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Quantum reaction boundary to mediate reactions in laser fields
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Molecule & Life Nonlinear Sciences Laboratory, Research Institute for Electronic Science,
Hokkaido University, Kita 20 Nishi 10, Kita-ku, Sapporo 001-0020, Japan

(Received 25 October 2010; accepted 1 December 2010; published online 12 January 2011)

Dynamics of passage over a saddle is investigated for a quantum system under the effect of time-
dependent external field (laser pulse). We utilize the recently developed theories of nonlinear
dynamics in the saddle region, and extend them to incorporate both time-dependence of the exter-
nal field and quantum mechanical effects of the system. Anharmonic couplings and laser fields with
any functional form of time dependence are explicitly taken into account. As the theory is based on
the Weyl expression of quantum mechanics, interpretation is facilitated by the classical phase space
picture, while no “classical approximation” is involved. We introduce a quantum reactivity operator
to extract the reactive part of the system. In a model system with an optimally controlled laser field
for the reaction, it is found that the boundary of the reaction in the phase space, extracted by the
reactivity operator, is modulated with time by the effect of the laser field, to “catch” the system ex-
cited in the reactant region, and then to “release” it into the product region. This method provides
new insights in understanding the origin of optimal control of chemical reactions by laser fields.
© 2011 American Institute of Physics. [doi:10.1063/1.3528937]

I. INTRODUCTION

Controlling chemical reactions to yield desired products
by external fields has been one of the most intriguing sub-
jects in these several decades. The recent development in op-
tical laser technology1–7 has enabled us to control chemical
reactions by laser fields that are strong enough to change the
underlying potential energy surface of a molecule at the time
scale of the molecular motion, i.e., pico- or femtosecond. By
properly designing the pulse shape, one can guide the sys-
tem to make the transition to the desired product channel.
Theoretical algorithms to obtain the optimally designed pulse
shape have been well developed.1, 3, 8–14 The optimal pulse is
given as an automatic output from those algorithms and often
has a complicated functional form. It is desired to construct
a framework to provide firm physical interpretation about
why that particular pulse shape leads to the target product
channel.

In many reactions, the potential energy surface has a sad-
dle point between the reactant and the product regions. The
possibility for the system to have a chemical reaction is pri-
marily determined by the ability to surmount the reaction bar-
rier in the region around the saddle. Recently there has been
a great progress in the study of dynamics around a rank-one
saddle point15–39 in terms of the geometrical structure of the
phase space. There two kinds of important objects play piv-
otal roles in understanding the occurrence of reactions. One is
what chemists have termed “transition state (TS)”40–47 which
was originally defined by Wigner41 as a surface dividing the
phase space into two distinct regions, i.e., reactant and prod-
uct, so that the system starting from the reactant must cross
this surface once and only once before being captured in

a)Electronic mail: skawai@es.hokudai.ac.jp. Research Fellow of the Japan
Society for the Promotion of Science.

the product. In other words, the TS separates the space into
“before” and “after” the reaction. The other important build-
ing block of the phase space in determining the fate of the
reaction are so-called invariant manifolds.15, 16 An invariant
manifold is a set of phase space points such that, once the
system is in that manifold, the system will stay in it perpetu-
ally. If the dimension of the manifold is less than that of the
phase space by one, the manifold can divide the space into
two disjoint regions. [Recall that a one-dimensional object
(e.g., a line or a curve) can divide a two-dimensional space
(e.g., a plane) into two, but not a three-dimensional space.]
Due to the invariance of the manifold, no trajectory can cross
it from one side to the other. One of the most important invari-
ant manifolds in chemical reactions is that which separates the
trajectories going to the product and those going to the reac-
tant. Then, once we know which side of the manifold a given
initial condition is, we can immediately know, without any
trajectory calculations, whether the system goes to the prod-
uct or not.

Recent studies15–24, 26, 32–39, 48–52 have revealed that, even
under the existence of anharmonic couplings among the
modes,15–24, 26, 39, 48–51 time-dependent external fields such as
laser fields,32, 33 and even stochastic random force exerted
by solvents,27–31, 34–38 there robustly exists a reaction coordi-
nate, at least locally in the saddle region in the phase space,
whose motion is decoupled from all the other (nonreactive)
coordinates. The mathematical technique to construct this co-
ordinate transformation is called normal form (NF) theory.
In terms of this new coordinate, we can easily extract the
no-return TS and the invariant manifolds to separate the des-
tination of the reaction, i.e., either to the reactant or the prod-
uct. These theories have been applied not only to chemical
reactions,48–51 but also to, for example, ionization of a hy-
drogen atom in crossed electric and magnetic fields,21, 22, 39

isomerization of clusters,19, 20, 23 and the escape of asteroids
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from Mars.52 However, most studies on reaction dynamics
from the viewpoint of the underlying phase space geometry
have been devoted only to classical systems. The generaliza-
tion of the theories to quantum systems is highly required
for the control of chemical reactions to the desired product
states.

Quantum mechanical version of the NF theory has
been developed in the semiclassical level53–55 as well as
in the Wigner–Weyl formalism.56–58 The quantum mechani-
cal analogue of NF theory is called Van Vleck perturbation
theory.17, 18, 59 In place of the coordinate transformation, one
applies a unitary transformation by which the Hamiltonian is
made as nearly diagonal as possible. In the Wigner–Weyl for-
malism in Refs. 56–58, the calculations are performed by us-
ing the phase space representations which provides a unique
correspondence to quantum mechanical operators, and ex-
actly reproduce the result of the quantum Van Vleck per-
turbation theory. The motivation for using the Wigner–Weyl
formalism is that the lowest-order approximation in ¯ corre-
sponds to the classical NF, facilitating the study of quantum-
classical correspondence,56 and that functions are much easier
to handle than operators.57

In this paper, we present in Sec. II a quantum mechanical
and time-dependent generalization of the reaction dynamics
theories developed for classical systems. Particular attention
is paid to the quantum counterpart of the (classical) concept
of the invariant manifold (the separatrix) to uniquely separate
the reactive and the nonreactive regions of the phase space.
Then, we present a numerical illustration of how the separa-
trix moves by the effect of the optimal laser pulse in a sim-
ple model system in Sec. III. The main result is that we can
find, up to a certain high energy, a quantum reactivity opera-
tor which extracts the reactive part of the system. The reaction
boundary, the reactive and nonreactive regions in the phase
space, moves with time, modulated by the laser field so that
the boundary “catches” the system excited in the reactant and
“releases” it into the product, resulting in increase of the reac-
tion probability. Finally, we give the conclusion and outlook
in Sec. IV.

II. THEORY

In this section we start our discussion with a simple clas-
sical system of a parabolic barrier with no coupling among
the modes (Sec. II A). There we find a clear boundary that
divides the whole phase space into a region to bring the sys-
tem to the reactant and that to the product. (One can re-
fer to books15, 16 and papers17–24, 26, 39 for the generalization
to nonlinearly coupled multidimensional classical systems.)
For the sake of completeness, we give a brief review of the
Wigner–Weyl formalism of quantum mechanics in Sec. II B.
Then we consider the quantum system of the parabolic bar-
rier by the Wigner–Weyl formalism, and discuss the quantum
counterpart of the classical phase space reaction boundary in
Sec. II C. The effects of anharmonicity and the external
laser field are incorporated by use of quantum NF theory in
Sec. II D.

