Determination of spin-orbit coefficients in semiconductor quantum wells

S. Fanie,1 T. Matsuura,2 S. Mineshige,1 Y. Sekine,3 and T. Koga1,2

1Division of Electronics for Informatics, Graduate School of Information Science and Technology, Hokkaido University, N-14, W-9, Kita-ku, Sapporo, Hokkaido 060-0814, Japan
2Creative Research Institution, Research Department, Hokkaido University, Hokkaido 001-0021, Japan
3NTT Basic Research Laboratories, NTT Corporation, Atsugi, Kanagawa 243-0198, Japan

(Received 12 November 2010; published 7 March 2011)

We report the determination of the intrinsic spin-orbit interaction (SOI) parameters for In0.53Ga0.47As/In0.52Al0.48As quantum wells (QWs) from the analysis of the weak antilocalization effect. We show that the Dresselhaus SOI is mostly negligible in this system and that the intrinsic parameter for the Rashba effect, αSO = α/(Ez), is given to be αSOm*/mF = (1.46–1.51 × 10−17)/Å2, where α is the Rashba SOI coefficient, Ez is the expected electric field within the QW, m*/mF is the electron effective mass ratio, and Nδ is the sheet carrier density. These values for αSOm* were also confirmed by the observation of beatings in the Shubnikov–de Haas oscillations in our most asymmetric QW sample.

DOI: 10.1103/PhysRevB.83.115309 PACS number(s): 73.63.Hs, 71.70.Ej, 73.23.Ad, 85.35.Ds

I. INTRODUCTION

As a result of the spin-orbit interaction (SOI), the conduction band of a semiconductor experiences spin splittings even at zero magnetic field, if the system lacks spatial inversion symmetry. In quantum well (QW) structures grown even at zero magnetic field, if the system lacks spatial asymmetric Hamiltonian is

\[H_D = \beta_1 k \left(\sigma_z \cos \theta - \sigma_y \sin \theta \right) + \beta_3 \left(\sigma_x \sin \theta + \sigma_y \cos \theta \right), \]

where \(\beta_1 \) and \(\beta_3 \) are the Dresselhaus SOI coefficients, \(k \) the electron wave number, \(\sigma_a \) and \(\sigma_b \) the Pauli spin matrices, and \(\theta \) the azimuthal angle for the wave vector \(k = (k_x, k_y) \).

The Rashba spin splitting arises from the structural inversion asymmetry in artificially grown heterostructures, whose effective Hamiltonian is

\[H_R = \alpha k \left(\sigma_y \sin \theta - \sigma_z \cos \theta \right), \]

\(\alpha \) being the Rashba SOI coefficient. \(\beta_1 \) and \(\beta_3 \) are both proportional to a single intrinsic parameter \(\gamma \), referred to as the bulk Dresselhaus parameter. \(\gamma \) are obtained from the effective mass approximation, where \(k^2 \) denotes the expectation value of the operator \(k^2 \equiv k_x^2 + k_y^2 \) with the wave function along the confinement direction \(z \). While it is envisioned that \(\alpha \) should be proportional to \(\langle E_z \rangle \), where \(\langle E_z \rangle \) is the expectation value of the \(z \) component of the electric field in the pertinent QW excluding the interfacial contribution from the well-barrier boundary, some debates also exist. There are multiple mechanisms that would cause Rashba-type spin splittings besides \(\langle E_z \rangle \), such as band discontinuities, specific bonding arrangements at the heterointerfaces, and the lattice-strain effect. By and large, the relation \(\alpha \propto \langle E_z \rangle \) is believed to hold in semiconductor QWs, where the value of the proportionality constant \(\alpha_{SO} \equiv \alpha/(\langle E_z \rangle) \) should be an intrinsic parameter of the material. The determination of the \(\gamma \) and \(\alpha_{SO} \) values and the discovery of simple rules to predict the values of \(\beta_1 \), \(\beta_3 \), and \(\alpha \) will not only play essential roles for the development of future spintronics just in the same way the determination of the effective mass values did for the development of the conventional charge-based electronics, but they will also provide useful checks for band-theory calculations. Thus, the establishment of experimental schemes to determine these SOI coefficients are of paramount importance.

