<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instructions for use</td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Construction of a novel expression vector in Pseudonocardia autotrophica</td>
</tr>
<tr>
<td>Author(s)</td>
<td>and its application to efficient biotransformation of compactin to pravastatin, a specific HMG-CoA reductase inhibitor</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Fujii, Yoshikazu; Norihisa, Koji; Fujii, Tadashi; Aritoku, Yasuhide; Kagawa, Yusuke; Sallam, Khalid Ibrahim; Johdo, Osamu; Arisawa, Akira; Tamura, Tomohiro</td>
</tr>
<tr>
<td>Citation</td>
<td>Biochemical and Biophysical Research Communications, 404(1): 511-516</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2011-01-07</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/44922</td>
</tr>
<tr>
<td>Type</td>
<td>article (author version)</td>
</tr>
<tr>
<td>File Information</td>
<td>BBRC404-1_511-516.pdf</td>
</tr>
</tbody>
</table>

Hokkaido University Collection of Scholarly and Academic Papers: HUSCAP
Construction of a Novel Expression Vector in *Pseudonocardia autotrophica* and its Application to Efficient Biotransformation of Compactin to Pravastatin, a Specific HMG-CoA Reductase Inhibitor

Yoshikazu Fujii a,d, Koji Norihisa b, Tadashi Fujii a, Yasuhide Aritoku a, Yusuke Kagawa d, Khalid Ibrahim Sallam c,e, Osamu Johdo a, Akira Arisawa a, Tomohiro Tamura c,d

a Bioresource Laboratories, Mercian Corporation, 1808 Nakaizumi, Iwata, Shizuoka 438-0078, Japan
b Biotechnical Development Center, Mercian Corporation, 1808 Nakaizumi, Iwata, Shizuoka 438-0078, Japan
c Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan
d Graduate School of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo, 060-8589, Japan

Corresponding authors: A. Arisawa and T. Tamura

A. Arisawa: Tel, 81-538-21-1134; Fax, 81-538-21-1135; E-mail, arisawa-a@mercian.co.jp
T. Tamura: Tel, 81-11-857-8938; Fax, 81-11-857-8980; E-mail, t-tamura@aist.go.jp

cPresent address: Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt

Abbreviations: HMG-CoA, 3-hydroxy-3-methylglutaryl-Coenzyme A; Vdh, vitamin D₃ hydroxylase; Fdx, ferredoxin; Fdr, ferredoxin-NAD⁺ reductase; SDS, sodium dodecyl sulfate; PAGE, polyacrylamide gel electrophoresis; DTT, dithiothreitol; HPLC, high-performance liquid chromatography
Abstract

The novel plasmid vector (pTAOR4-Rev) suitable for gene expression in actinomycete strains of *Pseudonocardia autotrophica* was constructed from 2 *P. autotrophica* genetic elements, the novel replication origin and the acetone-inducible promoter. The replication origin was isolated from the endogenous plasmid of strain DSM 43082 and the acetone-inducible promoter was determined by analysis of the upstream region of an acetaldehyde dehydrogenase gene homologue in strain NBRC 12743. *P. autotrophica* strains transformed with pTAOR4-P450, carrying a gene for cytochrome P450 monooxygenase, expressed P450 from the acetone-inducible promoter, as verified by SDS-PAGE and spectral analysis. The biotransformation test of acetone-induced resting cells prepared from a strain of *P. autotrophica* carrying pTAOR4 that harbors a compactin (CP)-hydroxylating P450 gene revealed 3.3-fold increased production of pravastatin (PV), a drug for hypercholesterolemia. Biotransformation of CP by the same strain in batch culture yielded PV accumulation of 14.3 g/l after 100 hr. The expression vector pTAOR4-Rev and its function-enhancing derivatives provide a versatile approach to industrial biotransformation by *Pseudonocardia* strains, which can be good hosts for P450 monooxygenase expression.

Keywords *Pseudonocardia autotrophica* • Pravastatin • Rolling-circle type replication • Acetone-inducible promoter • Biotransformation
Introduction

Host-vector systems are indispensable for the expression of recombinant proteins for research or industrial purposes. In the industrial application of heterologous gene expression, bacterial strains are used preferentially as hosts because they are easy to handle and their bioprocesses are easily manipulated. In addition to the general *Escherichia coli* system, streptomycete host-vector systems are noteworthy because the actinomycete strains have the potential to produce industrially valuable bioactive materials such as antibiotics, antitumor agents, and statins via fermentation or biotransformation [1]. The streptomycete vectors are generally incompatible and of limited utility in non-streptomycete hosts such as *Pseudonocardia autotrophica*, which is utilized for biotransformation of vitamin D₃ (VD₃) to calcitriol (CT) [2]. *P. autotrophica* catalyze hydroxylation of VD₃ at C-25, and then C-1α to CT. In our previous study of efficient biocatalytic processes of VD₃ hydroxylation, we identified cytochrome P450 monooxygenase (P450) as the hydroxylase responsible for VD₃ transformation. This P450, designated as Vdh, catalyzed the 25- and 1α-hydroxylations. The Vdh gene (*vdh*) was cloned and expressed in *E. coli*, in which the enzymatic properties of the recombinant protein were determined. *E. coli* expression and biotransformation systems were established and enabled to increase the hydroxylation activity of Vdh by directed evolution [3]. Improved biotransformation was obtained with *P. autotrophica* than with Vdh-expressing *E. coli* (data not shown). A *Pseudonocardia*-specific expression system was required for expressing improved *vdh* genes to enhance VD₃ hydroxylation activity.