A. Classical dynamics of passage over a parabolic
barrier

When the total energy of the system is only slightly above
the saddle point energy, the Hamiltonian can be approximated
by

H (q, p) = p1
2

2
− λ2

2
q1

2 +
n∑

�=2

(
p�

2

2
+ ω�

2

2
q�

2

)
, (1)

by introducing the so-called normal mode coordinates
(q1, . . . , qn), which diagonalize the potential energy, and their
conjugate momenta (p1, . . . , pn). We have assigned the un-
stable direction as mode 1, with the curvature of the potential
−λ2/2. The other modes are vibrational modes with frequen-
cies ω�. The origin q = 0 of the coordinates is taken at the
position of the saddle point.

The following set of variables is often useful in the cal-
culation:

x1 = λq1 + p1√
2λ

, ξ1 = p1 − λq1√
2λ

,

(2)
x� = ω�q� − ip�√

2ω�

, ξ� = p� − iω�q�√
2ω�

(� = 2, . . . , n).

For the reactive mode, (x1, ξ1) defines a skewed coordinate
system in the phase space as in Fig. 1, whereas for the nonre-
active modes (x�, ξ�) take complex values. The product of x�

and ξ� is called action variable:

I1
def= x1ξ1 = p1

2

2λ
− λ

2
q1

2,

(3)

I�
def= ix�ξ� = p�

2

2ω�

+ ω�

2
q�

2 (� = 2, . . . , n).

Then the Hamiltonian of Eq. (1) is rewritten in terms of the
action variables:

H = λI1 +
n∑

�=2

ω� I�. (4)

FIG. 1. Phase space flow in the saddle region, for the case of harmonic
approximation.
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It is easily seen that the actions are constants of motion
(dI1/dt = 0, dI�/dt = 0) under the Hamiltonian given by
Eq. (1). Therefore the trajectories run along the hyperbolas
given by I1 = const. as shown in Fig. 1.

Suppose that q1 = −∞ corresponds to the reactant (i.e.,
before the reaction), and q1 = +∞ to the product (after the
reaction). The trajectories with x1 > 0 and ξ1 > 0 are “for-
ward reactive” trajectories because they climb up from the re-
actant region, overcome the barrier, and go down to the prod-
uct region (i.e., the reaction occurs). On the other hand, the
trajectories with x1 < 0 and ξ1 > 0 are “forward nonreactive”
trajectories because they start in the reactant region, but are
reflected by the barrier, and goes back into the reactant re-
gion. The trajectories with x1 < 0 and ξ1 < 0 are “backward
reactive” trajectories, because they climb up from the prod-
uct region and go down the barrier to the reactant region (i.e.,
the backward reaction). Similarly, the trajectories with x1 > 0
and ξ1 < 0 are “backward nonreactive” trajectories. Note that
the sign of x1 determines the fate of the system, that is, if
x1 is positive (negative), the trajectory will go to the product
(reactant) side, without mattering where it initially was. The
set {x1 = 0}, thus divides all the climbing trajectories into two
disjoint sets: ones going to the product and the others going
to the reactant. Once we know the sign of x1, we can tell the
fate of the reaction without further observing the trajectory. In
addition, once the system is located on the dividing surface of
x1 = 0, it stays there perpetually (i.e., the set {x1 = 0} forms
an invariant manifold in the phase space).

B. Wigner–Weyl representations of quantum
mechanics

To investigate the quantum counterpart of the phase space
structure found in Sec. II A, we utilize the concepts of Wigner
distribution and Weyl representation.60, 61 The Weyl represen-
tation of a quantum mechanical operator Â is a function in the
classical phase space variables (q, p) given by

A(q, p) = Cl[ Â]
def=
∫ 〈

q − s
2

∣∣∣ Â
∣∣∣q + s

2

〉
exp

(
is · p
¯

)
ds,

(5)

where |q ± s/2〉 is the eigenstate of the position operator q̂
with eigenvalues q ± s/2. We have introduced the symbol
Cl[·] to denote the transformation from the quantum mechan-
ical operator to the phase space function.

The backward transformation of the Weyl representation
is called Weyl quantization, where the matrix element of the
operator Â corresponding to the classical quantity A(q, p) is
given by

〈q ′| Â|q ′′〉 = 〈q ′|Op[A]|q ′′〉
def= (2π¯)−n

∫
A

(
q ′ + q ′′

2
, p
)

× exp

(
i(q ′ − q ′′) · p

¯

)
d p, (6)

where we have introduced the symbol Op[·] to denote the
Weyl quantization of a classical function. Some elementary

examples for the Weyl quantization can be obtained by te-
dious but straightforward calculations from Eq. (6):

Op[q] = q̂, Op[q2] = q̂2,

Op[p] = p̂, Op[p2] = p̂2, (7)

Op[qp] = (q̂ p̂ + p̂q̂)/2 = q̂ p̂ − i¯/2.

The Weyl representation of a density operator |ψ〉〈ψ |,
where |ψ〉 is a certain state, divided by (2π¯)n is called
Wigner distribution

ρψ (q, p) = (2π¯)−nCl [|ψ〉〈ψ |]

= (2π¯)−n
∫ 〈

q − s
2

∣∣∣ψ〉 〈ψ ∣∣∣q + s
2

〉

× exp

(
is · p
¯

)
ds. (8)

A remarkable fact about the Weyl representation and the
Wigner distribution is that the quantum mechanical expecta-
tion value is exactly given by the phase space integral:

〈ψ | Â |ψ〉 =
∫

A(q, p)ρψ (q, p)dqd p. (9)

Classical representation of the product of two operators
Â and B̂ is called star-product:57, 60

Op[A 	 B] = Op[A]Op[B], (10)

whose explicit form is given by

A 	 B
def= A exp

(
i¯


2

)
B,

(11)



def= ←−
∂q · −→

∂ p − ←−
∂ p · −→

∂q ,

where the arrows indicate whether the partial differentiation
acts on A or B. The first two terms in the expansion in ¯ are

A 	 B = AB + i¯

2
{A, B} + O(¯2), (12)

where {·, ·} denotes the (classical) Poisson bracket. That is,
the star product is given by a simple product AB plus correc-
tion terms of order ¯ and higher orders.