In this paper, we report on the experimental determination of the intrinsic parameter of \(\alpha_{SO} \) in In0.53Ga0.47As/In0.52Al0.48As QWs using low temperature magnetocconductance measurements. Thus far, the SOI-related spin splittings have been studied through the beatings in the Shubnikov–de Haas (SdH) oscillations, analysis of the weak antilocalization (WAL) dips in magnetocconductance measurements, the spin-Galvanic effect, spin-flip Raman scattering, electron spin resonance, and time-resolved Faraday rotation. In these measurements, even if the observed spin splittings were considered to be the Rashba type, they were rarely correlated with \(\langle E_z \rangle \) to deduce the values of \(\alpha_{SO} \). Besides that \(\langle E_z \rangle \) is not a directly measurable quantity, the difficulties also come from the complicated process of disentangling the values of \(\alpha \), \(\beta_1 \), and \(\beta_3 \) from the measured spin splittings.

In the following section, using the symmetrically doped sample KH1-3 (see Appendix A), we will see that the WAL effect is clearly minimized at some carrier density \(N_{SO} \), where \(\langle E_z \rangle = 0 \) is realized (Sec. II A). We then obtain the values \(\alpha_{SO} \) from fits to the low-field magnetocconductance data using the Golub model, where \(m^* \) is the electron effective mass, neglecting \(H_D^{(1)} \) and \(H_D^{(3)} \) over \(H_R \) (Sec. II B). The parameter values prerequisite in this analysis are only the electron mean free path and the electron density, both of which are obtainable from the Hall and/or SdH measurements directly, making the purely experimental determination of \(\alpha_{SO} \) possible.

II. EXPERIMENT

The heterostructures investigated are lattice-matched, 10 nm-thick In0.53Ga0.47As/In0.52Al0.48As QWs grown by metal organic chemical vapor deposition on (001) InP substrates. We studied 10 different QWs with various doping profiles (see Appendix A). In0.53Ga0.47As/In0.52Al0.48As is a technologically important material system for future spintronics because of its strain-free nature, relatively large spin splitting energies, and stable gate-controllability, where the last factor was made possible owing to recent developments in high-\(\kappa \) gate insulators.
Standard Hall bar samples were fabricated using either a 20 nm–thick HfO$_2$ layer (atomic layer deposition) or a 100 nm–thick SiO$_2$ layer (evaporation) as gate dielectric. The magnetoconductance measurements were performed at the base temperatures of dilution ($T \sim 30$ mK) or 3He ($T \sim 300$ mK) refrigerators with the magnetic field B applied perpendicular to the plane of the QW. The electric characterizations were done using a standard lock-in technique with an electric current of ~ 100 nA and frequencies between 11 and 183 Hz.

A. Determination of the bulk Dresselhaus parameter γ

Shown in Fig. 1 are the measured magnetoconductance traces $\sigma(B)$ for a symmetrically doped sample (KH1-3) at several values of gate-controlled N_S. The negative magnetoconductances, a characteristic signature of the WAL effect, are clearly seen in all traces in the vanishing B. A measure of the SOI strength is provided by the characteristic field for the SOI, B_{SO}, which is given as $B_{SO} \equiv \alpha^* m^2 / \hbar$ for the case of the Rashba spin splitting.28 Empirically, the values of B_{SO} are approximated by the magnetic field where $\sigma(B)$ is minimized, denoted as B_{min} (see vertical marks in Fig. 1). Equating B_{min} to B_{SO}, we obtain a phenomenological SOI coefficient $\tilde{\alpha}m^* = \sqrt{\hbar^3 B_{\text{min}}}$. In Fig. 2, we find that such $\tilde{\alpha}m^*$ has a V-shaped dip as a function of N_S ($N_S^* = 1.06 \times 10^{16}$ m$^{-2}$, where $\tilde{\alpha}m^*$ is minimized). In the presence of both the Dresselhaus and Rashba SOIs, the WAL effect is expected to be weakened if $\alpha = \pm \beta_1$,14,15,29 suggesting a double dip feature in the $\tilde{\alpha}m^*$ vs N_S curve. However, in our measurements, we observed the weakening of $\tilde{\alpha}m^*$ at only one N_S.

This single minimum behavior in the $\tilde{\alpha}m^*$ vs N_S relation suggests either (1) β_1 is so small that the $\alpha = \pm \beta_1$ conditions are merged together into a single dip, or (2) β_1 is so large that the second minimum is not visible in the investigated N_S range. The latter interpretation is ruled out since large β_1 values also imply a strong contribution from $H_D^{(3)}$ which is inconsistent with the minimum value of $\tilde{\alpha}m^*$ observed at N_S^* ($\tilde{\alpha}m^*/m_e = 7.5 \times 10^{-15}$ eV m$^{-2}$).30 The minimum in the $\tilde{\alpha}m^*$ vs N_S curve then corresponds to the condition where the QW is made symmetric; i.e., $(E_z) = 0$.