Actinomycete strains have many P450 genes in their genome [4]. These enzymes are involved in the production of secondary metabolites or degradation of xenobiotics. Hydroxylations catalyzed by actinomycete P450s are used in industrial applications, such as the production of pravastatin (PV) and CT. PV is a highly potent and specific inhibitor of HMG-CoA reductase, a key enzyme in cholesterol biosynthesis [5]. Because of its
pharmaceutical value as a cholesterol-reducing agent, there are many reports on PV production by compactin (CP) hydroxylation in actinomycete strains. The industrial manufacturing of PV was established in \textit{Streptomyces carbophilus}, in which P450sca-2 was shown to catalyze CP hydroxylation [6]. Afterwards, several reports on PV production described biotransformation with \textit{Actinomadura} [7], \textit{Streptomyces} [8], and \textit{Pseudonocardia} [9]. CT production by biotransformation with \textit{P. autotrophica} is used for industrial production of CT for osteoporosis and psoriasis [2]. Actinomycete strains provide a useful P450 source and have a suitable redox background with electron transport proteins required for P450 reactions. Therefore, actinomycete strains should be good candidates as host strains for P450 expression.

In our study, \textit{Streptomyces} sp. TM-7 was isolated as a PV-producing strain. This strain yields PV accumulation of 4.6 g/l from 8.2 g/l CP after 6 days [10]. The genes for CP 6β-hydroxylating P450 (boxA) and ferredoxin (boxB) were cloned from \textit{Streptomyces} sp. TM-7. We attempted to express BoxA and BoxB in \textit{P. autotrophica}, known as a CP-resistant [9] and VD$_3$-hydroxylating strain. Utilization of hosts that are resistant to substrates and products is an appropriate strategy to improve biotransformation productivity. In this report, we describe the construction of a novel acetone-inducible expression vector (pTAOR4-Rev) for \textit{P. autotrophica} and its application in the efficient biotransformation of CP to PV in boxAB-expressing \textit{P. autotrophica}.
Materials and Methods

Bacterial strains and culture conditions. *P. autotrophica* NBRC 12743, *P. autotrophica* DSM 43082, *P. autotrophica* DSM 535, *E. coli* DH5α, *E. coli* S17-1, and *E. coli* BL21(DE3) were cultured in LB medium (1% polypeptone, 0.5% yeast extract, and 1.0% NaCl) with 200 µg/ml kanamycin or 24 µg/ml apramycin for *P. autotrophica* transformants and 25 µg/ml kanamycin, 50 µg/ml ampicillin, or 50 µg/ml apramycin for *E. coli* transformants.

Recombinant DNA techniques. Restriction enzymes and DNA ligation reagents were purchased from TaKaRa Bio Inc. (Shiga, Japan). DNA manipulation was conducted by standard methods [11] or as instructed by specific kit suppliers. Plasmid DNA was prepared with a miniprep purification kit (QIAGEN, Hilden, Germany), and polymerase chain reactions (PCR) were carried out in an automated thermal cycler (Applied Biosystems Inc., CA, USA) using KOD plus DNA polymerase (Toyobo, Osaka, Japan). Total DNA from *Pseudonocardia* strains was isolated with ISOPLANT II (Nippongene, Tokyo, Japan).

Identification of replication origin in P. autotrophica. Endogenous plasmid pPA43082 was identified in *P. autotrophica* DSM 43082 and the plasmid was sequenced as described in Supplementary Methods. Based on the sequence of pPA43082, we predicted that the replication system functions by the rolling-circle mechanism. Different fragment lengths containing the pPA43082 replication origin were amplified and ligated into the *Bsr*GI and *Bgl*II sites of pTNR-oriT, replacing *istAB* [12]. Plasmid constructs were tested for transformation ability in *P. autotrophica* NBRC 12743. Transformation was conducted by conjugation with *E. coli* S17-1 as described in Supplementary Methods.

The shortest DNA region containing essential elements for replication was amplified from
pPA43082 with primers rep-1F (5′-GCCGGATCCCTCCCCGCCCCGCACCGGCA-3′;
*Bam*HI site is underlined) and rep-7R
(5′-GCCTGTACATGACCCGCACCGCAGGCGT-3′; *Bsr*GI site is underlined). The amplified 2.1-kb DNA fragment was ligated into the *Bgl*II and *Bsr*GI sites of pTNR-oriT to yield pTNR-oriT-rep1. The plasmid in which the fragment was inserted in the opposite orientation did not yield transformants.

Sequence analysis of the region encoding acetone-inducible protein. A protein induced by acetone addition in the culture was detected by SDS-PAGE in *P. autotrophica* NBRC 12743. The acetone-inducible protein (AIP) was isolated by 2D-PAGE and the internal amino acid sequence was determined. Based on the internal amino acid sequence, the gene encoding AIP and its upstream region was sequenced to identify the acetone-inducible promoter (*Pace*). The detailed experimental procedure is described in Supplementary Methods.