The commutator of operators (divided by a constant i¯)
is represented by the so-called Moyal bracket

{{A, B}} def= 1

i¯
(A 	 B − B 	 A) , (13)

that is,

Op [{{A, B}}] = 1

i¯

(
Â B̂ − B̂ Â

) = 1

i¯
[ Â, B̂]. (14)

By using Eq. (11), we have

{{A, B}} = 2

¯
A sin

(
¯


2

)
B,

= {A, B} + O(¯2). (15)

Thus Moyal bracket simply corresponds to Poisson bracket at
the classical limit ¯→ 0 and the correction terms start from
the second-order ¯2. To express the exponential of an operator

exp( Â) =
∞∑

n=0

1

n!
Ân, (16)
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in the Weyl classical expression, the star-exponential is
defined

exp	(A)
def=

∞∑
n=0

1

n!
A 	 A 	 · · · 	 A︸ ︷︷ ︸

n

, (17)

that is,

Op[exp	(A)] = exp (Op[A]) . (18)

C. Quantum dynamics of passage over a parabolic
barrier

We now consider the quantum mechanics for the
parabolic barrier. The Hamiltonian operator is quantized from
Eq. (1)

Ĥ = Op[H ]

= p̂2
1

2
− λ2

2
q̂2

1 +
n∑

�=2

(
p̂2

�

2
+ ω�

2

2
q̂2

�

)
. (19)

Quantum mechanical action operator is defined by quantizing
Eq. (3):

Î1 = p̂2
1

2λ
− λ

2
q̂2

1 . (20)

It is now seen that the action operator Î1 commutes with the
Hamiltonian: [ Î1, Ĥ ] = 0. This means that the eigenstates of
Ĥ can be taken to be eigenstates of Î1 simultaneously.

The eigenstate wavefunctions of Î1 are obtained
analytically.57, 62 There are two linearly independent solutions
for the same eigenvalue. One can take the following basis set
for this two-dimensional eigenspace of Î1:

�α,i:r(q1) = exp (πα/4)√
2π (2¯)1/4

�

(
1

2
− iα

)

× D−1/2+iα

(
exp(−iπ/4)

√
2/¯q1

)
,

�α,i:p(q1) = exp (πα/4)√
2π (2¯)1/4

�

(
1

2
− iα

)

× D−1/2+iα

(
− exp(−iπ/4)

√
2/¯q1

)
,

where the suffix α denotes the eigenvalue divided by ¯ :

Î1

∣∣�α,i:r
〉 = α¯

∣∣�α,i:r
〉
,

(21)
Î1

∣∣�α,i:p
〉 = α¯

∣∣�α,i:p
〉
.

The symbol � denotes the gamma function and D the
parabolic cylinder function.63 The normalization is taken to
satisfy the orthonormality and the completeness relations:〈

�α,i:r

∣∣�β,i:r
〉 = δ(α − β),〈

�α,i:p

∣∣�β,i:p
〉 = δ(α − β),

(22)〈
�α,i:p

∣∣�β,i:r
〉 = 0,∫

dα
(∣∣�α,i:r

〉 〈
�α,i:r

∣∣+ ∣∣�α,i:p
〉 〈

�α,i:p

∣∣) = 1.

From the asymptotic behavior of the parabolic cylinder
functions63 it is seen that �α,i:r contains the incoming wave

only in the reactant region (q1 → −∞), while it has both
transmitted wave in the product side and the reflected wave
in the reactant side. Similarly, �α,i:p has the incoming wave
only in the product region, the outgoing wave in both regions.
Thus the suffix “i:r” stands for “incoming from reactant” and
“i:p” for “incoming from product,” following the notation of
Ref. 57.

By taking linear combinations of �α,i:r and �α,i:p, we can
form another basis set as follows:

�α,o:r(q1) = exp(iπ/4)√
2π

�

(
1

2
+ iα

) (
exp (−πα/2) �α,i:r(q1)

− i exp (πα/2) �α,i:p(q1)
)

= exp (πα/4)√
2π (2¯)1/4

�

(
1

2
+ iα

)

× D−1/2−iα

(
exp(iπ/4)

√
2/¯q1

)
, (23)

�α,o:p(q1) = exp(iπ/4)√
2π

�

(
1

2
+ iα

)(−i exp (πα/2) �α,i:r(q1)

+ exp (−πα/2) �α,i:p(q1)
)

= exp (πα/4)√
2π (2¯)1/4

�

(
1

2
+ iα

)

× D−1/2−iα

(
− exp(iπ/4)

√
2/¯q1

)
, (24)

The suffix “o:r” and “o:p” here stand for “outgoing to reac-
tant” and “outgoing to product,” respectively. The function
�α,o:r has outgoing wave only in the reactant side, while it has
incoming waves both in the reactant and the product sides.
Similarly, the function �α,o:p has outgoing wave only in the
product side.

Suppose we are given a state |ψ(t)〉 at time t , and ask
what is the probability that the system goes to the product
side for t → +∞. The answer is given by taking a projection
of |ψ(t)〉 onto the outgoing-to-product state |�α,o:p〉, and in-
tegrating over all the possible values of α. Thus the reaction
probability is

Preaction =
∫

dα
∣∣〈�α,o:p|ψ(t)〉∣∣2 . (25)

As has been introduced by Miller,64 we here define a projec-
tion operator

P̂0
def=
∫

dα
∣∣�α,o:p

〉 〈
�α,o:p

∣∣ , (26)

with which the reaction probability is given as the expectation
value

Preaction = 〈ψ(t)|P̂0|ψ(t)〉

=
∫

ρψ (q, p, t)P0(q, p)dqd p, (27)

where ρψ is the Wigner distribution for ψ(t), and P0 is the
Weyl classical representation of P̂0 [see Eq. (9)].
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From Eq. (26), we have

P0(q, p) = Cl[P̂0]

=
∫

dα Cl
[∣∣�α,o:p

〉 〈
�α,o:p

∣∣]
=
∫

dα (2π¯)nρα,o:p(q, p), (28)

with the Wigner distribution ρα,o:p(q, p) of the scattering
eigenstate �α,o:p [see Eq. (8)]. The Wigner distributions of the
scattering eigenstates were calculated in Ref. 62. Integration
over α leads to a surprisingly simple result:

P0(q, p) = �(x1), (29)

where x1 is defined in Eq. (2) (see also Fig. 1), and � is the
Heaviside step function

�(x1) =
{

1 (x1 > 0)
0 (x1 < 0).

(30)

Recall that the phase space region with x1 > 0 is the tra-
jectories going to the product side in the classical case. The
result of Eq. (29) combined with Eq. (27) tells us that we
can draw the same picture in quantum mechanical case: given
the Wigner distribution in the phase space, we take only the
part x1 > 0 and integrate the distribution. The result gives the
probability that the system goes to the product side. A similar
result was presented by Balazs and Voros.62 The reactive part
is given by x1 > 0 even when there is quantum mechanical
tunneling. They showed that the Wigner representation inter-
prets the tunneling phenomenon as due to broadening of the
distribution into the positive energy region, even when the en-
ergy eigenvalue is negative. In summary, the picture that the
region x1 > 0 is the reactive part holds exactly in the quantum
harmonic system. (Here we use the word “reactive” to mean
“going to the product,” though the strict meaning of the re-
action may be “going from the reactant to the product.”) The
phase space boundary of the reactivity is therefore given by
x1 = 0, just the same as the classical mechanics.

