

HOKKAIDO UNIVERSITY

Title	Water partitioning in the Earth's mantle
Author(s)	Inoue, Toru; Wada, Tomoyuki; Sasaki, Rumi; Yurimoto, Hisayoshi
Citation	Physics of the Earth and Planetary Interiors, 183(1-2), 245-251 https://doi.org/10.1016/j.pepi.2010.08.003
Issue Date	2010-11
Doc URL	http://hdl.handle.net/2115/44920
Туре	article (author version)
File Information	PEPI183-1-2_245-251.pdf

1	Water partitioning in the Earth's mantle
2	
3	Toru Inoue ¹ , Tomoyuki Wada ¹ , Rumi Sasaki ¹ , Hisayoshi Yurimoto ²
4	
5	¹ Geodynamics Research Center, Ehime University, Bunkyo-cho 2-5,
6	Matsuyama, Ehime 790-8577, Japan
7	² Division of Earth and Planetary Sciences, Hokkaido University,
8	Sapporo 060-0810, Japan
9	
10	Physics of the Earth and Planetary Interiors 183 (2010) 245-251
11	
12	Abstract We have conducted H ₂ O partitioning experiments between wadsleyite and
13	ringwoodite and between ringwoodite and perovskite at 1673K and 1873K, respectively.
14	These experiments were performed in order to constrain the relative distribution of $\mathrm{H_{2}O}$
15	in the upper mantle, the mantle transition zone, and the lower mantle. We successfully
16	synthesized coexisting mineral assemblages of wadsleyite-ringwoodite and
17	ringwoodite-perovskite that were large enough to measure the $\mathrm{H_2O}$ contents by
18	secondary ion mass spectrometry (SIMS). Combining our previous H ₂ O partitioning
19	data (Chen et al., 2002) with the present results, the determined water partitioning
20	between olivine, wadsleyite, ringwoodite, and perovskite under H2O-rich fluid saturated
21	conditions are 6: 30: 15 : 1, respectively. Because the maximum H_2O storage capacity in
22	wadsleyite is ~3.3 wt% (e.g. Inoue et al, 1995), the possible maximum $\rm H_2O$ storage
23	capacity in the olivine high pressure polymorphs are as follows: ~ 0.7 wt% in olivine
24	(upper mantle just above 410 km depth), ~3.3 wt% in wadsleyite (410-520 km depth),
25	${\sim}1.7$ wt% in ringwoodite (520-660 km depth), and ${\sim}0.1$ wt% in perovskite (lower
26	mantle). If we assume ${\sim}0.2$ wt% of the H_2O content in wadsleyite in the mantle
27	transition zone estimated by recent electrical conductivity measurements (e.g. Dai and
28	Karato, 2009), the estimated H_2O contents throughout the mantle are as follows; ~0.04
29	wt% in olivine (upper mantle just above 410 km depth), ~0.2 wt% in wadsleyite
30	(410-520 km depth), ~0.1 wt% in ringwoodite (520-660 km depth) and ~0.007 wt% in
31	perovskite (lower mantle). Thus, the mantle transition zone should contain a large water
32	reservoir in the Earth's mantle compared to the upper mantle and the lower mantle.
33	

34 Key words: mantle, olivine, wadsleyite, ringwoodite, perovskite, hydrous wadsleyite,

35 hydrous ringwoodite, high pressure phase transformation, partitioning of H₂O

36

37 **1. Introduction**

Water, the most abundant volatile component on the Earth's surface, has been supplied to the Earth's mantle by subducting slabs from the lithosphere (e.g. Irifune et al.,1998; Ohtani et al., 2004). Because water influences the physical properties and melting temperature of minerals, it is important to constrain the potential amount of water in nominally anhydrous phases at various depths in the Earth's mantle.

43 Olivine (α -phase) and the high pressure polymorphs of olivine are the most abundant 44 minerals in the upper mantle, and the high-pressure polymorphs of olivine, wadsleyite (β -phase), and ringwoodite (γ -phase), can contain up to 2-3 wt% of H₂O in their crystal 45 46 structures (e.g. Inoue et al., 1995, 1998; Kohlstedt et al., 1996). However, the 47 partitioning data of H₂O between these minerals are few except for the 48 olivine-wadsleyite transformation (Chen et al., 2002) and ringwoodite-perovskite 49 transformation (Bolfan-Casanova et al., 2003). We have determined the partitioning of 50 H₂O between wadsleyite and ringwoodite and between ringwoodite and perovskite at 51 1673K and 1873K, respectively. These temperatures are close to typical mantle 52 temperature proposed by Brown and Shankland (1981) and Katsura et al. (2009) at the 53 520 km and 660 km seismic discontinuity. We have also ascertained the relative 54 distribution of H₂O among the upper mantle, the mantle transition zone, and the lower 55 mantle.

56

57 **2. Experimental**

58 High-pressure experiments were conducted in an MA-8 type (Kawai-type) 59 high-pressure apparatus at Ehime University. The truncation edge lengths (TEL) of the 60 cubic anvils were 3.5 and 2.5 mm for the experiments on wadsleyite-ringwoodite and 61 ringwoodite-perovskite, respectively. We used semi-sintered magnesia that was doped 62 with 17 wt % CoO and LaCrO₃ as the pressure medium, and ZrO₂ was used as the 63 thermal insulator. We adopted a cylindrical platinum (Pt) or rhenium (Re) heater with a 64 wall thickness of $\sim 30 \,\mu\text{m}$. The typical cell assembly used with TEL of 3.5 mm is shown 65 in Fig. 1.

