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Phase space geometry of dynamics passing through saddle coupled
with spatial rotation

Shinnosuke Kawaia),b) and Tamiki Komatsuzaki
Molecule & Life Nonlinear Sciences Laboratory, Research Institute for Electronic Science,
Hokkaido University, Kita 20 Nishi 10, Kita-ku, Sapporo 001-0020, Japan

(Received 5 December 2010; accepted 26 January 2011; published online 22 February 2011)

Nonlinear reaction dynamics through a rank-one saddle is investigated for many-particle system with
spatial rotation. Based on the recently developed theories of the phase space geometry in the saddle
region, we present a theoretical framework to incorporate the spatial rotation which is dynamically
coupled with the internal vibrational motions through centrifugal and Coriolis interactions. As an
illustrative simple example, we apply it to isomerization reaction of HCN with some nonzero total
angular momenta. It is found that no-return transition state (TS) and a set of impenetrable reaction
boundaries to separate the “past” and “future” of trajectories can be identified analytically under
rovibrational couplings. The three components of the angular momentum are found to have distinct
effects on the migration of the “anchor” of the TS and the reaction boundaries through rovibra-
tional couplings and anharmonicities in vibrational degrees of freedom. This method provides new
insights in understanding the origin of a wide class of reactions with nonzero angular momentum.
© 2011 American Institute of Physics. [doi:10.1063/1.3554906]

I. INTRODUCTION

Chemical reaction is a rearrangement of particles (atoms)
constituting the system (molecule) which involves transition
from one state (reactant) to another (product). In many
reactions, there exists a rank-one saddle point on a single
effective potential energy surface (typically, in a space of
3N − 6 dimension where N is the number of particles),
nearby which the system passes from the reactant to the
product. Recent theoretical developments on nonlinear dy-
namics through the saddle have revealed the robust existence
of no-return transition state (TS) and the reaction pathway
along which all reactive trajectories necessarily follow not
in the configuration space but in the phase space. In addition
to what chemists have long envisioned as TS,1–8 it was
revealed that there exist another important “building blocks”
in the phase space for the understanding of the origin of the
reactions: that is, normally hyperbolic invariant manifold
(NHIM) and the stable/unstable invariant manifolds9–17 (and
their remnants16, 18–21). An invariant manifold is a set of
points in the phase space such that, once the system is in that
manifold, the system will stay in it perpetually.

The most important invariant manifolds in reactions is
those of codimension one, that is, the dimension of the man-
ifold is one less than that of the phase space. Such a manifold
can divide the space into two distinct regions [e.g., remember
that a three-dimensional space can be divided by a two-
dimensional space (e.g., sheet) but not by a one-dimensional
space (line)]. Due to the invariance of the manifold, no trajec-
tory can cross it from one side to the other in the phase space.
The stable/unstable invariant manifolds emanating from the
NHIM are of codimension one and separate the phase space
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into two distinct regions in which all the trajectories are led
to either the state of the reactant or that of the product. Once
we know which side of the manifold a given initial condition
is, we can immediately know, without any trajectory calcu-
lations, whether the initial condition brings the system to
the product or not. Note that the TS is also required to be of
codimension one, otherwise one cannot identify “before” and
“after” the reaction, corresponding to the states of reactant
and products. The conventional TS defined by a constraint of
q1 = 0 by a certain “reaction coordinate” q1 holds the correct
dimensionality of the TS since the number of the constraint
is just one (i.e., q1 = 0), implying codimension one at
constant energy, even if it may not resolve the nonrecrossing
problem.

Thanks to normal form (NF) theories (a classical ana-
log of quantum Van Vleck perturbation theory), it was re-
vealed in classical Hamiltonian systems with many degrees
of freedom,9, 10, 17, 19, 22–38 that one can robustly extract the
NHIM, no-return TS, and the stable/unstable invariant man-
ifolds up to a moderately high energy regime above the sad-
dle point energy, even under the existence of chaos arising
from nonlinear couplings. The potential of the theories has
been demonstrated not only in chemical reactions with17, 22

and without23–27 time-dependent external field but also in ion-
ization of a hydrogen atom in crossed electric and magnetic
fields,28–30 isomerization of clusters,31–36 and the escape of as-
teroids from Mars37, 38 [Just recently the theory was also gen-
eralized to quantum Hamiltonian systems39–41 and dissipative
(generalized) Langevin systems.42–51]

The dimension of the phase space of an N -particle
nonrigid system is (6N − 10) in the upper limit.52 Nonrigid
molecules at constant energy have ten constraints of the three
coordinates of center of mass, the three conjugate momenta
of center of mass, the three angular momenta (defined in
the space-fixed frame), and the total energy of the system. If
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nontrivial constant(s) of motion exist(s), the dimension of the
phase space further decreases by the number of the nontrivial
constant(s) of motion. Beck et al.52 studied the change of
dimensionality of the phase space in isomerization reaction of
Ar3 cluster as a function of the total energy of the system. It
was found that the dimension of the phase space covers from
three at very low energy regime where the systems are con-
fined on high-dimensional torus to eight at very high energy
of very nonrigid regime. They also found an intermediate
energy regime of dimension five, where vibrational modes
are coupled with each other but the system is regarded
as still relatively rigid, so that the overall rotation in the
space-fixed frame exhibits approximate three constants of the
motion.

Although the dimension of the phase space of chemical
reaction can be subject to not only vibrational degrees of
freedom but also the overall rotation, most investigations of
the phase space geometry of reaction dynamics have been
focused on zero total angular momentum (J = 0) case, except
for the works by Wiesenfeld et al.53, 54 The difficulty comes
from the fact that NF theory usually starts with harmonic
approximation around a saddle point. The rotational motion
is greatly different in its geometrical and algebraic struc-
ture from the harmonic vibration and the passage over the
parabolic barrier on the potential. In reality many reactions
can take place in a wide region of nonzero total angular
momentum (J �= 0) in the J-space due to thermal excitation
of unimolecular systems or nonzero impact parameter of
bimolecular collisions. Note that J = 0 is just a pinpoint in
the J-space. In the studies of Wiesenfeld,53, 54 the concept
of relative equilibrium (RE) has been introduced, which
replaces the role of the saddle point in the rotationless case.
Change of the position and the linear stability of RE was
systematically investigated as a function of J. It was shown
that the height and the position of RE move with the change
of J resulting in a transition of reaction dynamics from chaos
to regular in nature, and eventually to the cease of reaction.
Time-reversal asymmetry of RE due to Coriolis interactions
was also found. Unfortunately, their investigation was limited
to planar systems. There we have only one component of the
angular momentum J, which is a constant of motion. It can
thus be treated like a constant parameter, leaving the system
with the other degrees of freedom, which are vibrations and
passage over an inverted parabola. In general, for spatial
rotation, however, only the modulus |J| is constant whereas
each component (Ja, Jb, Jc) in the body-fixed frame changes
with time for asymmetric top molecules.