D. Time-dependent quantum normal form theory
for incorporating nonlinearities and external field

The findings for the parabolic barrier case in Sec. II C can
be used as the starting point for more general cases. Here we
treat the effects of anharmonicities and time-dependent exter-
nal field perturbatively by normal form (NF) theory. Suppose
the Schrödinger equation

i¯
∂

∂t
|ψ(t)〉 = Ĥ (t)|ψ(t)〉. (31)

The basic idea of the NF theory is the transformation of the
Hamiltonian to make it commute with the action operator Î1

by introducing a unitary transformation Û (t) to the wavefunc-
tion

|ψ ′(t)〉 = Û (t)|ψ(t)〉, (32)

which can be given by using a Hermitian operator F̂(t)

Û (t) = exp

(
i

¯
F̂(t)

)
. (33)

The transformed wavefunction obeys the Schrödinger
equation

i¯
∂

∂t
|ψ ′(t)〉 = Ĥ ′(t)|ψ ′(t)〉 (34)

with the transformed Hamiltonian

Ĥ ′(t) = Û (t)Ĥ (t)Û (t)† + i¯
∂Û (t)

∂t
Û (t)†, (35)

where † denotes Hermitian conjugate. With the technique
which will be presented in this section, we can determine the
form of Û (t) [or equivalently F̂(t) ] to make the new Hamil-
tonian commute with Î1 :

[Ĥ ′(t), Î1] = 0. (36)

This allows us to follow the procedure discussed for a
parabolic barrier system in Sec. II C. Namely, the eigenstates
of Î1, whose wavefunctions (and hence P̂0) can be obtained
analytically, are also those of the new Hamiltonian Ĥ ′(t). The
reaction probability is thus given by

Preaction = 〈ψ ′(t)|P̂0|ψ ′(t)〉. (37)

In terms of the original wavefunction this becomes

Preaction = 〈ψ(t)|Û (t)†P̂0Û (t)|ψ(t)〉 = 〈ψ(t)|P̂|ψ(t)〉, (38)

where

P̂
def= Û (t)†P̂0Û (t). (39)

We call P̂ anharmonic reactivity operator because it takes
into account anharmonicities (and time-dependent external
field).

1. Expansion of Hamiltonian

In order to calculate the unitary transformation, we first
expand the Hamiltonian in the form of power series. Hereafter
it is convenient to write all the operators in the Weyl classical
representation. Following Ref. 32, let (the Weyl representa-
tion of) the Hamiltonian be

H tot(q, p, t) = H sys(q, p) + H ex(q, p, t), (40)

where H sys is the Hamiltonian of an isolated molecule and
H ex describes the interaction with the external laser field. We
introduce a formal perturbation parameter ε which will be set
equal to one after all the calculations:

H sys(q, p) =
∞∑

ν=0

εν H sys
ν (q, p),

H ex(q, p, t) =
∞∑

ν=0

εν H ex
ν (q, p, t),

(41)

H sys
ν (q, p) =

∑
∑

�( j�+k�)=2+ν

α j kq1
j1 · · · qn

jn p1
k1 · · · pn

kn ,

H ex
ν (q, p, t) =

∑
∑

�( j�+k�)=1+ν

β j k(t)q1
j1 · · · qn

jn p1
k1 · · · pn

kn .
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Thus the νth-order term in H sys is a homogeneous polynomial
of degree 2 + ν, with the coefficients α j k. The ν th-order term
in H ex is a homogeneous polynomial of degree 1 + ν, with the
time-dependent coefficients β j k(t). The zeroth order of H sys

coincides with the harmonic approximation [Eq. (1)]. Note
that this order assignment of εν may not be unique, but it was
found that it results in appropriate normal form transforma-
tions in similar problems.34–37

When the kinetic energy does not depend on q, H sys is
just the same with the classical Hamiltonian. When the met-
ric tensor is a function of q, the Weyl representation H sys is
different from the classical limit due to noncommutativity of
p and q [e.g., Eq. (7)]. In the latter case, we can expand the
kinetic energy in a polynomial of q, and put the lowest-order
terms (without q) into H sys

0 and higher-order terms into H sys
1 ,

H sys
2 , . . . .

Now we combine H sys and H ex to form the total Hamil-
tonian

H tot =
∞∑

ν=0

εν Hν, (42)

where

Hν = H sys
ν + H ex

ν

H0 = H sys
0 + H ex

0

= λx1ξ1 +
n∑

�=2

iω�x�ξ� +
n∑

�=1

b�(t)x� +
n∑

�=1

β�(t)ξ�. (43)

Here we have used the coordinate (x, ξ ) defined in Eq. (2),
and the time-dependent coefficients b�(t) and β�(t) come from
H ex

0 .
The unitary transformation is constructed by two steps,

i.e., time-dependent shift and nonlinear transformations,
which will be presented below.

2. Transformation 1: Time-dependent shift

The first step is to remove the time-dependent linear
terms in H0, which can be achieved by

U (0)(t) = exp	

(
i

¯
F0(t)

)

F0(t) =
n∑

�=1

(
−ξ

‡
� (t)x� + x‡

�(t)ξ� (44)

+ 1

2

∫ t (
b�(t)x‡

�(t) + β�(t)ξ ‡
� (t)

)
dt

)
[for the first equation, see Eqs. (17) and (33)]. Here, the time-
dependent coefficients x‡

�(t) and ξ
‡
� (t) (‡ must not be con-

fused with Hermitian conjugate †) are so-called transition
state trajectory32, 33 defined by

x‡
1(t) = S [λ, β1](t), ξ

‡
1 (t) = −S [−λ, b1](t),

x‡
�(t) = S [iω�, β�](t), ξ

‡
� (t) = −S [−iω�, b�](t),

(� = 2, . . . , n), (45)

where

S
[
μ, f

]
(t)

def= 1

(2π )1/2

∫ +∞

−∞

f̂ (ω)

−μ + iω
exp(iωt)dω (46)

for a complex number μ and a function f (t), with the Fourier
transform

f (t) = 1

(2π )1/2

∫ +∞

−∞
f̂ (ω) exp(iωt)dω. (47)

When μ is purely imaginary, the integral of Eq. (46) is taken
as the principal value.32 The functional S satisfies the follow-
ing differential equation:(

d

dt
− μ

)
S
[
μ, f

]
(t) = f (t). (48)

From Eq. (35), the transformed Hamiltonian is given by

H (0) def= U (0) 	 H tot 	 U (0)∗ + i¯
∂U (0)

∂t
	 U (0)∗, (49)

because the Hermitian conjugate of an operator becomes the
complex conjugate in the Weyl representation. When the gen-
erating function (F0) is linear in the variables (x and ξ ) as in
Eq. (44), the first term of the transformation takes a simple
form:57, 60

U (0) 	 H tot(x, ξ , t) 	 U (0)∗ = H tot(x + x‡(t), ξ + ξ ‡(t), t).

(50)

In other words, the transformation U (0) induces a shift of the
coordinates by (x‡(t), ξ ‡(t)).

Inserting H tot = ∑
ν εν Hν [Eq. (42)] into Eq. (49), and

dividing the terms as

H (0)
0 = U (0) 	 H0 	 U (0)∗ + i¯

∂U (0)

∂t
	 U (0)∗,

(51)
H (0)

ν = U (0) 	 Hν 	 U (0)∗ (ν ≥ 1),

we have

H (0) =
∞∑

ν=0

εν H (0)
ν . (52)

From Eqs. (44) and (50) we obtain

H (0)
0 = λx1ξ1 +

n∑
�=2

iω�x�ξ�, (53)

H (0)
ν = Hν(x + x‡(t), ξ + ξ ‡(t), t) (ν ≥ 1). (54)

Thus the time-dependent terms b�(t)x� and β�(t)ξ� in the
zeroth-order part [Eq. (43)] have disappeared in Eq. (53) as
desired.

