| < 1 for more general choices of reinforcement. Of
course one can also obtain the relation (Xz +Yz)/(Uz−|S|qz) = (1−z)−1 for all z ∈ ∆ using the
fact that both sides of this inequality have analytic continuation to ∆ (provided Uz − |S|qz 6= 0
in this region) and they agree on 0 < z < 1.

When |S| = 2 (i.e. the 1-dimensional nearest-neighbour model), since

F ∗
z =

∫ 1

0

1

1− tz
dt =

1

z
log

1

1− z
(z < 1), (6.13)

while F1, F−1 and F ∗
−1 all converge, by (6.7) we have

Xz = −FzF−z + F ∗
z F−z + F ∗

−zFz

Yz = F ∗
z F−z − F ∗

−zFz

}
∼ F−z

z
log

1

1− z
, as z → 1 in ∆. (6.14)

6.2 Proof of Proposition 2.7

For the first claim fix d ≥ 2. Then |S| > 2, and (5.7) (=(2.2)) holds as we noted at the beginning
of Section 6. By (6.6)–(6.7) and (6.10) with F1 = |S|/(|S| − 1) and F ∗

1 = (|S| − 1)/(|S| − 2), we
have

v

σ2
=

|S|
2

(F1 − F−1)

−(|S| − 1)F1F−1 + |S|F ∗
1 F−1

=
|S| − 2

2

( |S|
F−1(|S| − 1)

− 1

)
∈ (0, 1). (6.15)

To prove the final claim, we apply the following trivial extension (to the case where there are
2 singularities) of a result of Flajolet and Odlyzko, see Corollary 5 on page 230 of [6].
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Proposition 6.1 (Flajolet-Odlyzko). Suppose that f(z) =
∑

n≥0 znfn has analytic continuation
in the region ∆ = C \ {(−∞,−1] ∪ [1,∞)}, and that

f(z) =

{
K(1− z)−2(log 1

1−z
)−1

(
1 +O(

(log 1
1−z

)−1
))

(z → 1),

O(log(1 + z)) (z → −1).
(6.16)

Then fn ∼ Kn/ log n as n →∞.

To verify that we can apply Proposition 6.1, it suffices to prove the following Lemma. Once
the lemma is proved, the integral (6.8) with c = 3 (≡ 2 + 1) and z = ±1 shows that F1/F−1 =
(2 log 2− 1)−1 and that the constant below in (6.17) takes its value of (2.3).

Lemma 6.2. Let f(m) = m. Then −∇2Ĝz(0) has analytic continuation in the region ∆ ≡
C \ {(−∞,−1] ∪ [1,∞)}. In particular, for the 1-dimensional nearest-neighbour model,

−∇2Ĝz(0) =

{
F1−F−1

2F−1
(1− z)−2(log 1

1−z
)−1

(
1 +O(

(log 1
1−z

)−1
))

(z → 1),

O(log(1 + z)) (z → −1).
(6.17)

Proof. Observe that Uz − |S|qz = (−(|S| − 1)Fz + |S|)F−z is non-zero for z ∈ (−1, 1) and is the
product of two non-zero complex numbers (and hence non-zero) when z is not real-valued. The
fact that −∇2Ĝz(0) has analytic continuation in ∆ then follows from (5.2), (6.6)–(6.7) and the
fact that (6.8) gives analyticity of Fz and F ∗

z in C \ [1,∞).
Now consider the 1-dimensional nearest-neighbour model. From (5.2) and using the parity

of qz, Uz, Xz and Yz, we have

−∇2Ĝ−z(0) =
−(2qzXz + UzYz)

Uz + 2qz

= O(
log(1− z)

)
, (6.18)

due to (6.14) and the fact that the denominator converges to 4q1 > 0 as z → 1. This verifies the
limit in (6.17) as z → −1.

To prove the other limit in (6.17), we use (5.3)–(5.4) for z ∈ ∆: −∇2Ĝz(0) = cz(1 − z)−2,
where

cz =
2q1

Xz + Yz

+
2(qz − q1)

Xz + Yz

+
Yz(1− z)

Xz + Yz

. (6.19)

It is immediate from (6.14) that the first term is O((log 1
1−z

)−1), while the last term is O(1− z).

The second term contains qz − q1 = 1
2
((Fz − F1) − (F−z − F−1)), due to (6.6). Using (6.8) for

z ∈ ∆, we have

Fz − F1 = (1− z)

∫ 1

0

−2t

1− zt
dt = (1− z)O(

log(1− z)
)
, (6.20)

F−z − F−1 = (1− z)

∫ 1

0

2t(1− t)

(1 + zt)(1 + t)
dt = O(1− z), (6.21)

so that the second term in (6.19) is also O(1− z). Therefore, the first term is the slowest term.
Using (6.14) and isolating the main factor F ∗

z = 1
z
log 1

1−z
, we can rewrite cz in (6.19) as

cz =
2q1

2F ∗
z F−z − FzF−z

+O(1− z) =
q1

F−1

1

F ∗
z

(
1 +O(

(log 1
1−z

)−1
))

+O(1− z). (6.22)

The proof of (6.17) is now completed by using (6.6) at z = 1. This completes the proof of
Proposition 2.7.
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