Compared to the rotational effects in the saddle region,
rovibrational coupling in the potential well region has a
long history of study. Clodius and Shirts55 investigated the
coupling between the two stretching modes of H2O and
D2O rotating in a plane. Since there is only one compo-
nent of angular momentum for planar rotation and it is
conserved, the angular momentum acts as a constant param-
eter in the Hamiltonian. The coupling strength between the
two stretching vibrations is thus changed with the change of
the angular momentum. It was found that the increase of the
angular momentum first decreases the chaotic behavior of
the system for low J , and then increases the chaos for high J .

This was successfully explained by the consideration of the
sign of the coupling term and its dependence on J through the
centrifugal term. Similarly, the change of the strength of cou-
pling with the change of the angular momentum was found
in the study of energy flow between two vibrational modes
under the effect of Coriolis force.56 There again the rotation
was restricted to a plane and the angular momentum was a
constant parameter to change the magnitude of vibrational
coupling. In contrast to the planar rotation, inclusion of three-
dimensional rotation can result in energy exchange between
rotation and vibration.57 Trajectories of triatomic molecules
OCS and SO2 were studied through Fourier transforms and
rates of trajectory divergence. In the major part of the OCS
trajectories, regular-type energy flow was observed through a
2:1 resonance between two frequencies of the bending normal
mode and the rotation. In SO2, the rovibrational coupling was
more complex because all the vibrational modes are strongly
coupled by anharmonicity and the trajectories showed chaotic
behavior. In both cases, the energy exchange between rotation
and vibration was dominated by the centrifugal term. The sig-
nificance of 2:1 centrifugal resonance was later confirmed in
the analyses with Poincaré surfaces of sections of a simplified
model by Ezra,58 where other resonances (4:1 and two 3:1’s)
were also found and closely analyzed. Another interesting
phenomena found in these studies is the chaotic breakdown
of the separatrix in the J-space and a transition over it. In
the rigid rotor, there is a separatrix in the three-dimensional
J-space (which will be explained in Sec. II B for the sake of
completeness) that acts as an impenetrable separatrix to sep-
arate the rotational motion around the molecular A-axis and
that around the C-axis. Under the existence of rovibrational
resonance, the separatrix region becomes chaotic and some
trajectories show transitions between A-type motion and
C-type motion. The resonance structures and chaotic break-
down of separatrix were later analyzed by first-order classical
perturbation theory.59 While the separatrix and the stability of
planar rotation are broken through chaos, there were found to
be stabilizing resonances that generate motions different from
the rigid rotor but still regular. In summary, the rotational mo-
tion can actively couple to the internal motion of molecules
and significantly change it. Although the above researches
were performed for vibrational motions in potential wells, it is
expected that the rotation can also change actively the reaction
dynamics in the saddle region. As a starting point, we inves-
tigate in the present paper an energy regime where the rovi-
brational coupling invalidates the normal mode description
but the dynamics is still regular. Investigation of the above
mentioned resonance structure and chaotic breakdown with
similar methods would also be a fascinating subject in the
future.

In this paper, we present a new framework based on NF
theory with spatial rotation, in which (Ja, Jb, Jc) are explicitly
treated as dynamical variables (in Sec. II). This incorporates
the effects of nonlinear rovibrational couplings and enables
us to extract the phase space reaction coordinate separated
from the other (vibrational and rotational) modes. As an il-
lustrative example, we apply the theory to HCN molecule in
Sec. III. It is found that the NHIM (and hence the position of
the no-return TS and the stable/unstable invariant manifolds)
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migrates with increasing J , to which the different components
(Ja, Jb, Jc) have different effects. Summary and outlook will
be given in Sec. IV.

II. THEORY

A. Setting of the problem

The Hamiltonian for the rovibrational motion of a
molecule is given by60

H (J, q, p) = 1

2

(
J −

∑
k,k ′

ζ k,k ′qk pk ′

)T

×M(q)

(
J −

∑
k,k ′

ζ k,k ′qk pk ′

)

+1

2

∑
k

pk
2 + V (q), (1)

M(q) =
(

I(q) −
∑

k,k ′,k ′′
ζ k ′,kqk ′ζ T

k ′′,kqk ′′

)−1

, (2)

where J = (Ja, Jb, Jc) is the angular momentum projected
onto the molecular axes(a, b, c), the matrix I(q) is the mo-
ment of inertia that depends on the vibrational coordinate qk ,
and pk is the conjugate momentum to qk . The indices k and
k ′ range over k = 1, 2, . . . , 3N − 6, where N is the number
of atoms in the system. The coordinate qk is taken as the nor-
mal mode coordinate at the saddle point so that the potential
energy V (q) can be expanded as

V (q) = −λ2

2
q1

2 +
f∑

k=2

ωk
2

2
qk

2 +
∑

j

cjq1
j1 . . . q f

j f , (3)

where f
def=3N − 6, the coefficients λ2 and ω2

k denote the cur-
vature along the reactive normal mode coordinate q1 and that
along the nonreactive one qk , respectively. The coefficients
cj describe the strength of anharmonicity of q1

j1 q2
j2 . . . q f

j f

where |j|(def= ∑ f
k=1 jk) ≥ 3. The molecular axes are taken so

that the matrix M(q) is diagonal at the equilibrium point
q = 0:

M|q=0 = 2

⎛
⎜⎝

A 0 0

0 B 0

0 0 C

⎞
⎟⎠, (4)

where A, B, and C are called rotational constants. It is a
convention in molecular spectroscopy to take the molecular
axes so that the rotational constants are in the order A ≥ B
≥ C .61, 62

The vectors ζ k,k ′ represent the Coriolis interaction.
The equation of motion can be derived from the Hamil-

tonian of Eq. (1) by

d

dt
φ = {φ, H}, (5)

where φ may be any physical quantities such as qk , pk , or J.
The Poisson bracket relations are given by

{qk, pm} = δkm,

{Ja, Jb} = −Jc,

{Jb, Jc} = −Ja,

{Jc, Ja} = −Jb,

{Jj , qk} = {Jj , pk} = 0, ( j = a, b, c), (6)

where δ denotes Kronecker’s delta.