3. Transformation 2: Nonlinear transformations

Next we treat the higher-order terms H (0)
ν by successive

operations of unitary transformations

U = U (N ) 	 · · · 	 U (2) 	 U (1) 	 U (0), (55)
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with

U (μ) = exp	

(
i

¯
εμFμ(t)

)
(μ ≥ 0) (56)

(U (0) was described in Sec. II D 2). U (μ) (μ ≥ 1) will be con-
structed so that the resultant transformed Hamiltonian com-
mute with Î1 up to the order εμ as follows.

Let

H (μ) def= U (μ) 	 H (μ−1) 	 U (μ)∗ + i¯
∂U (μ)

∂t
	 U (μ)∗ (57)

be the transformed Hamiltonian at the μth unitary transfor-
mation. For the series expansion of H (μ)

H (μ) =
∞∑

ν=0

εν H (μ)
ν , (58)

by substituting Eqs. (56) and (57) to the left hand side of
this equation, and equating them at each order of ε, we can
obtain the following recursion formulas similarly to classical
systems:32, 57

H (μ)
ν = H (μ−1)

ν +
∑
s=1

1

s!

(
MadFμ

)s
H (μ−1)

ν−sμ

−
∑
s=1

1

s!

(
MadFμ

)s−1 ∂ Fμ

∂t
δν,sμ, (ν > μ),

H (μ)
μ = H (μ−1)

μ +
{{

H (0)
0 , Fμ

}}
− ∂ Fμ

∂t
, (ν = μ),

H (μ)
ν = H (μ−1)

ν , (ν < μ), (59)

where MadFμ
f

def= {{
f, Fμ

}}
for function f (called Moyal ad-

joint), and δ denotes Kronecker’s delta. It is noted here that
the difference from the corresponding transformation of clas-
sical Hamiltonian systems is just the replacement of Poisson
bracket by Moyal bracket in quantum systems.

Similarly to the previous studies,15–24, 26, 32–37, 39, 48–52

while two quantities H (0)
0 and H (μ−1)

μ are known at the second
equation (ν = μ) of Eq. (59), the other two are not, implying
that Fμ can be determined so that H (μ)

μ (and hence the new
Hamiltonian H (μ)) has a “desired” form. Here we determine
the generating function Fμ so that H (μ)

μ contain only those
terms which commute with I1 = x1ξ1. Let the polynomial ex-
pression of H (μ−1)

μ be

H (μ−1)
μ =

∑
j k

h(μ−1)
μ, j k (t)x1

j1 · · · xn
jn ξ1

k1 · · · ξn
kn , (60)

with the time-dependent coefficients h(μ−1)
μ, j k (t). Similarly, the

generating function is expressed as

Fμ =
∑

j k

f (μ−1)
μ, j k (t)x1

j1 · · · xn
jn ξ1

k1 · · · ξn
kn . (61)

Then the second equation (μ = ν) of Eq. (59) is

H (μ)
μ =

∑
j k

(
h(μ−1)

μ, j k (t) + γ j k f (μ−1)
μ, j k (t) − d

dt
f (μ−1)
μ, j k (t)

)

× x1
j1 · · · xn

jn ξ1
k1 · · · ξn

kn , (62)

where

γ j k
def= λ(k1 − j1) +

n∑
�=2

iω�(k� − j�). (63)

By setting [see Eq. (48)]

f (μ−1)
μ, j k (t) = S

[
γ j k, h(μ−1)

μ, j k

]
(t), (64)

for j1 �= k1, terms with j1 �= k1 do not appear in H (μ)
μ . Thus

after the N th-order transformation [Eq. (55)] we have

H (N ) =
∑

j k

a(N )
j k (t)(x1ξ1) j1 x2

j2 · · · xn
jn ξ2

k2 · · · ξn
kn + O(εN ),

(65)

that is, all the terms below order N in the transformed Hamil-
tonian H (N ) contains the same power of x1 and ξ1, with the
coefficients a(N )

j k (t). Then it can be proven that{{
I1, H (N )

}} = 0, (66)

where I1 = x1ξ1. Equation (66) can be verified by noting that
the Moyal bracket is equal to the Poisson bracket when one of
the arguments is a quadratic polynomial.57

The form of Eq. (65) is so-called partial NF, which
has been found successful in a wide range of
applications.15, 17–20, 23, 25 We only cancel the terms with
j1 �= k1, to make the Hamiltonian commute with I1. In this
case we always have nonzero real part in γ j k, so that the
definition of S converges. Further normalization to make the
Hamiltonian commute with the nonreactive mode actions
I� (� = 2, . . .) is subject to so-called resonance problem.
The resonance problem in the case of time-dependent sys-
tems discussed in Ref. 32 also holds for the quantum case
considered in the present paper.

4. Calculation of reactivity operator

The reactivity operator is given by Eq. (39) with the trans-
formation Eq. (55) obtained in Secs. II D 2 and II D 3. Since
P0 = �(x1), the anharmonic reactivity operator is calculated
through the Fourier transform of the Heaviside step function:

P = U ∗ 	 �(x1) 	 U,

= U ∗ 	

(
1

2
+ 1

2π
pp
∫

1

ik
exp(ikx1)dk

)
	 U,

= 1

2
+ 1

2π
pp
∫

1

ik
U ∗ 	 exp(ikx1) 	 Udk, (67)

where “pp” stands for the principal part. Now we use the fact
that

exp(ikx1) = exp	(ikx1), (68)

because higher derivatives in the star product all vanish for
the linear function x1, and

U ∗ 	 exp	(ikx1) 	 U = exp	(ikU ∗ 	 x1 	 U ), (69)

corresponding to the operator relation

Û † exp(ikx̂1)Û = exp(ikÛ † x̂1Û ). (70)
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Letting the transform of x1 be

y1 = y1(x, ξ , t)
def= U ∗ 	 x1 	 U

= exp(−MadF0 ) exp(−ε MadF1 ) · · · exp(−εN MadFN )x1,

(71)

Eq. (67) becomes

P = 1

2
+ 1

2π
pp
∫

1

ik
exp	(iky1)dk. (72)

The quantity y1 defined in Eq. (71) is a function of the whole
phase space coordinate (x, ξ ) as well as time t . Hereafter we
do not write the dependence explicitly. In the classical limit
¯→ 0, y1 converges to the previously found NF reaction co-
ordinate whose sign uniquely tells the fate of the reaction in
classical nonlinear systems.15, 16, 18–24, 32, 33 In the same limit
the anharmonic reactivity operator [Eq. (72)] converges to a
Heaviside step function of y1, because the star-exponential
becomes the usual exponential for ¯→ 0. Without taking the
classical limit, the star-exponential of y1 is different from the
usual exponential. For the calculation, we expand the correc-
tion term in ik :

exp	(iky1) = exp(iky1)

(
1 + (ik)2

2!
g2 + (ik)3

3!
g3 + · · ·

)
, (73)

where gn ’s are also functions of (x, ξ , t). It can be shown that
the expansion starts with the quadratic term in ik (no linear
term) and the coefficients are given by

gn =
n∑

m=0

(
n
m

)
(y1 	 y1 	 · · · 	 y1︸ ︷︷ ︸

m

)(−y1)n−m . (74)

The expansion of Eq. (73) may need a comment since ik is not
necessarily small. However, it is shown in Appendix that the
function gn for large n contains only high-order perturbations.
More precisely, we have

gn = O
(
ε�(n+2)/3), (75)

where �r is the largest integer that does not exceed r . Thus
the truncation of the series in Eq. (73) at a certain order is
validated.