66 The starting materials were a mixture of $Mg(OH)_2$, Fe_2SiO_4 and SiO_2 reagent with the

67 chemical composition of (Mg_{0.8}Fe_{0.2})₂SiO₄ plus 15.8 wt% H₂O (Table 1). Thus, H₂O was introduced by Mg(OH)₂, and ferrous iron was introduced by Fe₂SiO₄ because 68 69 wustite ($Fe_{1-X}O$) is non-stoichiometric. The reason we selected such large water content 70 was to enhance the crystal growth and to make it possible to measure the H₂O content 71 precisely by secondary ion mass spectroscopy (SIMS). In addition, the reason we 72 selected the olivine composition of $(Mg_{0.8}Fe_{0.2})_2SiO_4$ was to enhance the coexisting 73 region of wadsleyite-ringwoodite and ringwoodite-perovskite in order to obtain the 74 sample.

A corresponding anhydrous starting material was also prepared. The appropriate mechanical mixture of Mg_2SiO_4 and Fe_2SiO_4 powders was used for the composition of ($Mg_{0.8}Fe_{0.2}$)₂SiO₄. Both anhydrous and hydrous samples were enclosed in a welded Au_{75%}Pd_{25%} alloy capsule separately before loading into a high pressure cell in order to avoid the loss of both water and iron. Platinum is often used as capsule material, but it absorbs iron significantly. Therefore, we used Au_{75%}Pd_{25%} to make the loss of Fe less, which is superior to Pt in an iron bearing system, as the capsule material.

82 Temperature was measured with a $W_{97}Re_3-W_{75}Re_{25}$ thermocouple junction placed in 83 the center of the furnace assembly. The fluctuation of temperature throughout the run 84 was kept within ±5 °C in each condition, but no pressure correction was made for the 85 emf of the thermocouple.

86 Careful pressure calibration was done on the basis of the present anhydrous 87 experiments of the wadsleyite-ringwoodite phase transition based on the 88 thermochemical phase diagram (Akaogi et al., 1989) at 1673K, and the postspinel phase 89 transition (Ito and Takahashi, 1989) at 1873K. Therefore, the pressure conditions for 90 the coexisting run products wadsleyite-ringwoodite and ringwoodite-perovskite were 91 determined by fitting our anhydrous compositional data on the loop by Akaogi et 92 al.(1989) and Ito and Takahashi (1989). In this case, the relative pressure precision in 93 with the wadsleyite-ringwoodite the runs coexisting and coexisting 94 ringwoodite-perovskite under anhydrous conditions is estimated to be about 0.05 GPa, 95 and about 0.2 GPa in runs without co-existing phases.

In high-pressure and high-temperature experiments, pressure was applied first to the target ram loads, then the temperature was kept constant for 20-120 minutes before quenching by turning off power to the furnace, and then the run was quenched by

3

99 turning off the electric power. The recovered charges were polished for phase100 identification and chemical analysis.

101 The phases were identified by a micro-focused X-ray diffractometer and by 102 micro-Raman spectroscopy. The chemical compositions were determined by EPMA and 103 the water content of the minerals was measured by SIMS at Hokkaido University.

104 The SIMS instrument used in the present study was the Cameca IMS-3F ion mass 105 microanalyzer. The polished samples were coated with a gold film 300 Å in thickness for SIMS analysis. A primary beam operated at ~10 nA, 12.5 kV ¹⁶O⁻ was focused to 106 form an ~ 30 µm spot on the sample, and the secondary ${}^{1}\text{H}^{+}$ and ${}^{30}\text{Si}^{+}$ ions were 107 collected from the center region (10 µm in diameter) of the sputtered area using a 108 109 mechanical aperture to minimize artifacts arising from hydrogen adsorption on the polished sample surface. The H₂O content of samples was calibrated from relative 110 intensities of ${}^{1}\text{H}^{+/30}\text{Si}^{+}$ using an empirical linear relationship (Yurimoto et al., 1989). We 111 112 used natural amphibole crystal with a water content of 1.66 wt % for a standard, which 113 was determined by a hydrogen gas manometry method with the accuracy of ± 0.1 wt% 114 (Miyagi and Yurimoto, 1995). In addition, San Carlos olivine was used for the 115 background H intensities, because the H concentration is considerably small (10-60 116 ppm: Kurosawa et al. 1997), compared with the present H concentration in our samples.

We obtained a depth profile of the intensity of ${}^{1}\text{H}^{+}$ and ${}^{30}\text{Si}^{+}$ with time. The 117 steady-state hydrogen emission achieved depends on the H concentration, but usually it 118 119 is achieved after 30-60 minute bombardments of the primary ions with H₂O 120 concentration of ~ 1 wt%. The uncertainty of the H₂O content in the present analysis is \sim $\pm 10\%$, which mainly comes from the scattering of the measured ${}^{1}H^{+}/{}^{30}Si^{+}$ value for 121 122 several standard measurements, probably because of the slightly chemical heterogeneity 123 of the present natural amphibole standard. More details for the SIMS measurement are 124 described in Miyagi and Yurimoto (1995), and the water content and the chemical 125 composition of the present amphibole standard was shown in Table 1 (ICH) of Miyagi 126 et al. (1998).

127

128 **3. Results and discussion**

The experimental conditions and results are summarized in Tables 2 and 3. The experiments were conducted at conditions of 14.6-17.0 GPa and 1673K for the wadsleyite-ringwoodite experiment and \sim 23 GPa and 1873K for the ringwoodite-perovskite experiments. The heating durations were 20-120 minutes.

All experiments were performed under H_2O -rich fluid (melt) saturated conditions where solid phases coexisted with a hydrous melt, as evidenced by fibrous crystals and spinifex texture in the quench product. These results show the formation of liquid under all conditions.

Note that at the present experimental conditions in the silicate- H_2O system, H₂O-bearing silicate melt (liquid) and H₂O-rich aqueous fluid cannot be distinguished from each other because of the existence of the second critical end point (e.g. Mibe et al., 2007). So the terminology of melt (liquid) and fluid in this paper has the same meaning.