Expression vector construction. The DNA fragment encoding oriT was amplified from pTNR-oriT and ligated into the *Bsr*GI and *Bam*HI sites of pTNR-AA to construct pTNR-AA-oriT. After removal of the IS2 and ampicillin-resistance gene of pTNR-AA-oriT, the DNA fragment encoding the replication origin for *P. autotrophica* was ligated into the *Kpn*I and *Bsr*GI sites to create pTAOR. The DNA fragments encoding *Pace*, *vdh* (GenBank Accession no. AB 456955), and a transcriptional terminator were inserted into pTAOR to produce pTAOR3-vdh. The DNA fragment encoding *boxAB* (GenBank Accession no. AB180845) was inserted into pTAOR3-vdh to replace *vdh* and create pTAOR3-boxAB. pTAOR3-boxAB was digested with *Hind*III and *Afl*III, blunted by T4 DNA polymerase, and self-ligated to yield pTAOR4. The DNA fragment encoding *Pace-boxAB*-terminator was ligated into the *Kpn*I site of pTAOR4 to create pTAOR4-For-boxAB and
pTAOR4-Rev-boxAB. The detailed experimental procedure is described in Supplementary Methods.

Transformation by electroporation. *P. autotrophica* DSM 535 was cultured in LB medium with glass beads (5 mm in diameter) and competent *Pseudonocardia* cells were prepared according to the procedure for *Rhodococcus* strains [13]. A 100-µl aliquot of chilled competent *Pseudonocardia* cells was gently mixed with 3 µl (0.6 µg) pTAOR in a microcentrifuge tube and placed on ice for 30 min. The cell-DNA mixture was transferred to a prechilled 0.1 cm electrode gap Gene Pulser Cuvette (Bio-Rad Laboratories, CA, USA) for electroporation (Bio-Rad Gene Pulser). The electroporation mixture was resuspended in 1 ml LB and incubated at 30°C for 3 hr. The mixture was plated on LB agar plates containing 30 µg/ml apramycin and incubated at 30°C for 6 days to select apramycin-resistant *Pseudonocardia* colonies.

Reduced CO difference spectral analysis. To measure the concentration of P450s in the *P. autotrophica* cells, reduced CO difference spectral analyses were performed. *P. autotrophica/pTAOR3-vdh* and *P. autotrophica/pTAOR4-Rev-boxAB* were cultured at 28°C in 50 ml LB medium containing 24 µg/ml apramycin to an OD₆₀₀ between 0.4 and 0.7. Protein expression was initiated by adding acetone to a final concentration of 1%. After 24-hr induction, cells were harvested by centrifugation and resuspended in buffer A (50 mM potassium phosphate buffer pH 7.4, 10% glycerol). Cell-free extract was prepared as described in Supplementary Methods. The reduced CO difference spectra were measured with a cell-free extract by a UV-visible spectrophotometer U-3310 (Hitachi) as described previously [14].
Biotransformation of compactin (CP) to pravastatin (PV) by resting cells. Host strains *P. autotrophica* NBRC 12743, *P. autotrophica/pTAOR*, and *P. autotrophica/pTAOR4-Rev-boxAB* were cultured for 72 hr at 28°C in 100 ml LB medium containing 24 µg/ml apramycin. Protein expression was initiated by adding acetone to a final concentration of 1%. After 24-hr induction, cells were harvested by centrifugation and resuspended in buffer B (50 mM potassium phosphate buffer pH 7.4 and 2% glycerol) to 16.3 mg of wet-cell weight/ml. Biotransformation was initiated by the addition of compactin (CP) to a final concentration of 3 mg/ml. Conversion was conducted for 24 hr at 28°C. The sample was mixed with a half volume of acetonitrile and methanol, followed by centrifugation at 15000 rpm. The supernatant was analyzed by HPLC as described below.

Biotransformation of CP to PV in batch culture. *P. autotrophica/pTAOR4-Rev-boxAB* was cultured in 100 ml seed medium (1.5% D-glucose, 0.3% yeast extract, 1.5% polypeptone, 0.4% NaCl, 0.2% CaCO₃, pH 7.4) containing 24 µg/ml apramycin at 28°C for 72 hr. Then, 1 ml of the culture was inoculated into 100 ml of the main medium (2.0% D-glucose, 0.5% yeast extract, 1.0% polypeptone, 1.0% soy protein, 0.04% NaCl, 0.04% K₂HPO₄, 0.3% CaCO₃, pH 7.4) containing 24 µg/ml apramycin and was incubated at 28°C for 48 hr, followed by the addition of 1 ml acetone. After 24-hr cultivation, biotransformation was carried out with CP (20 mg/ml in water) which was added to the culture at a final concentration of 4 mg/ml. Additional CP was added as it was consumed. Conversion samples (500 µl) were mixed with 250 µl acetonitrile and 250 µl methanol. After centrifugation at 15000 rpm for 10 min, the supernatant was analyzed by HPLC.

HPLC analysis. PV and CP were analyzed by HPLC on a Chromolith Performance RP-18e (4.6 mm I.D. × 100 mm) column at 40°C using a methanol gradient in aqueous solution.
(containing 0.1% triethylamine and 0.1% acetic acid) from 50% to 90% for 3 min, 90% for 0.5 min, and 50% for 2.5 min at a flow rate of 2.0 ml/min. The derivatives were detected by UV-monitoring at 238 nm. PV and CP had retention times of 1.8 min and 3.2 min, respectively.

