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A boundary to divide the phase space into the reactive and the nonreactive trajectories robustly exists even in thermal fluctuation.

Nonlinear dynamics in the passage over rank-one saddle is investigated as a function of temperature in the
presence of stochastic, thermal fluctuation. The analyses are based on a framework we developed recently adopt-
ing multidimensional underdamped Langevin equation (without any assumption for the form of the potential of
mean force). The framework can in principle provide a single coordinate to enable us to predict the final desti-
nation of the reaction in a thermally fluctuating media. At each temperature, the preciseness or the error of the
reaction coordinate is evaluated in capturing the true reaction dynamics at different levels of approximations. By
using the Müller-Brown potential as an illustrative example, it is found that a hierarchy of dynamical structure
exists in the region of rank-one saddle, in which the crossing dynamics qualitatively changes as the temperature
increases. We discuss the mechanism of how the reaction coordinate persists, which provides a boundary of the
reaction to divide the phase space into the reactive and the nonreactive regions, even in the presence of thermal
fluctuation.

I. INTRODUCTION

Chemical reactions are ubiquitous in nature, and can be re-
garded as prototypes of ‘change of matter.’1 The most com-
mon class of chemical reactions is a system moving on a
single effective potential surface from one local minimum to
another, through a saddle region. Chemists have long envi-
sioned the existence of a dividing surface in the saddle region
through which the system passes only once in going from one
stable state to another. The surface is called the ‘transition
state (TS).’2–9 The TS is supposed to lie transverse to a one-
dimensional coordinate axis, called the ‘reaction coordinate,’
which describe the progress of the reaction. The concept of
the TS has provided us with great insights for understanding
not only the rate of chemical reactions but also, for example,
ionization of a hydrogen atom in crossed electric and mag-
netic fields,10 isomerization of clusters,11 the escape of aster-
oids from Mars,12 and the folding/unfolding of proteins.13

Lots of reactions in biology or chemical synthesis occur
in condensed phase. The most striking difference from gas

phase is that the system is always subject to external stochas-
tic forces by the environment. Even for a fixed initial con-
dition of all the variables in the system, the final destination
is not necessarily unique but has a certain probability distribu-
tion. Thus, concepts like the resonance overlap,14 based on the
Hamiltonian formalism, or the deterministic area-preserving
Poincaré map15 are not feasible for systems with dissipation
and stochastic, external driving force that fluctuates thermally.
Two approaches to define an appropriate “TS” and/or to over-
come the recrossing problem in a fluctuating media have been
made by variational TS theory (VTST)8,9 which optimizes a
configurational dividing surface by minimizing the number of
recrossings and by Kramers16 and later by Grote and Hynes,17

based on (generalized) Langevin formalism which regards the
recrossings “as the natural consequence arising from friction
by the surrounding environment.”

In the former, the VTST has been applied with explicit har-
monic bath modes.18–20 VTST has provided excellent phys-
ical insights about the location of the dividing surface as
well as improved expressions for rate constants. In prac-
tice, VTST needs a certain small number of selected variables
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to parametrize the dividing surface (usually position coordi-
nate(s) of the system (e.g., solute)). However, as indicated by
Van der Zwan and Hynes21 and later by Pollak22 using har-
monic bath Hamiltonian system, the reaction coordinate must
be, in principle, a nonlinear function of all the position co-
ordinates and velocities of the reacting system and all the ef-
fects exerted by the surroundings. It is non-trivial to identify
which degrees of freedom are actually required to be involved.
In the latter, the system-bath Hamiltonian approach can for-
mally bridge the descriptions ofanyHamiltonian system and
the generalized Langevin formulation21,23,24 projected onto
an arbitrarily chosen coordinate. The very question of the
description of dynamical systems in the presence of thermal
fluctuation is one of the most intriguing subjects in nonequi-
librium statistical mechanics.25,26 There remains the funda-
mental question of what reaction coordinate a systemactually
follows under the disturbance of thermal fluctuation.