Substituting Eq. (73) into Eq. (72), we obtain the expres-
sion for the reactivity operator

P = �(y1) + g2

2!
δ′(y1) + g3

3!
δ′′(y1) + · · · . (76)

The first term corresponds to the classical picture that the
sign of the nonlinear reaction coordinate y1, which prop-
erly incorporates the effect of nonlinearities of the system
and time-dependent external field, divides the whole space
into two disjoint regions: all the phase space points with
y1 > 0 correspond to trajectories which will go to the prod-
uct. However, the existence of the other terms in Eq. (76) tells
that the reactivity in quantum anharmonic systems is deter-
mined also by derivatives of the distribution at the classical
boundary y1 = 0. [Note that gn → 0 as ¯→ 0 since the star-
exponential in Eq. (73) becomes the usual exponential.] For
an example which will be presented in Sec. III, however, it
is found that the correction due to g2, g3, . . . is rather minor

compared to the difference between �(y1) and �(x1) (har-
monic approximation).

Note that the convergence of the series expansions used
in the present theory is not always guaranteed. In the series of
works on the NF in the time-independent systems15, 17–20, 23, 25

it has been shown that this method is useful up to moder-
ately high energy: the form of Eq. (65) is so-called partial NF,
which avoids the notorious problem of resonance among the
nonreactive modes and the laser field,32 occurring as the en-
ergy increases above the saddle point energy, and therefore
applicable to a wide region up to moderately high energy.
The convergence range can be further extended by reducing
the degree of normalization.39 Investigating quantum analog
of it would be an interesting future subject. In numerical ap-
plications, the convergence must be checked for each system.
The way of checking the convergence will be presented in
Sec. III B by using a numerical example.

III. NUMERICAL ILLUSTRATION

A. Model system

To illustrate how the theory in Sec. II interprets quan-
tum dynamics of reactions under the influence of optimally
designed laser fields, we analyze a simple one-dimensional
system under a laser field, which was regarded as mimicking
an isomerization of a molecule.65

The Hamiltonian is given by

H = p2

2m
+ V (q) + E(t)μ(q), (77)

with the effective mass m = 99.33 amu, the potential energy

V (q) = −mλ2

2
q2 + a3q3 + a4q4, (78)

mλ2/2 = 3.79 cm−1 Å−2, a3 = 1.59 cm−1 Å−3, a4 = 9.22
cm−1 Å−4, the time-dependent electric field E(t), and the
dipole moment

μ(q) = μ1q, (79)

with μ1 = 0.301e. The potential energy, energy eigenvalues,
and eigenfunctions without the electric field are shown in

FIG. 2. Potential energy, energy eigenvalues, and eigenfunctions of the
model system.
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Fig. 2. Throughout the numerical calculations, we use the
sinc-function discrete variable representation of Colbert and
Miller,66 where the interval of q ∈ [−0.4 Å, 0.4 Å] is divided
into 80 equally spaced grid points.

The laser field was designed, by using the local control
theory in Ref. 65, to populate the first excited state |1〉 as
much as possible, starting with 100% initial population in the
ground state |0〉.

Figure 3 shows (a) the resultant electric field obtained
by the optimal control, and (b) the change of the population
in each state when the wavefunction is propagated by the
Schrödinger equation with the electric field shown in (a).
The final population of 95% in the state |1〉 was achieved.
The whole process can be interpreted as the excitation in the
left well (|0〉 → |2〉), the passage over the barrier (|2〉 → |3〉,
or |2〉 → |4〉 → |3〉), and the de-excitation in the right well
(|3〉 → |1〉). The populations in the states |5〉 and higher re-
main minor.

The question to be addressed here is why the laser field
to guide the reaction was optimized as in Fig. 3(a) and, in
other words, whether we can provide a sound physical inter-
pretation based on the underlying phase space structure. To
achieve this, we investigate the phase space structure by ap-

FIG. 3. Results of optimal control. (a) Electric field as a function of time.
To obtain the optimal field, we used the local control theory presented in
Ref. 65, with the laser intensity parameter I = 6 TW/cm2, the weight (q or
F in their notation) being (1, 0.75, 0.5, 0.25, 0) for state 0, 2, 4, 3, 1, respec-
tively, and the laser penalty factor R = 1 ps−1. (b) Change of the population
in each state.

plying the normal form theory presented in Sec. II. Following
Eqs. (40)–(43), we decompose the Hamiltonian as

H = H0 + H1 + H2,

H0 = 1

2m
p2 − mλ2

2
q2 + μ1E(t)q,

(80)
H1 = a3q3,

H2 = a4q4.

The skewed coordinates are introduced by [Eq. (2)]

x = mλq + p√
2mλ

, ξ = p − mλq√
2mλ

, (81)

so that the lowest order becomes

H0 = λxξ + μ1√
2mλ

E(t)(x − ξ ), (82)

corresponding to Eq. (43). We can now follow the procedure
of Sec. II to obtain the normal form transformation and the
projection operator. The perturbation calculation up to the
second order is performed in the present example. This order
will be shown to be accurate enough in Sec. III B.

B. Accuracy check of quantum normal form

As seen in Sec. II, the reaction probability Preaction is rep-
resented in terms of anharmonic reactivity operator P̂(t):

Preaction = 〈ψ(t)|P̂(t)|ψ(t)〉. (83)

Due to the fact that it is a projection onto the eigenstates, the
time derivative should vanish for P̂(t) :

d

dt
〈ψ(t)|P̂(t)|ψ(t)〉 =

〈
ψ(t)

∣∣∣∣∣dP̂(t)

dt

∣∣∣∣∣ψ(t)

〉
= 0, (84)

where the time derivative of an operator is defined as

dP̂(t)

dt
def= 1

i¯

[
P̂(t), Ĥ (t)

]+ ∂P̂(t)

∂t
. (85)

In practice, however, we cannot calculate Eq. (84) be-
cause the NF theory is based on the perturbation series in the
vicinity of the saddle point. Therefore to confine our analyses
in the saddle region, we introduce a localization operator σ̂

defined by

σ̂ = �(q − q1) − �(q − q2), (86)

(i.e, σ̂ = 1 for q1 < q < q2 and 0 otherwise). We evaluate the
following quantity〈

σ̂
dP̂(t)

dt
σ̂

〉
def=
〈
ψ(t)

∣∣∣∣∣σ̂ dP̂(t)

dt
σ̂

∣∣∣∣∣ψ(t)

〉
. (87)

In this model system we choose q1 = −0.1 Å and q2 = 0.1 Å.
Equation (87) should be close to 0 if P̂(t) is actually a good
approximation to the true reactivity operator in the region
q1 < q < q2. Therefore, the value of Eq. (87) serves as a
check on the accuracy of our NF calculation.