142

143 3-1. The effect of water on the phase boundary between wadsleyite and144 ringwoodite

We observed the coexistence of wadsleyite and ringwoodite at pressures of 15.6 to 146 16.5 GPa under anhydrous conditions, whereas the coexistence of both wadsleyite and 147 ringwoodite were not observed below 16.4 GPa under hydrous conditions (Table 2). 148 This shows that the phase boundary between wadsleyite and ringwoodite moves to 149 higher pressure under water-bearing conditions.

Table 4 shows the Fe/(Mg+Fe) in wadsleyite and ringwoodite and the corresponding partition coefficient at each pressure. We define the partition coefficient, Kd, as (Fe/Mg)_{γ}/(Fe/Mg)_{β}. The Kds were ~1.6-1.7 in both the anhydrous and hydrous systems, which are consistent with our previous report (Inoue et al, 2010).

Figures 2(a) and 2(b) show the high pressure phase diagrams of wadsleyite and ringwoodite in the Mg_2SiO_4 -Fe_2SiO_4 system under anhydrous and hydrous conditions, respectively, by using the present Fe/(Mg+Fe) data for wadsleyite and ringwoodite.

At 15.6 GPa (Run E1766), the coexistence of wadsleyite and ringwoodite starts to appear in the anhydrous system, but ringwoodite does not appear in the hydrous system. This trend for the anhydrous and hydrous systems continues up to 16.5 GPa (Run E1794), and the coexistence of wadsleyite and ringwoodite appears at 16.5 GPa (Run E1760, E1751) in the hydrous system. In run E1788 (P=~17 GPa), only ringwoodite was observed under anhydrous conditions, but the coexistence of wadsleyite and ringwoodite was still observed under hydrous conditions. This result indicates that the loop of the wadsleyite and ringwoodite boundary shifts towards higher pressure or higher iron content, and the pressure width of the loop decreased with the effect of H_2O . The present observation is consistent with our previous result of 1 wt% H_2O (Inoue et al., 2010).

168 We have already determined that the phase boundary between olivine and wadsleyite

shifts to lower pressures under water bearing conditions (Chen et al., 2002; Inoue et al., 2009). Combining the present results with our previous data, it is clear that the stability region of wadsleyite expands and the pressure width of the divariant loop decreases for both of the phase boundaries between olivine and wadsleyite, and between wadsleyite and ringwoodite.

174 In the present study, the experiments were performed under H₂O-rich fluid saturated 175 conditions, so note that the width of the loop can only be applied to H₂O-rich fluid 176 saturated conditions, and the width of the loop should be narrower than those in 177 H₂O-rich fluid undersaturated conditions when considering the phase diagram of the 178 pure-Mg system (Frost and Dolejs, 2007). However, the important point is that the 179 amounts of Mg and Fe in the coexisting phases are different between anhydrous and 180 hydrous conditions (Inoue et al.2010). The present results reflect the system with 181 Mg-Fe partitioning under H₂O-rich fluid saturated condition.

For the hydrous melting phase relation, clinoenstatite was observed in the liquidus phase below ~17 GPa, and then changed to stishovite. These results indicate that MgO-rich (ultrabasic) liquid was formed under hydrous melting conditions, which are consistent with our previous results (Inoue at al., 1994; Yamada et al., 2004).

186

3-2. The effect of water on postspinel phase boundary

The coexisting region of ringwoodite and perovskite was quite narrow in both the anhydrous and hydrous systems, so it was difficult to determine the exact loop in this boundary. However, we could observe the coexistence of ringwoodite and perovskite at pressures of 23.0-23.2 GPa (runs E1784, E1730 and E1695).

At 23.0 GPa (E1784), the Fe/(Mg+Fe) ratios in ringwoodite, perovskite, and magnesiowustite were 0.199, 0.086 and 0.342, respectively, whereas in the hydrous system, the Fe/(Mg+Fe) ratios in ringwoodite and perovskite were 0.159 and 0.056, respectively. We could not observe magnesiowustite in the most hydrous run, because the composition of the hydrous liquid became MgO rich with increasing pressure, as we have already reported (Inoue, 1994; Yamada et al., 2004), and magnesiowustite tends to dissolve in the liquid. The reason why the Fe/(Mg+Fe) ratios of ringwoodite and perovskite in the hydrous system is much lower than those in anhydrous conditions is the existence of the hydrous liquid. The hydrous liquid prefers iron compared to crystalline phases. Nevertheless, the partition coefficients, Kd = $(Fe/Mg)_{Pv}/(Fe/Mg)_{\gamma}$, were almost the same (~0.3~0.4) in both anhydrous and hydrous systems.

203 We have already reported the effect of water on the spinel-postspinel transformation 204 in Mg₂SiO₄, and reported that the boundary moves to high pressures by ~ 0.2 GPa under 205 water bearing conditions, compared with anhydrous conditions (Higo et al., 2001). In 206 the present experiment, we could not observe the phenomena clearly because of the 207 fluctuation of the generated pressure in each cell assembly. In the hydrous system this 208 was also caused by the complicated phase assembly in each run. Nevertheless, the main 209 purpose of the present experiment was to obtain the coexisting sample of ringwoodite and perovskite to determine the H₂O content and the partitioning effect. We succeeded 210 211 in this purpose, which will be further described later.

212

3-3. The H₂O content and partitioning in wadsleyite, ringwoodite and prerovskite

We succeeded in synthesizing large (\sim 50µm) crystals of coexisting wadsleyite and ringwoodite, and of ringwoodite and perovskite. Figures 3 and 4 show the back scattered electron images of the coexisting run products of wadsleyite and ringwoodite (E1751, E1760), and of ringwoodite and perovskite (E1748 and E1730), respectively. In all run products, hydrous liquids coexisted with the minerals. In addition, clinoenstatite existed in the liquidus phase at ~16.5 GPa and 1673K under hydrous melting conditions.

