<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>捕殺個体を利用したニホンツキノワグマの栄養状態および繁殖評価方法に関する研究</td>
</tr>
<tr>
<td>著者</td>
<td>山中 淳史</td>
</tr>
<tr>
<td>言及</td>
<td>北海道大学/博士/獣医学/甲第9957号</td>
</tr>
<tr>
<td>発行日</td>
<td>2011-03-24</td>
</tr>
<tr>
<td>DOI</td>
<td>10.14943/doctoral.k9957</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2115/44982</td>
</tr>
<tr>
<td>タイプ</td>
<td>theses (doctoral)</td>
</tr>
</tbody>
</table>

Hokkaido University Collection of Scholarly and Academic Papers: HUSCAP
捕殺個体を利用したニホンツキノワグマ

(Ursus thibetanus japonicus) の
栄養状態および繁殖評価方法に関する研究

2011年

北海道大学大学院獣医学研究科
環境獣医学講座 野生動物学教室

山中 淳史
目次
緒言 ... 1
ニホンツキノワグマの現状 ... 1
ツキノワグマの栄養状態および繁殖の研究方法 ... 2
ツキノワグマの食性と栄養状態の周年変化 ... 3
ツキノワグマの雌の繁殖サイクル .. 4
本研究の目的 .. 5
第一章 栄養状態評価指標として用いた三つの体脂肪量指標（大腿骨骨髄内脂肪含有率、腎周囲脂肪係数、腹壁の皮下脂肪厚）の特性 ― 栄養状態レベルの推定および年齢・性別・捕殺時期の影響 .. 7
背景 ... 7
材料と方法 .. 9
結果 ... 10
考察 ... 11
小括 .. 14
図表 ... 15
第二章 ツキノワグマの栄養状態の良否と人里への出没行動 ... 20
背景 ... 20
材料と方法 .. 21
結果 ... 21
考察 ... 22
小括 .. 24
図表 ... 25
第三章 黄体、白体および胎盤痕を用いた繁殖評価方法の開発 .. 28
背景 ... 28
第一節 黄体、白体および胎盤痕観察結果 .. 31
材料と方法 .. 31
結果 ... 32
緒言

ニホンツキノワグマの現状

ニホンツキノワグマ（*Ursus thibetanus japonicus*; 以下ツキノワグマ）は日本の森林生態系を代表する大型哺乳類であり、その保全は森林生態系全体の保全にも寄与すると考えられている。ツキノワグマは、アジアクロクマの一亜種で、本州と四国に分布する（Yamazaki, 2009）。アジアクロクマは、西アジアから東アジアにかけて分布し、IUCN 分類で Vulnerable（絶滅危惧 II 類）に分類される絶滅危惧種である（IUCN, 2010）。日本版レッドリストでは、ツキノワグマは種としては登録されていないが、絶滅のおそれのある地域個体群として 6 つの地域個体群（下北半島、紀伊半島、東中国地域、西中国地域、四国山地、九州地方※）が指定されている（環境省, 2007a）。

一方、近年ツキノワグマの人里への出没が一つの社会問題となっている。野生動物とヒトの共存という概念が社会的コンセンサスとなり、ツキノワグマとヒトの双方にとって望ましい解決方法が模索されているものの、人および経済的被害を回避するため多くのツキノワグマが有害捕獲により捕殺処分され、保全への大きな脅威の一つになっている。捕殺処分にはヒトの生命と生活を守るためにやむを得ない面があるものの、ツキノワグマとヒトが共存していくためには、そのような事態に至る前に両者の軋轢を回避することが重要である。そうした取り組みの一つとして、出没が発生した場合にも重大な結果に至らないよう、国や地方自治体が、出没対応マニュアルの発行や出没情報の提供を行っている（環境省, 2007b）。しかし、根本的解決につながり得る出没原因およびそのメカニズムの解明は未だ研究の途上にある。

ツキノワグマを適正に保護管理し、ヒトとの共存を図ることには、種および個体群の保全、森林生態系の保全、そして社会問題への対応という多面的な意義がある。その実現には、他の環境問題と同様、法整備や行政的対応、一般社会的支持醸成など、社会全体での取り組みが必要であるが、何よりその基礎となるのはツキノワグマの基本的な生物学的情報を把握することである。必要とされる生物学的情報は目的によって様々であるが、栄養状態と繁殖は、個体数の増減、行動に大きな影響を与えるので、最も基本的な情報の一つであると思われる。

※ 九州地方では事実上絶滅したと考えられている（Oi and Yamazaki, 2006）。
ツキノワグマの栄養状態および繁殖の研究方法

ツキノワグマの栄養状態や繁殖の研究方法には、野生個体を用いる方法、飼育個体を用いる方法、および捕殺された野生個体を用いる方法がある。野生個体を用いる方法では、個体を捕獲し、発信機・GPSで標識後、追跡する（テレメトリー）。普通、行動圏・行動パターンなどを研究するために行われるが、捕獲の際に外部計測や採血などを行って栄養状態に関するデータを得たり、雌成齢を長年にわたって追跡し、目視により連れ子の有無を観察して繁殖状況を研究することも可能である。この方法は、本来の生息地におけるデータが直接的に得られるという大きな利点があるが、捕獲と追跡に高い技能と大きな労力を要し、多くの例数を得るのは難しい。また、ツキノワグマが森林性の動物であり地形の急峻な山間部に生息することも、研究遂行上の大きな障害となっている。

飼育個体を用いる方法は、飼育によるバイアスが発生する可能性はあるものの、介入実験を行えが大きな利点である。ただし、この方法も、実施には高い技術と大きな労力が必要で、多くの例数を得ることが難しいのは、野生個体を用いる方法と同様である。

捕殺された野生個体を用いる方法は、本研究で用いたアプローチである。不幸なことだが、ツキノワグマは毎年、有害捕獲により各地で相当な数が捕殺される。全国的には、通常の年でも1,000頭前後、出没の多い年では2,500～4,500頭もの捕殺がある（環境省, 2007b）。捕殺を否定するものではないが、結果として捕殺された個体は生物学的情報の有力な情報源であり、その有効利用の模索はツキノワグマ研究の一分野として欠かせないと考える。捕殺個体を対象とするゆえにサンプリングバイアスがある程度発生する可能性（Mano, 1995; 大井ら, 2008; Oi, 2009）を否定できないものの、捕殺個体から得られるデータは野生個体全体の状況を反映したものであると考えられる。捕殺個体を利用する方法の強みは、上記二つの方法に比べ多くの例数を得やすい点である。有害捕獲にたずさわる現場のハンターや行政関係者が特別な訓練なしに実施できるような、簡単な採材方法をベースとした分析手法を確立すれば、複数の現場に採材を依頼し、多くのサンプルを集めることができる。また、捕殺個体は人里周辺に出没した個体であり、出没問題を考える上ではデータの採取が不可欠な対象でもある。さらに、捕殺個体を利用した評価は、将来のツキノワグマの保護管理が計画的な個体数調整を実施す
る段階に入ったときに、個体群の質の定常的なモニタリングにも利用できると思われる。

上記に述べた三つの方法はそれぞれに長所短所があり、相互に補完する性質のものである。ツキノワグマの栄養状態や繁殖を理解するには、それぞれが有機的に結びつくことが重要である。

ツキノワグマの食性と栄養状態の周年変化

ツキノワグマの食性は、直接観察、食痕調査、胃内容分析、糞内容分析などの方法により多くの研究が行われ、比較的よく理解されている（橋本・高槻, 1997）。食性は植物食に偏った雑食性であり、季節の変化とともに利用する植物が変わる。典型的には、冬眠明けの春には主に新芽や草本類を食べ、夏になると草本類・液果類・昆虫類が主流となる。秋に入ると大量に液果類・堅果類を食べ、11月終わり頃に冬眠に入る。その後は、4月終わり頃に冬眠が明けるまで一切の採食を行わないと考えられている。これに伴い栄養状態も劇的な変化を遂げる。絶食状態の冬眠期を経えたツキノワグマの体重は、冬眠前に比べて大きく減少する（Hashimoto and Yasutake, 1999）。その後、秋になり液果類・堅果類を利用できるようになるまでの間、ツキノワグマの栄養状態はほぼ不変か徐々に悪化すると考えられている。堅果類が利用できるようになると、ツキノワグマの栄養状態は好転し、約5ヶ月に及ぶ冬眠中の絶食期間を乗り切るための体脂肪を蓄積する。冬眠中のエネルギー需要はこの体脂肪で賄われていると考えられている（Nelson, 1973）。したがって、ツキノワグマの栄養状態を評価する上で体脂肪量は重要な役割を持っている。

野生哺乳類の栄養状態を評価する方法には、外部計測による方法、血液成分の分析による方法、体脂肪蓄積量を評価する方法などがある（Harder and Kirkpatrick, 1996）。行政の管理下で実施される捕殺処分を前提とした場合、外部計測は捕獲者に依頼することになるが、正しく測定が行われたかを確認することが難しい。また、血液サンプルも捕獲者に依頼することになるが、採取に一定の技術が必要となる。一方、体脂肪蓄積量評価は、捕獲者にも容易な方法で採材し、サンプルを研究機関で一括して分析する体制をとることが可能である。本研究では、捕殺個体を用いた栄養状態評価としては、体脂肪蓄積量の評価が最も適していると考え、これを探用した。しかし、ツキノワグマの体脂肪蓄積量に関するこれまでの研究は少なく（羽澄ら, 1999）
1985; 岐阜県林政部自然環境保全課, 1995)、季節変化や性別・年齢の体脂肪蓄積量への影響は必ずしも明らかではない。これらの要因の影響を明らかにすることは、捕殺個体を利用した評価には不可欠である。なぜなら、捕殺される個体の年齢・性別・捕獲時期は様々であり、得られたデータを正しく解釈するためには、これら要因を考慮する必要があるからである。

ツキノワグマの食性、特に秋における堅果類依存性は、人里への出没原因と密接な関わりがあると推測されている (Oka et al., 2004)。出没の原因には、このほかにも山間部集落の過疎化・高齢化、耕作地放棄、狩猟人口の減少などが考えられている (環境省, 2007a)、出沒が非常に大きな年変動を持った現象であることから、生息地における食物状況の変動との関連が強く疑われる。食物の不足が出没の引き金になっているとすると、栄養状態と出没の間にはどのような関係があるのだろうか。単純には、出没が多い年には食物不足のために栄養状態が悪いと考えられるが、果たしてそうだろうか。

本研究では、捕殺個体の年齢・性別・捕獲時期が体脂肪蓄積量に及ぼす影響を調べ、それを考慮した上で栄養状態の年変動の評価を行い、出没（有害捕獲数）との関係について考察した。

ツキノワグマの雌の繁殖サイクル

ツキノワグマの交尾期は夏であり (山本ら, 1998)、出産期は冬眠中の1月下旬であるとされている (Iibuchi et al., 2009)。ツキノワグマは交尾排卵動物であると考えられており (Boone et al., 2004)。雌は交尾により排卵する。ツキノワグマには着床遅延があり、胚は胚盤胞の段階で成長を停止し、11月下旬に起こる着床までの間に子宮内に浮遊する (Sato et al., 2000a; Sato et al., 2000b; Sato et al., 2001; Tsubota et al., 2001)。着床後は約2ヶ月の胎子成長期間を経て出産に至る。一腹産子数は通常2であり、母子は産後約1年半行動を共にする (大井, 2009)（図1参照）。

捕殺個体を利用したクマ類の繁殖評価方法として、一般的なものに、卵巣の観察による黄体および白体の検出、子宮内膜の観察による胎盤痕の検出がある。黄体、白体および胎盤痕データは、これまで排卵数および着床数の推定に用いられることが多く、それ以外の応用はあまり行われなかった (Kordek and Lindzey, 1980; Tsubota et al., 1990; Tsubota et al., 1991; 片山ら, 1996; Mano and Tsubota, 2002)。
排卵数および着床数は、一腹産子数に密接に関連する繁殖指標であり、その大小は種の潜在的な繁殖能力を左右する。しかしながら、一腹産子数と同時に、出産率（出産する雌の割合、またはある1頭の雌が出産する確率）も繁殖能力に大きな影響を持つ。繁殖能力を正しく評価するには、一腹産子数と出産率の積（1回の出産で1頭の雌が生む子の数の期待値）で評価することが望ましい。つまり、繁殖能力の評価の際には、繁殖プロセスが成功した時に得られる子の数のみならず、そのプロセスが成功する確率も同時に評価する必要がある。こうした観点から、本研究では、黄体、白体および胎盤痕を用いて、出産率および排卵の成功確率を推定する方法の開発を試みた。また、クマ類の繁殖を生態学的観点で捉えた場合、出産後の子の哺乳プロセスの成否も重要である。本研究では、哺乳プロセスの成否に関する指標の開発も試みた。

本研究の目的

ツキノワグマの保護管理には、種の保全・森林生態系の保全・社会問題への対応という多面的な意義があり、その適切な実行が求められる。しかしながら、保護管理の基礎となるツキノワグマの生物学的情報は未だ乏しい。本研究では、生物学的情報として基本的な栄養状態および繁殖に焦点を当て、その評価方法を開発・確立することを目的とした。また、評価の手法としては捕殺個体の利用を前提とした。

第一章では、栄養状態指標として採用した3つの体脂肪指標の基本特性（年齢・性別・季節依存性）を明らかにし、これらの指標を今後の研究あるいはモニタリングに利用するための基盤とした。これを踏まえ、第二章では、体脂肪指標を用いて栄養状態と人里への出没の関連を検討した。第三章では、黄体、白体および胎盤痕を用いた繁殖評価方法を探索し、捕殺個体の出産歴の推定方法、ならびに新たな繁殖評価指標（排卵の成功確率、当歳子の早期死亡確率）の推定方法を確立した。また、実際に算出した指標から、クマ類の繁殖成功に関する考察を行った。
<table>
<thead>
<tr>
<th>1月</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12月</th>
</tr>
</thead>
<tbody>
<tr>
<td>冬眠期</td>
<td></td>
<td>交尾期</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>厳年</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>出産</th>
</tr>
</thead>
<tbody>
<tr>
<td>$i+1$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>嗚育期間</th>
</tr>
</thead>
</table>

| $i+2$ |

図1雌ツキノワグマの繁殖サイクルの模式図。一般的には図に示したような2年周期のサイクルを持つと考えられている。
第一章 栄養状態評価指標として用いた三つの体脂肪量指標（大腿骨骨髄内脂肪含有率、腎周囲脂肪係数、腹壁の皮下脂肪厚）の特性 — 栄養状態レベルの推定および年齢・性別・捕殺時期の影響

背景

野生哺乳類の栄養状態を調べる方法としては、体長や体重など外部計測値を用いる方法、体脂肪量を評価する方法、血液成分を調べる方法などがある。外部計測値から栄養状態を推定する場合、体重が基本となるが、体サイズの違いによる何らかの補正が必要になる。Catett et al. (2002) は、カナダに生息するホッキョクグマ（Ursus maritimus）、アメリカクロクマ（Ursus americanus）およびグリズリー（Ursus arctos）の体長および体重のデータから回帰直線を求め、各個体のデータがその回帰直線からどの程度ずれているか（残差）を BCI（Body Condition Index）と定義し、栄養状態を表す指標として用いた。BCI は外部計測から栄養状態を推測する方法として優れたものである。しかし、BCI は観測データから求められる回帰直線を基準とした評価方法であるので、観測データ数がそれほど多くなく、かつ特異的に誤差の大きいデータが含まれる場合、回帰直線自体の信頼性が低くなり、その結果 BCI の信頼性も低下する。Catett et al. (2002) が行ったように、一つのデータセットの観測データ数が数百から千にも及ぶ場合は特異的に誤差の大きいデータの影響が相対的に低下するため、BCI は信頼できる指標となると思われる。しかし、本研究では限られた期間の中で収集が期待できるデータ数はそれほど多くなく、外部計測の精度についても誤差が発生することが十分考えられたため、BCI をはじめとする外部計測データに基づく方法については検討しなかった。