We estimated the value of γ as follows. Shown together in Fig. 2 are the simulated values of $\tilde{\alpha}m^*$, extracted from the theoretically modeled magnetoconductance curves including the Rashba and Dresselhaus spin splittings and assuming $\gamma = 0.35.6$, and 10 eV Å$^{-3}$, using the theoretical models developed by Golub25 ($\gamma = 0$ eV Å$^{-1}$) and Knap5 ($\gamma = 3.5.6$, and 10 eV Å$^{-3}$). In these calculations, we used Eq. (4) for the Rashba spin splittings with $N_S^* = 1.06 \times 10^{16}$ m$^{-2}$, which will be justified later, and assumed $\tau_3 = \tau_r$ when using the Knap model. Here τ_r is the transport scattering time and τ_3 is a higher order scattering time defined as

$$\frac{1}{\tau_3} = \int_0^\pi W(\theta)[1 - \cos(3\theta)] d\theta,$$

where $W(\theta)$ is the probability of scattering by an angle θ. The value of this parameter depends on details of the scattering mechanism—for example, $\tau_3^{-1}/\tau_r^{-1} = 1$ for isotropic scattering and $\tau_3^{-1}/\tau_r^{-1} = 9$ for small-angle scattering.5 In Fig. 2, the condition $B_{SO} \ll B_{tr}$, required in the Knap model, is satisfied at N_S smaller than 1.3×10^{16} m$^{-2}$, where B_{tr} is a characteristic magnetic field relevant to τ_r, so that the theoretical $\tilde{\alpha}m^*$ data for $\gamma = 3.5,6$, and 10 eV Å$^{-3}$ are limited to this range.31 We found that the simulated $\tilde{\alpha}m^*$ vs N_S curves substantially deviate from the experimental one if $\gamma >$

![FIG. 1. (Color online) Magnetoconductances of a gated- In$_{0.53}$Ga$_{0.47}$As QW (KH1-3) for various values of N_S. Each trace has been shifted vertically. The solid curves show the fits to the data by the Golub model.25 The position of B_{min} is indicated by vertical marks in each trace. The dashed lines are guides to the eye.]

![FIG. 2. (Color online) The phenomenological SOI coefficient $\tilde{\alpha}m^*$ extracted from the B_{min} values in Fig 1. The solid lines are calculations obtained using the Knap ($\gamma = 3.5.6$, and 10 eV Å$^{-3}$) and Golub ($\gamma = 0$ eV Å$^{-1}$) models. The vertical arrow indicates the density N_S^*, where the QW is made symmetric; i.e., $(E_z) = 0$.]

115309-2
3.5 eV Å³. Thus, we regard the value 3.5 eV Å³ as a reasonable upper limit for the experimental γ. For γ ≲ 3.5 eV Å³, the double dip of the am* vs N₅ curves is restricted to a narrow N₅ range around N₅*, where the calculated values of am* underestimate the experimental ones⁶² (see Appendix B). This discrepancy suggests the presence of additional spin relaxation mechanisms⁶³ not included in the theoretical model, or spatial variations of α in the sample, reflecting that of the doping density and/or the QW thickness dQW.

We note that the above estimated value of γ is smaller than the predicted values in k · p theory (γ ~ 27 eV Å³).⁵,³⁴ A similar observation is found in a recent experiment by Zhou et al.⁶⁵ The γ values for GaAs QWs (γ ~ 5 eV Å³) are also known to be reduced from the k · p value for bulk GaAs (γ ~ 27 eV Å³)⁵,⁶⁶ After all, we conclude that γ ≲ 3.5 eV Å³ in (001)In₀⁵₂Ga₀⁴₇As(10 nm)/In₀₅₂Al₀₄₈As QWs. Thus, H⁽¹⁾ and H⁽³⁾ may be neglected relative to Hᵣ in most cases except at N₅ = N₅* even with sample KH1-3.