B. Rigid rotor and harmonic approximation

Let us start the investigation of the dynamics by the
rigid-rotor-harmonic-oscillator approximation, where we ig-
nore the dependence of M on the vibrational coordinates qk

and the anharmonicities in the potential V (q):

H ≈ AJa
2 + B Jb

2 + C Jc
2 + 1

2

(
p1

2 − λ2q1
2
)

+ 1

2

f∑
k=2

(
pk

2 + ωk
2qk

2
)
. (7)

Under this Hamiltonian, the vibrational action

Ik
def= 1

2ωk

(
pk

2 + ωk
2qk

2
)
, (k = 2, . . . , f ), (8)

the reactive-mode action

I1
def= 1

2λ

(
p1

2 − λ2q1
2) , (9)

the total angular momentum

|J|2 = Ja
2 + Jb

2 + Jc
2, (10)

and the rotational energy

Erot
def= AJa

2 + B Jb
2 + C Jc

2, (11)

are all constants of motion. The phase space structure is de-
picted in Fig. 1. The trajectories run along the contour curves
of the constants of Eqs. (8)–(11), and all the modes are inde-
pendent of each other, with the whole phase space given by
the direct product of these 2D plots.

It is convenient in later calculations to introduce the fol-
lowing variables:

J± = Jb ± iJc,

x1 = p1 + λq1√
2λ

, ξ1 = p1 − λq1√
2λ

,

xk = ωkqk − ipk√
2ωk

, ξk = pk − iωkqk√
2ωk

, (k = 2, . . . , f ),

(12)

in which the Poisson bracket relations are

{Ja, J±} = ±iJ±,

{J±, J∓} = ±2iJa,

{xk, ξm} = δkm, (k, m = 1, . . . , f ), (13)
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FIG. 1. Phase space flow under the rigid-rotor-harmonic-oscillator approxi-
mation. In the J-space (left panel), the contour curves of the rotational energy
are depicted on the sphere of constant |J|. In the (qk , pk )-spaces, the contour
curves of the actions are depicted. In all the panels, the trajectories run along
these contour curves.

and the action variables [Eqs. (8) and (9)] are

I1 = x1ξ1,

Ik = ixkξk, (k = 2, . . . , f ). (14)

The most important in the reaction theory is the reaction
mode (q1,p1). Suppose q1 = −∞ corresponds to the “reac-
tant” (i.e., before the reaction), and q1 = +∞ to the “product”
(after the reaction). The trajectories with x1 > 0 and ξ1 > 0
are “forward reactive” trajectories because they start in the
reactant region, overcomes the barrier, and goes into the prod-
uct region (in other words, “the reaction occurs”). On the
other hand, the trajectories with x1 < 0 and ξ1 > 0 are “for-
ward nonreactive” trajectories because they start in the reac-
tant region, but are reflected by the barrier, and goes back into
the reactant region. The trajectories with x1 < 0 and ξ1 < 0
are “backward reactive” trajectories, because they start in the
product region and go into the reactant region (the backward
reaction). Similarly, the trajectories with x1 > 0 and ξ1 < 0
are “backward nonreactive” trajectories. Note that the sign of
the action I1 = x1ξ1 determines the reactivity of the trajec-
tory. If I1 > 0, it is reactive (forward or backward). If I1 < 0,
it is nonreactive.

The set of all the points with x1 = 0, |J| = J , and
H = E

Wsdef= {(J, x, ξ ) |x1 = 0, |J| = J, H = E } (15)

is called stable invariant manifold. All points on Ws remain
on Ws without going either to the reactant or the product re-
gions. All points with x1 > 0 (x1 < 0) go into the product
(reactant) region as t → +∞. Therefore, the manifold Ws

serves as an impenetrable barrier to separate the reactive and
the nonreactive trajectories. In other words, it divides the fu-
ture of the trajectory. Likewise, the set

Wudef= {(J, x, ξ ) |ξ1 = 0, |J| = J, H = E } (16)

is called unstable invariant manifold. All points on Wu re-
main on Wu. All points with ξ1 > 0 (ξ1 < 0) came from the
reactant (product) region in t → −∞. Thus the manifold Wu

serves as an impenetrable barrier which divides the past of the
trajectory. The surface given by

T def= {(J, x, ξ ) |q1 = 0, |J| = J, H = E } (17)

is called TS. Once a forward-going trajectory crosses the TS,
it must go straightforward into the product region, without

ever returning into the reactant region before being captured
in the product. Thus the TS can be regarded as no-return di-
viding surface between the reactant and the product regions.
Note that the definition of no-return dividing surface is not
unique, that is, not restricted to that given by Eq. (17). For in-
stance, the no-return property holds in the definition of the TS
in Eq. (17) even if the line q1 = 0 is rotated around the origin
in the space of (q1, p1) until it hits either of the lines x1 = 0
and ξ1 = 0. On the other hand, the stable manifold Ws and
the unstable manifold Wu are uniquely determined.

Note that the TS and the stable and the unstable mani-
folds have the common “anchor” (or boundary). It is given by

Mdef= {(J, x, ξ ) |x1 = ξ1 = 0, |J| = J, H = E } , (18)

and is called NHIM. All points on M remain on M for all
time. The manifold M consists of points that remain over the
top of the barrier without going either to the reactant or the
product region. Note that all points in the stable (unstable)
invariant manifold Ws (Wu) asymptotically approach M in
t → ∞ (t → −∞). While the definition of TS is not unique,
the anchor of the TS must be the NHIM in order to satisfy the
nonrecrossing property.