血液成分から哺乳類の栄養状態を調べる方法に関しては、いくつかの先行研究がある（Harder and Kirkpatrick, 1996）。血中脂質や血中尿素窒素など、様々な血液成分を調べた例があるが、いずれもその解釈が難しく、外部計測や体脂肪量などに比べると、一般的な栄養状態の評価方法として優れているとは言い難い。その理由の一つは、血液は動物が利用するエネルギーや代謝物質の蓄積場所ではなく、いわば輸送を行う器官であることによると思われる。すなわち、血中成分は対象とする物質の血中への流入と流出のバランスを反映しているに過ぎず、必ずしも流入元や流出先における対象物質の多寡を直接的に反映するものではないと考え
本研究においては、体脂肪量を栄養状態の評価指標とすることとした。体脂肪量の評価は、非致死的なものとしてインピーダンス測定法がある。これは、体脂肪率を目的変数、体長・体重・インピーダンスを説明変数とする回帰式を事前に実験で求めておき、その回帰式をもとに検体の体脂肪率を求める方法である。原理的には、ヒトでよく用いられる体脂肪計と同じである。この方法は、中村ら（2008）が、アメリカクロクマで求められた回帰式を用いてツキノワグマの体脂肪率の評価に用いている。この方法は、非致死的に哺乳類の最大のエネルギー蓄積器官である脂肪の蓄積度合いを測定できるところに利点がある。しかし、この方法を有害捕獲個体に適用する場合には、捕殺地点に測定機器と測定技術を持った人員を配置する必要がある。また、有害捕獲個体を対象とする場合、必ずしも非致死的な測定方法である必要はない。

一方、致死的方法による体脂肪量の評価は、哺乳類では古くからシカ類を中心として行われてきた（Harder and Kirkpatrick, 1996）。一般には、大腿骨骨髄内脂肪、腎周囲脂肪、腰背部の皮下脂肪厚などがよく用いられてきた。シカ類の研究の過程で、これらの体内各部位の脂肪消費には、一定の順序があることが分かっている。体内の脂肪蓄積部位を、骨髄内、体腔内（腎周囲脂肪が相当）および皮下の 3 部位に分けた場合、栄養状態が非常に良い時には、3 部位全てに多くの脂肪が蓄積しているが、栄養状態が低下するに従い、まず皮下の脂肪が失われ、次に体腔内、そして最後に骨髄内の脂肪が消費されるといわれている（Riney, 1955）。もちろん、各部位の脂肪消費にはある程度のオーバーラップがあるが、概ねこのような消費の優先順位があるとされている。換言すれば、栄養状態を良好な状態から劣悪な状態まで広い範囲にわたって評価するには、上記の 3 部位全ての蓄積脂肪量を評価する必要がある。本研究ではこれを考慮し、大腿骨骨髄内脂肪含有率（femur marrow fat；以下 FMF）、腎周囲脂肪係数（kidney fat index；以下 KFI）および腹壁の皮下脂肪厚（abdominal subcutaneous fat；以下 ASF）の 3 指標を栄養状態評価指標とした。KFI については、Riney（1955）の定義がシカなどの反芻類の腎臓とその周囲脂肪を想定したものであるので、ツキノワグマへそのまま適用することが解剖学的に困難であった。このため、本研究では新たに修正腎脂肪係数（modified kidney fat index；以下 mKFI）を定義して、KFI に代えてツキノワグマの腎周囲脂肪の評価指標とした。

ツキノワグマに関し、大腿骨骨髄内脂肪や腎周囲脂肪を測定した例は少数存在するが（岐阜
県林政部自然環境保全課、1995; 羽澄ら、1985)、栄養状態を評価する上で考慮すべき個体の条件、すなわち年齢・性別・捕獲時期（季節）の影響は必ずしも十分には検討されていない。これら要因の影響を把握することは、今後の評価の基礎となるものであり、FMF、mKFIおよびASFをツキノワグマの栄養状態指標として確立するために不可欠である。本章では、年齢・性別・捕獲時期がFMF、mKFIおよびASFに及ぼす影響を明らかにした。

材料と方法

2006年に岐阜県で有害捕獲されたツキノワグマ捕殺個体を用いた。捕殺個体から、大腿骨、腎臓とその周囲脂肪、腹壁および歯を採取した。大腿骨は左右のどちらか一侧を、腎臓は周囲脂肪とともに原則両側を採取した。腹壁は、心窩部より手の平大以上の大きさの体壁を皮膚とともに採取した。歯以外は、採材後測定まで-30℃で冷凍保存した。

年齢は、歯のセメント質年輪カウントにより査定した（八谷・大泰司、1994）。原則として下顎第四前臼歯の歯根分岐部の年輪数で評価した。下顎第四前臼歯が入手できなかった場合には、上顎第四前臼歯や上下顎の第一前臼歯を用いた。査定によって得た年齢は、次の3つの年齢クラスに分類し、解析に供した。当歳子（Cub）：0歳、亜成獣（subadult）：2～4歳、成獣（adult）：5歳以上。なお、本研究において1歳の個体のサンプルは入手できなかった。

採取した大腿骨、腎臓とその周囲脂肪および腹壁より、それぞれ、FMF、KFI、mKFIおよびASFを測定した。FMFの測定はNeiland（1970）のオープン乾燥法によった。大腿骨をおよそ3等分に切断し、真中の1/3の部分から骨髄を採取し、60℃で乾燥させ、(乾燥重量)/(湿重量)×100(%)をもってFMFとした。乾燥重量は24時間以上乾燥させてもそれ以上サンプルの重量が減少しない重量とした。

KFIは、周囲脂肪を腎臓より剥離し、(周囲脂肪重量)/(腎臓重量)×100(%)をもって求めた（Riney, 1955）。KFIの修正指標として本研究で導入したmKFIは、基本的にはKFIと同様であるが、周囲脂肪として腎臓に直接付着している脂肪のみを対象とする点が異なる。

図1-1にツキノワグマの腎臓とその周囲組織の採取例を示す。説明のため周囲脂肪をA、Bの二つの部分に分けている。Aが腎臓に直接付着する周囲脂肪、Bがそれ以外の部分で背側体壁に付着している。Riney（1955）の定義通りにKFIを測定するには、B部の周囲脂肪を背側
体壁から注意深く剥離する必要がある。しかし、本研究で行ったように、不特定多数の協力者（ハンターや行政関係者）に採材を依頼せざるを得ない場合、B 部が途中で切れた採材になることが多く、Riney (1955) の定義による KFI の測定が不可能なケースが多発した。これを克服するため、本研究では A 部の周囲脂肪重量のみを用いて算出する mKFI を導入し、KFI との相関を調べた。腎臓とその周囲脂肪の採取に立ち会って採取が完全であることを確認した 30 組の腎臓を用いて相関を調べ、mKFI の有効性を確認したのち KFI の代替指標として用いた。

ASF は、簡便に皮下脂肪を測定するために本研究で新たに用いた方法である。捕殺個体から筋層および皮膚を含めて容易に切除が可能な部位として、腹壁を用いた。切除された腹壁サンプルを、皮膚を下にして平らな面の上に置き凍らせた後、毛流に対して垂直で、互いに約 30 mm 離れた 2 断面で切断した。各断面における皮下脂肪の最少厚みを測定し、2 断面の平均値を ASF とした。

FMF、mKFI および ASF の年齢・性別・季節依存性の解析は、3 元配置の分散分析と post hoc の Tukey’s honest significant difference method (TukeyHSD) による多重比較を行った。各体脂肪指標（FMF, n = 47; mKFI, n = 49; ASF, n = 38）に対して、年齢クラス、性別および捕殺月を説明変数として、説明変数間の相互作用を考慮しない加法モデルで解析した。統計解析ソフトウェアは R (R Development Core Team, 2007) を用い、ライブラリパッケージ MASS (Venables and Ripley, 2002) を併用した。有意水準は 5％未満の危険率とした。

結果
図 1-2 に KFI と mKFI の相関を示した。両者の相関は R² = 0.88 と強く、KFI の代替指標として mKFI が有効であることがわかった。

図 1-3A～C に、mKFI、ASF および FMF の捕獲時期による変化を示した。図中のデータは、年齢クラスおよび性別で層別した。mKFI および ASF は概ね 10 月に上昇を開始し、11 月および 12 月に高い値をとった。一方、FMF は当歳 (cub) クラスを除き、比較的一定の値を示した。表 1-1 に統計解析の結果をまとめた。mKFI の分散分析では、捕獲月 (P < 0.001) および年齢クラス (P = 0.023) が有意な影響を有していた。ASF では、すべての説明変数が有意な影響を示した（捕獲月および年齢クラス : P < 0.001, 性別 : P = 0.002）。FMF では年齢クラスが有
意の影響を有していた \((P < 0.001)\)。mKFI の多重比較では、11 月および 12 月の値は 7 月および 9 月の値より有意に高く \((P < 0.02)\)、当歳 (cub) クラスの値は亜成齢 (subadult) クラスより有意に低かった \((P = 0.049)\)。ASF の多重比較では、11 月の値は 7～10 月の値より有意に高く \((P < 0.001)\)、当歳 (cub) クラスは成齢 (adult) クラスより \((P = 0.001)\)、雌は雄より \((P = 0.004)\)、それぞれ有意に低かった。上記の結果は、概ね下記のように要約することができる。すなわち、(1) 全ての体脂肪指標において、当歳 (cub) クラスの値は他の年齢クラスのものより低かった。 (2) 晩秋期 (11 月・12 月) の mKFI やび ASF は、夏期 (7～9 月) のそれ比て高かった。 (3) ASF には性差があった。

図 1-4A および B は、それぞれ測定に供した各捕殺個体の体脂肪指標を FMF－mKFI 平面および mKFI－ASF 平面にプロットしたものである。FMF と mKFI は曲線関係にあり (図 1-4A)、FMF は mKFI が低値をとった場合のみ低い値をとり、mKFI が中程度以上の値をとる場合は、mKFI の値にあまり依存することなく高い値をとった。また、前述の統計解析の結果を受けて、図中では当歳 (cub) クラスとそれ以外の年齢クラス (図中 non-cub と表示) を層別して示しているが、FMF を同じ mKFI レベルで比較した場合、当歳 (cub) クラスの方が低い FMF 値を示した。mKFI と ASF の関係は直線的であった (図 1-4B)。また、年齢クラスと性別でデータを層別したが、mKFI と ASF の関係にこれらの要因の影響は特に認められなかった。

考察

KFI と mKFI の間に認められた強い相関から、mKFI がツキノワグマの腎周囲脂肪評価指標として有効であることが確認できた。mKFI は腎周囲脂肪が完全に採取されていない場合でも測定が可能であり、サンプル採取に熟練を必要としない利点がある。KFI と mKFI の間に認められた強い相関は、一つにはツキノワグマの腎臓が分葉腎であることに関因すると考えられる。腎臓に直接付着する周囲脂肪 (図 1-1 中 A 部の周囲脂肪) は、腎葉間の溝周辺を中心として蓄積されていたことから、ツキノワグマにおいては腎葉間の溝が周囲脂肪の蓄積部位としての役割を果たしていると思われる。mKFI と KFI の相関は、腎葉間の溝周辺に蓄積される脂肪量が、周囲脂肪全体の重量と概ね比例することを示していると考えられる。もし、この特徴が分葉腎という形態に共通であるとすると、mKFI はツキノワグマだけでなく他の分葉腎を持つ哺乳類
にも適用できる可能性があり、今後、他の動物種での研究が待たれる。

mKFI は晩秋期（11 月および 12 月）に上昇した。これは、ツキノワグマが冬眠に向けて栄養状態を向上させるという一般的な理解と一致する。岐阜県林政部自然環境保全課（1995）は、1991〜1994 年に捕獲したツキノワグマの腎周囲脂肪量を目視で半定量的に評価した。統計解析はなされなかったものの、腎周囲脂肪量は冬眠期（11〜12 月）に上昇する傾向が観察されたと報告している。その後、活動期（4〜6 月）および冬眠前期（10〜12 月）にピークとなった。

本研究では、上記の活動期〜冬眠前期の傾向を追認するとともに、定量的かつ統計的に腎周囲脂肪に季節変化があることを確認できた。

FMF の季節性については、本研究では統計的に有意な季節差は認められなかった。一方、羽澄ら（1985）は、1984 年 4〜10 月の間に秋田県で捕獲されたツキノワグマを用いて FMF の季節変化を調べている。統計解析はなされていないが、FMF は 4 月から 6 月にかけて減少し、その後回復したと報告している。両者の結果は一見矛盾しているようであるが、詳細に見ると、本研究の結果でも、夏期（7〜9 月）に捕獲された一部の亜成獣クラスおよび成獣クラスの個体で低い (<80 %) FMF 値がみられている。このことから、少なくとも FMF は夏期に低下する傾向があるものの、本研究では統計的に有意とはならなかったものと思われる。

本研究では皮下脂肪を ASF で評価した。ツキノワグマにおいて皮下脂肪の季節性を定量的に評価したのは本研究が最初である。ASF は mKFI と同期して晩秋期に増加した。ASF に認められた性差は、雌雄が混在するデータを解析する際に注意が必要である。性差の原因については特定できなかったが、一つの可能性として、授乳に起因するエネルギー的負荷が考えられる（Thiemann et al., 2006）。本研究では、子連れ状況が確認できる雌のサンプルが少なく、これも検証することはできなかったが、今後検討すべき課題である。

年齢クラスはすべての体脂肪指標に有意な影響があり、当歳クラスの体脂肪指標は他のクラスより低かった。1 歳齢のデータは本研究では得ることができなかったが、体脂肪指標データを分析する際は、少なくとも当歳クラスは層別して解析する必要があること、亜成獣クラスと成獣クラス（すなわち 2 歳以上の個体）についてはプールして解析してもよいことが分かった。

各体脂肪指標における上述のような季節性・性差・年齢の影響は、ツキノワグマの今後の体脂肪量評価に重要な基本的情報を与えるものと考える。すなわち、3 指標を用いてツキノワグ
マの栄養状態を評価する際の年齢・捕獲時期・性別の取り扱いは、下記の指針に基づけばよい。

(1) 当歳の個体は他の年齢とは別に評価する必要があるが、亜成獣以上（2歳以上）の個体はまとめて評価しても差し支えない。

(2) 栄養状態の年次変動を評価する際には、捕獲時期は夏期（7〜9月）と晩秋期（11月・12月）は別に評価する必要があるが、各時期の中ではまとめて評価しても差し支えない。

(3) 性差を考慮した評価はASFのみに必要である。

ただし、今回の統計解析においては、限られたサンプルサイズを考慮して、説明変数間の相互作用を考慮しない加法モデルを用いた。将来的に大きなサンプルサイズが得られた場合には、フルモデルによる統計解析を行い、相互作用の有無を確認することが必要である。

FMFとmKFIの間に認められた曲線関係は、蓄積された体脂肪が消費される際には、体腔内脂肪（mKFI）の大部分が消費されるまで、骨髄内脂肪（FMF）は消費されないということを示唆している。一方、体腔内脂肪（mKFI）と皮下脂肪（ASF）の間に認められた直線的な関係は、両者が同時に消費（あるいは蓄積）されるということを示唆している。

シカ類においては、栄養状態が低下する際、皮下脂肪、体腔内脂肪および骨髄内脂肪の間に消費の優先順位があることが知られており、体脂肪の消費は皮下、体腔内、骨髄内の順に起こるとされている（Riney, 1955）。ツキノワグマの骨髄内脂肪と体腔内脂肪の消費順序に関しては、羽澄ら（1985）がFMFとKFIについて本研究と同様の関係があること報告している。羽澄らの結果と本研究の結果は、ツキノワグマにおいても、骨髄内脂肪と体腔内脂肪の間にシカ類と同様の消費の優先順位が存在することを示唆するものである。さらに本研究の結果では、FMFとmKFIの関係は年齢クラスに影響を受けることが分かった。当歳クラスは他の年齢クラスより、同一のmKFIレベルで比較すると、低いFMF値を示した。これには、骨髄における造血が関与している可能性がある。一般に、幼猟では骨髄における造血が盛んで、血様の色調を帯びることが多いことが知られている。本研究においても、当歳の骨髄は血様であることが多く、血様の骨髄では低いFMFとなる傾向があった。

体腔内脂肪（mKFI）と皮下脂肪（ASF）の関係は、シカ類に見られる体脂肪消費順序（Riney, 1955）と一致するものではなかった。本研究で観測されたmKFIとASFの関係は直線的で、体腔内脂肪と皮下脂肪の間に消費（あるいは蓄積）の優先順位はないことが示唆された。ツキ
ノワグマでは、少なくとも本研究で評価した栄養状態の範囲では、両者は同時に消費・蓄積されることが示唆された。