In this article we use the term ‘transition state (TS)’ to mean
the original definition by Wigner,3 that is, a dividing surface
free from recrossing problem and ‘reaction coordinate’ a sin-
gle coordinate that is decoupled from the other coordinate at
least in the region of saddle which supports the concept of TS
and enables us to predict the destination of the reaction at any
instant.

Recently, extensive analyses of nonlinear dynamics around
rank-one saddle for gas phase reactions (i.e., Hamiltonian sys-
tems) have been performed in terms of geometrical struc-
tures of the phase space,10,11,27–43following several develop-
ments in experiments44,45 and theories46–55 on characterizing
the regularity in dynamics through saddles. It was revealed
that such a TS and a reaction coordinate robustly exist in the
multidimensional phase space for a wide class of Hamilto-
nian systems in the region of rank-one saddle. It was also
revealed11,40–43,56,57that a hierarchy of the dynamical struc-
ture exists in those regions, dependent on the total energy
of the system. In particular the firm mathematical founda-
tion was established for the robust existence of no-return TS,
which arises from the generic fact that any resonance cannot
occur between reactive and non-reactive degrees of freedom
whose frequencies are real and imaginary, respectively, in the
region of rank-one saddle.58

However, most of reaction system in chemistry and biol-
ogy is subject to stochastic random force and frictions. This
is essentially different from the isolated systems. Recently,
we have presented a framework59,60 to extract a reaction co-
ordinate that is decoupled from the other coordinates even in
a thermally fluctuating environment. The crux was the appli-
cation of the non-Hamiltonian normal form (NF) theory61 to-
gether with the time-dependent formulation given by Ref. 62
to multidimensional underdamped Langevin equation with ar-
bitrary potential of mean force. The new reaction coordinate
is represented by an analytical functional with respect to the
original position coordinates and velocities of the system and
the random force and the friction constants exerted by the en-
vironment. Similarly to the isolated systems,10,11,27–43under
certain moderate conditions, this theory can provide a single
coordinate decoupled from the other coordinates which can
tell us the final destination of the reaction. In the present pa-

per, using the Müller-Brown potential as an illustrative ex-
ample, we investigate how the crossing dynamics through the
first-rank saddle qualitatively change along the reaction coor-
dinate with temperature, and we discuss the hierarchical struc-
ture of dynamics and its implication in relevance to reaction
control and robustness of functions in biological (nonlinear)
systems under thermal fluctuation.

II. THEORY

We present a brief summary of the theory we devel-
oped in the previous paper.59 The framework utilizes ann-
dimensional Langevin equation:

q̈ =−∂U
∂q
− γq̇+ ξ (t), (1)

whereq = (q1, . . . ,qn)T is the normal mode position coor-
dinates of the system (solute),U the potential of the mean
force, γ the friction constant, andξ (t) describes the random
force from the solvent. As an illustrative example, we use the
Müller-Brown potential63 (See Sec. III) asU . In this example,
the dimensionn is two, but our theory presented in this paper
is applicable to systems of any dimension. We use uniform
friction γ in the numerical example of the present paper, but
the theory is also applicable to the case where the friction has
off-diagonal part.59 The trajectory calculation is performed64

with the random force sampled according to the fluctuation-
dissipation theorem

〈ξ (t)ξ (0)T〉= 2kBTγδ (t), (2)

whereξ (0)T is the transpose of the vectorξ (0), T the temper-
ature andkB Boltzmann constant. The force from the potential
U can be expanded in a Taylor series

− ∂U
∂q j

=−k jq j +∑|m|≥2 α j,mqm1
1 · · ·qmn

n , (3)

with the expansion coefficientsk j and α j,m for the linear
and the nonlinear parts, respectively. Here,|m| = ∑ j mj and
∑|m|≥2 sums over combinations ofmj satisfying|m| ≥ 2.
Diagonalization of the linear part:

We introduce normal mode coordinates (u1,u2) in the
position-velocity space that diagonalize the linear part

d
dt

(
q
q̇

)
=
(

0 1
K −Γ

)(
q
q̇

)
, (4)

where1 is n× n unit matrix, Γ is equal toγ1, andK is the
Hessian matrix ofU at q = 0. The normal mode coordinate
u = (u1,u2, . . . ,u2n)T is obtained by diagonalizing the matrix

V−1
(

0 1
K −Γ

)
V =diag(λ1, · · · ,λ2n),

(
q
q̇

)
= Vu (5)
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Here we assume that the system has a rank-one saddle point
to link the reactant and the product regions such thatλ1 > 0,
Re(λ j) < 0 ( j = 2, . . . ,2n). The rank-one saddle point in-
cludes both the information of the linear parts of potential of
mean force (i.e., the curvature of the potential) and friction
constants. Theλ1 > 0 corresponds to the unstable motion
sliding down the barrier. The analytical expressions of the
eigenvaluesλ is given in Appendix of Ref. 59.

After the diagonalization, the equation of motion becomes

d
dt

u j =λ ju j + ξ̃ j(t)+∑|m|≥2 β j,mum1
1 um2

2 · · ·um2n
2n , (6)

whereξ̃ (t) =V

(
0

ξ (t)

)
, and the coefficientsβ j,m are obtained

by substituting Eq. (5) into the nonlinear terms in Eq. (3).
The surface defined byu1 = 0 would perform the role of
the boundary between reactive and non-reactive trajectories if
there were no random force or nonlinearities. In reality, how-
ever, trajectories cross theu1 = 0 axis many times due to the
random force and nonlinear couplings.
Shift of the origin:

Recent studies65–68 introduced relative coordinates, which
we callx j here, by

u j =S[λ j , ξ̃ j ](t)+x j (7)

where we have introduced a notationSas in Refs.62,68:

S[λ j , ξ̃ j ](t) =
{ ∫ 0
−∞ exp(−λ jτ)ξ̃ j(t + τ)dτ (Reλ j < 0)
−∫ +∞

0 exp(−λ jτ)ξ̃ j(t + τ)dτ (Reλ j > 0)
(8)

Then the equation of motion forx is given by

d
dt

x j = λ jx j +∑|m|≥0 f j,m(t)xm1
1 xm2

2 · · ·xm2n
2n , (9)

where the coefficientsf j,m(t) are obtained from the nonlinear
terms in Eq. (6). The expansion coefficientsf j,m(t) are now
time-dependent due to the time-dependent shift [Eq. (7)]. If
there were no nonlinear terms in the potentialU , the equation
of motion inx1 would not depend on the random force. Then
the solution would bex1(t) = x1(t0)exp[λ1(t− t0)] wheret0 is
a certain instant of time. Sincelimt→+∞ exp[λ1(t− t0)] = ∞,
the system would move away from the barrier region ast
increases, with the direction [the sign ofx1(t)] determined
solely by the sign ofx1(t0). However, due to the presence
of the nonlinear terms, the dynamics ofx j depends on all̃ξ
through the time dependence inf (k)

j (x, t) that originates from
that of random forceξ (t). Hereinafter for the sake of brevity
we will not insert the notations ofξ (t) andλ into the nota-
tions of time-dependent coefficients appeared in the following
procedures (i.e.,c j(y, t), w j(y, t), andg j(y, t)) but all these co-
efficients generally depend on bothξ (t) andλ exerted by the
surrounding environment.
Nonlinear transformation to incorporate the effect of nonlin-
ear couplings:

To incorporate the effect of nonlinear terms in Eq. (9), we
employ non-Hamiltonian normal form (NF) theory61 to in-
troduce a nonlinear transformation fromx to y so that the
equation of motion fory1 contains no coupling with the other
coordinates. The calculation proceeds in a similar way to
Lie canonical perturbation theory69,70 (a classical analog of
Van Vleck perturbation theory). The equation of motion inx
[Eq. (9)] is cast into

d
dt

y j =λ jy j +c j(y, t), (10)

by the transformationx j = y j + w j(y, t). Introducing polyno-
mial expansions for two unknown functions (c j andw j ) as

c j(y, t) = ∑mc j,m(t)y1
m1 · · ·y2n

m2n,

w j(y, t) = ∑mw j,m(t)y1
m1 · · ·y2n

m2n (11)