The phase space structure of the rotational mode (left
part of Fig. 1)63, 64 is obtained from the conservation of the to-
tal angular momentum (|J| = const., a sphere in the J-space),
and the conservation of the rotational energy Erot = AJa

2

+ B Jb
2 + C Jc

2 for the asymmetric top A ≥ B ≥ C . In the
figure, the contours of Erot are depicted on the sphere of con-
stant |J|. We have four stable fixed points: Ja = ±J,

Jb = Jc = 0 where Erot is maximum, and Ja = Jb

= 0, Jc = ±J where Erot is minimum. The points Ja

= Jc = 0, Jb = ±J are also fixed points but they are
unstable.

For the case of symmetric top the phase space struc-
ture becomes simpler. For the prolate symmetric top, where
A > B = C , we have Erot = B|J|2 + (A − B)Ja

2 and the tra-
jectories run along the contour curves of Ja as in Fig. 2(a).
For the oblate symmetric top, where A = B > C , we have
Erot = B|J|2 − (B − C)Jc

2 and the trajectories run along the
contour curves of Jc as in Fig. 2(b). For both prolate and
oblate symmetric top cases, there exist two stable fixed points.
For the spherical symmetric top case A = B = C , all the
points in the J-space are fixed points, and all the points on
the constant-|J| sphere have the same energy.

FIG. 2. Phase space flow of the rotational mode drawn for the cases of (a)
prolate symmetric top, and (b) oblate symmetric top.
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C. Normal form theory with spatial rotation

Next we consider the general case [Eq. (1)] with rovibra-
tional couplings and anharmonicity. The idea is similar to the
previous studies for the rotationless case.9, 10, 17, 19, 22–39, 41, 47–51

We introduce a special coordinate transformation (J, x, ξ ) 
→
(J̄, x̄, ξ̄ ) with which the Hamiltonian is reduced to

H = H̄ (J̄, Ī1, Ī2, . . .), (19)

that is, the Hamiltonian depends on (x̄k, ξ̄k) only through the
action variables Īk defined by

Ī1
def= x̄1ξ̄1, Īk

def=ix̄k ξ̄k, (k = 2, . . . , f ), (20)

while we allow any functional form with respect to J̄. With
this form of the Hamiltonian, it can be shown that the action
variables Īk are constants of motion. We can therefore draw
the same picture as Fig. 1 with the names of the axes replaced
by the new variables. The fate of the reaction can be deter-
mined solely by the sign of x̄1 at any instant.

We divide the Hamiltonian

H = H0 + H1 + H2 + · · · , (21)

as

H0 = B + C

2
|J|2 +

(
A − B + C

2

)
Ja

2 + 1

2

(
p1

2 − λ2q1
2)

+ 1

2

f∑
k=2

(
pk

2 + ωk
2qk

2
)
,

H1 = B − C

2

(
Jb

2 − Jc
2
) + 1

2

∑
k

JTM(1)
k Jqk

−
∑
k,k ′

ζ T
k,k ′qk pk ′M(0)J +

∑
k,k ′,k ′′

αkk ′k ′′qkqk ′qk ′′ ,

H2 = 1

2

∑
k,k ′

JTM(2)
k,k ′Jqkqk ′ −

∑
k,k ′,k ′′

ζ T
k,k ′M(1)

k ′′ Jqk pk ′qk ′′

+ 1

2

∑
k,k ′,k ′′,k ′′′

ζ T
k,k ′M(0)ζ k ′′,k ′′′qk pk ′qk ′′ pk ′′′

+
∑

k,k ′,k ′′,k ′′′
αkk ′k ′′k ′′′qkqk ′qk ′′qk ′′′ , (22)

where we have used the Taylor expansions of the matrix M
and the potential V :

M(q) = M(0) +
∑

k

M(1)
k qk +

∑
k,k ′

M(2)
k,k ′qkqk ′ + · · · ,

M(0) = 2

⎛
⎝ A 0 0

0 B 0
0 0 C

⎞
⎠,

V (q) = −λ2

2
q1

2 +
f∑

k=2

ωk
2

2
qk

2 +
∑

k,k ′,k ′′
αkk ′k ′′qkqk ′qk ′′

+
∑

k,k ′,k ′′,k ′′′
αkk ′k ′′k ′′′qkqk ′qk ′′qk ′′′ + · · · . (23)

Thus the zeroth order Hamiltonian H0 consists of the pro-
late symmetric top and the harmonic approximation. The first-
order H1 contains the deviation from the symmetric top, the
rovibrational coupling cubic in J and q, and the anharmonic-
ity cubic in q. The second order H2 contains the terms that
are quartic in J and q. Similarly, the higher order parts Hν

(ν = 3, 4, . . .) are polynomials of degree ν + 2 in J and q.
We introduce a formal parameter ε of perturbation, which

we set ε = 1 after all the following calculation is done. The
Hamiltonian is written as

H = H (0) =
∞∑

ν=0

εν H (0)
ν , (24)

with H (0)
ν = Hν defined in Eq. (22).

We construct the NF transformation from (J, x, ξ ) to
(J̄, x̄, ξ̄ ) by Lie canonical perturbation theory.65 Following the
formulation by Dragt and Finn,66 we perform successive op-
erations of Lie transformations:

J̄i = exp(−εadF1 ) exp(−ε2adF2 ) . . . exp(−εmadFm )Ji ,

x̄k = exp(−εadF1 ) exp(−ε2adF2 ) . . . exp(−εmadFm )xk,

ξ̄k = exp(−εadF1 ) exp(−ε2adF2 ) . . . exp(−εmadFm )ξk, (25)

where m is the order of perturbation and adFν
(ν = 1, . . . , m)

is an operation of Poisson bracket with a function Fν :

adFν
= {·, Fν}. (26)

The transformation of the Hamiltonian H (J, x, ξ ) 
→
H̄ (J̄, x̄, ξ̄ ) is then given by

H̄ = exp(εmadFm ) . . . exp(ε2adF2 ) exp(εadF1 )H. (27)

If we define H̄ (μ) and H̄ (μ)
ν by

H̄ (μ) = exp(εμadFμ
)H̄ (μ−1)

= exp(εμadFμ
) . . . exp(εadF1 )H, (28)