以上から、ツキノワグマの栄養状態が低下する際の体脂肪の消費順序に関して、皮下脂肪と体腔内脂肪がはじめに消費され、その後に骨髄内脂肪が消費される傾向にあることが分かった。概念的には、ASFおよびmKFIは中程度以上の栄養状態で有効な指標となり、FMFの低下は栄養状態が著しく悪化していることを示唆するものであるといえる。

小括

大腿骨骨髄内脂肪含有率（FMF）、修正腎周囲脂肪係数（mKFI）および腹壁の皮下脂肪厚（ASF）の3つの体脂肪指標をツキノワグマの栄養状態評価指標として確立するため、これら体脂肪指標の年齢・性別・捕獲時期依存性、ならびに各指標が反映する栄養状態レベルを明らかにした。

2006年に岐阜県で捕獲された個体について上記3指標を測定し、統計解析を行った結果、以下の点が明らかになった。

a) 全ての体脂肪指標において、当歳（cub）クラスの値は他の年齢クラスのものより低かった。
b) 晩秋期（11月・12月）のmKFIおよびASFは、夏期（7〜9月）のそれに比べて高かった。
c) ASFには性差があり、雌は雄よりもASFが低かった。

以上のことから、3指標を用いてツキノワグマの栄養状態を評価する際の年齢・捕獲時期・性別の取り扱いは、下記の指針に基づけばよいことがわかった。

(1) 当歳の個体は他の年齢とは別に評価する必要があるが、亜成児以上（2歳以上）の個体はまとめて評価しても差し支えない。
(2) 栄養状態の年次変動を評価する際には、捕獲時期は夏期（7〜9月）と晩秋期（11月・12月）に別に評価する必要があるが、各時期の中ではまとめて評価しても差し支えない。
(3) 性差を考慮した評価はASFのみに必要である。

また、3指標間の相対関係を調べた結果、FMFの低下は著しい栄養状態の低下を示すものであることが示唆された。
表 1-1 修正腎周囲脂肪係数 (mKFI)、腹壁の皮下脂肪厚 (ASF) および大腿骨骨髄内脂肪含有率 (FMF) に関する三元配置分散分析（加法モデル）および post hoc 多重比較 (Tukey’s honest significant difference method: TukeyHSD) の結果まとめ。2006 年岐阜県ツキノワグマ有害捕獲個体。

指定	分散分析結果	多重比較結果
mKFI	捕獲月: $P < 0.001^{***}$	捕獲月: Jul. < Nov.: $P = 0.010^*$, Sep. < Nov.: $P = 0.004^{**}$
$(n = 49)$		Jul. < Dec.: $P = 0.019^*$, Sep. < Dec.: $P = 0.011^*$
年齢クラス: $P = 0.023^*$	年齢クラス: cub < subadult: $P = 0.049^*$	
性別:	$P = 0.097$	
ASF	捕獲月: $P < 0.001^{***}$	捕獲月: Jul. < Nov.: $P < 0.001^{***}$, Aug. < Nov.: $P < 0.001^{***}$
$(n = 38)$		Sep. < Nov.: $P < 0.001^{***}$, Oct. < Nov.: $P < 0.001^{***}$
年齢クラス: $P < 0.001^{***}$	年齢クラス: cub < adult: $P = 0.001^{**}$	
性別:	$P = 0.002^{**}$	性別: female < male: $P = 0.004^{**}$
FMF	捕獲月: $P = 0.051$	
$(n = 47)$	年齢クラス: $P < 0.001^{***}$	年齢クラス: cub < subadult: $P < 0.001^{***}$
	cub < adult: $P < 0.001^{***}$	
性別: | $P = 0.649$ | |

*: $0.01 \leq P < 0.05$, **: $0.001 \leq P < 0.01$, ***: $P < 0.001$. Cub: 0 歳, Subadult: 2～4 歳, Adult: \geq 5 歳
図 1-1 ツキノワグマの腎臓およびその周囲脂肪組織のサンプル例。説明のため、周囲脂肪組織を一点鎖線で A 部と B 部に分けている。A 部は腎臓に直接付着する周囲脂肪組織、B 部はその外側部分で、体腔内背側壁に付着する。修正腎周囲脂肪係数（mKFI）は、腎臓重量に対する A 部周囲脂肪組織の重量比として定義した。腎周囲脂肪係数（KFI）は腎臓重量に体する全周囲脂肪組織（A 部および B 部）の重量比として定義される。水平方向の一点鎖線の上側および下側は、mKFI および KFI のいずれの測定においても周囲脂肪に含めない。
図 1-2 ツキノワグマにおける腎周囲脂肪係数（KFI）と修正腎脂肪係数（mKFI）の相関関係（mKFI の定義については本文参照）。両指標には強い相関があり（決定係数 $R^2 = 0.88$）、mKFI は KFI の代替指標となりうる。
図1-3 有害捕獲ツキノワグマの体脂肪指標の捕獲時期による変化。2006年岐阜県捕獲個体。
A：修正腎周囲脂肪係数（mKFI）、B：腹壁の皮下脂肪厚（ASF）、C：大腿骨骨髄内脂肪含有率（FMF）。
Cub：0歳個体、Sub：2～4歳個体、Adult：5歳以上の個体（1歳個体の捕獲なし）。
図1-4 ツキノワグマにおける体脂肪指標間の関係。A：大腿骨骨髄内脂肪含有率（FMF）と修正腎周囲脂肪係数（mKFI）の関係。B：mKFIと腹壁の皮下脂肪厚（ASF）の関係。2006年岐阜県有害捕獲個体。
第二章 タキノワグマの栄養状態の良否と人里への出没行動

背景

前章で、タキノワグマの栄養状態の評価指標として3つの体脂肪指標FMF、mKFIおよびASFを用い、その季節性、年齢クラスおよび性別依存性を明らかにした。また、mKFIおよびASFは中程度以上の栄養状態で有効な指標であり、FMFの低下は栄養状態の著しい低下を示唆するということもわかった。本章ではこれらの結果をもとに、体脂肪指標による栄養状態評価の野外個体群への適用例として、タキノワグマの栄養状態と人里への出没行動に関連があるかどうかを検討した。

タキノワグマは6つの地域個体群が絶滅の危機にある反面、目撃や痕跡情報等に基づく生息域調査の結果によると、全国的には生息地を拡大している（環境省自然環境局生物多様性センター、2004）。それに伴い、タキノワグマの人里への出没が一種の社会問題になっている。出没は農林業被害や人身被害といった人間社会との軋轢にも繋がり、タキノワグマの保護管理においては最も大きな問題のひとつである。人里への出没の原因には様々なものが考えられている。山間部集落の過疎や高齢化、それに伴う耕作放棄地の増加、狩猟人口の減少など人間社会の変化もその一因であるが、出沒に対して最も大きな影響を持つのは、生息地における食物資源の量であると考えられている（環境省、2007a）。実際、Oka et al. (2004)は、東北地方において、タキノワグマの有害捕獲数と主要な食物資源であるブナの豊凶には負の相関があることを示している。さらには、食物資源が不足している年には、タキノワグマの行動圏が拡大することが知られている（Kozakai et al., 2009; Yamazaki et al., 2009)。

タキノワグマの出没（あるいはその結果としての有害捕獲）が食物資源の影響を受けることはほぼ間違いいないとして、同じく食物資源の量に左右される栄養状態は、出没（有害捕獲数）とはいかなる関係にあるだろうか？最も容易に想像されるのは、食物資源が不足して栄養状態が低下し、困窮したタキノワグマが人里に出没してくるというシナリオだろう。そこで本研究では、「有害捕獲数の多い年は、少ない年に比べ捕獲個体の栄養状態が悪い」という仮説を立て、その検証を試みた。

前章の結果から、タキノワグマの栄養状態の捕獲年による変化を評価するには、季節性・性
別・年齢クラスに留意して、各年の評価を行う必要がある。季節性に関しては、夏期（7月〜9月）とそれ以降のデータは区別して取扱う必要がある。年齢クラスは亜成獣以上（2歳以上）と当歳は別に取り扱わなければならない。この制約を考慮しつつ、栄養状態の年変化の評価は、複数年にわたってサンプルを入手できた、夏期捕獲の亜成獣以上の個体を対象として行った。秋期（10月以降）の栄養状態は、サンプルを収集できた年が少なく、解析できなかった。

材料と方法

2005〜2007年の夏期（7〜9月）に、岐阜県および福島県で捕獲されたツキノワグマより、前章の材料と方法で述べた方法により、年齢査定およびFMF、mKFIおよびASFの測定を実施した。福島県捕獲個体については大腿骨をサンプリングできなかったため、FMFを測定することはできなかった。年齢査定で2歳以上と判定された個体のFMF、mKFIおよびASFについて、分散分析とpost hocのTukey's honest significant difference method (TukeyHSD)による多重比較を実施した。FMFとmKFIにおいては、捕獲年を説明変数とする一元配置分散分析、ASFにおいては性差を考慮して捕獲年と性別を説明変数とする二元配置分散分析（加法モデルによる）を行った。使用した統計解析ソフトウェアは前章と同様である。2005〜2007年の夏期（7〜9月）におけるツキノワグマ有害捕獲数は、岐阜県および福島県の統計によった。

結果

図2-1A〜Cに体脂肪指標の年次変化を示す。測定したすべての体脂肪指標において、岐阜県・福島県共に、2006年の値（以下表示はMean±SEM：岐阜県mKFI = 23.5±1.8％, ASF = 4.7±0.5 mm, FMF = 86.9±2.6％；福島県mKFI = 25.3±2.3％, ASF = 4.0±0.8 mm）は2005年（岐阜県mKFI = 18.1±1.9％, ASF = 4.3±2.3 mm, FMF = 67.5±18.5％；福島県mKFI = 17.3±2.1％, ASF = 2.2±0.5 mm）および2007年の値（岐阜県mKFI = 14.9±1.4％, ASF = 2.1±0.4 mm, FMF = 59.0±8.5％；福島県mKFI = 13.4±0.7％, ASF = 1.3±0.8 mm）より高かった。表2-1に統計解析の結果をまとめた。捕獲年は、福島県のASFを除くすべての分散分析で有意な影響が認められ（P<0.03）、多重比較においては、2006年の体脂肪指標は2007年より有意に高いことがわかった（岐阜県のmKFIおよびASF：P<0.05、岐阜県のFMFおよびASF：P<0.01、福島県のmKFIおよびASF：P<0.05、福島県のFMFおよびASF：P<0.01）
び福島県の mKFI: \(P < 0.01 \); 図 2-1 にもアスタリスクで \(P \) 値の水準を表示)。ASF の分散分析で説明変数とした性別は、いずれの県においても有意ではなかった (\(P > 0.05 \); このため ASF の結果は性別で層別していない)。

岐阜県および福島県の統計による 2005～2007 年の夏期 (7～9 月) におけるツキノワグマ有害捕獲数の変動を図 2-2 に示す。2006 年は 2007 年に比較して体脂肪指標が有意に高かったにも関わらず、有害捕獲数は 2007 年より 2006 年の方が多かった。

考察

本研究で得られた結果は、「有害捕獲数の多い年は、少ない年に比べ捕獲個体の栄養状態が悪い」という仮説を否定するものである。本研究では、解析可能な対象データが結果的に 3 年とという短期間しか得られなかったため、偶然に栄養状態以外の要因が強く作用して今回のような結果が得られた可能性もある。特定地域において長期間のモニタリングが可能となれば、栄養状態と捕獲数に緩やかな関係が見出されるかもしれない。しかしながら、今回の結果は、少なくとも栄養状態の低いことが出没の多くなる「必須条件」ではないことを示している。すなわち、栄養状態の良否に関わらず、出没は多発し得ると考えられる。

今回の結果を解釈する際に注意すべき点として、次の 2 点があげられる。一つは、2007 年の捕獲個体は 2006 年に比べ相対的には栄養状態が低かったが、絶対的なレベルとして低栄養状態にあったのかという点。もう一つは、有害捕獲個体は人里周辺に出没した個体であるため、農作物や生ごみなどの人為的な食物資源の影響はないのかという点である。前者に関しては、2007 年の FMF の低下に回答を求めることができる。前章で述べたように、FMF の低下は著しい栄養状態の低下を示唆しており、2007 年の岐阜県の FMF レベルは低栄養状態に相当するものと考えられる。後者の点に関しては、有害捕獲個体であるが故の栄養状態のバイアスは十分に考え得ることである。人里へ出没しない個体（仮にそういう性質の個体が存在するとして）と出没する個体の間にどの程度の栄養状態の差があるかは、出没メカニズムを考えるうえで本質的な問題であり、今後の解明が望まれる。しかしながら、現段階において筆者は、その差は少なくとも年によって大きく変動する性質のものではなく、どちらかといえば毎年同じような差になるのではないかと考えている。なぜなら、人為的な食物資源量には、自然の食物資源量
ほどの大きな年変動はないと考えられるからである。人為的な食物資源の利用により獲得する体脂肪量は、毎年同じような量であり、捕獲年間の栄養状態の相対的変化にはあまり影響がないと考える。

栄養状態の低下が必ずしも出没の必須条件ではないとすれば、ツキノワグマは何をきっかけに人里へ出没するのだろうか？最も考えやすいものの一つは「空腹感」ではないかと思われる。動物の採食行動はその動物の様々な生理学的状態によって変化するが、最も直接的に採食行動を支配しているのは空腹の衝動であると思われる。一方、空腹感は、食物が不足する状況では、その動物の栄養状態に関わらず生じる。つまり、個体が太っていても痩せていようと、空腹は同じように感じる。もし、空腹感が実際に出没の引き金であると考えれば、本章で設定した仮説が否定されるわけではない。ただし、空腹感が出没の引き金であることを証明するには、今後、有害捕獲個体の“空腹感”を測定する適切な方法の検討が必要となる。

今回の結果から、出没が発生した時点における栄養状態は、出没には直接的な影響を及ぼさ
ないと考えられる。一方、間接的・長期的な影響については、理論的にはその存在が予測される。ある個体群で栄養状態が一定期間（たとえば数年間）安定して良い状況が続けば、その期間の個体群の生存率や繁殖率は上昇するであろう。結果、個体群サイズは増加し、他の条件が同じであれば、個体群サイズに比例して出没も多くなると考えられる。ただし、その効果の大きさ（実際にどの程度生存率や繁殖率が向上し、どの程度個体群サイズが増加するのか？そして個体群サイズの出没に及ぼす影響は、食物資源の多寡などの影響に比べ、どの程度のものなのか？）を明らかにするためには、栄養状態、生存率、繁殖率、そして個体群サイズを評価する指標を、有害捕獲数などの出没指標とともに、特定の地域で長年にわたってモニターする必要があり、今後の研究課題である。

小括

ツキノワグマの出没の原因の一つは生息地における食物不足であると考えられているから、本節では栄養状態と出没の関連について検討した。「有害捕獲の多い年は捕獲個体の栄養状態が悪い」という作業仮説を立て、その検証を試みた。

2005〜2007年の夏期（7〜9月）に岐阜県および福島県で捕獲された個体の体脂肪指標mKFI、ASFおよびFMFを測定し、分散分析および多重比較を行ったところ、2006年の栄養状態は2007年に比べ統計的に有意に高かった。一方、同期間における有害捕獲数は2007年より2006年のほうが多く、作業仮説は棄却された。

作業仮説が棄却されたことは、栄養状態の低下は出没が発生する必須条件ではないことを示すものと考えられた。今後の検証が必要であるが、ツキノワグマの出没の直接の引き金が空腹感であると考えると、今回の結果は矛盾なく説明できる。

また、2006年と2007年の夏期における栄養状態の差の一つの原因として、前年秋における堅果の豊凶（春期残存堅果の利用可否）の影響が考えられた。
図表

表 2-1 夏期（7～9月）における修正腎周囲脂肪係数（mKFI）、腹壁の皮下脂肪厚（ASF）および大腿骨骨髄内脂肪含有率（FMF）の年変動に関する分散分析および post hoc 多重比較（Tukey's honest significant difference method; TukeyHSD）の結果まとめ。mKFI および ASF は捕獲年を説明変数とする一元配置、ASF は捕獲年および性別を説明変数とする二元配置分散分析（加法モデル）を実施。2005～2007 年岐阜県および福島県ツキノワグマ有益捕獲個体（2歳以上）。