The coefficientsw j,m(t) are determined so as to diminish
c j,m(t) order by order: Substituting these unknown functions
into Eq. (9), we obtain

(
〈λ ,m〉−λ j +

d
dt

)
w j,m(t) =g j,m(t)−c j,m(t), (12)

Where 〈λ ,m〉 = ∑2n
k=1 λkmk and g j,m(t) are the coeffi-

cients of the polynomial expansion ofg j(y, t)
def= f j(y+w, t)−

∑2n
i=1ci(y, t)

∂w j (y,t)
∂yi

. As is shown in the previous paper,59 in
the process of determiningc j,m(t) andw j,m(t) perturbation-
ally order by order,g j,m(t) is known from the results of the
lower orders. There thus exist two unknown quantitiesc j,m(t)
andw j,m(t) with the knowng j,m(t) at each order. One can then
determine either of the two unknown quantities as one wishes.
To simplify the equation of motion for the new variablesy1,
one can eliminatec1,m(t) order by order by setting

w1,m(t) = S[λ1−〈λ ,m〉,g1,m] (t), (13)

using theS-symbol as in Eqs. (7) and (8).62,68 For m1 =
1,m2 = · · · = m2n = 0, we haveλ1− 〈λ ,m〉 = 0, for which
case theS-symbol cannot be defined. This makes it necessary
to incorporate a termc1,m(t) in Eq. (12), wherem1 = 1,m2 =
· · ·= m2n = 0. The equation of motion thus becomes

d
dt

y1≈ {λ1 +c1(t)}y1, (14)

with a time-dependent coefficientc1(t). The solution of
Eq. (14) is given by

y1(t)≈ y1(t0)exp

[∫ t

t0

(
λ1 +c1(t ′)

)
dt′
]
, (15)

wheret0 is a certain instant of time (the initial condition). The
exponent in Eq. (15) goes to infinity ast → +∞ if the long-
time average of the perturbative termc1(t) is less thanλ1.
Sinceλ1 is O(1) andc1(t) is O(ε) with a small parameterε
in the perturbation calculation, this inequality can usually be
expected to hold. As long as this condition is fulfilled, the
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sign ofy1 at timet0 can predict the destination of the reaction
a priori before the system reaches either the reactant or the
product region.

Once we determine the functionsw(k)
j (y, t) up to a desired

order, the transformation fromy to x is given byx j = y j +
w j(y, t). The inverse transformation, i.e.,y as a function ofx
(hence ofq), can be given by the iterative technique [Eqs. (27)
and (28) in the previous paper59]. The transformation from
the original coordinates(q, q̇) (throughu andx) to y can be
expressed in the form of a polynomial expansion

y1 =a1q1 +a2q̇1−S[λ1, ξ̃1](t)+F0 [ξ ] (t)

+∑|m|≥2wmq1
m1 · · ·qn

mnq̇mn+1
1 · · · q̇m2n

n

+ ∑
|m|≥1

Fm[ξ ] (t)q1
m1 · · ·qn

mnq̇mn+1
1 · · · q̇m2n

n . (16)

In the previous paper,59 the physical interpretation of each
term appearing in Eq. (16) was also given. Briefly, the first
two terms correspond to linear approximation. The third term
−S[λ1, ξ̃1](t) expresses direct environment effect, that is, the
kick by the random force along the reactive normal mode di-
rection. The terms with the coefficientswm come from the
nonlinearity of the system. The rest terms (withF0 [ξ ] (t) and
Fm[ξ ] (t)) are the combined effects of the environment and the
nonlinearity, in the sense that they arise only when there ex-
ist both the random force and the nonlinearity in the potential
of mean force. Note here that all the coefficients depend on
the friction constants, while onlyS[λ1, ξ̃1](t), F0 [ξ ] (t), and
Fm[ξ ] (t) include the random force and are therefore time-
dependent.