H̄ (μ) =
∞∑

ν=0

εν H̄ (μ)
ν , (29)

we obtain the following recursion formulas for H̄ (μ)
ν

ν < μ : H̄ (μ)
ν = H̄ (μ−1)

ν , (30)

ν = μ : H̄ (μ)
μ = H̄ (μ−1)

μ + {H0, Fμ}, (31)

ν > μ : H̄ (μ)
ν = H̄ (μ−1)

ν +
∞∑

s=1

(
adFμ

)s

s!
H̄ (μ−1)

ν−sμ . (32)

In the new Hamiltonian H̄ = H̄ (m) = ∑∞
ν=0 εν H̄ (m)

ν , the terms
of order ν are

H̄ (m)
ν = H̄ (m−1)

ν = · · · = H̄ (ν)
ν = H̄ (ν−1)

ν + {H0, Fν}, (33)

because of Eqs. (30) and (31). In the above equation, H̄ (ν−1)
ν

is given from the calculations in lower orders. The term H̄ (m)
ν

in the new Hamiltonian can be made into a “desirable” form,
more precisely the form of Eq. (19), by setting Fν appropri-
ately.
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We can express H̄ (μ−1)
μ and the generating function Fμ as

polynomials of J±, x, ξ defined in Eq. (12)

H̄ (μ−1)
μ (J, x, ξ ) =

∑
j,k

h(μ−1)
jk (Ja)J j0

+ J k0− x j1
1 . . . x

j f

f ξ
k1
1 . . . ξ

k f

f ,

Fμ(J, x, ξ ) =
∑
j,k

f (μ−1)
jk (Ja)J j0

+ J k0− x j1
1 . . . x

j f

f ξ
k1
1 . . . ξ

k f

f .

(34)

with the coefficients h(μ−1)
jk (Ja) and f (μ−1)

jk (Ja) being func-
tions of Ja . Here we must allow a general functional form with
respect to Ja , h(μ−1)

jk (Ja), and f (μ−1)
jk (Ja), rather than polyno-

mials because we will encounter a division by a polynomial
of Ja in the generating function [Eq. (37)], which then goes
into the Hamiltonian in the next iteration step. Since we have

H0 = B + C

2
|J|2 + D J 2

a + λx1ξ1 +
∑

k

iωk xkξk, (35)

with D
def= A − (B + C)/2, the Poisson bracket of H0 and Fμ

can be calculated by using Eq. (13):

{H0, Fμ} =
∑
j,k

f (μ−1)
jk (Ja)γjk J j0

+ J k0− x j1
1 . . . x

j f

f ξ
k1
1 . . . ξ

k f

f ,

γjk
def= − 2iD(k0 − j0)Ja + λ(k1 − j1) + i

f∑
�=2

ω�(k� − j�).

(36)

Thus by setting

f (μ−1)
jk (Ja) = −h(μ−1)

jk (Ja)

γjk

= −h(μ−1)
jk (Ja)

−2iD(k0 − j0)Ja + λ(k1 − j1) + i
∑ f

�=2 ω�(k� − j�)
,

(37)

we can cancel out the terms with the powers j, k from the new
Hamiltonian.

Canceling the terms with different powers of x� and ξ�

and leaving those with j� = k� (� = 1, 2, . . . , f ), we obtain
the desired result of Eq. (19). (This procedure has been some-
times referred to as normalization.) Note that, because we
allow any powers of ( j0, k0) in H̄ , the variable J̄a is not a
constant of motion, in contrast to the symmetric top case (be-
cause {Ja, J j

+ J k
−} �= 0 for j �= k).

It was found in the previous
papers9, 10, 17, 19, 22–39, 41, 47–51, 67, 68 that the cancellation of
the terms with j1 �= k1 is possible for any value of λ, and
ω�, because the real part of the denominator γjk consists
of only λ(k1 − j1), and γjk is therefore always nonzero for
j1 �= k1. Here we find that this is also the case even with the
existence of the rotation, because the term −2iD(k0 − j0)Ja

in Eq. (37) is purely imaginary. On the other hand, the
nonreactive modes and the rotational modes may suffer
from the problem of small denominator69 when ω�’s and
2D Ja are in resonance. Note that the resonance condition
now depends on the dynamical variable Ja . Whereas H0 is

taken as a symmetric top, the variable Ja is no longer a con-
stant of motion when H1, H2, . . . exist. In general, the form
H̄ (J̄, Ī1, Ī2, . . .) of the new Hamiltonian can cause divergence
when nonlinear resonance is met along the time propagation
of the dynamics obeying the original Hamiltonian H . The
problem of resonance can be avoided by adopting the form
H̄ (J̄, Ī1, x̄2, ξ̄2, . . .), that is, we eliminate only the terms with
j1 �= k1 by Eq. (37) and leave the other terms (which may
experience nonlinear resonance) unnormalized. This is called
partial normal form and has better convergence property
of H̄ .19, 70, 71 Further relaxation of the normalization is also
possible, by which we can still extract the stable/unstable
invariant manifolds (Ws/Wu) with yet better convergence
even when no-return TS (T ) may not exist.30, 49

Note also that the generating function, and therefore
also the new Hamiltonian, are rational functions, rather than
polynomials, of the dynamical variable Ja as in Eq. (37).
We therefore need manipulations of rational functions in the
NF calculations to include the effects of spatial rotation. In
the technical aspect, this is the largest difference from the
previous papers of NF.