<table>
<thead>
<tr>
<th>捕獲地</th>
<th>指標</th>
<th>分散分析結果</th>
<th>多重比較結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>岐阜県</td>
<td>mKFI</td>
<td>捕獲年： $P = 0.025^*$</td>
<td>捕獲年 2006 > 2007： $P = 0.021^*$</td>
</tr>
<tr>
<td></td>
<td>ASF</td>
<td>捕獲年： $P = 0.030^*$</td>
<td>捕獲年 2006 > 2007： $P = 0.020^*$</td>
</tr>
<tr>
<td></td>
<td>性別</td>
<td>$P = 0.533$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FMF</td>
<td>捕獲年： $P = 0.002^{**}$</td>
<td>捕獲年 2006 > 2007： $P = 0.001^{**}$</td>
</tr>
<tr>
<td>福島県</td>
<td>mKFI</td>
<td>捕獲年： $P = 0.004^{**}$</td>
<td>捕獲年 2006 > 2007： $P = 0.006^{**}$</td>
</tr>
<tr>
<td></td>
<td>ASF</td>
<td>$P = 0.060$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>性別</td>
<td>$P = 0.073$</td>
<td></td>
</tr>
</tbody>
</table>

*: $0.01 \leq P < 0.05$, **: $0.001 \leq P < 0.01$, ***: $P < 0.001$.
図 2-1 ソキノワグマの夏季（7～9月）における年毎の栄養状態の変化。2005～2007年岐阜県および福島県有被害、2歳以上の個体。A：修正腎周囲脂肪係数（mKFI）、B：腹壁の皮下脂肪厚（ASF）、C：大腿骨骨髄内脂肪含有率（FMF；福島県は大腿骨を収集しなかったためデータなし）。誤差棒は標準誤差を示す。* 印はTukey's honest significant difference methodによる多重比較の結果を示す：* P < 0.05, ** P < 0.01。
図 2-2 岐阜県および福島県における夏期（7～9月）のツキノワグマ有害捕獲数推移。2007年の捕獲数を1として表示。図中の数字は捕獲数の実数。岐阜県および福島県の統計による。
第三章 黄体、白体および胎盤痕を用いた繁殖評価方法の開発

背景

黄体、白体および胎盤痕は、ツキノワグマの繁殖周期の中で、次のような時期に形成される。夏期の交尾期（6～8月）における交尾・排卵後、卵巣内には黄体が形成される。黄体は、その後の着床遅延期間および着床、胎子成長期を経て、冬眠中の1月下旬の出産まで存続する。出産後、黄体は退行し、白体を形成する。一方、子宮内では、11月末頃に起こる着床の後、胎盤が形成され、出産後は胎盤痕が子宮内膜面に遺残する（図3-1）。こうしたことから、捕殺個体の卵巣および子宮を観察することで、当該個体の短期的な繁殖履歴を推定することが可能である。すなわち、捕殺個体中の黄体の存在は、捕殺前の交尾期に排卵があった証拠であり、白体および胎盤痕の存在は、捕殺前に出産を経験したことの示唆である。

しかしながら、繁殖履歴の解釈には、ツキノワグマが複数年の繁殖周期を持つことに起因する曖昧さが残る。ツキノワグマは、出産後約1年半の間、子と一緒に行動すると考えられている（大井, 2009）。子連れの期間は、泌乳による卵巢機能抑制のため交尾期であっても発情せず、したがって排卵もしないとされている（lactational anestrus；泌乳性無発情）(Erickson et al., 1964; Hensel et al., 1969; Spady et al., 2007)。このため、交尾期以降に捕獲された捕殺個体に黄体が認められないという観察結果を解釈する場合、子連れであったために生理的に排卵しなかったという解釈と、排卵できる状態にあったが何らかの原因により失敗したという2通りの解釈が可能である。また、白体と胎盤痕については、その遺残期間が明らかになっていないため、出産の時期を確定することが難しい。すなわち、白体あるいは胎盤痕の遺残期間が1年以上にわたれば、その存在は、個体が捕殺された年の出産を起因する可能性と、さらにその1年前の出産に起因する可能性の両方がある。また、遺残期間が1年より短い場合には、その遺残期間を超えた時期に捕殺された個体の出産歴を知ることはできない。

これまで、黄体、白体あるいは胎盤痕は、主に排卵数や着床数の推定に用いられてきたが（Kordek and Lindzey, 1980; Tsubota et al., 1990; Tsubota et al., 1991; 片山ら, 1996; Mano and Tsubota, 2002）、その際には、上記で述べたような曖昧さは問題とならない。なぜなら、排卵数や着床数は、黄体、白体あるいは胎盤痕が存在する個体のみを対象として求められるか
らである。排卵数および着床数を求める際には、捕殺個体に黄体のない理由や、出産のタイミングに拘泥する必要がない。これは、黄体、白体あるいは胎盤残を利用したこれまでの繁殖評価が、ほとんどの場合に排卵数や着床数を求めることに限られていた理由の一つでもあると思われる。

黄体および胎盤痕の遺残期間は、個体が捕獲された年に出産したかどうか（捕獲年の出産歴）を特定する鍵となる。捕獲年の出産歴を特定することができれば、出産率（対象とする雌の群の中で、ある一年に出産する雌の割合）を知ることが可能で、胎盤痕数から求めた着床数をあわせると、理論的には繁殖率（ある一年に、対象群内の雌一頭あたりに生まれる子の数）を求めることができる。また、捕獲年の出産歴は捕殺個体が子連れであったか否かを知る手掛かりとなり、黄体の存否に関する曖昧さも解消できる可能性がある。白体および胎盤痕の遺残期間を明らかにすることは、捕殺個体を利用した繁殖評価法の新たな展開のために重要である。

本章では、まず第一節で、黄体、白体および胎盤痕観察結果の全体観について記述する。第二節においては、第一節に示したデータをもとに、白体および胎盤痕の遺残期間を調べた結果、およびそれに基づく捕獲年出産歴推定方法の開発について述べる。第三節では、黄体有無の解釈に必要な排卵開始年齢および交尾期の確定について述べ、第四節では本研究で開発した新指標である、排卵的成功確率および当歳子の早期死亡確率の推定方法について述べる。また最後に、第五節でクマ類の繁殖成功度（1回の繁殖チャンスに1頭の雌が生む子の数の期待値）の年齢（経産歴）依存性に関して議論する。
図 3-1 雌ツキノワグマの繁殖サイクルにおける黄体、白体および胎盤痕の形成期間の説明図。
黄体は排卵後形成され出産まで存続し、出産後は退縮して白体となる。胎盤痕は出産後子宮内膜に遺残する。白体および胎盤痕の形成期間を矢印で示しているのは、その遺残期間が未確定であるため。
第一節 黄体、白体および胎盤痕観察結果

材料と方法

材料として、2001～2009年の間に広島、島根、岐阜、富山、福島および岩手の各県で捕殺された159頭分の雌ツキノワグマの卵巣および子宫を収集した。卵巣および子宫は、採取後、-20℃で冷凍、または10%中性緩衝ホルマリンあるいは70%エタノールにより固定した。卵巣および子宫を肉眼で観察し、黄体と胎盤痕の有無およびその数を調べた。卵巣は、卵巣門と平行に、最大4mm幅で数か所スライスし、剖面の黄体を肉眼で確認した。子宫は子宫角を切開し、子宫内膜上の胎盤痕を肉眼で確認した。肉眼のみの観察では黄体または胎盤痕と判定するのが困難な構造が現われた場合には、組織観察（ヘマトキシリン・エオジン染色）を行って判定した。

捕殺個体の連れ子の情報を得るため、捕獲現場のハンターあるいは自治体関係者に目撃情報の提供を依頼した。捕獲現場で連れ子が目撃された際には、連れ子の数と推定年齢を報告してもらった。連れ子なしと報告された捕殺個体については、報告自体がなかった捕殺個体とまとめめて、連れ子情報のない個体として取り扱った。

胎盤痕を有していた捕殺個体のうち36個体分（うち11個体は子連れ情報のあった個体）の卵巣について、白体の組織学的観察を行った。肉眼観察に供した卵巣のスライス1片につき一枚ずつ、常法により組織切片を作製した。染色はワイゲルトの弾性繊維染色を用いた。片山ら（1996）は、ツキノワグマの黄体の退縮プロセスを4段階に分類した。すなわち、stage 0を黄体（退縮なし）、stage IからIIIまでを黄体退縮物とし、各stageは退縮度により分類した。このうち本研究では、stage IIまでの退縮段階にある黄体退縮物を白体と定義し、観察を実施した。Stage IIIを白体観察の対象としなかったのは、stage IIまでの構造に比べて組織学的に判別が難しく誤判定の危険性が高いと考えたからである。なお、本研究では白体の存否のみを検出し、その数をカウントすることはしなかった。異なる組織切片上の白体像が、同一の白体に由来するものか、別の白体に由来するものかを区別することができなかったためである。
結果

図3-1-1および図3-1-2に、黄体、胎盤痕および白体の観察例を示す。黄体（図3-1-1A）は、様々な大きさの円形ないし橤円形の、周囲に比べてやや薄い色調の構造として認められ、卵胞あるいは閉鎖卵胞などの他の構造とは容易に区別できた。胎盤痕（図3-1-1B）は、褐色を帯びたバンド状の変色として認められた。バンドの幅や色調の濃淡は様々であった。白体（図3-1-2）は、ワイゲルト染色下で、類円形あるいは不整形の構造として認められた。周囲を濃紫色に染まる弾性繊維に富む血管に囲まれ、内部は黄体細胞が退縮あるいは消失しており周囲に比べて淡色に染まっていた。

表3-1-1に観察に供した159個体のデータ一覧を示す。表3-1-2には、各捕殺個体における黄体および胎盤痕の有無の組み合わせを集計した結果を示した。子連れの個体（18個体）にはすべて胎盤痕が認められた。また、そのうち、卵巢を入手できた16個体の全てで黄体は存在しなかった。子連れ個体のデータを表3-1-1（連番1〜18）で詳しく見ると、胎盤痕の数は、その数を確定できた16例のうち、11例で目撃された子の数と同数、5例で子の数より多かった。連れ子の推定年齢が報告された9例すべてにおいて、連れ子は当歳子（0歳）であった。表3-1-3には、白体の検出結果を示す。子連れの個体においても白体の検出されない個体が11個体中3個体あった。

考察

次節以降で本節結果の詳細な解析と考察を行うこととし、ここでは、子連れ個体において黄体が認められなかったこと、胎盤痕数と子の数の比較、および子の推定年齢が0歳であったことについて考察する。

クマ科動物8種における泌乳性無発情は、マレーグマ（Ursus malayanus）を除く7種にあらたもされている（Spady et al., 2007）。本研究においても、子連れ個体に黄体が観察されなかったことから、ツキノワグマに泌乳性無発情が起きていることが示唆された。アメリカクロクマ（Ursus americanus）では、稀に泌乳性無発情が起こらない場合があることを示唆する野外観察結果が存在する（Spady et al., 2007）。こうした例外的な現象が、他のクマ類で起こるのか、その頻度がどの程度かは興味深い点である。本研究では例外を確認できなかったが、今後、子
連れ個体の黄体有無データが蓄積されればこうした点が明らかになると思われる。

胎盤痕数と目撃された子の数は必ずしも一致せず、胎盤痕数の多いケースが16例中5例あった。これは、ツキノワグマにおいて、partial litter loss（一腹の子の一部が死亡すること）が一般的に起こることを示唆している。

報告があった9例全てで連れ子の推定年齢が0歳であったことは、ツキノワグマにおける子別れの時期が一般的には出産翌年の交尾期以前であると考えられていることを支持するものである。しかしながら、アメリカクロクマでは、一般的には出産翌年に子別れするが、一部には翌々年に子別れする場合もあるとされており（Lee and Vaughan, 2004）、ツキノワグマでも同様な例のある可能性がある。また、本研究における連れ子の有無は捕獲時の目撃情報を基にしていることから、0歳子に比べ母獣への依存度が小さい1歳子は、目撃されにくい可能性もある。出産翌年の交尾期を超えて哺育が行われるケースの頻度を明らかにするためには、本研究の方法だけでなく、テレメトリーのような生態学的手法によるデータが必要である。
<table>
<thead>
<tr>
<th>連番</th>
<th>個体番号</th>
<th>捕獲日年</th>
<th>年齢（yr）</th>
<th>連子情報の有無</th>
<th>連子情報の数</th>
<th>連子情報の齢</th>
<th>白体検出の有無</th>
<th>貧血の有無</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HR337</td>
<td>5/9</td>
<td>16</td>
<td>有</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>有</td>
</tr>
<tr>
<td>2</td>
<td>HB20060829-1</td>
<td>8/29</td>
<td>13</td>
<td>有</td>
<td>2</td>
<td>ND</td>
<td>2</td>
<td>有</td>
</tr>
<tr>
<td>3</td>
<td>恵那0603</td>
<td>9/2</td>
<td>8</td>
<td>有</td>
<td>2</td>
<td>ND</td>
<td>2</td>
<td>有</td>
</tr>
<tr>
<td>4</td>
<td>池田0604</td>
<td>9/12</td>
<td>11</td>
<td>有</td>
<td>1</td>
<td>ND</td>
<td>1</td>
<td>有</td>
</tr>
<tr>
<td>5</td>
<td>HR218</td>
<td>9/20</td>
<td>6</td>
<td>有</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>有</td>
</tr>
<tr>
<td>6</td>
<td>O6, 美都-8 (親)</td>
<td>10/3</td>
<td>10</td>
<td>有</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>ND</td>
</tr>
<tr>
<td>7</td>
<td>HR241</td>
<td>10/7</td>
<td>12</td>
<td>有</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>有</td>
</tr>
<tr>
<td>8</td>
<td>HR317</td>
<td>10/19</td>
<td>16</td>
<td>有</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>ND</td>
</tr>
<tr>
<td>9</td>
<td>池田0604</td>
<td>10/20</td>
<td>9</td>
<td>有</td>
<td>2</td>
<td>ND</td>
<td>2</td>
<td>ND</td>
</tr>
<tr>
<td>10</td>
<td>O6, 金城-4</td>
<td>10/24</td>
<td>7</td>
<td>有</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>有</td>
</tr>
<tr>
<td>11</td>
<td>HR134</td>
<td>10/24</td>
<td>14</td>
<td>有</td>
<td>2</td>
<td>ND</td>
<td>3</td>
<td>ND</td>
</tr>
<tr>
<td>12</td>
<td>HR295</td>
<td>10/27</td>
<td>8</td>
<td>有</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>有</td>
</tr>
<tr>
<td>13</td>
<td>中津00601</td>
<td>10/29</td>
<td>15</td>
<td>有</td>
<td>1</td>
<td>ND</td>
<td>2</td>
<td>有</td>
</tr>
<tr>
<td>14</td>
<td>中津00602</td>
<td>11/3</td>
<td>7</td>
<td>有</td>
<td>2</td>
<td>ND</td>
<td>2</td>
<td>有</td>
</tr>
<tr>
<td>15</td>
<td>HR314</td>
<td>11/6</td>
<td>14</td>
<td>有</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>有</td>
</tr>
<tr>
<td>16</td>
<td>O8, 美都-9 (親) (RK)</td>
<td>11/20</td>
<td>5</td>
<td>有</td>
<td>2</td>
<td>ND</td>
<td>2</td>
<td>ND</td>
</tr>
<tr>
<td>17</td>
<td>HR328</td>
<td>11/21</td>
<td>9</td>
<td>有</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>有</td>
</tr>
<tr>
<td>18</td>
<td>O8, 佐栄-2 (親)</td>
<td>11/25</td>
<td>9</td>
<td>有</td>
<td>2</td>
<td>ND</td>
<td>2</td>
<td>有</td>
</tr>
</tbody>
</table>