222 Table 6 shows the H₂O contents in wadsleyite and ringwoodite at ~16.5 GPa and 223 1673K, and the corresponding partition coefficient. The H₂O contents in wadsleyite and 224 ringwoodite at ~16.5 GPa and 1673K were 1.8-2.3 wt% and 1-1.25 wt%, respectively. 225 In E1788, the H₂O content was higher than that in the other runs, because the 226 temperature was estimated by the power supply and the generated temperature may 227 have been lower than 1673K. For this reason, the amount of hydrous melt was small and 228 the H₂O contents in the crystals became higher in E1788. In spite of this difference, the 229 partition coefficient between wadsleyite and ringwoodite $(Kd=(H_2O)_{\beta}/(H_2O)_{\gamma})$ was ~2;

this result shows that wadsleyite favors H_2O twice as much when compared to ringwoodite.

232 Table 7 shows the H_2O content in ringwoodite and perovskite at ~23 GPa and 1873K, 233 and the partition coefficient. The H_2O content in ringwoodite and perovskite at ~23 GPa 234 and 1873K were 0.6-0.8 wt% and less than 0.1 wt%, respectively. Because the H₂O 235 content in perovskite was quite small, the resulting calculated partition coefficient 236 between ringwoodite and perovskite exhibits larger scatter. Nevertheless, the results 237 show that the partition coefficient between ringwoodite and perovskite 238 $(Kd=(H_2O)_{\nu}/(H_2O)_{Pv})$ could be determined to be ~15 in average; this result shows that 239 ringwoodite favors H₂O 15 times more compared with perovskite.

We have already determined that the partition coefficient between olivine and wadsleyite (Kd=(H₂O)_{β}/(H₂O)_{α}) was ~5 (Chen et al., 2002). Combining our previous data with our present data, the partitioning of H₂O in olivine(α), wadsleyite(β), ringwoodite(γ) and perovskite(Pv) could be determined as $\alpha : \beta : \gamma : Pv = 6 : 30 : 15 : 1$. Olivine is the most abundant minerals in the mantle, so the H₂O partitioning among the upper mantle, between 410-520 km and 520-660 km of the mantle transition zone, and the lower mantle can be estimated as 6:30:15:1, respectively.

247 Because the maximum H₂O solubility in wadsleyite is 3.3 wt% (e.g. Inoue et al, 248 1995), the possible maximum H₂O storage capacities in the olivine high pressure 249 polymorphs are as follows; ~0.7 wt% in olivine (upper mantle just above 410 km 250 depth), ~3.3 wt% in wadsleyite (410-520 km depth), ~1.7 wt% in ringwoodite (520-660 251 km depth) and ~0.1 wt% in perovskite (lower mantle). With this consideration, we 252 adopted the maximum H₂O solubility in wadsleyite to discuss the maximum H₂O 253 storage capacity in the mantle. However, it was reported that the H_2O solubility 254 becomes lower with increasing temperature (e.g. Demouchy et al. 2005). The 255 temperature in the mantle transition zone is important to estimate the H₂O content.

In spite of the effect of temperature, the mantle transition zone should be a large geochemical reservoir of water in the Earth's interior, and the maximum water storage capacity in the mantle transition zone is ~4 times relative to the amount of sea water. Note that the H₂O content in olivine was determined at ~13.5 GPa (just above 410 km depth), and we know that the H₂O solubility in olivine increases with increasing pressure as shown in Kohlstedt et al. (1996) and Hauri et al. (2006). In the shallower mantle below 410 km depth, the H₂O content in olivine should become less with 263 decreasing pressure.

264

265 **3-4. Geophysical implication**

266 Knowledge of absolute water contents in the mantle is important because hydration 267 affects various physical properties of mantle minerals (e.g. Inoue et al, 1998; Jacobsen 268 et al., 2004; Huang et al., 2005). Therefore, many researchers have made an effort to 269 estimate the absolute water content in the mantle. Especially, seismological and 270 electrical conductivity observations combined with laboratory measured values enable 271 us to estimate the water content in the mantle. Mantle transition zone minerals, 272 wadsleyite and ringwoodite, can accommodate significant amount of H₂O (up to 2-3 273 wt%) in their crystal structures, so these minerals should be key minerals to contain 274 water in the mantle.

275 Suetsugu et al. (2006) and Yamada et al. (2009) tried to estimate temperature 276 anomalies and water content in the mantle transition zone just above the 660 km 277 discontinuity beneath the Japan Islands and the Philippine Sea from tomographically 278 determined P-velocity anomalies and the depth of the 660-km discontinuity determined 279 by the receiver function method. The water content beneath the Philippine Sea and 280 western Japan, where the Pacific slab is subducted, was estimated to be in the range of 281 1-1.5 wt% H₂O, and the west Philippine basin, away from the Pacific slab, did not have 282 any significant water content. This estimated H₂O content shows the relative water 283 content anomaly with respect to average values in their study regions, because 284 tomographically determined P-velocity anomalies were used as mentioned in Yamada et 285 al. (2009). They observed the apparently unreasonable negative values of water content 286 (-0.5 wt%) beneath northern Japan, and interpreted that the average H₂O content could 287 be regarded as ~ 0.5 wt% in the region, when it is regarded as a situation of absolutely 288 null water (dry). Recently, Suetsugu et al. (this issue) applied the same method by 289 using a new data set of ocean bottom geophysical observations beneath the Philippine 290 Sea and the northwestern Pacific Ocean, and revised the water content and estimated 291 that there was less than 0.2 wt% H₂O beneath these areas. Although they mentioned that 292 the estimated water content had an uncertainty of about 0.2-0.3 wt% H₂O, the average 293 H₂O content in these areas was considered to be ~0.1 wt% H₂O from Figure 7 in 294 Suetsugu et al. (this issue). Note that this estimated H₂O contents reflects that in 295 ringwoodite.