B. Determination of the intrinsic parameter for the Rashba effect

Having shown that H⁽¹⁾ and H⁽³⁾ may be neglected relative to Hᵣ, we fitted the experimental σ(B) data with the WAL theory developed by Golub recently,⁵ assuming only Rashba-type spin splitting, for accurate deduction of the am* values. In contrast to the previous theoretical models,⁵,²⁸ valid only for B₅O ≪ Bₑ and B ≪ Bₑ, the new theory is valid for all magnetic field ranges and Rashba coefficient α values.⁴¹ The excellent quality for the fittings of the WAL data by this model is found in Fig. 1. We also note that it is the value of the product am*, not the value of α, that is deducible directly from experiment. Thus, the value of the product a₅SOm* is obtained purely experimentally without assuming any values of other parameters, as below.

\[\frac{m_e}{m^*} = 1 + \frac{2m_e}{\hbar^2} \left(\frac{2}{E_g} + \frac{1}{E_g + \Delta_{SO}} \right) \]
(2)

and

\[r^{6°76°} = \frac{eP^2}{3} \frac{2\Delta_{SO}(E_g + \Delta_{SO}/2)}{E_g(E_g + \Delta_{SO})^2} \]
(3)

where E_g is the band gap energy, ΔSO is the spin-orbit split-off energy, and P is the momentum matrix element.⁴¹ Putting the band parameter values for In₀⁵₂Ga₀⁴₇As, we obtain the value r^{6°76°}m*/mₑ = 0.87 eÅ², which is about 60% of the experimental value of α. For the observed N₅ dependence of a₅SOm*, we note that increasing the Fermi energy Eᵢ has a similar effect as increasing the effective band gap energy.³⁷,³⁸ Replacing Eᵢ in Eqs. (2) and (3) with (Eᵢ + Eᵣ), the N₅ dependence of r^{6°76°}m*/mₑ was naively simulated. We then find that the theoretical value of b was also 60% of the corresponding experimental value (see Fig. 3). The contribution from the valence band discontinuities at the well-barrier interfaces to the SOI can be incorporated into the model by adding the prefactor (ΔEᵣ + ΔEᵢ)/ΔEᵢ ~ 1.4 to Eq. (3), where ΔEᵣ and ΔEᵢ are the conduction and valence band offsets.³⁷ When including the band discontinuity effect in this way, the theoretical r^{6°76°}m* is 84% of the experimental a₅SOm*. The values of a₅SOm* extracted from our experimental data are thus found to be in reasonable agreement with k · p theory.

B. Applicability of the obtained a₅SOm* values to the other asymmetric quantum wells

The applicability of the obtained a₅SOm* values as a function of N₅ was checked with the am* vs N₅ data obtained for the other 10 nm–thick In₀⁵₂Ga₀⁴₇As/In₀₅₂Al₀₄₈As QWs that have different back doping densities N₅* than KH1-3. All these samples showed strong WAL effects in the low temperature magnetoconductance data σ(B), where we deduced the α values as a function of N₅ for each sample from the fittings.

FIG. 3. (Color online) The extracted values of a₅SOm* as a function of N₅ for KH1-3. The dashed line is a linear fit to the data. The solid curve shows the values of r^{6°76°}m* calculated using Eqs. (2) and (4), replacing Eᵢ with (Eᵢ + Eᵢ) and multiplied by 1.68 (see text).
with Golub theory as in Fig. 4(a). The experimental $a m^*$ vs N_s data were then fitted with the equation

$$a m^* / m_e = \frac{|e|}{2\epsilon_0} (a - b N_S)(N_s^* - N_S). \quad (4)$$

Here, N_s^* was used as a fitting parameter, which only virtually corresponds to the $\langle E_z \rangle = 0$ condition in these QWs. As shown in Fig. 4(a), the experimental $a m^*$ vs N_S curves are well fitted with Eq. (4) in all samples, if the value of N_s^* is properly chosen. The generality and applicability of Eq. (4) is summarized in the scaled plot in Fig. 4(b), where the scaled variable $\tilde{a} \equiv a m^* \frac{2\epsilon_0}{\epsilon_bm_e}$ is plotted as a function of $\tilde{N}_S \equiv \frac{-2\hbar_N - a - b N_s^*}{a - b N_N}$ for all the epilayers used in the experiment. We find that all the experimental data collapse on a single universal curve $\tilde{a} = \tilde{N}_S^2 - 1$. The validity of our analysis using Eq. (4) is also backed up by the correlation observed between the values of N_s^* and N_N. We note that the change in N_N, denoted as ΔN_N, should accompany the change in N_s^* by $(\Delta N_N)^2$ if no other background impurities are present below QW and the boundary condition (or the position of the Fermi energy pinning) is kept constant at the buffer layer/substrate interface among the samples, which is roughly the case for a series of samples that were grown under the same growth calibration. This relation is checked for two series of samples investigated

[Fig. 4(c)], named KH1-ξ ($\xi = 1-4$) and KH2-η ($\eta = 1-6$). As shown in Fig. 4(c), good correlations were found between N_s^* and N_N with slope 2 for both KH1 and KH2 samples, as expected.