子連子情報なし

観察に供した雌 159 個体のデータ一覧。2001～2009 年ツキノワグマ有害捕獲個体。

ND: データなし。

* 子宮の採取が不完全で、胎盤痕数を確定できなかった個体。

（次ページにつづく）
表 3.11（つづき）観察に供した雌 159 個体のデータ一覧。2001～2009 年ツキノワグマ有害捕獲個体。

<table>
<thead>
<tr>
<th>個体番号</th>
<th>捕獲日</th>
<th>年齢(歳)</th>
<th>追え子情報の有無</th>
<th>追え子の数</th>
<th>追え子の年齢</th>
<th>胎盤痕有無</th>
<th>自他検出有無</th>
<th>黃体数</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR183</td>
<td>6/28</td>
<td>7</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>0</td>
</tr>
<tr>
<td>HR091</td>
<td>7/5</td>
<td>13</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>0</td>
</tr>
<tr>
<td>0601</td>
<td>7/7</td>
<td>4</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>2</td>
</tr>
<tr>
<td>0603</td>
<td>7/10</td>
<td>2</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>0</td>
</tr>
<tr>
<td>0701</td>
<td>7/21</td>
<td>2</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>0</td>
</tr>
<tr>
<td>0701</td>
<td>7/27</td>
<td>5</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>2</td>
</tr>
<tr>
<td>FB20060803-1</td>
<td>8/3</td>
<td>14</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>2</td>
</tr>
<tr>
<td>HR300</td>
<td>8/7</td>
<td>12</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>2</td>
</tr>
<tr>
<td>FB20060808-1</td>
<td>8/8</td>
<td>4</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>2</td>
</tr>
<tr>
<td>ケナ238</td>
<td>8/5</td>
<td>7</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>2</td>
</tr>
<tr>
<td>高山065</td>
<td>8/8</td>
<td>7</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>2</td>
</tr>
<tr>
<td>HR192</td>
<td>8/9</td>
<td>11</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>3</td>
</tr>
<tr>
<td>FB20060810-1</td>
<td>8/10</td>
<td>3</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>2</td>
</tr>
<tr>
<td>0999</td>
<td>8/12</td>
<td>12</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>2</td>
</tr>
<tr>
<td>ケナ240</td>
<td>8/16</td>
<td>9</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>2</td>
</tr>
<tr>
<td>FB20060820-1</td>
<td>8/20</td>
<td>7</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>2</td>
</tr>
<tr>
<td>HR195</td>
<td>8/21</td>
<td>16</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>2</td>
</tr>
<tr>
<td>ケナ243</td>
<td>8/23</td>
<td>13</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>2</td>
</tr>
<tr>
<td>FB20060823-1</td>
<td>8/23</td>
<td>21</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>0</td>
</tr>
<tr>
<td>高山3</td>
<td>8/26</td>
<td>9</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>2</td>
</tr>
<tr>
<td>02.日原 - 2</td>
<td>8/27</td>
<td>5</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>2</td>
</tr>
<tr>
<td>ケナ218</td>
<td>8/28</td>
<td>6</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>2</td>
</tr>
<tr>
<td>FB20070830-1</td>
<td>8/30</td>
<td>14</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>2</td>
</tr>
<tr>
<td>FB20070830-2</td>
<td>8/30</td>
<td>23</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>2</td>
</tr>
<tr>
<td>HR105</td>
<td>8/31</td>
<td>3</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>0</td>
</tr>
<tr>
<td>FB20070831-1</td>
<td>8/31</td>
<td>5</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>2</td>
</tr>
<tr>
<td>ケナ249</td>
<td>8/31</td>
<td>9</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>2</td>
</tr>
<tr>
<td>HR106</td>
<td>9/1</td>
<td>9</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>0</td>
</tr>
<tr>
<td>恵那0604</td>
<td>9/2</td>
<td>0</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>0</td>
</tr>
<tr>
<td>F20080909-1</td>
<td>9/2</td>
<td>5</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>2</td>
</tr>
<tr>
<td>HR209</td>
<td>9/4</td>
<td>2</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>0</td>
</tr>
<tr>
<td>HR107</td>
<td>9/4</td>
<td>12</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>2</td>
</tr>
<tr>
<td>ケナ251</td>
<td>9/6</td>
<td>4</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>2</td>
</tr>
<tr>
<td>ケナ252</td>
<td>9/6</td>
<td>11</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>3</td>
</tr>
<tr>
<td>ケナ226</td>
<td>9/10</td>
<td>8</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>1</td>
</tr>
<tr>
<td>下呂0703</td>
<td>9/10</td>
<td>14</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>2</td>
</tr>
<tr>
<td>FB20050911-1</td>
<td>9/11</td>
<td>2</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>0</td>
</tr>
<tr>
<td>FB20050911-12</td>
<td>9/11</td>
<td>10</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>2</td>
</tr>
<tr>
<td>02. 北見 - 9</td>
<td>9/12</td>
<td>4</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>2</td>
</tr>
<tr>
<td>02. 北見 - 4</td>
<td>9/12</td>
<td>9</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>2</td>
</tr>
<tr>
<td>高山0704</td>
<td>9/14</td>
<td>16</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>2</td>
</tr>
<tr>
<td>08. 恵那 - 2</td>
<td>9/15</td>
<td>4</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>2</td>
</tr>
<tr>
<td>06. 恵那 - 2</td>
<td>9/15</td>
<td>9</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>2</td>
</tr>
<tr>
<td>HR211</td>
<td>9/15</td>
<td>14</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>0</td>
</tr>
<tr>
<td>ケナ230</td>
<td>9/16</td>
<td>5</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>2</td>
</tr>
<tr>
<td>HR344</td>
<td>9/17</td>
<td>6</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>2</td>
</tr>
<tr>
<td>HR334</td>
<td>9/20</td>
<td>7</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>2</td>
</tr>
<tr>
<td>HR222</td>
<td>9/22</td>
<td>1</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>0</td>
</tr>
<tr>
<td>HR223</td>
<td>9/23</td>
<td>3</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>0</td>
</tr>
<tr>
<td>TY-031</td>
<td>9/23</td>
<td>13</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>2</td>
</tr>
<tr>
<td>ケナ231</td>
<td>9/24</td>
<td>7</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>2</td>
</tr>
<tr>
<td>ケナ234</td>
<td>9/25</td>
<td>7</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>2</td>
</tr>
<tr>
<td>ケナ235</td>
<td>9/27</td>
<td>5</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>1</td>
</tr>
<tr>
<td>06. 六日市 - 2</td>
<td>9/29</td>
<td>5</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>2</td>
</tr>
<tr>
<td>00. 津和野 - 2</td>
<td>10/2</td>
<td>5</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>2</td>
</tr>
<tr>
<td>HR247</td>
<td>10/9</td>
<td>10</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>2</td>
</tr>
<tr>
<td>HR249</td>
<td>10/11</td>
<td>7</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>2</td>
</tr>
<tr>
<td>HR255</td>
<td>10/12</td>
<td>12</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>2</td>
</tr>
<tr>
<td>HR260</td>
<td>10/14</td>
<td>2</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>0</td>
</tr>
<tr>
<td>02. 美都 - 2</td>
<td>10/15</td>
<td>11</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>2</td>
</tr>
<tr>
<td>HR268</td>
<td>10/16</td>
<td>9</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>2</td>
</tr>
<tr>
<td>08. 美都 - 2 (KK)</td>
<td>10/18</td>
<td>5</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>2</td>
</tr>
<tr>
<td>FB20070909-1</td>
<td>10/18</td>
<td>9</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>2</td>
</tr>
<tr>
<td>HR274</td>
<td>10/19</td>
<td>11</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>2</td>
</tr>
</tbody>
</table>

ND: データなし。
表 3-1-1（つづき）観察に供した雌 159 個体のデータ一覧。2001～2009年ツキノワグマ有害捕獲個体。

<table>
<thead>
<tr>
<th>連番</th>
<th>個体番号</th>
<th>捕獲日</th>
<th>年齢(yr)</th>
<th>連れ子情報の有無</th>
<th>連れ子の数</th>
<th>連れ子の年齢</th>
<th>胎盤痕数</th>
<th>白体検出有無</th>
<th>黄体数</th>
</tr>
</thead>
<tbody>
<tr>
<td>126</td>
<td>HR277</td>
<td>10/19</td>
<td>13</td>
<td>なし</td>
<td>ND</td>
<td>ND</td>
<td>0</td>
<td>ND</td>
<td>2</td>
</tr>
<tr>
<td>127</td>
<td>揖斐川00605</td>
<td>10/20</td>
<td>0</td>
<td>なし</td>
<td>ND</td>
<td>ND</td>
<td>0</td>
<td>ND</td>
<td>0</td>
</tr>
<tr>
<td>128</td>
<td>HR273</td>
<td>10/20</td>
<td>3</td>
<td>なし</td>
<td>ND</td>
<td>ND</td>
<td>0</td>
<td>ND</td>
<td>0</td>
</tr>
<tr>
<td>129</td>
<td>HR280</td>
<td>10/23</td>
<td>2</td>
<td>なし</td>
<td>ND</td>
<td>ND</td>
<td>0</td>
<td>ND</td>
<td>0</td>
</tr>
<tr>
<td>130</td>
<td>HR281</td>
<td>10/23</td>
<td>10</td>
<td>なし</td>
<td>ND</td>
<td>ND</td>
<td>0</td>
<td>ND</td>
<td>0</td>
</tr>
<tr>
<td>131</td>
<td>HR283</td>
<td>10/23</td>
<td>12</td>
<td>なし</td>
<td>ND</td>
<td>ND</td>
<td>0</td>
<td>ND</td>
<td>1</td>
</tr>
<tr>
<td>132</td>
<td>HR236</td>
<td>10/24</td>
<td>6</td>
<td>なし</td>
<td>ND</td>
<td>ND</td>
<td>0</td>
<td>ND</td>
<td>2</td>
</tr>
<tr>
<td>133</td>
<td>HR297</td>
<td>10/25</td>
<td>16</td>
<td>なし</td>
<td>ND</td>
<td>ND</td>
<td>0</td>
<td>ND</td>
<td>2</td>
</tr>
<tr>
<td>134</td>
<td>08.美都-8</td>
<td>10/26</td>
<td>15</td>
<td>なし</td>
<td>ND</td>
<td>ND</td>
<td>0</td>
<td>ND</td>
<td>2</td>
</tr>
<tr>
<td>135</td>
<td>HR293</td>
<td>10/26</td>
<td>16</td>
<td>なし</td>
<td>ND</td>
<td>ND</td>
<td>0</td>
<td>ND</td>
<td>2</td>
</tr>
<tr>
<td>136</td>
<td>HR103</td>
<td>10/27</td>
<td>0</td>
<td>なし</td>
<td>ND</td>
<td>ND</td>
<td>0</td>
<td>ND</td>
<td>0</td>
</tr>
<tr>
<td>137</td>
<td>HR119</td>
<td>10/27</td>
<td>14</td>
<td>なし</td>
<td>ND</td>
<td>ND</td>
<td>0</td>
<td>ND</td>
<td>3</td>
</tr>
<tr>
<td>138</td>
<td>HR143</td>
<td>10/29</td>
<td>2</td>
<td>なし</td>
<td>ND</td>
<td>ND</td>
<td>0</td>
<td>ND</td>
<td>2</td>
</tr>
<tr>
<td>139</td>
<td>08.美都-8</td>
<td>10/29</td>
<td>9</td>
<td>なし</td>
<td>ND</td>
<td>ND</td>
<td>0</td>
<td>ND</td>
<td>2</td>
</tr>
<tr>
<td>140</td>
<td>TY-034</td>
<td>10/30</td>
<td>2</td>
<td>なし</td>
<td>ND</td>
<td>ND</td>
<td>0</td>
<td>ND</td>
<td>0</td>
</tr>
<tr>
<td>141</td>
<td>HR058</td>
<td>10/30</td>
<td>10</td>
<td>なし</td>
<td>ND</td>
<td>ND</td>
<td>0</td>
<td>ND</td>
<td>2</td>
</tr>
<tr>
<td>142</td>
<td>HR059</td>
<td>11/1</td>
<td>10</td>
<td>なし</td>
<td>ND</td>
<td>ND</td>
<td>0</td>
<td>ND</td>
<td>1</td>
</tr>
<tr>
<td>143</td>
<td>06.川本-2</td>
<td>11/4</td>
<td>1</td>
<td>なし</td>
<td>ND</td>
<td>ND</td>
<td>0</td>
<td>ND</td>
<td>0</td>
</tr>
<tr>
<td>144</td>
<td>HR145</td>
<td>11/4</td>
<td>4</td>
<td>なし</td>
<td>ND</td>
<td>ND</td>
<td>0</td>
<td>ND</td>
<td>2</td>
</tr>
<tr>
<td>145</td>
<td>HR349</td>
<td>11/5</td>
<td>5</td>
<td>なし</td>
<td>ND</td>
<td>ND</td>
<td>0</td>
<td>ND</td>
<td>2</td>
</tr>
<tr>
<td>146</td>
<td>HR319</td>
<td>11/8</td>
<td>12</td>
<td>なし</td>
<td>ND</td>
<td>ND</td>
<td>0</td>
<td>ND</td>
<td>0</td>
</tr>
<tr>
<td>147</td>
<td>05.津和野-1</td>
<td>11/12</td>
<td>11</td>
<td>なし</td>
<td>ND</td>
<td>ND</td>
<td>0</td>
<td>ND</td>
<td>2</td>
</tr>
<tr>
<td>148</td>
<td>HR351</td>
<td>11/13</td>
<td>3</td>
<td>なし</td>
<td>ND</td>
<td>ND</td>
<td>0</td>
<td>ND</td>
<td>0</td>
</tr>
<tr>
<td>149</td>
<td>08.六日市-3</td>
<td>11/13</td>
<td>11</td>
<td>なし</td>
<td>ND</td>
<td>ND</td>
<td>0</td>
<td>ND</td>
<td>2</td>
</tr>
<tr>
<td>150</td>
<td>HR352</td>
<td>11/14</td>
<td>3</td>
<td>なし</td>
<td>ND</td>
<td>ND</td>
<td>0</td>
<td>ND</td>
<td>0</td>
</tr>
<tr>
<td>151</td>
<td>HR326</td>
<td>11/15</td>
<td>11</td>
<td>なし</td>
<td>ND</td>
<td>ND</td>
<td>0</td>
<td>ND</td>
<td>2</td>
</tr>
<tr>
<td>152</td>
<td>02.日原-7</td>
<td>11/17</td>
<td>3</td>
<td>なし</td>
<td>ND</td>
<td>ND</td>
<td>0</td>
<td>ND</td>
<td>0</td>
</tr>
<tr>
<td>153</td>
<td>01.新里-10</td>
<td>11/18</td>
<td>2</td>
<td>なし</td>
<td>ND</td>
<td>ND</td>
<td>0</td>
<td>ND</td>
<td>0</td>
</tr>
<tr>
<td>154</td>
<td>HR065</td>
<td>11/25</td>
<td>2</td>
<td>なし</td>
<td>ND</td>
<td>ND</td>
<td>0</td>
<td>ND</td>
<td>1</td>
</tr>
<tr>
<td>155</td>
<td>HR363</td>
<td>11/25</td>
<td>6</td>
<td>なし</td>
<td>ND</td>
<td>ND</td>
<td>0</td>
<td>ND</td>
<td>2</td>
</tr>
<tr>
<td>156</td>
<td>HR066</td>
<td>11/26</td>
<td>2</td>
<td>なし</td>
<td>ND</td>
<td>ND</td>
<td>0</td>
<td>ND</td>
<td>0</td>
</tr>
<tr>
<td>157</td>
<td>01.潮原-1</td>
<td>11/27</td>
<td>6</td>
<td>なし</td>
<td>ND</td>
<td>ND</td>
<td>0</td>
<td>ND</td>
<td>2</td>
</tr>
<tr>
<td>158</td>
<td>01.潮原-1</td>
<td>11/30</td>
<td>3</td>
<td>なし</td>
<td>ND</td>
<td>ND</td>
<td>0</td>
<td>ND</td>
<td>0</td>
</tr>
<tr>
<td>159</td>
<td>01.美都-1</td>
<td>11/30</td>
<td>3</td>
<td>なし</td>
<td>ND</td>
<td>ND</td>
<td>0</td>
<td>ND</td>
<td>0</td>
</tr>
</tbody>
</table>