296 On the other hand, the electrical conductivities of wadsleyite and ringwoodite in 297 anhydrous and hydrous forms were measured (Huang et al., 2005; Yoshino et al., 2008; 298 Manthilake et al., 2009; Dai and Karato, 2009), and compared to the geophysical 299 observations to estimate the water content. Though there are some arguments about the 300 estimated water content (Karato and Dai, 2009; Yoshino and Katsura, 2009), their recent 301 conclusions show that some water ($\sim 0.1-0.3$ wt% in the Pacific) is required to explain 302 the observed electrical conductivity (Dai and Karato, 2009). In addition, though Yoshino 303 et al. (this issue) mentioned that the present conductivity-depth profiles in the transition 304 zone agreed with that obtained from the geophysical observations beneath the Pacific in 305 the case of the mantle transition zone, 0.1-0.2 wt% H₂O explains the recent geophysical 306 reference model (Shimizu et al., submitted) from Figure 6 in Yoshino et al. (this issue). 307 Still more, Yoshino et al. (this issue) mentioned that the presence of water in the 308 transition zone minerals is required to explain the high conductivity beneath the 309 Philippine Sea and northeastern China (Baba et al., this issue).

310 In this study, we determined the partitioning of H₂O among olivine high pressure 311 polymorphs. When we apply ~ 0.2 wt% of the H₂O content in wadsleyite in the mantle 312 transition zone estimated by the recent electrical conductivity measurements (e.g. Dai 313 and Karato, 2009), the estimated H_2O content in the mantle is as follows; ~0.04 wt% in 314 olivine (upper mantle), ~0.2 wt% in wadsleyite (410-520 km depth), ~0.1 wt% in 315 ringwoodite (520-660 km depth), and ~0.007 wt% in perovskite (lower mantle). These 316 estimated values satisfy, within the error, the recently estimated H₂O content in mantle 317 transition zone minerals (i.e. wadsleyite and ringwoodite) by different methods based on 318 seismological and electrical conductivity observations.

Thus, the mantle transition zone should be a large geochemical reservoir of water in the Earth's mantle compared with the upper and lower mantle. Additionally, the amount of water in the mantle transition zone is ~ 0.3 times more relative to that of sea water, when mantle wadsleyite contains ~ 0.2 wt% H₂O.

323

4. Conclusions

We have determined the water partitioning between wadsleyite and ringwoodite, and ringwoodite and perovskite. The results are as follows; olivine : wadsleyite : ringwoodite : perovskite = 6: 30: 15 : 1. In addition, the phase boundary of olivine-wadsleyite, wadsleyite-ringwoodite, and postspinel transformations move to the

- low, high, and high pressure side, respectively, with the effect of water, when we combine the present data with our previous data (Higo et al., 2001; Chen et al., 2002; Inoue et al., 2010). The resultant H₂O partitioning of $[H_2O]_{\alpha} < [H_2O]_{\beta} > [H_2O]_{\gamma} >$ $[H_2O]_{pv}$ is consistent with the results of the effect of water on the high pressure phase
- 333 boundary of olivine.
- Because the maximum H₂O solubility in wadsleyite is 3.3 wt% (e.g. Inoue et al, 1995), the possible maximum H₂O storage capacity in the olivine high pressure polymorphs are as follows; ~0.7 wt% in olivine (upper mantle just above 410 km depth), ~3.3 wt% in wadsleyite (410-520 km depth), ~1.7 wt% in ringwoodite (520-660 km depth), and ~0.1 wt% in perovskite (lower mantle).
- When we apply ~0.2 wt% of the H₂O content in wadsleyite in the mantle transition zone, the estimated H₂O content through the mantle are as follows; ~0.04 wt% in olivine (upper mantle just above 410 km depth), ~0.2 wt% in wadsleyite (410-520 km depth), ~0.1 wt% in ringwoodite (520-660 km depth), and ~0.007 wt% in perovskite (lower mantle).
- Thus, the mantle transition zone should contain a large water reservoir in the Earth's mantle when compared to the upper and lower mantle. Additionally, if mantle wadsleyite contains ~ 0.2 wt% H₂O then the mantle transition zone would contain approximately one-third the H₂O mass of Earth's oceans.
- 348

349 Acknowledgements

We thank the constructive comments of two reviewers Dr. M. Akaogi and Dr. S.D. Jacobsen to improve the manuscript. We also thank Sabrina Whitaker at the GRC, Ehime University for the English improvement. This work was supported by a Grant-in-Aid for Scientific Research (A) [KAKENHI] from Japan Society for the Promotion of Science (JSPS) given to Toru Inoue, and a Global COE program from the Ministry of Education, Culture, Sports, Science and Technology (MEXT).

356

357 **References**

Akaogi, M., Ito, E., Novrotsky. A., 1989. Olivine-modified spinel-spinel transitions in
 the system Mg₂SiO₄-Fe₂SiO₄: Calorimetric measurements, thermochemical
 calculation, and geophysical application, J. Geophys. Res., 94, 15671-15685.