Eq. (16) above can be calculated only when one knew the
instance of the random forceξ (t) for all the past and the future
time in advance. In practice, however, what one may assume
a priori is the statistical properties ofξ (t) as an ensemble
rather than a single instance. Therefore the previous paper59

also has discussed taking the ensemble ofy1 averaged over all
realizations ofξ (t):

〈y1〉=a1q1 +a2q̇1 + F̄0(kBT)

+∑|m|≥2wmq1
m1 · · ·qn

mnq̇mn+1
1 · · · q̇m2n

n

+∑|m|≥1 F̄m(kBT)q1
m1 · · ·qn

mnq̇mn+1
1 · · · q̇m2n

n , (17)

where the time-independent coefficients̄F0(kBT) and
F̄m(kBT) are the averages of the corresponding terms in
Eq. (16) and are functions of temperature through Eq. (2).
The direct environment effect vanishes by the average ofξ (t).

A. Two types of normal form

1. partial normal form

For the purpose of telling the fate of the reaction, we need
only to know the motion along the unstable directiony1 which
corresponds to the motion sliding down the barrier. Thus we

can normalize the equation ofẏ1 while leaving other modes as
they are:

ẏ1 =[λ1 +c1(t)]y1 +O(εN+1)
ẏ2 = f2(y)
ẏ3 = f3(y)

...

ẏ2n = f2n(y). (18)

We call this “partial normal form.” The solution for the motion
of y1 is given by

y1(t) = y1(t0)exp

[∫ t

t0

(
λ1 +c1(t ′)

)
dt′
]

+O(εN+1), (19)

Here,λ1 comes from the harmonic approximation, which cor-
responds to the zeroth order of the perturbation in our normal
from treatment.59 The other termc1(t) originates from the ef-
fect of nonlinearity, which begins with first-order perturbation
term.

Of particular importance is the behavior int → +∞. The
exponent in Eq. (19) goes to infinity ast → +∞ if the long-
time average of the perturbative terms inc1(t) is less thanλ1

lim
t→+∞

∣∣∣∣
1
t

∫ t

t0
c1(t ′)dt′

∣∣∣∣< λ1. (20)

Since the left-hand side is of first order of perturbation and
the right-hand side is zeroth order, this inequality can usually
be expected to hold. As long as this condition is fulfilled, we
have

lim
t→+∞

y1(t) =
{

+∞ (y1(t0)> 0)
−∞ (y1(t0)< 0) (21)

The increase of|y1(t)|means that the system departs from the
vicinity of the saddle point, going either to the products or to
the reactants. The direction of this departing motion is de-
termined by the sign ofy1. The most important consequence
is that, irrespective of the other modes (y2, . . . ,y2n), only the
knowledge of the sign ofy1 at any one moment in the region
of saddle is sufficient to tell the fate of the reaction.

Figure 1 shows a schematic picture of the phase space flow
projected onto they1-y2 plane. The trajectories are drawn for
the case of two independent linear equations

ẏ1 = λ1y1,

ẏ2 = λ2y2. (22)

We can think of the left half of the plane as corresponding to
the reactant and the right half the product. It can be seen that
the trajectories withy1> 0 goes from the reactant to the prod-
uct or vice versa, while those withy1 < 0 are reflected back
by the barrier. This figure has a good correspondence with the
preceding studies on the Hamiltonian systems10,11,27–43where
the canonical conjugate pair(q̄1, p̄1) was used as the “reaction
coordinate.” In the present case, however, the equation of mo-
tion of y1 depends also on timet, and that ofy2 on all the
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FIG. 1: A schematic picture of the phase space flow projected onto
they1-y2 plane. It is seen that the trajectories with positivey1 goes
from the left side (the reactant) to the right side (the product), or vice
versa, while those with negativey1 are nonreactive. Note that the
sign ofy1 is invariant, and therefore the knowledge of the sign ofy1
at any instant time is sufficient to predict the fate of the reaction. The
sety1 = 0 makes an invariant set, which functions as a boundary of
the reaction.