Sequence information. The DNA sequences of pPA43082, pTAOR4-Rev-boxAB, and the Clal-Xhol acetone-inducible fragment containing *aceA-Pace-orfA-orfB* are available in GenBank as accession numbers AB600171, AB600173, and AB600172, respectively.
Results and Discussion

Plasmid isolation from P. autotrophica and identification of the replication origin

A P. autotrophica-specific host-vector system was required for our approach to efficient biotransformation with P. autotrophica strains in which improved vdh genes are expressed. However, such a system was unavailable, so we sought to construct an original expression vector for P. autotrophica.

The literature contains no prior report on the Pseudonocardia plasmid. We searched for the native endogenous plasmid in P. autotrophica strains. Ten of the 25 strains in the DSMZ culture collection were found to contain cryptic plasmids. Three plasmids were sequenced and found to be nearly identical. The plasmid referred to as pPA43082 was isolated from P. autotrophica DSM 43082; it is a circular plasmid of 8047 bp in size. The rolling-circle replication system of pPA43082 consists of the rep gene and double-strand origin (DSO)-like, and single-strand origin (SSO)-like sequences [15]. In addition to the replication origin, 3 open-reading frames were deduced; ORF1 showed significant similarity to partitioning protein ParA from Clavibacter michiganensis (34% identity); ORF2 showed significant similarity to transcriptional regulator TraB from Streptomyces ghanaensis (36% identity); ORF3 showed significant similarity to FtsK, which is involved in cell division in Rhodococcus erythropolis (31% identity) (Fig.1A). The rep gene shared 40% identity with that of pAP1 from Arcanobacterium pyogenes.

The region essential for replication was determined using P. autotrophica NBRC 12743 as a host by assessing the transformation ability of plasmids carrying different lengths of rep-flanking regions. The DNA fragment (between nucleotides 4201 and 6300) was recognized as the essential region for replication of pPA43082. This fragment
was inserted into pTNR-oriT to yield the *E. coli-P. autotrophica* shuttle vector pTNR-oriT-rep1.

Identification of the acetone-inducible promoter and construction of expression vector pTAOR4-Rev

To obtain an inducible promoter to regulate expression of cloned genes in *Pseudonocardia*, we searched for proteins whose expression is upregulated by solvents (acetone and DMSO) or chemicals (VD$_2$ and VD$_3$). After cultivation to mid-log phase, each solvent or chemical was added and the cultures were incubated for an additional 24 hr. Cell-free extracts were prepared and analyzed by SDS-PAGE. The inducible protein was not observed in cultures to which VD$_2$, VD$_3$, and DMSO were added. In contrast, a protein with molecular weight of about 55 kDa was induced by acetone. Its expression increased with acetone in a dose-dependent manner and reached maximum expression at 1% acetone (Fig. 2A). 2D-PAGE was performed for more precise analysis and revealed that 3 proteins of ~55 kDa were induced significantly by acetone (Fig. 2B). One of the proteins was recovered from the 2D gel and subjected to amino acid sequence analysis. Two internal peptide sequences, GQYFENPTPITG and MLDHYQQTK, were determined and degenerate primers were designed to clone the gene encoding the protein. After sequencing the PCR products along with successive gene walking by inverse PCR, we obtained 5158 bp of sequence information and identified 3 open reading frames, *aceA-orfA-orfB* (Fig. 2C). The deduced amino acid sequence of *aceA* (543 amino acids with a molecular weight of 59,003 Da), which runs divergently to *orfA-orfB*, contained the determined peptide sequences, indicating that this gene encoded the acetone-inducible protein. The deduced product of *aceA* shared
strong similarity with aldehyde dehydrogenase from *Actinosynnema mirum* DSM 43827 (82% identity). Acetone, for its analogous structure to acetaldehyde, is assumed to act as an inducer in the putative acetaldehyde-inducible system. *orfA* is 341 bp upstream of *aceA* and its deduced product (475 amino acids with a molecular weight of 51,851 Da) shared significant similarity with a phytochrome sensor protein in *Kribbella flavida* DSM 17836 (54% identity). *orfB* encodes a protein comprising 221 amino acids with a molecular weight of 24,156 Da. It shares significant similarity with a putative fructose transport system kinase in *Streptomyces viridochromogenes* DSM 40736 (65% identity). The functional correlation of *aceA* with *orfA* and *orfB* remains unclear. Putative promoter -35 and -10 regions were found 205 bp upstream [TTCACG] and 182 bp upstream [TATGGT] of the *aceA* start codon.

The expression vector pTAOR4-Rev was constructed with the replication origin of pPA43082 and *oriT*, along with the acetone-inducible promoter and a transcriptional terminator (Fig. 1B). In addition to plasmid transfer by conjugation between *E. coli* and *P. autotrophica*, plasmid transformation by electroporation was tested. The highest transformation efficiency was 5×10^2 per µg of plasmid DNA when electroporation was performed in 0.1 cm gap Gene Pulser Cuvettes with 1.5 kV, 400 Ω resistance, and 25 µF. Although the transformation efficiency is not high, it is sufficient to obtain transformants for protein expression experiments. As *P. autotrophica* cells tend to aggregate during culture, cells were dispersed well before competent cell preparation.