- Baba, K., Utada, H., Goto, T., Kasaya, T., Shimizu, H., Tada, N., Electrical conductivity
 imaging of the Philippine Sea upper mantle using seafloor magnetotelluric data.
 Phys. Earth Planet. Inter. (this issue)
- Bolfan-Casanova, N., H. Keppler, Rubie, D.C., 2003. Water partitioning at 660 km
 depth and evidence for very low water solubility in magnesium silicate perovskite,
 Geophys. Res. Lett., 30, 1905, doi: 10.1029/2003GL017182.
- Brown, J.M. and Shankland, T.J., 1981. Thermodynamic parameters in the Earth as
 determined from seismic profiles. Geophys. J., Royal Astronomical Society, 66(3),
 579-596.
- Chen, J., Inoue, T., Yurimoto, H., Weidner, D.J., 2002. Effect of water on
 olivine-wadsleyite phase bondary in the (Mg, Fe)₂SiO₄ system, Geophys. Res. Lett.,
 29, 1875, doi:10.1029/2001GL014429.
- Dai, L., Karato, S. 2009. Electrical conductivity of wadsleyite at high temperatures and
 high pressures. Earth Planet. Sci. Lett., in press.
- 375 Demouchy, S., Deloule, D., Frost, D.J., Keppler, H., 2005. Pressure and temperature
 376 dependence of water solubility in Fe-free wadsleyite. Am. Mineral., 90,
 377 1084-1091.
- Frost, D. J., Dolejs, D, 2007. Experimental derteimination of the effect of H₂O on the
 410-km seismic discontinuity. Earth Planet. Sci. Lett., 256, 182-195.
- Hauri, E.H., Gaetani, G.A., Green, T.H., 2006. Partitioning of water during melting of
 the Earth's upper mantle at H2O-undersaturated conditions. Earth Planet. Sci. Lett.,
 248, 715-734.
- Higo, Y., Inoue, T., Irifune T., Yurimoto, H., 2001. Effect of water on the
 spinel-postspinel transformation in Mg₂SiO₄. Geophys. Res. Lett., 28, 3505-3508.
- Huang, X., Xu, Y., Karato, S., 2005. Water content in the transition zone from electrical
 conductivity of wadsleyite and ringwoodite. Nature, 434, 746-749.
- Inoue, T., 1994. Effect of water on melting phase relations and melt composition in the
 system Mg₂SiO₄-MgSiO₃-H₂O up to 15 GPa. Phys. Earth Planet. Inter., 85,
 237-263.
- Inoue, T., Yurimoto H., Kudoh, Y., 1995. Hydrous modified spinel, Mg_{1.75}SiH_{0.5}O₄: a
 new water reservoir in the mantle transition region, Geophys. Res. Lett., 22,
 117-120.

- Inoue, T., Weidner, D.J., Northrup P.A., Parise, J.B., 1998. Elastic properties of hydrous
 ringwoodite (γ-phase) on Mg₂SiO₄, Earth Planet. Sci. Lett., 160, 107-113.
- Inoue, T. Ueda, T., Tanimoto, Y., Yamada, A., Irifune, T., 2010. The effect of water on
 the high-pressure phase boundaries in the system Mg₂SiO₄-Fe₂SiO₄. J. Phys.: Conf.
 Ser., 215, 012101.
- Jacobsen, S.D., Smyth, J.R., Spetzler, H., Holl, C.M., Frost, D.J., 2004. Sound
 velocities and elastic constants of iron-bearing hydrous ringwoodite. Phys. Earth
 Planet. Inter., 143-144, 47-56.
- 401 Irifune, T., Kubo, N., Isshiki, M., Yamazaki, Y., 1998. Phase transformations in
 402 serpentine and transportation of water into the lower mantle. Geophys. Res. Lett.,
 403 25, 203-206.
- 404 Ito, E., Takahashi, E., 1989. Postspinel transformations in the system Mg₂SiO₄-Fe₂SiO₄
 405 and some geophysical implications, J. Geophys. Res., 94, 10,637-10,646.
- Karato, S., Dai, L., 2009. Comments on "Electrical conductivity of wadsleyite as a
 function of temperature and water content" by Manthilake et al., Phys. Earth Planet.
 Inter., 174, 19-21.
- Katsura, T., Shatskiy, A., Manthilake, M.A.G.M., Zhai, S., Fukui, H., Yamazaki, D.,
 Matsuzaki, T., Yoneda, A., Ito, E., Kuwata, A., Ueda, A., Nozawa, A., Funakoshi,
 K., 2009. Thermal expansion of forsterite at high pressures determined by in situ
 X-ray diffraction: The adiabatic geotherm in the upper mantle. Phys. Earth Planet.
 Inter., 174, 86-92.
- 414 Kohlstedt, D.L., Keppler, H., Rubie, D.C., 1996. Solubility of water in the α , β and γ 415 phases of (Mg,Fe)₂SiO₄. Contrib. Mineral. Petrol., 123, 345-357.
- 416 Kurosawa, M., Yurimoto, H., Sueno, S., 1997. Patterns in the hydrogen and trace
 417 element compositions of mantle olivines. Phys. Chem. Minerals, 24, 385-395.
- 418 Manthilake, M.A.G.M., Matsuzaki, T., Yoshino, T., Yamashita, S., Ito, E., Kastura, T.,
- 419 2009. Electrical conductivity of wadsleyite as a function of temperature and water420 content. Phys. Earth Planet. Inter., 174, 10-18.
- Mibe, K. Kanzaki, M., Kawamoto, T., Matsukage, K.N., Fei, Y., Ono, S., 2007. Second
 critical end point in the peridotite-H2O system. J. Geophys. Res., 112, B03201.
- Miyagi, I., Yurimoto, H., 1995. Water content of melt inclusions in phenocrysts using
 secondary ion mass spectrometer. Bull. Volcanol. Soc. Jpn., 40, 349-355.