ND：データなし。
表 3-1-2 観察したツキノワグマ 159 個体における黄体（CL）および胎盤痕（PS）の有無。2001～2009年有害捕獲個体。

<table>
<thead>
<tr>
<th>連れ子の状況</th>
<th>PS</th>
<th>CL</th>
<th>No OV (^{a})</th>
<th>計</th>
</tr>
</thead>
<tbody>
<tr>
<td>子連れ個体</td>
<td>+</td>
<td>0</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>−</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>連れ子の情報の</td>
<td>+</td>
<td>21</td>
<td>23</td>
<td>0</td>
</tr>
<tr>
<td>なかった個体</td>
<td>−</td>
<td>67</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>計</td>
<td></td>
<td>88</td>
<td>69</td>
<td>2</td>
</tr>
</tbody>
</table>

+: 検出, -: 検出されず \(^{a}\) 卵巣が入手できなかった個体

表 3-1-3 白体（CA）を観察した36個体（胎盤痕あり）における検出有無。2001～2009年ツキノワグマ有害捕獲個体。

<table>
<thead>
<tr>
<th>連れ子の状況</th>
<th>CA+</th>
<th>CA−</th>
</tr>
</thead>
<tbody>
<tr>
<td>子連れ個体</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>連れ子情報のなかった個体</td>
<td>18</td>
<td>7</td>
</tr>
</tbody>
</table>

+: 検出, -: 検出されず
図 3-1-1 ツキノワグマの黄体(A)および胎盤痕(B)の観察例。解凍サンプル。
図 3-1-2 ツキノワグマの白体観察例（写真中央部）。ワイゲルト染色。白体は、濃紫色に染まる弾性繊維に富む脈管構造で囲まれた、淡染した領域として認められる。
第二節 胎盤痕および白体の遺残期間と捕獲年出産歴推定方法の開発

本節では、前節に示したデータをもとに胎盤痕および白体の遺残期間を調べた結果を示し、それに基づき開発した捕獲年出産歴の推定方法について述べる。

材料と方法

胎盤痕の遺残期間を調べるため、子連れの個体18頭のデータを用いた（前節表3-1-1連番1〜18）。胎盤痕に関しては、子連れの個体のすべてに胎盤痕が存在したので、本研究における子連れ個体の最終捕獲日を、胎盤痕の最短遺残期日（その年に出産した個体は少なくともこれ以前の時期には胎盤痕を残していると考えてよい期日）とした。また、白体の遺残期間に関しては、データの得られた子連れ個体11頭において、白体検出の有無を目的変数（白体検出：1、白体非検出：0）、捕獲日を説明変数とするロジスティック回帰分析を行った。回帰から予測される白体検出確率が、0.95を上回っている期間の最終日を白体の最短遺残期日（その年に出産した個体は少なくともこれ以前の時期には白体を残していると考えてよい期日）、0.05を下回る最初の日を最長遺残期日（これ以降には白体は検出されないと考えてよい期日）とした。また、連れ子情報のなかった個体25頭についてもロジスティック回帰分析を行い、ロジスティック回帰分析に用いたソフトウェアは第一章と同じである。

結果

子連れの個体の最終捕獲日は11月25日であったことから（前節表3-1-1連番18）、胎盤痕の最短遺残期日は11月25日となった。図3-2-1には、白体を観察した36個体（子連れ11個体、連れ子情報なし25個体）における白体検出の有無を捕獲月ごとに示した。子連れの個体では、9月末までに捕獲された5個体全てに白体が検出されたが、その後検出される個体の割合は減少した。連れ子の情報のなかった個体においても、これとほぼ同様の傾向が認められた。図3-2-2に、ロジスティック回帰により白体検出確率を予測した結果を示す。子連れ個体の白体の検出確率予測値は、8月9日までは0.95以上であり、その後減少して翌年の2月2日には検出確率が0.05を下回った。これより、白体の最短遺残期日は8月9日、最長遺残期
日は翌年2月2日となった。また、連れ子情報のなかった個体の白体の検出確率も、子連れ個体のそれに比べやや減少が早かったものの、ほぼ同様な変化を示した。

考察
胎盤痕の最短遺残期日は11月25日であったことから、この期日までに捕獲された個体で胎盤痕が検出されなければ、その個体は捕殺された年には出産していないとみなすことができる。一方、胎盤痕を有する個体が捕殺年に出産しているか否かは、今回のデータから胎盤痕の最長遺残期日を確定することができなかったため、判定することができない。なぜなら、仮に胎盤痕の最長遺残期日が出産翌年の有害捕獲期間中（冬眠明けの5月以降）になるような場合には、捕殺個体中の胎盤痕が、捕殺前年の出産に起因する胎盤痕である可能性を否定できないからである。

白体に関しては、最短遺残期日が8月9日、最長遺残期日が翌年2月2日であったので、有害捕獲が始まる5月以降、最短遺残期日の8月9日までに捕獲された個体で白体が検出されれば、その年に出産歴あり、検出されなければ出産歴なしと判定できる。8月10日以降、有害捕獲が終了する12月までに捕獲された個体においては、白体が検出されればその個体はその年に出産していると判定できるが、白体の検出されない個体の出産歴を判定することはできない。

連れ子情報のなかった個体の白体の検出確率が、子連れ個体のそれとよく似た変化を示したことは、胎盤痕が出産翌年の有害捕獲期まで遺残する確率が低いことを示唆していると考えられる。なぜなら、胎盤痕が出産翌年の有害捕獲期まで遺残する確率が高ければ、白体を調べた連れ子情報のない個体（いずれも胎盤痕あり）の中に、捕獲前年に出産した個体が相当数含まれることになる。それらの個体には自体は検出されないので、結果的に、連れ子情報のなかった個体の自体検出確率は、子連れ個体のそれに比べ、見かけ上速やかに減少することになると考えられるからである。ただし、記録は定性的な議論であり、胎盤痕の最長遺残期日を決定することはできない。下記で述べる出産歴推定方法では、胎盤痕に関しては最短遺残期日のみを利用した。

以上から、胎盤痕と白体を利用して捕獲年の出産歴を推定するフローとして、図3-2-3のような方法を考案した。捕獲期に関する制限は、本節の結果を厳密に適用すると、胎盤痕の最短
遺残期日 11月25日および白体の最短遺残期日の8月9日を用いることになるが、ここでは概略値として11月および8月を採用した。

図3-2-3の方法によれば、11月までに捕獲された個体の捕獲年における出産の有無は、8月以降に捕獲された胎盤痕あり・白体なしの個体を除き、判定することが可能である。また、判定不可能個体に起因する一定の誤差範囲は残るものので、原理的には毎年の捕獲個体データからその年の出産率を推定できる。本研究では出産率を検討することはできなかったが（白体観察を行うことができたサンプル数が少なかった結果、判定不可能個体が多くなったため）、将来的に捕獲個体のデータ収集体制を充実させることができれば、繁殖モニタリングの一つの有力な方法になると考える。

今後、子連れ情報のある個体における胎盤痕および白体データがさらに蓄積されれば、より正確な捕獲期日に関する制限を導くことができ、捕獲年出産歴判定精度の向上に寄与すると思われる。また、本判定方法では、流産の場合には胎盤痕が遺残しないことを仮定している。今後、流産時における胎盤痕の遺残期間についても検討が必要である。同様に、流産時の白体遺残期間の検討も必要である。本判定方法では、捕獲年に出産歴と判定された個体の中に、着床後に妊娠が中断した個体を含む可能性のあることに留意する必要がある。

これまでのクマ類における出産歴推定は、捕獲・標識した雌をトラッキングして、目視で連れ子の有無を確認することによって行われてきた。この方法は、複数年わたって同一個体を経時的に追いかける方法であるので、各個体の一生の中での繁殖履歴を詳細に追える利点がある反面、出産率などのように、ある個体群内の全ての雌の平均的な繁殖状況を調査するにはあまり向いていない。また、調査に多大な労力を要するため、多くの例数を得ることが難しく、繁殖状況の細かな経時的変動（例えば出産率の年次変動）を調べることは事実上不可能であった。筆者が今回提案した出産歴推定方法は従来法の不利を補うものであり、今後のツキノワグマの繁殖研究において従来法と相互に補完するものであると考える。
図3-2-1 白検出の捕獲月別推移（本研究における白体の定義、観察方法については第一節参照）。●印は検出個体、○印は非検出個体を示す。2001〜2009年ツキノワグマ有害捕獲個体。

<table>
<thead>
<tr>
<th>捕獲月</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
</tr>
</thead>
<tbody>
<tr>
<td>子連れ個体（n = 11）</td>
<td>●</td>
<td></td>
<td>●</td>
<td>●●</td>
<td>●●○</td>
<td>●○</td>
<td>○○</td>
</tr>
<tr>
<td>連れ子情報のなかった個体（n = 25）</td>
<td>●</td>
<td>●●</td>
<td>●●●</td>
<td>●●●○</td>
<td>●●○</td>
<td>○○○</td>
<td>●</td>
</tr>
</tbody>
</table>
図 3.2.2 ロジスティック回帰による白体検出確率の予測（本研究における白体の定義、観察方法については第一節参照）。2001〜2009 年ツキノワグマ有害捕獲個体。
図 3-2-3 有害捕獲ツキノワグマの胎盤痕および白体の観察による捕獲年出産歴推定方法フロー。
第三節 ツキノワグマの排卵開始年齢および交尾期と黄体有無の解釈

捕殺個体における黄体の有無を正しく解釈するには、排卵時点（交尾期）における連れ子の状況のほか、捕殺個体の年齢および捕獲も考慮する必要がある。すなわち、排卵開始年齢に達していない未成熟な個体の場合には、黄体がないのは正常であり、排卵の失敗ではない。また、交尾期以前に捕獲された個体に黄体がないのも正常である。

ツキノワグマの交尾期については、山本ら（1998）が、飼育個体を観察し、交尾行動がみられた期間は6月中旬〜8月上旬であり、そのピークは7月中旬であったことを報告している。野生ツキノワグマの交尾期も同様であると考えられている（大井, 2009）が、実際には確認されていない。排卵開始年齢に関しては、片山ら（1996）が、捕殺個体における卵巣重量、黄体および黄体退縮物（白体）の観察から、一般的には4歳であると報告している。しかし、彼らの報告では、排卵時点における連れ子の状況は考慮されておらず、4歳未満の4個体に黄体または黄体退縮物がなく、4歳以上の19個体中15個体にあったことをもって、排卵開始年齢を4歳としている。また、彼らは、4歳未満の個体でも排卵する可能性のあることを示唆している。

以上のように、交尾期および排卵開始年齢は、その概略は明らかになっているものの、黄体の有無をもとにした排卵履歴の解釈へ適用するには、不確定な要素が残る。例えば4歳の捕殺個体に黄体がない場合、その原因として性的未成熟を否定できるか、また、8月に捕獲された個体に黄体がない場合、原因として未交尾を否定できるかといった点である。

本章では、捕殺個体における捕獲期別の黄体保有率および年齢別の黄体保有率の変化から、交尾期および排卵開始年齢を検討した。そして、黄体の有無から排卵履歴を推定する際に、捕殺個体の年齢および捕獲時期をどのように取り扱うのが妥当であるかを検討した。

材料と方法

交尾期に単独であった個体を抽出するにあたり、ツキノワグマの子別れ時期は出産翌年（子が1歳の年）の交尾期前であると仮定した。この仮定の下では、捕獲年に出産歴のない個体は、捕獲年の交尾期には単独であったと考えられる。したがって、前節の出産歴判定法（図3-2-3）をもとに、「11月までに捕獲された胎盤痕のない個体」を単独個体として抽出した。そして、
抽出した単独個体のデータから、黄体保有率の捕獲月および年齢による変化を調べた。

結果

単独個体と判定された個体は97個体であった（第一節表3-1-1 連番63〜159の胎盤痕なし個体に相当）。その97個体における、年齢別および捕獲月別の黄体有無を図3-3-1に示した。2歳の個体では12個体中2個体、3歳では9個体中1個体に黄体が認められた。4歳以上では90%（64/71）の個体に黄体が認められた。6~7月捕獲の個体では6個体中2個体に、8月以降に捕獲された個体では71%（65/91）に黄体が認められた。また、4歳以上、かつ8月以降の捕獲個体では、93%（62/67）に黄体が認められた。

図3-3-2AおよびBには、図3-3-1のデータをもとに、捕獲月別および年齢別の黄体保有率を求めた結果を示す。なお、図3-3-2Aでは対象個体の年齢を4歳以上、図3-3-2Bでは対象月を8月以降に限定して示した。捕獲月別の黄体保有率は、6~7月にかけて上昇し、8月にはほぼ1に近い値（17/18）をとり、その後高い値を維持した。年齢別黄体保有率は、3歳と4歳の間で急激に上昇し、4歳で1（5/5）となり、その後高い値を維持した。

考察

図3-3-2Aの黄体保有率の変化から、野生のツキノワグマは、8月にはほぼ全ての個体が排卵を終えていると考えられる。また、この変化は、飼育ツキノワグマの交尾行動が6月中旬から8月上旬の間にみられ、そのピークは7月中旬であったという山本ら（1998）の報告から予測されるものと一致する。6月および7月のサンプル数が少ないため、今回のデータから交尾期の始まりを確定することはできなかったが、少なくとも交尾期の終了時期に関しては、山本ら（1998）の結果が野生個体にも当てはまることがわかった。

また、8月以降の黄体保有率は高い値を維持した（図3-3-2A）。これは、黄体の早期退行の発生頻度が少ないことを示唆している。早期退行の発生頻度が高ければ、捕獲個体に黄体のない場合、あるいは白体が検出される場合の解釈が困難となるが、ツキノワグマでは早期退行頻度は低く、そうした不都合は生じないと考えられる。

図3-3-2Bの結果より、ツキノワグマにおいて大多数の雌が排卵を開始する年齢（以下、標
準排卵開始年齢とよぶ）は、4歳であることが確認された。また、2歳および3歳の個体でも一部は排卵を開始することがわかった。これらの結果は、片山ら（1996）の報告を追認するのである。

以上の結果より、捕殺個体の捕獲時期および年齢を、8月以降および4歳以上に限定すれば、曖昧さを残すことなく、黄体有無を一意的に解釈できることがわかった。

最後に、単独個体の抽出の際に用いた仮定、すなわちツキノワグマの子別れ時期は出産翌年（子が1歳の年）の交尾期前であるという仮定について付記する。本仮定は、ツキノワグマの哺育期間が約一年半であると考えられていること（大井, 2009）、近縁のアメリカクロクマにおける研究では多くの場合出産翌年の5〜7月に子別れが起こり、成雌はその後発情して交尾することが示唆されていること（Lee and Vaughan, 2004）、さらには、本研究で得られた連れ子の推定年齢が全て0歳であったことから、出産翌年の交尾期を超えて子を哺育し続ける個体の割合は近似的に0とみなせるとして設定した。仮に、今回単独個体として抽出した個体の中に長期哺育を行っていた個体が一部混在していたとすると、本節で求めた黄体保有率は過小評価となる。すなわち、本近似に起因する誤差は、黄体保有率を過少に評価する方向にはたらく。また、本節で観測された黄体保有率は4歳以上かつ8月以降捕獲の個体で見れば全体として90%以上の値を示したので、この近似に起因する誤差は、仮に存在するとしても10%程度であると考えられる。これらのことから、本近似の誤差は、前段落の結論に影響しないと考えられる。
図表

<table>
<thead>
<tr>
<th>年齢</th>
<th>0 - 1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8 - 9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13-14</th>
<th>15-23</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jun</td>
<td></td>
</tr>
<tr>
<td>Jul</td>
<td></td>
</tr>
<tr>
<td>Aug</td>
<td></td>
</tr>
<tr>
<td>Sep</td>
<td></td>
</tr>
<tr>
<td>Oct</td>
<td></td>
</tr>
<tr>
<td>Nov</td>
<td></td>
</tr>
</tbody>
</table>