C. Confirmation by the SdH beating

We finally report our observation of the SdH beating with one of our samples that has the largest Rashba spin splitting (KH2-1). An example of such SdH beating patterns is shown in the inset of Fig. 5. In QW samples with well-defined Landau levels, beating nodes appear in the SdH oscillation at magnetic fields where the spin-splitting energy $\delta (\delta \rightarrow 2\epsilon_bk_F)$ for $B \rightarrow 0$ is an odd multiple of $\hbar \omega_c / 2$, where $\omega_c = |e|B/m_e$. Theoretically, the value of δ is obtained by direct diagonalization of the Hamiltonian matrix using the Landau quantization basis in the presence of the Rashba and Zeeman terms:\n
$$\delta = \left[|\hbar\omega_c(1 - g^* m^*/2m_e)|^2 + (2\epsilon_bk_F)^2\right]^{1/2} - \hbar \omega_c, \quad (5)$$

where g^* is the effective Landé g factor and k_F is the Fermi wave number. For sample KH2-1, we observed only one node corresponding to $\delta = \hbar \omega_c / 2$. Assuming $m^*/m_e = 0.047$, and $g^* = -3$, the extracted values of $a m^*$ were plotted as a function of N_s^* in Fig. 5 together with those obtained from the WAL analysis for the same epilayer (KH2-1). A reasonable agreement is found between the $a m^*$ values from the SdH beating and those from the WAL analysis, similar to previous studies in strained InGaAs QWs. A good fit was also obtained for the $a m^*$ vs N_s data from the SdH beating using Eq. (4), where the value of N_s turned out to be about 7% smaller than that from the WAL analysis. This discrepancy may be due to the fluctuations in the back and/or front doping.
densities, namely N^+_1 and/or N^+_2, either spatially or by thermal cycling.

IV. CONCLUSION

As a conclusion, we have deduced the values of the intrinsic parameter a_{SO}^*/m_e, which relates the Rashba coefficient α to the averaged electric field within the quantum well $\langle E_z \rangle$, to be $(1.46-1.51 \times 10^{-17} N_5 \text{ m}^{-2})\ e\AA^2$, irrespective of the QW's doping profile, for (001) oriented, 10 nm–thick-gated-In$_{0.52}$Al$_{0.48}$ As/In$_{0.52}$Al$_{0.48}$As QWs. We have also estimated the value of the bulk Dresselhaus parameter γ to be $\approx 3.5e\ V\ AA^{-3}$, implying that the linear and cubic Dresselhaus SOIs are negligible relative to the Rashba SOI in our QWs unless the condition $\langle E_z \rangle \approx 0$ is realized. The quantitative determination of these fundamental parameters is essential for designing semiconductor systems with tailored spin-orbit properties, and provides a useful reference to test band-theory calculations.

ACKNOWLEDGMENTS

The authors are indebted to Dr. H. Yokoyama and Dr. H. Sugiyama for sample growth, to Professors R. Winkler, L. E. Golub, G. Yu, and J. Nitta for fruitful discussions, and to Dr. K. Sueoka and Dr. T. Akazaki for support. This work was partially supported by KAKENHI, Grant-in-Aid for Young Scientists (A), No. 19684009. S. Faniel thanks the JSPS for financial support.

APPENDIX A

The heterostructures investigated here are lattice-matched, 10 nm–thick, In$_{0.53}$Ga$_{0.47}$As/In$_{0.52}$Al$_{0.48}$ QWs grown by metal organic chemical vapor deposition (MOCVD) on (001) InP substrates. The growth sequence of the QWs is illustrated in Fig. 6 and all specific growth parameters are summarized Table I.