- 425 Miyagi, I. Matsubaya, O., Nakashima, S., 1998. Change in D/H ratio, water content and
 426 color during dehaydration of hornblende. Geochem. J., 32, 33-48.
- 427 Ohtani, E., Litasov, K., Hosoya, T., Kubo, T., Kondo, T., 2004. Water transport into
 428 deep mantle and formation of a hydrous transition zone, Phys. Earth Planet. Inter.,
 429 143-144, 255-269.
- 430 Shimizu, H. Koyama, T., Baba, H., Utada, H. Revised 1-D mantle electrical
 431 conductivity structure beneath the north Pacific. Geophys. Int. J. (submitted)
- Suetsugu, D., Inoue, T. Yamada, A., Zhao, D., Obayashi, M., 2006. Towards mapping
 the three-dimentinal distribution of water in the transition zone from P-velocity
 tomography and 660-km discontinuity depths. In "Earth's deep water cycle,
 Geophysical monograph series 168", Ed. by Steven D. Jacobsen and Suzan van
 der Lee, AGU, pp.237-249.
- Suetsugu, D., Inoue, T., Obayashi, M., Yamada, A., Shiobara, H., Sugioka, H., Ito, A.,
 Kanazawa, T., Kawakatsu, H., Shito, A., Fukao, Y. Depths of the 410-km and
 660-km discontinuities in and around the stagnant slab beneath the Philippine Sea:
 Is water stored in the stagnant slab? Phys. Earth Planet. Inter. (this issue)
- Yamada, A., Inoue, T., Irifune, T., 2004. Melting of enstatite from 13 to 18 GPa under
 hydrous conditions, Phys. Earth Planet. Inter., 147, 45-56.
- Yamada, A., Zhao, D., Inoue, T., Suetsugu, D., Obayashi, M., 2009. Seismological
 evidence for compositional variations at the base of the mantle transition zone
 under Japan Islands, Gondwana Research , 16, 482-490.
- Yoshino, T., Manthilake, G., Matsuzaki, T., Katsura, T., 2008. Dry mantle transition
 zone inferred from electrical conductivity of wadsleyite and rinwwoodite. Nature
 448 451, 326-329.
- Yoshino, T., Katsura, T., 2009. Reply to Comments on "Electrical conductivity of
 wadsleyite as a function of temperature and water content" by Manthilake et al.,
 Phys. Earth Planet. Inter., 174, 22-23.
- 452 Yoshino, T., Katsura, T., Baba, K., Utada, H. Laboratory-based conductivity structure in
 453 the mantle transition zone. Phys. Earth Planet. Inter. (this issue)
- 454 Yurimoto, H., Kurosawa, M., Sueno, S. 1989. Hydrogen analysis in quartz crystals and
 455 quartz glass by secondary ion mass spectrometry. Geochim. Cosmochim. Acta 53,
 456 751-755.

457

458

459

460 Figure captions

461

462 Figure 1. An example of the cell assembly used in the present experiments for the 463 wadsleyite-ringwoodite transformation.

464

Figure 2. (a) High pressure phase diagram of olivine high pressure polymorphs under
anhydrous condition at T=1673K. The solid line represents the phase boundary from
Akaogi et al. (1989) under anhydrous condition. Using this plot, the run pressures were
determined.

- (b) High pressure phase diagram of olivine high pressure polymorphs under hydrous
 condition at T=1673K. The broken line represents the phase boundary from Akaogi et al.
 (1989) under anhydrous condition, and the solid line represents that under hydrous
 condition from Inoue et al. (2010). The present results are consistent with our previous
 boundary of Inoue et al. (2010).
- 474 Open triangles and squares show the assemblages of the single wadsleyite phase and 475 that of the single ringwoodite phase, respectively, and filled triangles and squares show 476 the wadsleyite coexisting with ringwoodite, and the ringwoodite coexisting with 477 wadsleyite, respectively. α : olivine, β : wadsleyite, γ : ringwoodite.
- 478

479 Figure 3. Back scattered electron image of run products (a) E1751 and (b) E1760. β:

- 480 wadsleyite, γ : ringwoodite, CEn: clinoenstatite, L: liquid.
- 481
- 482 Figure 4. Back scattered electron image of run products (a) E1784 and (b) E1730. γ :
- 483 ringwoodite, Pv: perovskite, L: liquid.
- 484

5 mm

Fig. 1 Inoue et al.

Fig. 2 (a) Inoue et al.

Fig. 2 (b) Inoue et al.

(a) E1751 WET 16.5GPa, 1673K

(b) E1760 WET 16.5GPa, 1673K

Fig. 3 Inoue et al.

(a) E1784 WET 23.0GPa, 1873K

(b) E1730 WET 23.1GPa, 1873K

Fig. 4 Inoue et al.

	1	6	_
	Dry	Wet	_
MgO	42.1	35.4	-
FeO	18.7	15.8	
SiO ₂	39.2	33.0	
H ₂ O	-	15.8	
Total (wt%)	100.0	100.0	
(Mg+Fe)/Si	2.0	2.0	
Fe/(Mg+Fe)	0.2	0.2	

Table 1. Chemical composition of starting material

Dry: $Fe_2SiO_4 + 8MgO + 4SiO_2 \rightarrow 5(Mg_{0.8}Fe_{0.2})_2SiO_4$

Wet: $Fe_2SiO_4+8Mg(OH)_2+4SiO_2 \rightarrow 5(Mg_{0.8}Fe_{0.2})_2SiO_4+H_2O$

Table2

Run No.	Load	Pressure	Time	Dry	Wet
	(ton)	(GPa)	(min)		
E1672	412	14.6	60	β	β + L
E1766	480	15.6	120	β+γ	β +CEn+L
E1748	470	15.7	60	β+γ	β +CEn+L
E1678	500	15.9	60	β+γ	β +CEn+L
E1789	490	16.0	60	β+γ	β + L
E1786	483	16.2	90	β+γ	β +CEn+L
E1805	506	16.2	90	β+γ	β +CEn+L
E1744	505	16.2	60	β+γ	β +CEn+L
E1807	506	16.4	90	β+γ	β +CEn+L
E1794	500	16.5	90	β+γ	β + L
E1760	485	16.5	90	β+γ	$\beta + \gamma + CEn + L$
E1751	510	16.5	120	β+γ	$\beta + \gamma + CEn + L$
E1788 [~]	485	~17#	60	γ	$\beta + \gamma + CEn + L$
E1758	508	~17#	60	γ	$\gamma + St + L$
E1738 [~]	520	16.7	60	γ	γ + L
E1731	525	16.8	60	γ	γ + L
E1683	550	17.2	60	γ	γ + L

Table 2. Experimental conditions and the results (T=1673K)

 β : wadsleyite, γ : ringwoodite, CEn: clinoenstatite, St: stishovite, L: liquid * Temperatures were estimated by power supply.