図 3-3-1 有害捕獲ツキノワグマに観察された捕獲月別および年齢別の黄体の有無。胎盤痕のない個体。●印：黄体を有する個体、○印：黄体のない個体。サンプル数が 5 未満の年齢は、隣接する年齢と合併してサンプル数が 5 以上となるようにして表示している。2001 ～ 2009 年捕獲個体。
図 3-3-2 有害捕獲ツキノワグマの捕獲月別（A）および年齢別（B）黄体保有率。胎盤痕のない個体。A は 4 歳以上の個体、B は 8～11 月捕獲の個体に限定して黄体保有率を求めた。図中の分数は、各月あるいは年齢における（黄体あり個体数）/（サンプルサイズ）を示す。サンプル数が 5 未満の年齢は、隣接する年齢と合併してサンプル数が 5 以上となるようにして表示している。2001～2009 年捕獲個体。
第四節 排卵の成功確率および当歳（0歳）子の早期死亡確率の推定方法

前節までで、胎盤痕および白体の観察から捕獲年の出産歴を推定する方法、および黄体有無から排卵履歴を推定する際の捕殺個体の年齢および捕獲時期の取り扱い方法を確立した。本節では、それらの結果を基礎として、新しい繁殖指標を探索し、その推定方法の開発を試みた。推定の対象としたのは、排卵の成功確率と当歳（0歳）子の早期死亡確率の二つである。ここでいう排卵の成功確率とは、標準排卵開始年齢※に達している単独の雌が、実際に排卵に成功する確率を指す。また、当歳子の早期死亡確率とは、出産した雌が、その年の交尾期までに全ての当歳子を失う確率を指すものとする。どちらの指標も本研究にオリジナルな指標であり、生態学等で一般的に用いられる繁殖指標とは異なるものであるが、その推定には以下のような意義があると考えられる。

まず、排卵は雌の繁殖サイクルの開始点であり、その成功確率は繁殖サイクル全体の成功確率の最大値を決定する。さらに、排卵数と排卵の成功確率の積は、一回の排卵における排出卵子数の期待値であり、潜在的な繁殖力の上限を規定する。次に当歳子の早期死亡確率であるが、この確率は、生態学で一般的に用いられる年齢別生存率（あるいは死亡率）に近いものである。通常、年齢別生存率（死亡率）は、ある年齢の1年間に個体が生存（死亡）する確率と定義される。一般にクマ類を含む大型哺乳類では、生存率（死亡率）は幼若期ほど低い（高い）ことが知られており（Johnson, 1996）、特に0歳子の生存率（死亡率）は個体群動態への影響が大きい。本節における当歳子の早期死亡確率は、0歳前半の約半年間を対象とした死亡率に相当する。生態学的にクマ類の繁殖を考えると、そのエンドポイントは出産ではなく、子が母獣の元を離れて独立した時点（子別れ）であると考えられるので、幼獣の生存率（死亡率）も繁殖生態上は重要なパラメータとなる。

こうした意義のほかに、繁殖サイクルの各過程の成功確率を求めることは、それぞれの過程がサイクル全体の成功に対して相対的にどのような重要性を持っているかを考察するのに役立つ。ツキノワグマの繁殖サイクルにおいては、仮説的に、着床、あるいは冬眠穴内での新生子

※ 各個体における排卵開始年齢と明確に区別するため、大多数の雌が排卵を開始する年齢を、標準排卵開始年齢と呼ぶことにする。
死亡が、サイクル全体の成否に大きく影響しているのではないかと考えられている（大井, 2009）。この仮説を検証する一つの手立ては、各繁殖過程の成功確率を求め、比較することである。
また、本節で述べる指標は、保護管理の現場においても、新しい繁殖モニタリング指標として活用可能であると思われる。

材料と方法
指標の定義： 推定の対象とする繁殖指標を以下のように定義した。

・排卵の成功確率（以下 SRO : success rate of ovulation と記す）
 ＝標準排卵開始年齢に達した子連れでない（単独の）雌が実際に排卵に成功する確率

・当歳子の早期死亡確率（以下 ELLR : early litter loss rate と記す）
 ＝出産した雌がその年の交尾期までに全ての子を失う確率

推定方法： まず、捕獲個体における捕獲年の出産歴と黄体の有無を以下のようにパターン分けした（表 3・4・1）。
パターン A：捕獲年の出産歴なし、黄体あり。
パターン B：捕獲年の出産歴なし、黄体なし。
パターン C：捕獲年の出産歴あり、黄体あり。
パターン D：捕獲年の出産歴あり、黄体なし。

対象個体を4歳以上かつ8月以降の捕獲個体に限定すると、それぞれのパターンは以下に示す短期的繁殖歴を意味する。
パターン A：交尾期に単独であり正常に排卵した個体。
パターン B：（B-1）交尾期に単独であったが、排卵に失敗した個体、または、
 （B-2）前年に生んだ子（1歳子）を交尾期に哺育していたため排卵しなかった個体。
パターン C： 出産した子全てが交尾期終了以前に死亡し、発情が回帰して排卵した個体。
パターン D：（D-1）出産した子を哺育していたため排卵しなかった個体、または、
 （D-2）子の全てが交尾期終了以前に死亡し、単独であったが排卵に失敗した個体。
SRO および ELLR は、パターン X にカテゴライズされる捕殺個体数を \(N_X \) で表すと、次式で計算できる。

\[
SRO = \frac{N_A + N_C}{N_A + N_{B-1} + N_C + N_{D-2}} \quad (i)
\]

\[
ELLR = \frac{N_C + N_{D-2}}{N_C + N_D} \quad (ii)
\]

捕獲年に出産歴のなかった個体の間で、排卵の成功確率に差がない、すなわち、

\[
\frac{N_A}{N_A + N_{B-1}} = \frac{N_C}{N_C + N_{D-2}} \quad (iii)
\]

と仮定すると、(i)および(ii)式より、

\[
SRO = \frac{N_A}{N_A + N_{B-1}} = \frac{N_C}{N_C + N_{D-2}} \quad (iv)
\]

\[
ELLR = \frac{N_C}{N_C + N_D} \cdot SRO \quad (v)
\]

交尾期を超えて 1 歳子を哺育する雌がないか、いてもその割合が少ない考えられる場合（\(N_{B-2} \)が近似的に 0 と考えられる場合）、\(N_{B-1} \)は\(N_B \)に近似的に等しいとして扱うことができる。ここでは、前節と同様に、この近似が成立するものと仮定し、SRO および ELLR を次式で求めた。

\[
SRO \approx \frac{N_A}{N_A + N_B} \quad (5.1)
\]

\[
ELLR \approx \frac{N_C}{N_C + N_D} \bigg/ \frac{N_A}{N_A + N_B} \quad (5.2)
\]

推定に使用したデータ： 第一節表 1-1-1 のデータを用いた。

結果

4 歳以上かつ 8 月以降捕獲個体のうち、第二節図 3-2-3 の方法により、捕獲年に出産歴のな
いことが確認できた個体は67個体、出産歴のあることが確認できた個体は22個体、判定できなかった個体は35個体であった。表3-4-2に、出産歴を確定できた個体について黄体の有無をまとめた結果を示す。

この結果と(5.1)式より、
\[SRO \approx \frac{62}{(62 + 5)} = 0.93 \]
(5.2)式より ELLR を求めるとき、
\[ELLR \approx \frac{6}{(6 + 16)} / \frac{62}{(62 + 5)} = 0.29 \]
が得られた。

考察

SROおよびELLR算出の際に用いた仮定は、(1) 交尾期を超えて1歳子を哺育する雌はいないか、いたとしてもその割合は少ない、(2) 捕獲年に出産歴のある個体となかった個体の間で、排卵の成功率に差がない、の２つであった。以下では、これらの仮定に起因して生ずる可能性のある推定誤差について考察する。

(1)の仮定に起因するSROの算定誤差は、本来排卵することのない子連れ個体が算定対象に混在する結果であるので、SROが過少評価になる方向に生じる。また、ELLRは(5.2)式からわかるように、SROが過小評価の場合は過大評価となる。また、(2)に関しては、捕獲年に出産歴のある個体の場合、出産および哺育による身体的負荷を受けた後の排卵となるので、捕獲年に出産歴のなかった個体に比べて、SROが低くなる可能性を必ずしも否定できない。この場合、本章の方法によるELLRは過小評価となる。上記の仮定(1)(2)とそれに起因する潜在的誤差は、SROおよびELLRを今後の研究あるいは個体群のモニタリングに利用する場合に、常に念頭におく必要がある。

ELLRの値0.29は、生態学的手法により求められたクマ類の0歳子生存率と比べて妥当な値だろうか？ツキノワグマの0歳子生存率は未だ系統的に調べられた例はないが、アメリカクロクマでは、米国の様々な地域において0歳子生存率が調べられており、およそ0.6〜0.7（すなわち死亡率で0.3〜0.4）という数値が報告されている(Vaughan, 2009)。ELLRが、一腹全
ての子が 0 歳の年の前半において死亡する確率であることを考えると、本節で求められた ELLR は、アメリカクロクマの 0 歳子生存率から予想しうる値に近似していると考えられる。

クマ類の繁殖サイクル各過程の成功確率を求めた研究はこれまでにほとんどないが、最近、Schwartz and White (2008) が、連れ子の状態の遷移確率を求めている。彼らは、毎年の冬眠明け期に雄の連れ子の状態（連れ子なし、0 歳子連れ、1 歳子連れ）を観察し、その状態がどのような確率で遷移するかを求めた。それによると、アラスカ・ケナイ半島のアメリカクロクマ個体群で、ある年に 1 歳の子を連れていた雌が、次の年に新たな 0 歳子を連れている確率は、0.74 であった。同個体群では子別れの時期は 1 歳であるので、この確率は、子別れを済ませて新たな繁殖サイクルに入った雌が、排卵から出産を経て、冬眠穴中での哺育に至る過程の全てに成功する確率であると考えられる。ツキノワグマにおける確率が、アメリカクロクマでの確率にほぼ等しいと仮定すると、排卵以降、冬眠穴中の繁殖までが成功する確率は、上記の確率 0.74 を SRO で割った値であり、0.80 となる。サイクル全体の成否への影響が疑われている着床と冬眠穴中の哺育は、この過程のうちに含まれるので、その成功確率は 0.80 を下回ることはないと考えられる。すなわち、着床および冬眠穴中の哺乳の成功確率は、低く見積もりても 0.80 であり、排卵の成功確率（SRO）0.93 と比べても極端に低いわけではないと考えられる。ツキノワグマとアメリカクロクマで遷移確率が等しいという仮定に基づいているため推測の域をでないが、着床あるいは冬眠穴中の哺乳がツキノワグマの繁殖サイクルの成功に対して決定的な役割を果たしているという仮説は、少なくとも現段階において支持されるとは言い難い。

※ ゾウワグマの一胎産子数は通常 2 である。ELLR はその定義から、一胎の全ての子を失う確率である。このため、個々の 0 歳子が死亡する確率は ELLR より高いことに注意する必要がある。一般にいう 0 歳子生存（死亡）率は個々の 0 歳子の生存（死亡）率をいう。
表 3-4-1 捕獲年の出産歴と黄体有無のパターン、および各パターンが示す短期繁殖履歴（4歳以上かつ8月以降の捕獲個体）

<table>
<thead>
<tr>
<th></th>
<th>黄体あり</th>
<th>黄体なし</th>
</tr>
</thead>
<tbody>
<tr>
<td>捕獲年に出産していない個体</td>
<td>パターン A</td>
<td>パターン B</td>
</tr>
<tr>
<td>捕獲年に出産した個体</td>
<td>パターン C</td>
<td>パターン D</td>
</tr>
</tbody>
</table>

パターン A：交尾期に単独であり正常に排卵した個体。
パターン B：(B-1) 交尾期に単独であったが、排卵に失敗した個体、または、
(B-2) 前年に生んだ子（1歳子）を交尾期に哺育していたため排卵しなかった個体。
パターン C：出産した子全てが交尾期終了以前に死亡し、発情が回帰して排卵した個体。
パターン D：(D-1) 出産した子を哺育していたため排卵しなかった個体、または、
(D-2) 子の全てが交尾期終了以前に死亡し、単独であったが排卵に失敗した個体。

表 3-4-2 捕獲年の出産歴を確定できた捕殺個体における黄体の有無（4歳以上かつ8月以降の捕獲個体）

<table>
<thead>
<tr>
<th></th>
<th>黄体あり</th>
<th>黄体なし</th>
</tr>
</thead>
<tbody>
<tr>
<td>捕獲年出産歴なしと確認できた個体</td>
<td>62個体</td>
<td>5個体</td>
</tr>
<tr>
<td>捕獲年出産歴ありと確認できた個体</td>
<td>6個体</td>
<td>16個体</td>
</tr>
</tbody>
</table>
第五節 ツキノワグマにおける排卵過程の成功度と繁殖成功率の年齢依存性

本節では、開発した SRO 推定法と排卵数を用いて、ツキノワグマの排卵過程の成功度（排卵可能な 1 頭の雌が排卵する卵子の数の期待値 = SRO×排卵数）の年齢依存性を検討し、クマ類一般の繁殖成功率※との関係を考察した。

クマ類の繁殖成功率には、経産歴の影響があると考えられている。McDonald and Fuller (2001) はアメリカクロクマにおいて、Zedrosser et al. (2009) はヨーロッパヒグマ (Ursus arctos) において、初産雌の一腹産子数が経産雌に比べて小さいことを報告している。また、Schwartz and White (2008) は、グリズリー (Ursus arctos) において、単独雌が次の年に当歳子を連れていた遷移確率を求め、それが雌の年齢とともに上昇し 10〜15 歳で最高になることを見出した。これらの知見をあわせると、初産雌の割合が多いと考えられる若齢雌群においては、繁殖成功率は低いと考えられる。

本章では、こうした繁殖成功率の経産歴あるいは年齢依存性に、排卵過程の成功度がどのように関わっているかを検討した。

材料と方法

第四節の定義によれば、SRO は標準排卵開始年齢に達した個体 (4 歳以上) のみに対して適用されるが、本節では、SRO を標準排卵開始年齢未満の個体にも拡張するため、新たに i 歳における年齢別排卵確率 (AgeSROi) を、8 月以降 11 月までに捕獲された胎盤痕のない i 歳の個体のグループ内における黄体保有率と定義した (SRO は 4 歳以上の個体をひとまとめにして計算した AgeSROi≧4 に等しい)。この定義による AgeSROi は、図 3-3-2B の黄体保有率に等しいので、本節では図 3-3-2B の縦軸を AgeSROi として再掲した。

一方、年齢別の排卵数は、図 3-3-2B に用いた個体を対象として、次式により求めた。

年齢別平均排卵数 = (その年齢の全個体の黄体数の合計) / (黄体のあった個体数)

※ ここでいう繁殖成功とは、1 回の繁殖チャンスに 1 頭の雌が生む子の数の期待値を指すものとする。
結果

図 3-5-1 に AgeSROi を示す。4 歳以上では 12 歳を除き、いずれの年齢でも排卵に失敗した個体は 1 個体以下で、AgeSROi も 0.8 以上高い値を示した。図 3-5-2 には年齢別平均排卵数を示した。平均排卵数はどの年齢においてもおよそ 2 であり、2 個以外の排卵数（1 個または 3 個）を示した個体の数はどの年齢でも 2 個体を超えることはなかった。

考察

12 歳の AgeSROi が低く観測されたが、13 歳以上において再び AgeSROi が回復していること、およびサンプル数が少ないことによる誤差を考慮すると、4 歳以上の AgeSROi には年齢による変化はないものと考えられる。平均排卵数にも年齢による変化がなかったことから、結局、排卵過程の成功度は 4 歳以上の雌においては変化がないと考えられる。一方、4 歳未満の AgeSROi は 4 歳以上に比べ顕著に低いものの、排卵数には差が見られない。つまり、4 歳未満の個体を群として見た場合の排卵過程の成功度は、その中に未成熟な個体が含まれるため、4 歳以上に比べて顕著に低いが、4 歳未満であっても排卵を開始した個体の排卵数は 4 歳以上の個体と変わらない。ツキノワグマの繁殖成功に対する経産歴あるいは年齢の影響は必ずしも明らかにされていないが、他のクマ類と同様であるとすると、少なくともその影響は排卵以外の繁殖過程に対して作用していると考えられる。

排卵過程の成功度に排卵歴あるいは年齢の影響がない一つの理由は、排卵という繁殖過程の身体的負担が、たとえば胎子成長や出産、授乳などの他の繁殖過程に比べて小さいためと推測される。一つの仮説として、繁殖成功率に対する経産歴あるいは年齢の影響は、身体的負担が大きいと予想される胎子成長から授乳に至る過程に現われると考えられる。