Acetone-inducible expression of boxAB and vdh

The expression of *boxAB* and *vdh* was investigated with the inducible expression system in *P. autotrophica*. The fragment containing *boxAB* or *vdh* was inserted into
pTAOR4-Rev to construct pTAOR4-Rev-boxAB and pTAOR3-vdh. Cell-free extracts prepared from *P. autotrophica* plasmid transformants were applied to SDS-PAGE and reduced CO difference spectral analysis (CDSA) to evaluate the yield of active P450. SDS-PAGE revealed acetone-dependent induction of BoxA and Vdh (Fig. 3A). The CDSA revealed that the spectral peak at 450 nm assigned to the active form of P450 was detected after acetone induction in both samples of BoxA and Vdh, whereas the cell-free extracts from the non-induced culture did not yield a noticeable peak at 450 nm (Fig. 3B). The *P. autotrophica* genome encodes more than 20 P450 genes (data not shown). Expression of these endogenous P450 genes appeared to be below detection limits under the conditions used here. These results suggest that active BoxA and Vdh were expressed under the control of the acetone-inducible promoter (*Pace*) in *P. autotrophica*. The expression yields of BoxA and Vdh were 121 nM and 179 nM in the culture base, respectively.

Biotransformation of compactin (CP) to pravastatin (PV)

The efficiency of CP to PV biotransformation was investigated in resting cells of *P. autotrophica/pTAOR4-Rev-boxAB*. The host strains *P. autotrophica, P. autotrophica/pTAOR*, and *P. autotrophica/pTAOR4-Rev-boxAB* were cultivated in the presence or absence of acetone. The PV yield was measured by HPLC. The host strain and *P. autotrophica/pTAOR* showed no enhancement of hydroxylation activity to CP by acetone induction while a low concentration of PV was observed, suggesting that *P. autotrophica* has weak endogenous CP 6β-hydroxylase activity (Fig. 4A). In contrast, *P. autotrophica/pTAOR4-Rev-boxAB* showed 3.3-fold increased activity after acetone induction. The PV productivities remained low without acetone induction and were
similar to those observed in strains having no boxA, indicating that most CP was hydroxylated by BoxA during biotransformation with acetone induction and that the basal expression level from Pace is very low (Fig. 3, Fig. 4).

PV production was carried out in batch culture of P. autotrophica/pTAOR4-Rev-boxAB. P. autotrophica/pTAOR4-Rev-BoxAB was cultivated for 48 hr in 100 ml of the main medium in a 500-ml flask, followed by addition of 1 ml acetone. After 24 hr cultivation, CP was added to the culture to initiate PV production. CP was hydroxylated to PV almost stoichiometrically, implying highly efficient biotransformation. PV accumulated to 14.3 g/l after 100-hr biotransformation (Fig. 4B). The production profile was the same as that obtained in scale-up biotransformation in a 3-l jar fermentor (data not shown). PV production by biotransformation systems have been reported previously. Biotransformation with Actinomadura sp. ATCC 55678, Streptomyces sp. Y-110, and Pseudonocardia autotrophica BCRC 12444 yielded 0.8 g/l/7 days, 1.5 g/l/6 days, and 0.1 g/l/6 days PV production, respectively [7,8,9]. In comparison to these previously reported productivities, P. autotrophica/pTAOR4-Rev-boxAB yielded much higher PV accumulation.

PV accumulation with Streptomyces sp. TM-7, the origin strain of boxAB, and boxAB-expressing E. coli was evaluated. Streptomyces sp. TM-7 accumulated 4.6 g/l PV from 8.2 g/l CP after 160-hr biotransformation in batch culture. The yield was about 50%. A tolC/acrAB-deficient strain of E. coli expressing boxAB showed high activity, converting 1.7 g/l CP completely to PV after 24-hr biotransformation with resting cells [16]. Regardless of differences between growing and resting cell reactions, E. coli expressing boxAB achieved higher PV production (0.8 g/l/9 hr) than did Streptomyces sp.
TM-7 (0.3 g/l/9 hr). However, *E. coli* could not accumulate more than 2 g/l, possibly due to its poor tolerance of CP and PV (data not shown). Judging strictly by PV accumulation rate, *Streptomyces* sp. TM-7 (4.6 g/l) was superior to *E. coli* expressing *boxAB*. *P. autotrophica*/*pTAOR4-Rev-boxAB* showed the best PV accumulation of all tested strains.

In this study, a novel expression vector in *P. autotrophica* was created and applied to a PV production system. The system may have utility in industrial PV production. Furthermore, the system may be used for biotransformation of other substrates to industrially important materials.
Acknowledgements

We thank T. Harada for providing technical assistance. We are also grateful to all our research group members for their kind help and valuable advice.
References

Figure Legends

Fig. 1. Schematic maps of pPA43082 and pTAOR4-Rev. (A) Schematic map of cryptic plasmid pPA43082. Deduced amino acid sequences of ORF1, ORF2, and ORF3 showed significant similarity to PerA, TraB, and FtsK, respectively. The region including rep (nt 4201–6300 in pPA43082) was used for pTAOR4-Rev construction. (B) Schematic map of expression vector pTAOR4-Rev. Apr’, apramycin resistance gene; ori, replication origin for E. coli; Pace, acetone-inducible promoter; MCS, multiple cloning site; Term, transcriptional terminator; fragment containing rep, minimum region derived from pPA43082 for autonomous replication of the plasmid in P. autotrophica. (C) Sequence of ribosome binding site (RBS) and multiple cloning site. The RBS sequence is dot-underlined. All restriction enzyme sites in the multiple cloning site are unique.