After constructing the transformation (Ja, J+, J−,

x, ξ ) 
→ ( J̄a, J̄+, J̄−, x̄, ξ̄ ) in the above procedure, we can
introduce real-valued normal form coordinates by

J̄b = ( J̄+ + J̄−)/2, J̄c = ( J̄+ − J̄−)/(2i),

q̄1 = 1√
2λ

(x̄1 − ξ̄1), p̄1 =
√

λ

2
(x̄1 + ξ̄1),

q̄k = 1√
2ωk

(x̄k + iξ̄1), p̄k =
√

ωk

2
(ξ̄k + ix̄k), (38)

similarly to Eq. (12). There is a symmetry property satisfied
by the variables, which can be useful for the check of the cal-
culation results. Since there is no external field, the system has
a time-reversal symmetry. Thus the Hamiltonian H does not
change under the transformation (J, q, p) 
→(−J, q,−p). The
same property must hold after the transformation: H̄ does not
change under (J̄, q̄, p̄) 
→(−J̄, q̄,−p̄). Thus in the polynomial
expression of H̄ , the coefficients of even (odd) total power
of J̄b, J̄c, and p̄ must be an even (odd) function of J̄a , respec-
tively. Likewise, in the expression of q̄ in terms of the original
variables, the coefficients of even (odd) total power of Jb, Jc,
and p must be an even (odd) function of Ja , respectively. In
contrast, in the expression of J̄ and p̄ in terms of the original
variables, the coefficients of even (odd) total power of Jb, Jc,
and p must be an odd (even) function of Ja , respectively. (See
also the electronic database72 of the transformed Hamiltonian
H̄ and transformed physical quantities q̄, J̄, and p̄ represented
in terms of the original variables.)

In the present paper we chose the prolate symmetric top
and the harmonic approximation of vibrational degrees of
freedom as the zeroth order Hamiltonian. One may replace
the prolate symmetric top by the oblate symmetric top as the
zeroth order. Then the calculations above can proceed simi-
larly with appropriate change of indices. However, choosing
the asymmetric top and the harmonic approximation as the
zeroth order would require more complicated calculations.59

This is because we will encounter Eq. (33), where the
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Poisson bracket of H0 with the generating function of the
transformation is required to cancel with higher order parts
of the Hamiltonian. Solving this equation for the generating
function needs an analytical solution for the time evolution
obeying H0. While the analytical solution for the prolate
and oblate symmetric tops is given by simple trigonomet-
ric functions, that of the asymmetric top involves elliptic
functions,59, 64 which would make the calculation more com-
plicated. The resonance condition would also be complicated
because the angular frequency of the zeroth order periodic
motion in the J-space, given by 2D Ja in the prolate case [see
Eqs. (35) and (36)], is given for the asymmetric top case by
an elliptic function59, 64 with the rotational energy, which in
turn is a function of the three components of J. In the future,
it would be interesting to also develop a normal form theory
with the zeroth order being the asymmetric top based on the
action-angle expression derived in the Appendix of Ref. 59.
At end, the validity of the choice of the zeroth part and the
order assignments in the NF calculation should be checked
numerically by, for example, comparing the value of the orig-
inal Hamiltonian and that of the transformed Hamiltonian H̄ .

III. NUMERICAL EXAMPLE

In this section we demonstrate the calculations by the the-
ory presented in Sec. II with a numerical example of HCN
molecule. The molecule undergoes an isomerization between
HCN and HNC linear structure:

HCN ⇀↽ HNC. (39)

We use the potential surface of Ref. 73. Figure 3 shows the
structure, principal axes, and the normal mode vibrations at
the saddle point. The mode q1 is the unstable mode corre-
sponding to HCN ⇀↽ HNC isomerization, q2 is the vibration
of the H atom going to and from the CN axis, and q3 is the
stretching vibration of the CN bond. The rotation constants
and the normal mode frequencies are

A = 14.48cm−1, B = 1.951 cm−1, C = 1.719 cm−1,

λ = 1131 cm−1, ω2 = 3129 cm−1, ω3 = 2224 cm−1.

(40)

Since A > B ≈ C we take the prolate symmetric top as the
zeroth order as in Eq. (22). The calculation is performed up
to the second order of perturbation. The original Hamiltonian,
the generating functions, the transformed physical quantities
q̄, J̄, and p̄, and the transformed Hamiltonian obtained by the
NF calculation are given in electronic database.72

FIG. 3. Structure, principal axes, and normal mode vibrations of HCN
molecule at the saddle point.

To grasp the NHIM (x̄1 = ξ̄1 = 0) obtained by the rota-
tional NF theory, we plot several periodic orbits (POs) within
the NHIM. Three POs are chosen where the vibrational mode
2 is excited with Ī2 = (3 ¯)/2, and the mode 3 is kept at the
origin q̄3 = p̄3 = 0. The J̄ is kept at the fixed points in the J̄-
space. These points are obtained by solving ∂ H̄ (J̄, Ī)/∂ J̄ = 0
with the given Ī and |J|. Table I shows the values of J̄ and the
energy (H̄ ) for the chosen POs. The values of |J| are chosen
so that the three POs fall into approximately a similar energy
range of ≈1.0 eV. Note that the fixed points in the J-space
were at (Ja, Jb, Jc) = (J, 0, 0), (0, J, 0), and (0, 0, J ) in
the rigid rotor approximation (Sec. II B). The locations
of the fixed points in the J̄-space deviate from these due
to the rovibrational couplings. In this particular example,
however, the deviation is small.

The accuracy of the normal form calculation can be as-
sessed by the energy error.30, 70 We compare the value of H̄
truncated at μth order perturbation with true Hamiltonian H .
The difference is denoted by �H (μ). The smaller this value
is, the better description the normal form Hamiltonian H̄ is.
Table I shows the mean square of �H (μ) along each PO for
zeroth, first, and second order perturbations. The improve-
ment is appreciable and gets better as the order increases, im-
plying the validity of our rotational NF calculation.

Figure 4(a) shows a periodic orbit in the NF coordi-
nates. In this PO, we excite the vibrational mode 2 with Ī2

= (3 ¯)/2, while keeping the mode 3 at the origin q̄3 = p̄3

= 0. The rotational mode is kept at the fixed point J̄a

≈ J, J̄b ≈ J̄c ≈ 0. To capture the relation between the trans-
formed coordinates and more intuitional, naïve coordinates,
we next project the periodic orbit onto the (aH, bH), the

FIG. 4. A periodic orbit in the NHIM (x̄1 = ξ̄1 = 0). The vibrational mode
2 is excited with Ī2 = (3 ¯)/2, while the mode 3 is kept at the origin q̄3
= p̄3 = 0. The rotational mode is kept at a fixed point J̄b, J̄c ≈ 0. (a) The
phase space diagram in the normal form coordinates. The energy contours in
the J̄-space are drawn for |J| = 20 ¯ with spacing of 0.02 eV. Big spots in
the plots of J̄, x̄1, ξ̄1, q̄3, and p̄3, and the bold circle in q̄2 and p̄2 indicate
the position of the chosen periodic orbit. (b) Projection of the periodic orbit
onto (aH, bH), the position of the H atom in the rotating molecular frame.
Contours of the potential energy spaced by 0.02 eV are drawn with the CN
distance fixed at the equilibrium. The cross symbol shows the location of
the saddle point (aH, bH) = (−0.528Å, 1.037Å). (c) A schematic diagram to
explain the migration of NHIM with increasing angular momentum |J|. The
horizontal axis corresponds approximately to the direction of bH.
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TABLE I. Values of the normal form angular momentum J̄, energy H̄ , and the mean error for the four periodic orbits illustrated in the present paper. The unit
of the angular momentum is ¯. The unit of energy is eV.