The next question is how to judge whether the value of
Eq. (87) is “small.” We must compare the value with a certain
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reference which should have the typical scale of the quantity
in consideration. We now note that Eq. (87) has the physical
dimension of flux, and can indeed be interpreted (at least ap-
proximately) as a flux in the phase space going through the
boundary (separatrix) y1 = 0. The “typical value” of the flux
for this system can be estimated by the flux through the sur-
faces q = q j ( j = 1, 2), 〈 f̂ j 〉 given by

〈 f̂ j 〉 def= 〈ψ(t)| f̂ j |ψ(t)〉

=
〈
ψ(t)

∣∣∣∣ p̂δ(q − q j ) + δ(q − q j ) p̂

2m

∣∣∣∣ψ(t)

〉
. (88)

Figure 4(a) shows the fluxes through the surfaces q = q1

and q = q2, and the quantity of Eq. (87) with the wave-
function evolving under the optimal laser field in Fig. 3(a).
Note that the values q1 = −0.1 Å and q2 = 0.1 Å are rel-
atively large in size, in fact closer to the minima than the
saddle point. [The minima are located at q = −0.150 Å and
q = 0.137 Å (see Fig. 2).] The oscillatory behavior of the
flux 〈 f̂1〉 with relatively large amplitude across q1 = −0.1 Å
before ∼2900 fs represents the system residing and exciting
vibrationally in the reactant well [cf. Fig. 2 and the major

FIG. 4. (a) Fluxes through the surfaces q = q1, q = q2, and the separatri-
ces obtained by the harmonic approximation without the laser field and by
the second-order NF calculation. Dotted: 〈 f̂1〉. Dashed: 〈 f̂2〉. Thin solid:
〈σ̂ (dP̂0(t)/dt)σ̂ 〉. Bold solid: 〈σ̂ (dP̂/dt)σ̂ 〉. The last is almost identical with
the horizontal axis (flux = 0). (b) Same with (a), but P̂ is calculated by the
step function Op[�(y1)].

population dynamics of |0〉 → |2〉 in Fig. 3(b)]. Likewise, that
of 〈 f̂2〉 across q1 = 0.1 Å after ∼2900 fs represents the sys-
tem being captured in the product well like |3〉 → |1〉. In the
figure, 〈σ̂ (dP̂(t)/dt)σ̂ 〉 is plotted in which the NF perturba-
tion calculation was performed up to the second order, and
the coefficients up to g4 was evaluated in the expansion of
Eq. (76), together with 〈σ̂ (dP̂0(t)/dt)σ̂ 〉 for comparison.
Compared with the typical values of the fluxes 〈 f̂1〉 and
〈 f̂2〉, the time derivative of P̂0 = Op[�(x1)] in the harmonic
approximation does not vanish in the region q1 < q < q2

(extracted by σ̂ ). This implies that the surface of x1 = 0 does
not serve as a proper reaction boundary.

In turn, when we use the reactivity operator P̂ calcu-
lated by the second-order NF, its time derivative becomes very
small and the plot is almost identical with the horizontal axis
within the resolution of flux in the figure. The result implies
that the operator P̂ can actually extract the reactive part of
the system in the region of q1 < q < q2. Although the NF
calculation is based on the expansion around the saddle point,
the convergence range is large considering that q1 = −0.1 Å
is actually closer to the minima than the saddle point. As soon
as the system crosses the surface q1 = −0.1 Å inside the re-
actant well, we can precisely identify whether it will go over
to the product side or come back to the reactant side, by the
use of the NF reactivity operator.

To estimate the effect of the deviation from the sim-
ple step-function behavior of the reactivity operator Eq. (76),
we plot in Fig. 4(b) the results of the same calculation with
the NF reactivity operator approximated by the step function
P̂ ≈ Op[�(y1)] [i.e., only the first term in Eq. (76)]. In this
case, the result of NF shows some residual error, but it re-
mains minor compared to the change from �(x1) to �(y1).

C. Movement of separatrix and reaction control

Next we explore how the anharmonic reactivity operator
can provide physical interpretation of the process of reaction
control by laser. As discussed in Fig. 4, the transition from the
reactant to the product seems to occur around 2900 fs. In order
to capture the underlying physical mechanism of the reaction,
we plot the Wigner distributions at two time instants 2824 and
2912 fs in Fig. 5. One can see in Fig. 4 that, around 2824 fs,
the system is going into the saddle region through q = q1 (i.e.,
the positive 〈 f̂1〉), and around 2912 fs, 〈 f̂1〉 becomes negative
and smaller in magnitude, and 〈 f̂2〉 becomes, in turn, positive
and larger in magnitude. This implies that, around 2912 fs,
some components of the system (passing through the surface
q = q1) go out through q = q2 and some goes back through
q = q1. Then, the component once reflected back into the re-
actant around 2912 fs oscillates in the well and “tries again” to
enter the saddle region through q = q1, as seen from the oscil-
latory behavior with smaller amplitude in 〈 f̂1〉 after 2912 fs.
The two time instant t = 2824 and 2912 fs can be regarded
as the representative time instants before and after the major
reaction event.

Figure 5(a) shows the Wigner distribution at t = 2824 fs
in the phase space (p, q) together with the separatrix y1 = 0
obtained by the second-order NF (solid orange curves), and
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FIG. 5. Snapshots of the Wigner distributions at (a) t = 2824 fs, where
the system is entering into the saddle region from the upper left, and (b) t
= 2912 fs, where the system is going toward the product region in the upper
right. Dotted curves show the zeroth-order separatrix x1 = 0. Solid curves
show the separatrix y1 = 0 calculated by the second-order NF. Blue bold
arrows roughly indicate the direction in which the distribution is moving.
Small orange arrows show the migration of the separatrix compared to the
zeroth-order counterpart, with the physical implications written in insets. The
destinations of the phase space flow (going-to-product or going-to-reactant)
divided by the separatrix are indicated by the green arrows.

the harmonic approximation x1 = 0 (dotted yellow lines).
Compared to the harmonic approximation, the separatrix
y1 = 0 has migrated a little to the left by the effect of the
(optimally controlled) laser field. Since the upper part of the
phase space divided by the separatrix y1 = 0 corresponds to
all the reactive (going-to-the-product) trajectories, this mi-
gration of the separatrix is interpreted as increasing the re-
action probability by “catching” the system excited in the
reactant.