Fig. 2. Identification of acetone-inducible protein. (A) The cell-free extract samples prepared from P. autotrophica cultures induced with different concentrations of acetone: 0% (lane 1), 0.01% (lane 2), 0.05% (lane 3), 0.1 % (lane 4), 0.5%, (lane 5), and 1.0% (lane 6). M, Molecular marker. The arrow represents acetone-inducible protein (AIP). Cell extracts (15 µg of protein) were resolved by SDS-PAGE with 12.5% polyacrylamide gel and proteins were stained with Coomassie Brilliant Blue G-250 (B) The cell-free extract samples shown in Fig. 2A, lane 1 and lane 6, were resolved by 2D-PAGE as described in Materials and Methods. The arrows show AIPs. The bold arrow represents the most highly induced protein that was subjected to amino acid sequence analysis. (C) Restriction map of the aceA region. The arrows indicate ORFs.

Fig. 3. Expression of recombinant P450s in P. autotrophica. (A) SDS-PAGE was
performed on cell-free extracts. Strain A, *P. autotrophica* pTAOR3-vdh; B, *P. autotrophica* NBRC 12743 (wild type); C, *P. autotrophica* pTAOR; D, *P. autotrophica* pTAOR4-Rev-boxAB. + and - represent presence and absence of acetone induction. Open and closed triangles represent acetone-inducible protein and expressed recombinant P450s, respectively. Cell extracts (15 µg of protein) were resolved by SDS-PAGE with 10-20% polyacrylamide gel and proteins were stained with Coomassie Brilliant Blue G-250. (B) Active P450 expression was detected by reduced CO difference spectral analysis (CDSA). Strain A (*P. autotrophica* pTAOR3-vdh) and strain D (*P. autotrophica* pTAOR4-Rev-boxAB) were cultivated in the presence and absence of acetone induction. Cell-free extracts were analyzed by CDSA. (+) and (–) represent presence and absence of acetone induction.

Fig. 4. Biotransformation of compactin (CP) to pravastatin (PV). (A) CP hydroxylation was performed with *P. autotrophica* NBRC 12743 (wild type), *P. autotrophica* pTAOR, and *P. autotrophica* pTAOR4-Rev-boxAB. The resting cells were prepared from the cultures in the presence or absence of acetone and biotransformation with the cells was performed for 24 hr at 28°C. PV production was measured in 4 independent tests. Gray bars show PV production activities (mg/l/24 hr) (B) Time course of PV production in batch culture of *P. autotrophica* pTAOR4-Rev-boxAB. The concentrations of PV and CP were monitored during CP biotransformation in batch culture. Filled diamonds and open squares represent the concentrations (g/l) of PV and CP, respectively. CP was supplied to culture as it was consumed.
(A) pPA43082
8047 bp
orf1
orf2
orf3
rep

(B) pTAOR4-Rev
(6307 bp)
oriT
rep
ori
BsrGI
BamHI
Apr
Pace
Term
KpnI
MCS

(C)
RBS

Ndel
NheI
HpaI
NcoI
EcoRI
StuI

CCC CCA CGG GAA GGA CCA TCG CAT ATG GCG CTA GCG TTA ACG CGG CCG C
SnaBI MfeI SpeI
ATG CAT TAC GTA CAA TTG ACT AGT CGA CCC

Fig. 1
Fig. 2

(A) SDS-PAGE gel showing protein bands with molecular weights (kDa) of 97.4, 66.2, 45.0, 31.0, 21.5, and 14.4. The gel is stained with Coomassie Blue and run under reducing conditions.

(B) Western blot analysis with antibodies against orfA and orfB proteins. Two sets of blots show protein expression under pH 3 (-Acetone) and pH 10 (+Acetone) conditions with and without acetone treatment. Arrows indicate the migration of the proteins.

(C) Schematic diagram of the orfA and orfB genes with restriction sites for XhoI, AatII, and ClaI. The genes are located close to each other on the genome, with orfB upstream of orfA and aceA downstream. The scale bar represents 1 kbp.
Fig. 3

(A) SDS-PAGE gel showing protein bands for strains A, B, C, and D with and without acetone. The molecular weights (kDa) are indicated at the left side of the gel.

(B) Absorbance spectra for strains A and D with and without acetone. The spectra are plotted against wavelength (nm) on the x-axis and absorbance on the y-axis.
Fig. 4

(A) Pravastatin production (mg/l/24 hr) with acetone induction. The table shows the pravastatin production for different strains: Wild type, pTAOR, and pTAOR4-Rev-boxAB.

(B) Concentration of pravastatin (g/l) over time (hr). The graph compares the pravastatin concentration between PV and CP.
Construction of a novel expression vector in *Pseudonocardia autotrophica* and its application to efficient biotransformation of compactin to pravastatin, a specific HMG-CoA reductase inhibitor

Yoshikazu Fujii, Koji Norihisa, Tadashi Fujii, Yasuhide Aritoku, Yusuke Kagawa, Khalid Ibrahim Sallam, Osamu Johdo, Akira Arisawa, Tomohiro Tamura

Biochemical and Biophysical Research Communications, 2010

Supplementary Methods

Plasmid extraction from P. autotrophica. *P. autotrophica* DSM 43082 was cultured in 7 ml LB medium with 2 glass beads (5 mm) at 30 °C and the cells were harvested. The cells were suspended in 400 µl P1 buffer (QIAGEN, Hilden, Germany) containing 1 mg/ml lysozyme and incubated for 30 min at 37 °C. Plasmid extraction was performed according to manufacturer’s instructions (QIAGEN). The extracted plasmid, referred to as pPA43082, was sequenced using the BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems Inc., CA, USA) according to the manufacturer’s instructions on an ABI Prism 3100 automated sequencer (Applied Biosystems Inc.).