No. |J| J̄a J̄b J̄c H̄ 〈�H (0)2〉1/2 〈�H (1)2〉1/2 〈�H (2)2〉1/2

1 20 19.9998 −0.0792 0.0000 1.23 0.2461 0.0733 0.0275
2 50 −0.3110 49.9990 0.0000 1.16 0.0800 0.0339 0.0274
3 50 0.0000 0.0000 50.0000 1.09 0.0867 0.0371 0.0311
4 40 ... ... ... 1.25 0.0017 0.0018 0.0009

position of the H atom projected onto the molecular inertial
axes a and b. In Fig. 4(b), the periodic orbit is superposed on
the contour plot of the potential energy surface as functions
of (aH, bH). The potential contours are drawn with CN fixed
at the equilibrium distance. The position of the saddle point is
shown by the cross symbol. The left side corresponds to the
HCN structure, and the right to the HNC structure. The peri-
odic orbit is drawn for three different values of |J|: 0, 10 ¯,
and 20 ¯. Due to the anharmonicity, the position of the peri-
odic orbit slightly deviates from the saddle point already for
J = 0. As J̄a ≈ J increases, the orbit migrates toward the up-
per direction. The qualitative explanation of this upward mi-
gration of the PO is given in panel (c). Since we have J̄a ≈ J
and J̄b ≈ J̄c ≈ 0, the molecule is rotating mostly around the
a-axis. Thus the centrifugal force operates in the direction de-
parting from the a-axis, that is, the upward direction along
bH. The direction of the centrifugal force is indicated in panel
(b) by the arrow. The potential has a minimum along the bH-
direction, as seen from the contour plot [Fig. 4(b)] and also
from the fact that the bH-direction has the largest projection
onto the vibrational normal mode 2 at the saddle point (Fig.
3). When the rotational motion exists, the system feels a cen-
trifugal potential which goes downward in increasing bH. The
resulting effective potential is given by the sum of the orig-
inal potential and the centrifugal one. As illustrated in panel
(c), the position of the minimum in the effective potential is
found in the direction of lower centrifugal potential. Thus the
migration of PO in the same direction as the centrifugal force
is qualitatively understood. The PO also migrates in the aH-
direction. Since there is no centrifugal force in this direction,
this must be due to the anharmonicity of the potential energy
surface. The migration of the PO in the bH arising from the
centrifugal force also affects its location along aH-direction
through the nonlinear coupling between aH and bH.

In the above explanation, we interpreted J̄a ≈ J , J̄b

≈ J̄c ≈ 0 as rotation around the a-axis. This is only quali-
tatively true, because J̄a is a nonlinear function of (J, q, p)
through the NF transformation constructed in Sec. II. The mo-
tion in J̄ has components in the original J as well as the inter-
nal coordinates (q, p). In other words, it is not a pure rotation.
Ja is the “main part” (zeroth order approximation) of J̄a . The
above interpretation is therefore qualitatively correct.

Figure 5 shows another periodic orbit in the NHIM. In
this case, we have rotational motion around the b-axis ( J̄b

≈ J, J̄a ≈ J̄c ≈ 0), while the vibrational motion is the same
as before. This periodic orbit is unstable in the J̄-space as
well as in the (q̄1, p̄1)-space. Panel (b) shows the projection
of the periodic orbit onto the (aH, bH). It is found that the or-
bit migrates toward the positive direction along the aH-axis

as J̄b ≈ J increases. In this case the molecule rotates around
the b-axis, generating the centrifugal force making the hy-
drogen atom leave from the origin in the aH-direction. When
the hydrogen atom is located in a region of negative value of
aH, the centrifugal force acts in the negative aH direction [in-
dicated by the arrow in panel (b)]. The migration of the PO
with increasing J is in the opposite direction to the centrifu-
gal force, in contrast to the previous case. The aH-direction
has the largest projection onto the reaction mode q1 as seen in
Fig. 3. The potential shows a maximum along this direction.
As shown schematically in panel (c), the sum of the poten-
tial having a maximum and the centrifugal potential exhibits
a maximum that is shifted in the direction of increasing cen-
trifugal potential.

Figure 6 shows another periodic orbit in the NHIM, with
J̄c ≈ J, J̄a ≈ J̄b ≈ 0, while the vibrational motion is the same
as before. This periodic orbit is stable in the J̄-space, and un-
stable only in the (x̄1, ξ̄1)-space. In this case, the molecule is
rotating in the molecular plane (the ab-plane). A marked dif-
ference from the previous two cases is that the orbits show cir-
cular shapes when projected onto the aHbH-plane as in panel
(b). This is the effect of Coriolis force because the rotation
around the c-axis arises the Coriolis force in the ab-plane.
The radius of this circular shape of the PO gets larger as |J|
increases, showing the increased effect of the Coriolis force.
The location of the PO also changes slightly toward the upper-
right as |J| increases. This can be explained in the same way
with the preceding two cases. The centrifugal force generated
by the rotation around the c-axis pushes the system from the

FIG. 5. Same as Fig. 4 except that J̄b ≈ J, J̄a ≈ J̄c ≈ 0, and the energy con-
tours in the J̄-space are drawn for |J| = 50 ¯ with spacing of 0.1 eV. The
horizontal axis in (c) corresponds approximately to the direction of aH.
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FIG. 6. Same as Fig. 5 except that J̄c ≈ J, J̄a ≈ J̄b ≈ 0.

origin both in a- and b-directions. The migration of the PO is
in the same direction with the centrifugal force along the bH-
direction and in the opposite direction along the aH-direction,
as explained in the preceding paragraphs.