These pressure should have large uncertainty.

Run No.	Load	Pressure	Time	Dry	Wet
	(ton)	(GPa)	(min)		
E1720	435	22.9	60	γ	Pv + L
E1767	435	22.9	120	γ#	SuB+D+Mw+L
E1749*	440	23.0	120	γ#	Pv + L
E1759*	440	23.0	120	γ#	Pv+Mw+SuB+L
E1770	440	23.0	120	Pv + Mw	Pv + Mw + L
E1784*	440	23.0	20	$\gamma + Pv + Mw$	$\gamma + Pv + L$
E1730	445	23.1	60	$\gamma + Pv + Mw$	$\gamma + Pv + L$
E1787	445	23.1	60	γ	Pv + L
E1688	450	23.2	60	$\gamma + Pv + Mw$	Pv + L
E1695	450	23.2	30	$\gamma + Pv + Mw$	$\gamma + Pv + L$
E1796	450	23.2	60	γ#	γ+Mw+SuB+D+L

Table 3. Experimental conditions and the results (T=1873K)

 γ :ringwoodite, Pv:perovskite, Mw:magnesiowustite, St:stishovite SuB:superhydrous phase B, D:phase D, L:liquid *Temperatures were estimated by power supply.

#Small amounts of magnesiowustite and stishovite exist in the run charge.

Dry				W	/et		
Run No.	Pressure	Fe/(Mg+Fe)		Fe/(Mg+Fe) Fe/(Mg+Fe)		[g+Fe)	
	(GPa)	β	γ	Kd	β	γ	Kd
E1672	14.6	0.173(6)			0.135(5)		
E1766	15.6	0.167(1)	0.238(4)	1.56	0.148(28)		
E1748	15.7	0.161(4)	0.238(11)	1.62	0.136(3)		
E1678	15.9	0.153(1)	0.223(2)	1.59	0.130(4)		
E1789	16.0	0.146(2)	0.217(2)	1.62	0.125(1)		
E1786	16.2	0.135(7)	0.210(6)	1.71	0.146(3)		
E1805	16.2	0.134(6)	0.205(5)	1.67	0.154(7)		
E1744	16.2	0.135(1)	0.203(6)	1.64	0.126(5)		
E1807	16.4	0.128(3)	0.194(2)	1.65	0.134(2)		
E1794	16.5	0.122(1)	0.186(5)	1.65	0.143(11)		
E1760	16.5	0.121(5)	0.189(6)	1.70	0.139(4)	0.213(8)	1.68
E1751	16.5	0.111(4)	0.196(3)	1.95	0.140(5)	0.208(3)	1.62
E1788*	~17#		0.157(6)		0.145(3)	0.224(3)	1.70
E1758	~17#		0.171(5)			0.192(6)	
E1738*	16.7		N.A.			0.206(4)	
E1731	16.8		0.210(2)			0.215(2)	
E1683	17.2		0.205(2)			0.171(14)	

Table 4. Fe/(Mg+Fe) in β and γ and the partitioning (T=1673K)

(): standard deviation; N.A. not analyzed; * Temperatures were estimated by power supply.

Kd = (Fe/Mg) $_{\gamma}$ / (Fe/Mg) $_{\beta};~$ # These pressure should have large uncertainty.

Dry							Wet		
Run No.	Pressure		Fe/(Mg+Fe)		_		Fe/(M	g+Fe)	
	(GPa)	γ	Pv	Mw	Kd		γ	Pv	
E1784*	23.0	0.199(9)	0.086(1)	0.342(2)	0.38	0.	159(1)	0.056(3)	
E1730	23.1	0.188(1)	N.A.	N.A.		0.	135(2)	0.063(4)	
E1695	23.2	0.178(4)	0.084(6)	N.A.	0.42	0.	087(2)	0.049(3)	

Table 5. Fe/(Mg+Fe) in γ and perovskite and the partitioning (T=1873K)

(): standard deviation; N.A. not analyzed; * Temperatures were estimated by power supply. $Kd = (Fe/Mg)_{Pv} / (Fe/Mg)_{\gamma}$

Run No.	Pressure	H ₂ O wt%		Kd
	(GPa)	β	γ	
E1788*-1	~17	3.72	1.69	2.2
E1760-1	16.5	2.28	1.11	2.05
E1760-2	16.5	2.24	1.25	1.79
E1751-1	16.5	1.88	1	1.88
E1751-2	16.5	1.79	1.1	1.63
average				1.9(2)

Table 6. H₂O partitioning between wadsleyite (β) and ringwoodite (γ) T=1673K

* Temperature was estimated by power supply.

(): standard deviation, Kd= $(H_2O)_\beta/(H_2O)_\gamma$

Run No.	Pressure	H ₂ O wt%		Kd
	(GPa)	γ	Pv	
E1784*	23	0.76	0.06	13
E1730	23.1	0.71(25)	0.03	24(8)
E1695	23.2	0.63(11)	0.07(3)	9(5)
average				15(8)

Table 7. H₂O partitioning between ringwoodite (γ) and perovskite (Pv) T=1873K

* Temperature was estimated by power supply.

(): standard deviation, Kd=(H_2O)_{\gamma}/(H_2O)_{Pv}