Transformation by conjugation with E. coli S17-1. *E. coli* S17-1 was transformed with pTNR-oriT-rep1 and the transformants were incubated for 10 hr at 37 °C in 2 ml LB medium containing 25 µg/ml kanamycin. Then, 200 µl of the cell culture was centrifuged at 7000 rpm for 30 sec and the cell pellet was resuspended in 200 µl LB medium. The 200 µl of *E. coli* S17-1 cell suspension was mixed with 500 µl of *P.*
P. autotrophica mid-log phase culture, followed by centrifugation at 7000 rpm for 30 sec and resuspension in 500 µl LB medium. The cell suspension was spread onto an LB agar plate. After 24 hr at 30 °C, the cells grown on the LB plate were suspended in 2 ml LB medium and spread on the LB agar containing 200 µg/ml kanamycin and 50 µg/ml nalidixic acid. After incubation for 10 days at 30 °C, transformant colonies appeared.

Sequence analysis of the region encoding acetone-inducible protein. *P. autotrophica* NBRC 12743 was cultivated in 200 ml LB medium for 70 hr at 30 °C, and 2 ml acetone was added, followed by further cultivation for 24 hr. After harvesting, cells were resuspended in 20 ml buffer A (50 mM potassium phosphate buffer pH 7.4, 10% glycerol) and disrupted with a FastPROTEIN BLUE kit (Funakoshi, Tokyo, Japan) on a FastPrep FP120 (Funakoshi) at 6.0 speed for 20 sec, 3 times. Cell-free extract was prepared by centrifugation and subjected to 2D-PAGE as described below. Then, 25 µl of each sample was mixed with a swelling solution (7 M urea, 2 M thiourea, 20 mM DTT, 2 mM Tris-(2-cyanoethyl) phosphine, 2% CHAPS, 0.2% BioLyte 3-10, bromophenol blue), for 2D-PAGE. An IPG ReadyStrip gel (7 cm, pH3-10NL, BIO-RAD Laboratories, CA, USA) was swelled with 125 µl of sample solution for 12 hr, which was applied to the first PAGE according to a prescribed program. The gel was equilibrated for 15 min with buffer (50 mM Tris-HCl pH 8.5, 6 M urea, 30% glycerol, 2% SDS, 1% DTT, 0.005% bromophenol blue), followed by equilibration for 15 min (50 mM Tris-HCl pH 8.5, 6 M urea, 30% glycerol, 2% SDS, 4.5% iodoacetamide, 0.005% bromophenol blue). After the IPG gel was set with a 12.5% polyacrylamide gel (7 × 6.5 cm), SDS-PAGE was performed. After staining the gel with SYPRO Ruby (Invitrogen, CA, USA), the gel spot containing the most strongly induced 55kDa protein
was excised and subjected to in-gel digestion with lysyl endopeptidase. The digested peptides were extracted and separated by reversed-phase HPLC with TSKgel ODS-80Ts (TOSOH, Tokyo, Japan). Two isolated peptides were sequenced with the Procise 494 T Protein Sequence System (Applied Biosystems Inc.). Based on the sequenced peptides, GQYFENPTPITG and MLDHYQQTK, the degenerate primers aceA-1F (5′-GG[C/G]CA[A/G]TA[C/T]TT[C/T]GA[A/G]AA[C/T]CC-3′) and aceA-1R (5′-TGCTG[A/G]TA[A/G]TG[A/G]TC[A/C/G/T]A[A/G]CAT-3′) were designed. PCR was performed with the primers and genomic DNA from *P. autotrophica* NBRC 12743. A 1.3-kb DNA fragment was amplified and sequenced. Based on the DNA sequence, the primers aceA-inv-1F (5′-CGGATCGAGGCGGCTCACCAGGCGGTCGCG-3′) and aceA-inv-1R (5′-GTCGGCCATCTTGTTCAGGATGTTCGCCCG-3′) were prepared for inverse PCR. Genomic DNA was digested with *Cla*I, *Aat*II, or *Xho*I. Linear genomic fragments were circularized by ligation with T4 DNA ligase. The ligation product was used as the template for inverse PCR.

Inverse PCR was performed with the primers and *Cla*I-digested genomic DNA as template. The primer pair gave rise to a 2.0-kb fragment. The fragment was isolated, sequenced, and used to design specific primers for the next inverse PCR using *Aat*II-digested genomic DNA as a template. The specific primer pair aceA-inv-2F (5′-ATCACCAGGGGAACCTCCAGAGGTGCGC-3′) and aceA-inv-2R (5′-CGGCGTGGGTCTGCTCGACGTGACGCTGCC-3′) gave rise to a 1.0-kb fragment. The fragment was isolated, sequenced, and used to design specific primers for use in the next inverse PCR using *Xho*I-digested genomic DNA as a template. The specific primers aceA-inv-3F (5′-GGTCCCGTCTCGAGCTCGC-3′) and aceA-inv-3R (5′-ACGCCGATGGCCACCGCGTGGTGCT-3′) gave rise to a 5-kb fragment. The fragment
was isolated and sequenced.