この仮説は前節の考察とは一見矛盾するようであるが、前節の議論は経産雌を対象としていた。Schwartz and White (2008) がグリズリーにおいて本節冒頭で述べたような遷移確率の年齢依存性を見出していることから、未経産の雌のみを対象とすれば、前節で述べた「排卵以降、冬眠穴中での哺乳までの成功確率」、すなわち、受精、着床遅延、着床、胎子成長、出産および冬眠穴中での哺乳の全てのプロセスが成功する確率の推測値 0.80 はもっと低くなると予想される。よって、経産雌においては繁殖サイクルの中で相対的に大きな影響を持つプロセスはなく
いが、未経産雌においては、影響の大きい（成功確率が低い）プロセスが存在することを否定できない。筆者は、未経産雌においては身体的負担が大きいと予想される胎子成長から授乳までの過程が繁殖サイクルの成否に大きな影響を持つが、年齢を重ねて個体の成熟度が増すともにそのような影響が小さくなるのではないかと推測している。
図 3・5・1 ツキノワグマの年齢別排卵確率（AgeSRoI）。図中の分数は、各年齢における（黄体あり個体数）/（サンプルサイズ）を示す。サンプル数が 5 未満の年齢は、隣接する年齢と合併してサンプル数が 5 以上となるようにして表示している。15-23 歳の個体数内訳は、15 歳 1 個体、16 歳 4 個体、21 歳 1 個体、23 歳 1 個体。うち、黄体がなかったのは 21 歳の 1 個体。2001～2009 年捕獲個体。
図 3-5・2　ツキノワグマにおける年齢別平均排卵数。図上のカッコ内数字は（黄体数 1 の個体数、黄体数 2 の個体数、黄体数 3 の個体数）。4 歳未満の年齢における平均排卵数は一まとめで表示し、4 歳以上の年齢グループは図 3-5・1 と同様に設定した。2001～2009 年有害捕獲個体。
第三章の小括

黄体、白体および胎盤痕を利用した繁殖評価方法の確立を目的に、2001〜2009年に本州各地で捕獲された159個体の黄体、白体および胎盤痕の存否を調べ、白体および胎盤痕の遺残期間、交尾期および排卵開始年齢を明らかにした。

出産個体の白体は、少なくとも出産年の8月までは検出可能であり、翌年の有害捕獲期（5月以降）には検出されなくなること、胎盤痕は少なくとも出産年の11月までは遺残することがわかった。この知見より、胎盤痕と白体の有無をもとに、捕獲年における出産歴の推定方法を考案した。

黄体保有率の捕獲月による変化から、野生のツキノワグマの排卵は8月頃までにはほぼ完了していると推察された。また、排卵開始年齢に関しては、2〜3歳で排卵する個体も一部存在するが、大多数の雌が排卵を開始する年齢（標準排卵開始年齢）は4歳であることがわかった。このことから、8月以降捕獲の4歳以上の個体に限り、かつ捕獲年の出産歴を考慮すれば、黄体が存在しない個体は排卵に失敗したと判定できることがわかった。

上記の知見を踏まえ、新たな繁殖評価指標として排卵の成功確率 (success rate of ovulation: SRO; 標準排卵開始年齢に達した子連れでない（単独の）雌が実際に排卵に成功する確率）および当歳子の早期死亡確率 (early litter loss rate; ELLR; 出産した雌がその年の交尾期までに全ての子を失う確率) を定義し、その推定方法を開発した。その結果、SRO は 0.93 (62/67)、ELLR は 0.29 (6/22 ÷ 62/67) と推定された。

また、排卵過程の成功度（排卵可能な1頭の雌が排卵する卵子の数の期待値 = SRO×排卵数）の年齢依存性を評価し、4歳以上では排卵過程の成功度に年齢依存性がないこと、および4歳未満の排卵過程の成功度は4歳以上に比べて顕著に低いか、4歳未満であっても排卵を開始した個体の排卵数は4歳以上の個体と変わらないことを明らかにした。
本研究の要約

ニホンツキノワグマ（Ursus thibetanus japonicus；以下ツキノワグマ）は、IUCN 分類で Vulnerable（絶滅危惧 II 類）に分類されるアジアクロクマ（Ursus thibetanus）の一亜種である。日本版レッドリストではツキノワグマは、6 つの個体群が絶滅のおそれのある地域個体群に指定されている。ツキノワグマは日本の森林生態系を代表する大型哺乳動物であり、その保全は森林生態系全体の保全にも寄与すると考えられている。一方で、全国的にはツキノワグマの分布が拡大しており、それに伴いツキノワグマの入里への出没が社会的な問題となっている。ツキノワグマとヒトの双方にとって望ましい解決方法が模索されているものの、現状では有害鳥獣捕獲制度による捕殺処分が主な対応策となっている。

ツキノワグマの適正な保護管理の基礎となるのは生物学的情報である。必要とされる情報は目的により様々であるが、栄養状態と繁殖に関する情報は最も基本的なものである。その研究方法には、野生個体を直接研究するアプローチ、飼育個体を利用するアプローチ、あるいは捕殺個体を利用するアプローチがあり、各アプローチは相互に補完する。捕殺された個体は生物学的情報の有力な源であり、その有効利用はツキノワグマ研究に欠いてはならない一分野である。本研究では、捕殺個体を利用した栄養状態および繁殖評価方法を確立することを目的とした。評価手法としては、有害鳥獣捕獲制度を利用した採材を前提とし、保護管理におけるモニタリングに資すること、ならびに出没メカニズムの解明に資することを念頭に置いた。

栄養状態の評価では、2006 年に岐阜県で捕殺された個体を用い、3 つの体脂肪指標、大腿骨髄内脂肪含有率（FMF）、修正腎周囲脂肪係数（mKFI）および腹壁の皮下脂肪厚（ASF）の年齢依存性、性別依存性および捕獲期依存性を調べた。その結果、全ての体脂肪指標において当歳（cub）クラスの値は他の年齢クラスより低いため、晚秋期（11 月・12 月）の mKFI および ASF は夏期（7～9 月）に比べて高いこと、雌の ASF は雄よりも低いことがわかった。また、3 指標間の相関関係を調べた結果、FMF の低下は著しい栄養状態の低下を示すものであることが示唆された。また、以上の結果に基づいて、2005～2007 年の夏期に岐阜県および福島県で捕獲された個体の栄養状態の年次変動を評価し、出没（有害捕獲数）との関連を考察した。これまでの研究で食物量と有害捕獲数の相関が確認されていることから、有害捕獲数の多
い年には捕獲個体の栄養状態が悪いという仮説を立てその検証を行ったが、捕獲個体の体脂肪蓄積量が多い年でも有害捕獲数の多いことのあることがわかった。これは、栄養状態の低下が出没の発生する必須条件ではないことを示すものと考えられた。

繁殖評価方法の探索とその確立は、2001～2009年に本州各地で捕殺された雌の黄体、白体および胎盤痕を観察した結果をもとに行った。まず、胎盤痕および白体の産後の遺残期間を調べ、胎盤痕が少なくとも出産年の11月まで遺残すると考えられることを明らかにした。また、白体は、本研究の観察方法によれば、出産年の8月以前においてはほぼ100%検出され、その後徐々に検出確率が低下し、翌年2月はじめごろには検出されなくなることがわかった。この結果を踏まえ、捕殺個体の繁殖評価における出産週推定方法を確立し、捕殺個体を用いた新たな繁殖評価方法の基礎とした。また、捕殺個体における黄体保有率の捕獲時期および年齢依存性から、交尾期および排卵開始年齢を検討し、野生個体では8月にはほぼすべての成熟雌が排卵を終えていることが、ならびに一部の早熟な個体は2～3歳で排卵を開始すると、大多数の雌が排卵を開始する年齢（標準排卵開始年齢）は4歳であることを明らかにした。以上の結果をもとに、新たな繁殖評価指標として、排卵の成功確率（success rate of ovulation, SRO；標準排卵開始年齢に達している子連れでないこと、いわゆる（単独の）雌が排卵に成功する確率）および当歳（0歳）子の早期死亡確率（early litter loss rate, ELLR；出産した雌がその年の交尾期までに全ての当歳子を失う確率）を定義し、その算出方法を確立した。本研究の観察結果に基づくこれらの指標の試算結果はSRO = 0.93、ELLR = 0.29であった。最後に、排卵過程の成功度（排卵可能1頭の雌が排卵する卵子の数の期待値 = SRO×排卵数）の年齢依存性を評価し、4歳以上では排卵過程の成功度に年齢依存性がないこと、および4歳未満の排卵過程の成功度は4歳以上に比べて顕著に低いが、4歳未満であっても排卵を開始した個体の排卵数は4歳以上の個体と変わらないことを明らかにした。

本研究では、捕殺個体を利用した栄養状態評価に基礎的な指針を与えることができた。また、繁殖評価においては、捕獲年の出産週推定方法や新指標（SRO、ELLR）の開発といった、これまでになかった方法を確立することができた。本研究の成果は、ツキノワグマの研究ならびに保護管理に新たな展開をもたらすものと考える。
謝辞

本研究の遂行にあたり、終始温かいご指導・ご鞭撻を賜りました北海道大学大学院獣医学研究科野生動物学教室の坪田敏男教授、ならびに下鶴倫人助教に感謝いたします。また、論文の審査およびご高閲を賜り、有益なご指摘を頂いた同研究科繁殖学教室の高橋芳幸教授、生化学教室の木村和弘教授に感謝いたします。森林総合研究所鳥獣生態研究室の大井徹博士には、論文の審査およびご高閲のみならず、研究の実行面においても様々のご援助をいただきました。ここに感謝いたします。

博士課程一年次における岐阜大学での委託指導期間には、同大応用生物科学部獣医学課程野生動物医学研究室の鈴木正嗣教授、ならびに淺野玄准教授に大変お世話になりました。ありがとうございました。また、同研究室の職員・学生の皆様にも大変お世話になりました。感謝いたしました。

北海道環境科学研究センターの間野勉博士には、歯を用いての年齢査定に関してご指導いただきました。ありがとうございました。

本研究のサンプル収集に当たっては、福島県鳥獣保護センターの溝口俊夫氏、岩手県環境保健研究センター地球科学部の山内貴義氏、盛岡動物公園の辻元恒徳氏、島根県中山間地域研究センターの澤田誠吾氏をはじめ、岐阜、福島、広島、鳥根、岩手、富山の各県の鳥獣行政関係者およびハンターの皆様に、多大なご協力を賜りました。深く感謝いたします。

野生動物学研究室の職員および学生の皆様には、博士課程の4年間、いろいろな面で私を支えてくださったことに感謝いたします。

最後に、私の人生の遠回りに付き合ってくれた家族に、心より感謝したいと思います。

本研究は、森林総合研究所が受託した環境省の地球環境保全等試験研究費（公害防止等試験研究費）実施課題「ツキノワグマの出没メカニズムの解明と出没予測手法の開発」の一部として実施された。

環境省. 2007b. クマ類出没対応マニュアルクマが山から下りてくる－ 環境省自然環境局.
http://www.biodic.go.jp/cgi-db/gen/do06.do06_bunpu.

溝口 紀泰, 片山 敦司, 坪田 敏男, 小見山 章. 1996. ブナの豊凶がツキノワグマの食性に与える影響：ブナとミズナラの種子落下量の年次変動に関連して. 哺乳類科学 36:33-44.

中村 幸子, 岡野 司, 吉田 洋, 松本 歩, 村瀬 豊, 加藤 春喜, 小松 武志, 清野 玄, 鈴木 正嗣, 杉山 誠, 坪田 敏男. 2008. ニホンツキノワグマ(Ursus thibetanus japonicus)における

大井徹. 2009. ツキノワグマ - クマと森の生物学. 東海大学出版会. p 142-152.

Research Institute. p 9-17.

Study on evaluation methods for nutritional and reproductive conditions of the Japanese black bear (Ursus thibetanus japonicus) using samples from carcasses

Atsushi Yamanaka

Laboratory of Wildlife Biology and Medicine, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University

The Japanese black bear (Ursus thibetanus japonicus) is a subspecies of the Asiatic black bear (Ursus thibetanus), which is classified as a vulnerable species in the IUCN red list. In the Japanese red list, six local populations of the Japanese black bear are designated as threatened local populations, although the subspecies as a whole is not listed as threatened. The Japanese black bear is one of the largest mammals in forest ecosystems in Japan, and efforts in their conservation could contribute to the health of the forest ecosystems. On the other hand, as the distribution of the Japanese black bear has been expanding recently in most regions of Japan, intrusions of bears into human residential areas have become a social issue. Although solutions desirable for both humans and bears are being sought, a primary countermeasure, at present, is killing bears under permission by local authorities.

Biological information of the target species is basis for effective wildlife management. The necessary information varies depending on the goal of management, but nutritional and reproductive statuses are of the most essential pieces of information. There are a few approaches to studying nutritional and reproductive conditions of Japanese black bears. One is the direct observation of wild bears. Another approach deals with captive bears. The third approach is research on killed bears. These approaches are not mutually exclusive, but complement each other. Bear carcasses are precious sources of biological information.
Exploring their effective uses should not be left behind in research of the Japanese black bear. The purpose of this study is to establish evaluation methods for nutritional and reproductive conditions of the Japanese black bear using samples from carcasses. I also kept in mind that the evaluation methods should fit the sample collection through administrative damage control kills, and contribute to population monitoring and better understanding of intrusion mechanisms.

I employed three body fat indices as indicators of nutritional conditions: femur marrow fat (FMF), modified kidney fat index (mKFI), and abdominal subcutaneous fat (ASF). I measured these indices on samples from bears killed in Gifu Prefecture, 2006, and revealed the age dependency, sex dependency and seasonality of the indices. All the 3 body fat indices of cubs were significantly lower than those of the other age classes. mKFI and ASF in late fall (November and December) were significantly higher than those in summer (July-September). ASF of females was significantly lower than that of males. I examined the preferential order of catabolism among different fat depots, and found that low FMF suggests a poor nutritional condition. Based on these results, I statistically analyzed the yearly change in the body fat indices of bears killed in Gifu and Fukushima prefectures during the summers (July-September) of 2005-2007, and investigated their relation to the number of control-killed bears. Since a negative correlation has been reported between food abundance in bear habitat and the number of control-killed bears, I hypothesized that the nutritional condition of killed bears in years with more killed bears is poorer than in years with fewer killed bears. However, I found that the number of killed bears was higher in one year with better nutritional conditions of bears. This suggests that a poorer nutritional condition does not necessarily lead to more intrusions of bears into human residential areas.

To establish a method for reproductive evaluation, I observed corpora lutea, corpora albicantia and placental scars in females killed in several prefectures on Honshu Island from 2001 to 2009. I examined the postpartum durations of placental scars and corpora
albicantia, and found that placental scars remained at least until November, and that, under the present study’s method of histological examination, corpora albicantia were > 95% detectable until August and became undetectable around February of the next year. From these results, I developed a method for determining the parturition history of females in the year of their capture, which constituted a foundation for new reproductive evaluation methods. To assess the mating season and the age of first ovulation in the wild, I examined the monthly and age-specific changes in the proportion of females with corpora lutea. I found that most females had finished ovulation by August, and that the age at which most females began to ovulate (standard age of first ovulation) was 4 years, with some precocious ovulations at as early as 2 years of age. I introduced two parameters for new reproductive evaluation: the success rate of ovulation (SRO: the probability that solitary females over the standard age of first ovulation actually succeed in ovulation) and early litter loss rate (ELLR: the probability that parenting females lose all of their cubs before the mating season). I established methods for estimating those parameters from the presence or absence of placental scars, corpora albicantia and corpora lutea. The estimates of those parameters were SRO = 0.93 and ELLR = 0.29. I also examined the age dependency of ovulation success (SRO × ovulation rate), and found it almost constant among females ≥ 4 years old. The ovulation success of females < 4 years old was found to be lower than that of females ≥ 4 years old, but ovulation rates were similar.

In the present study, I provided an essential guideline for the evaluation of nutritional conditions of the Japanese black bear, and established new methods for reproductive evaluation such as the determination of parturition history and new reproductive parameters of SRO and ELLR. I believe that these achievements will bring a new dimension to research and management of the Japanese black bear.