The Wigner distribution and the separatrix y1 = 0 at
t = 2912 fs are shown in Fig. 5(b). The separatrix y1 = 0
modulated by the laser field is found to have migrated to the
opposite (right) side in the phase space (p, q). As discussed
with Fig. 4, the surface y1 = 0 serves as the boundary which
the system cannot cross, this migration of the separatrix is
interpreted as pushing the system toward the product. In sum-
mary, it is found that the separatrix, moving with time due

to the time-dependence of the Hamiltonian (the laser field),
“catches” the system coming from the left and “releases” it
toward the product region.

IV. SUMMARY AND OUTLOOK

Recent developments of the theory of saddle point dy-
namics are extended to quantum mechanical systems prop-
agating under time-dependent external fields. As the theory
is based on the Weyl expressions and the Wigner distribution,
interpretation is facilitated by its classical phase space picture,
while the exact quantum mechanical values can be calculated.

In terms of a new unitary transformation which incor-
porates the effect of nonlinearity and time-dependence, the
Hamiltonian is transformed into a so-called normal form that
commutes with the action operator. This enables us to intro-
duce a quantum reactivity operator, which precisely extracts
the reactive parts from the phase space of the system. Its Weyl
representation as a phase space function identifies the reac-
tive region in the phase space. Either in quantum harmonic
systems or in classical (anharmonic) systems, the Weyl repre-
sentation of the reactivity is a Heaviside step function, being
unity in the reactive region and zero in the nonreactive re-
gion. In quantum anharmonic systems, however, it turned out
to involve a high-order derivatives of the delta function at the
surface y1 = 0 in addition to the step function �(y1). In time-
dependent systems, the boundary y1 = 0 between the reactive
and nonreactive parts of the phase space moves with time. It
was found in a simple one-dimensional double-well system
that the migration of the reaction boundary arising from the
optimally controlled laser pulse “catches” the system exciting
in the reactant and “releases” it into the product.

Although the model system studied in this paper was a
one-dimensional system, the theory is formulated generally
for multidimensional systems. An application of the present
theory to laser-controlled multidimensional reacting system
would be interesting. In multidimensional systems, motions
along the vibrational modes may affect the reaction due to
the nonlinear couplings. However, as in classical anharmonic
systems15, 16, 18–24, 32, 33 the present theory is expected to dis-
entangle these couplings and identify the true reaction co-
ordinate (y1) to tell us the fate of the reaction in quantum
systems. Analytical expression of this reaction coordinate ob-
tained by the present theory can elucidate how the couplings
and the fields affect the reactivity, by similar analyses in
Refs. 34 and 35.

It is also interesting to note that the optimal field is not
necessarily unique. For example, pulse shapes obtained by
the optimal control methods1, 3, 8–10 depends on the penalty
factor to the laser intensity. This can in general be made
time-dependent,11 constraining the pulse envelop. Frequency
constraint12–14 can be also incorporated to restrict the spectral
components of the pulse. Different inputs in these conditions
lead to different pulse shapes, with possibly different mecha-
nisms of the reaction. It would be interesting to systematically
look into these mechanisms in terms of the present theory.
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APPENDIX: PROOF OF EQ. (75)

In Eq. (73), expansion in terms of ik was performed as

exp	(iky1) exp(−iky1) =
∞∑

n=0

(ik)n

n!
gn. (A1)

We first note that y1 is expanded in perturbation series:

y1 = y(0)
1 + εy(1)

1 + ε2 y(2)
1 + · · · , (A2)

with

y(0)
1 = x1. (A3)

Let

y1 = x1 + w, (A4)

that is,

w = εy(1)
1 + ε2 y(2)

1 + · · · . (A5)

We start by considering the following quantity:

Z
def= exp

(
− ikx1

2

)
	 exp	 (iky1) 	 exp

(
− ikx1

2

)
. (A6)

Noting that the liner canonical transformation does not
change the form of the operator 
 in the exact formula for
the star product [Eq. (11)],


 = ←−
∂q · −→

∂ p − ←−
∂ p · −→

∂q = ←−
∂x · −→

∂ξ − ←−
∂ξ · −→

∂x , (A7)

we have

exp(ikx1) 	 f (x, ξ )

= exp(ikx1) exp(i¯
/2) f (x, ξ )

= exp(ikx1) exp

(−k¯

2

∂

∂ξ1

)
f (x, ξ )

= exp(ikx1) f (x, ξ1 − k¯/2, ξ2, . . .), (A8)

and similarly

f (x, ξ ) 	 exp(ikx1)

= exp(ikx1) f (x, ξ1 + k¯/2, ξ2, . . .), (A9)

for any smooth function f (x, ξ ). Therefore,

Z = exp	 (iky1) exp(−ikx1), (A10)

and the left hand side of Eq. (A1) is given by Z exp(−ikw).
We now expand Z in terms of ik,

Z =
∞∑

n=0

(ik)nCn, (A11)

and prove Cn = O(ε�(n+2)/3) by induction. In the expansion
of exp(−ikw), the power of ε in each term is always greater
than the power of k because of Eq. (A5). Combining these
two facts it is shown that the power of ε is greater than the
power of k in the expansion of Z exp(−ikw), completing the
proof of Eq. (75).

By differentiating Eq. (A6) we have

dZ

d(ik)
= exp

(
− ikx1

2

)
	

w

2
	 exp

(
ikx1

2

)
	 Z

+ Z 	 exp

(
ikx1

2

)
	

w

2
	 exp

(
− ikx1

2

)
, (A12)

where we have used
d

d(ik)
exp	 (iky1) = y1 	 exp	 (iky1) = exp	 (iky1) 	 y1

= 1

2

(
y1 	 exp	 (iky1) + exp	 (iky1) 	 y1

)
,

(A13)

because y1 commutes with exp	 (iky1). By using the Moyal
adjoint, we can write

dZ

d(ik)
=
(

exp

(
−k¯

2
Madx1

)
w

2

)
	 Z

+ Z 	

(
exp

(
k¯

2
Madx1

)
w

2

)
. (A14)

Equating each order of k we have

(n + 1)Cn+1 =
n∑

m=0

1

m!

[((
i¯

2
Madx1

)m w

2

)
	 Cn−m

+ Cn−m 	

((
− i¯

2
Madx1

)m w

2

)]
, (A15)

which is a recursion formula to give Cn+1 in terms of Cm ’s
with 0 ≤ m ≤ n. Since w = ∑∞

ν=1 εν y(ν)
1 , we have(

i¯

2
Madx1

)m w

2
=

∞∑
ν=1

εν

(
i¯

2
Madx1

)m y(ν)
1

2
. (A16)

Now we recall that y(ν)
1 is a polynomial of degree 1 + ν, and

that the operation of Madx1 reduces the polynomial degree
by 1. The polynomial degree of the νth term in Eq. (A16)
is therefore 1 + ν − m. When the terms do not vanish, they
must satisfy 1 + ν − m ≥ 0. This means that only the terms
with ν ≥ m − 1 appear in the summation of Eq. (A16), and
therefore Eq. (A16) is O(εmax(1,m−1)), where max(1, m − 1) is
the larger value of 1 and m − 1. Putting this and the hypothesis
of the induction [Cm = O(ε�(m+2)/3) for 0 ≤ ∀m ≤ n ] into
Eq. (A15), we obtain Cn+1 = O(ε�(n+3)/3).
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