Construction of the expression vector. Plasmid pTNR-AA was constructed by replacement of the kanamycin-resistance gene of pTNR-KA [1] with the apramycin-resistance gene. The apramycin-resistance gene (GenBank accession number X01385) was kindly provided by Dr. I. Nagy (MPI for Biochemistry). PCR amplification of the apramycin-resistance gene was performed with 2 oligonucleotide primers, which were designed to include *Bam*HI (5′-CGCGGATCCATGGTATTGAGTACCAGCGTA-3′; *Bam*HI site is underlined) and *Hind*III sites (5′-CGAAGCTTACGTCGGAGGTCGGCTTTTTTC-3′; *Hind*III is underlined). The amplified fragment was purified, digested with *Bam*HI and *Hind*III, and ligated into pre-digested pTNR-KA. The resultant vector was designated pTNR-AA (6396 bp).

The DNA fragment encoding oriT was amplified by using primers OriT-1F (5′-GCCTGTACATCGCGACGTGCTCATAGTCC-3′; *Bsr*GI site is underlined) and OriT-1R (5′-GCCGGATCCCTGATAGAAACAGAAGCCAC-3′; *Bam*HI site is underlined) and pTNR-oriT [1] as template. The amplified DNA fragment was digested with *Bsr*GI and *Bam*HI and ligated into pre-digested pTNR-AA, yielding pTNR-AA-oriT. To remove IS2 and the ampicillin-resistance gene of pTNR-AA-oriT, the DNA fragment containing the apramycin-resistance gene and replication origin for *E. coli* was amplified with primers AA-apr-1F (5′-GTCCCGAACGCTGGTGATGGGATCCAT-3′; *Bam*HI site is underlined) and AA-ori-1R (5′-GCCGGTACCCAAAATCCCTACGTGAGT-3′; *Kpn*I site is underlined) and pTNR-AA as template. The amplified DNA fragment was digested with
BamHI and KpnI and ligated into pre-digested pTNR-AA-oriT to create pTNR-A-oriT. The DNA fragment encoding the replication origin for *P. autotrophica* was amplified with rep-4F (5′-GCCGGTACCTCCCCGCCCCGCACGGCA-3′; KpnI site is underlined) and rep-6R (5′-GCCTGTACAATTAGAGGCCAGATGCTTTAT-3′; BsrGI site is underlined) and pPA43082 as template. The amplified DNA fragment was digested with KpnI and BsrGI and ligated into pre-digested pTNR-A-oriT to generate pTAOR. The DNA fragment encoding acetone-inducible promoter (*Pace*) was amplified with Pace-HindIII-1F (5′-GCCAAGCTTGTGCTGGCTGCTGCTGCTGCT-3′; HindIII site is underlined) and Pace-NdeI-1R (5′-GCCCCATATGTGGTCCCTCCGGTGAGGGGATG-3′; NdeI site is underlined) and the genomic DNA of *P. autotrophica* NBRC 12743 as template. The DNA fragment encoding vitamin D₃ hydroxylase (*vdh*: Accession no. AB456955) was with VDH-1F (5′-GCCCTATGCCGCTGACCACCACCGGC-3′; NdeI site is underlined) and VDH-1R (5′-GCCGCTAGCTCAGGCGCTGCGCGGGCCCAT-3′; NheI site is underlined) and the genomic DNA of *P. autotrophica* NBRC 12743 as a template [2]. The amplified fragments encoding *Pace* and *vdh* were digested with HindIII and NdeI, and NdeI and NheI, respectively, followed by ligation with pTAOR digested with HindIII and NheI, to generate pTAOR2-vdh. The DNA fragment encoding terminator was amplified with Terminator-1F (5′-GCCCAATTTGACTAGTGCACCCGACCACGGCACC-3′; MfeI and SpeI sites are underlined) and Terminator-1R (5′-GCCCTTAAGTAGTCGCGTGAGGGCGCGCG-3′; AflII site is underlined) with pTipQT2 [3] as a template. The amplified DNA fragment was digested with MfeI and AflII and ligated into pre-digested pTAOR2-vdh to generate pTAOR3-vdh. The multiple
cloning site of the vector was constructed by the addition of NdeI and SpeI sites to the multiple cloning site of pTNR-AA during the vdh gene and terminator insertion.

The DNA fragment encoding boxAB (Accession no. AB180845) was amplified with BoxAB-1F (5′-GCCCATATGACCGAGACCGTTACGACGCCC-3′; NdeI site is underlined) and BoxAB-1R (5′-GCCACTAGTCTACTCGACGACGCGTACCGC-3′; SpeI site is underlined) with the genomic DNA of Streptomyces sp. TM-7 as a template. The amplified DNA fragment was digested with NdeI and SpeI, and the vdh gene of pTAOR3-vdh was replaced with this fragment to generate pTAOR3-boxAB.

pTAOR3-boxAB was digested with HindIII and AflII, blunted by T4 DNA polymerase and self-ligated to construct plasmid pTAOR4. The DNA fragment encoding Pace-boxAB-terminator was amplified with PBT-1F (5′-GCCGGTACCGTGCCCTGCTGCTGCTGCCGC-3′; KpnI site is underlined) and PBT-1R (5′-GCCGGTACCTAGAGTCCCGCTGAGGCGGCG-3′; KpnI site is underlined) with pTAOR3-boxAB as a template. The amplified DNA fragment was ligated into the KpnI site of pTAOR4 to generate pTAOR4-For-boxAB and pTAOR4-Rev-boxAB.

References