APPENDIX B

In Fig. 2, the condition $t^{-1}_q/t^{-1}_u = 1$ may overcount the effect of $H_D^{(3)}$ in the simulated magnetoconductance curves through the parameter value of $\Omega_3^3 \tau_3$ ($\Omega_3 = \beta_3 k^3$) in the Knap model, because the comparison of the quantum scattering time t_q and the transport scattering time t_u suggests that

<table>
<thead>
<tr>
<th>Wafer</th>
<th>n^+_1</th>
<th>n^+_2</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>KH1-1</td>
<td>4</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>KH1-2</td>
<td>3</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>KH1-3</td>
<td>2</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>KH1-4</td>
<td>1</td>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>KH2-1</td>
<td>4</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>KH2-2</td>
<td>3.5</td>
<td>0.5</td>
<td>20</td>
</tr>
<tr>
<td>KH2-3</td>
<td>3</td>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>KH2-4</td>
<td>2.75</td>
<td>1.25</td>
<td>25</td>
</tr>
<tr>
<td>KH2-5</td>
<td>2.5</td>
<td>1.5</td>
<td>25</td>
</tr>
<tr>
<td>KH2-6</td>
<td>2.25</td>
<td>1.75</td>
<td>25</td>
</tr>
</tbody>
</table>

TABLE I. Growth parameters for the investigated quantum wells: n^+_1 and n^+_2 are the back and front doping densities by Si dopant, respectively, and d is the thickness of the In$_{0.52}$Al$_{0.48}$As Schottky layer. The parameters n^+_1 and n^+_2 are given in $(10^{18} \text{ cm}^{-3})$, and d in nm. Note that $N^+_1 = n^+_1 \times 6 \text{ nm}$.

FIG. 6. (Color online) Schematic illustration of the growth sequence for the In$_{0.53}$Ga$_{0.47}$As/In$_{0.52}$Al$_{0.48}$As QWs.

FIG. 7. (Color online) Top panel: Magnetoconductance of KH1-3 at $N_5 = 1.94 \times 10^{16} \text{ m}^{-2}$, showing the SdH oscillation. Inset: Dingle plot of the SdH data. The red circles are the experimental data and the plain line is a linear fit to extract the value of t_q. Bottom panel: Transport scattering time t_u and the quantum scattering time t_q as a function of N_5 for sample KH1-3. Measurements were performed at $T = 30 \text{ mK}$ (base temperature).
forward scatterings dominate in our samples ($\tau_q^{-1}/\tau_{tr}^{-1} > 1$). The transport scattering time τ_{tr} is mostly sensitive to large-angle scattering and rather insensitive to small-angle scattering, while the quantum scattering time τ_q depends on all scattering events. The quantum scattering time τ_q is defined as

$$\frac{1}{\tau_q} = \int_0^\pi W(\theta)d\theta,$$ \hspace{1cm} (B1)

and also provides a measure of the broadening of the Landau levels. This parameter can be extracted from Dingle plots of the Shubnikov–de Haas data as in Ref. 39. The amplitude of the SdH oscillation ΔR is given by

$$\Delta R = 4R_0X(T) \exp\left(\frac{-\pi}{\omega_c\tau_q}\right),$$ \hspace{1cm} (B2)

where

$$X(T) = \frac{2\pi^2k_B^2T/\hbar\omega_c}{\sinh \left(2\pi^2k_B^2T/\hbar\omega_c\right)}.$$ \hspace{1cm} (B3)

Here, R_0 is the resistivity at $B = 0$, k_B is the Boltzmann constant, T is the temperature and ω_c is the cyclotron frequency. An example Dingle plot is shown in Fig. 7 for KH1-3 at $N_f = 1.94 \times 10^{16}$ m$^{-2}$. The transport scattering time τ_{tr} and the quantum scattering time τ_q are displayed in Fig. 7 as a function of N_f, for the KH1-3 sample. The quantum scattering time τ_q is found to be typically 1/20 of τ_{tr}, indicating that forward scatterings dominate in our quantum wells. The assumption $\tau_q^{-1}/\tau_{tr}^{-1} = 9$ in the Knap calculation, consistent with forward scattering, reduces the $H_{(3)}$ contribution to the WAL effect further, leading to a further underestimation, in turn, of the experimental Δm^* in the vicinity of N_f^{*}. 32

Footnotes:

1. Our crystallographic indices are defined placing the group III and V atoms in the [000] and $\hat{a}[111]$ positions in the unit cell, respectively, where \hat{a} is the lattice constant.

2. $\hat{x} \parallel [100]$, $\hat{y} \parallel [010]$, and $\hat{z} \parallel [001]$. \hat{z} is normal to the sample surface.

We obtain $\gamma = 6 \text{ eV} \, \text{Å}^3$ if we attribute this solely to $H^{(3)}_D$, assuming $\tau_3 = \tau_0$.

The exact criterion used here is $B_{SO} < \frac{1}{4}B_n$.