In summary, the three components ( J̄a, J̄b, J̄c) of J̄
exhibit different effects on the NHIM. The figures were
shown only for the POs in the NHIM by exciting one vibra-
tional mode. When the other mode (q3) is also excited, we
have found that the projection onto the aHbH-space exhibits
Lissajous-type figures winding around the POs shown above
(data not shown). The qualitative trend of the migration is
the same with the POs: J̄a shifts the NHIM in the direction
of the centrifugal force. J̄b shifts the NHIM in the direction
opposite to the centrifugal force. J̄c changes the shape of the
projection of NHIM on the position space into circular orbits.

Finally, we plot another periodic orbit to show the dif-
ference between the transformed angular momentum J̄ and
the original one J. In Fig. 7, both the vibrational modes are
kept at the origin q̄2 = p̄2 = q̄3 = p̄3 = 0 (see also No. 4 in
Table I). An energy contour curve in the J̄-space is taken

FIG. 7. Same as Fig. 4 except that Ī2 = 0 and a periodic motion in J̄-space
is taken. The energy contours in the J̄-space are drawn for |J| = 40 ¯ with
spacing of 0.1 eV.

to give a periodic orbit. In the projection onto the (aH, bH),
which is internal coordinates, we see a line segment rather
than a point. This means that the periodic motion purely in
the J̄ have nonzero projection onto the internal motion of the
molecule. Due to the rovibrational coupling, the rotational
motion (J) is not independent of the internal (reaction and
vibration) motions. In contrast, the normal form coordinate J̄
is independent of (q̄1, p̄1, q̄2, p̄2, q̄3, p̄3), since the NF trans-
formation cancels out the couplings. The independent mode
J̄ thus constructed is not a pure rotation in the sense of the
original coordinate (J, q, p) but contains some components in
the internal motion. The NF method presented in this study
extracts truly separable coordinates in systems under rovibra-
tional couplings. Projecting the NHIM obtained by thus con-
structed coordinates onto the original coordinate reveals the
effects of rovibrational motions on the reaction.

IV. SUMMARY AND OUTLOOK

Recently developed nonlinear dynamical theories of sad-
dle crossings were extended to systems with nonzero spatial
rotation. Three components (projection onto the molecular
axes) of the angular momentum are not constants of motion
(while they are mutually related with each other through the
constancy of the modulus of the angular momentum), and
were therefore treated as dynamical variables. The rotation is
dynamically coupled to the internal motion of the molecule
through centrifugal and Coriolis interactions, affecting there-
fore the reaction process. Under the rovibrational couplings,
the method shown in the present paper extracts a new set of
coordinates, with which the reaction mode is decoupled from
the others. We can thus identify a no-return TS to separate
the reactant and the product regions [Eq. (17)], and the
stable/unstable invariant manifolds acting as the boundary
of reactive and nonreactive trajectories [Eqs. (15) and (16)].
The nonlinear coordinate transformation with spatial rotation
requires manipulation of rational functions, in contrast to that
without spatial rotation in which only the manipulation of
polynomials, easier in the implementation, was needed. The
positions of NHIM, which is regarded as an “anchor” of TS,
and the stable/unstable invariant manifolds were investigated
by projecting several representative periodic orbits in the
NHIM back to the original coordinates. It was found that
the position of NHIM migrates as the rotation is excited.
The three components of the angular momentum were shown
to have different effects on the position of NHIM. When the
centrifugal force is along the reaction mode, the NHIM mi-
grates in the direction opposite to the centrifugal force. When
the centrifugal force is along the vibrational mode, the NHIM
migrates in the same direction as the centrifugal force. When
the rotation is perpendicular to the internal motion, the Cori-
olis interaction plays a significant role to make the shape of
NHIM circular when projected onto the configuration space.

With the method presented in this paper, the reaction dy-
namics theory in the nonlinear regime9, 10, 17, 19, 22–38 is now
made applicable to a much wider class of realistic systems,
such as the bimolecular collision with nonzero impact param-
eters and the unimolecular reaction with thermally excited
rotation. The extraction of the boundary of reaction (that is,
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stable/unstable invariant manifolds) will progress our insights
into what determines the outcome of reactions. An obvious
next step is systematic studies of reaction dynamics on pre-
cise potential surfaces by highly accurate ab initio calcula-
tions for the reactions occurring in atmospheric or interstellar
regions using the method developed here. It is also interesting
that the dynamical structure changes at higher energies.16, 19, 30

In contrast to the present treatment, where all the vibrational
actions perform as constants of motion by the NF transforma-
tion, there should exist a range of energy in which only the
action along the reactive coordinate does so while most of all
vibrational modes exhibit chaotic motions, or in which even
the reactive-mode action is broken but we can still find the
reactivity boundary (stable/unstable invariant manifolds).30, 49

The breakdown of the constancy of actions primarily oc-
curs through resonance, that is, a small denominator arises
in the generating function for certain combinations of pow-
ers and frequencies, causing the divergence of the transfor-
mation. It is interesting to note that the denominator depends
on the angular momentum [Eq. (37)]. A new type of reso-
nance, therefore a new way of breakdown of dynamical struc-
ture, may arise depending on the value of angular momen-
tum. An example of resonance between the rotational and the
vibrational motions is the Coriolis resonance,62, 74, 75 which
corresponds to the case of j0 − k0 = 0,±1, js − ks = 1 and
jr − kr = −1 (r, s ≥ 2, r �= s) in Eq. (37), arising from the
terms JTM(0)ζ rsqs pr in Eq. (1). The effect of rovibrational
resonance is to generate island chain structures in the J-
space58 in place of the simple rigid rotor structure in Sec.
II B, or chaotic breakdown of the separatrix and transfer be-
tween A-type and C-type rotations.57, 58 It can also change the
coupling of vibrational modes55, 56 and exchange energy.57, 58

How the rovibrational resonance affects the reactive mode
(which is not a vibration) is still to be investigated. Such res-
onance may mix the rotation and the vibration and increase
the phase space dimensionality from 6N − 13 (purely vibra-
tional) to 6N − 10 (maximum) as energy increases.52 These
are some of the forthcoming subjects still to be addressed.
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