other coordinates [Eq. (18)], thus plotting onlyy1 andy2 is
not a correct way for the representation of the phase space.
Since the sign ofy1 is sufficient for the purpose of knowing
the fate of the reaction, we will in the present paper plot the
phase space flow in the(t,y1)-plane, where the flow can be
analyzed independently from the other coordinates in the case
of the partial NF [Eq. (18)].

For the purpose of illustrating the transformation, we plot in
Fig. 2 some representative trajectories generated by a numer-
ical simulation of the Langevin equation in the three different
coordinates,u1, x1 andy1. Computational details of the sim-
ulation is given in Sec. III. Fig. 2(a) plots the time evolution
of the normal mode coordinateu1 [defined in Eq. (5)] along
each trajectory. The plots show noisy shapes due to the ran-
dom force. In Fig. 2(b), they have become much smoother in
the shifted coordinate [Eq. (7)], which means that the shift can
cancel the effect of the random force to some extent. However,
for the purpose of distinguishing the reactive and the nonreac-
tive trajectories, we cannot use the linex1 = 0 to divide them
because some trajectories cross it. The crossings are due to the
effect of nonlinearity. The normal form transformation from
x to y treats the nonlinear part. The plot with timet and the
NF reaction coordinatey1 is plotted in Fig. 2(c). It is seen
that the liney1 = 0 separates the reactive and the nonreactive
trajectories [note that a large positive (negative) value ofy1
corresponds to the product (reactant), as in Fig. 1]. As one
can see in Sec. IV, as temperature increases,y1 = 0 in the par-
tial NF can no longer act as a reaction boundary to distinguish

the reactive and the nonreactive trajectories.

2. minimal normal form

One of the main theme of this article is to propose another
normal form which has not been noticed in the literature in-
sofar, resulting in the robust reaction boundary to divide the
space into reactive and nonreactive trajectories even though
the reaction coordinatey1 is no longer decoupled from the
other in the partial NF structure. This normal form termed as
minimal NF is designed to reduce the extent of normalization
as follows.

ẏ1 =[λ1 + c̃1(y, t)]y1 +O(εN+1)
ẏ2 = f2(y)
ẏ3 = f3(y)

...

ẏ2n = f2n(y), (23)

wherec̃1 can now be a function ofy. In other words, we elim-
inate the terms withm1 = 0 from the equation oḟy1, but retain
all the terms withm1 ≥ 1 (that is, no function consisting only
of y2,y3, . . . in the right hand side of equation ofẏ1). The so-
lution is formally given by

y1(t) = y1(t0)exp

[∫ t

t0

(
λ1 + c̃1(y(t ′), t ′)

)
dt′
]
. (24)

This solution is only formal in the sense that the right hand
side containsy(t ′) which would have to be solved according to
the very equation of motion Eq. (23). However, the important
point is thaty1 = 0 forms an invariant set just as in the case of
partial normal form (i.e.,dy1/dt = 0 if y1 = 0). This implies
that once the system is in the manifold ofy1 = 0, the system
should remain to reside there fort → ±∞. In other words,
no trajectory cancrossthe manifoldy1 = 0 from the region
y1 > 0 to y1 < 0, or vice versa. Consequently, once we know
the sign ofy1(t0) at any instantt0 in the saddle region, it fixes
the sign ofy1 for t→ ∞, telling us the final destination of the
reaction (the reactant or the product regions, see Fig. 1). The
condition corresponding to Eq. (20) is given by

lim
t→+∞

∣∣∣∣∣
1
t

∫ t

t0

N

∑
k=1

εkc̃(k)
1 (y(t ′), t ′)dt′

∣∣∣∣∣< λ1. (25)

This is more difficult to check because it contains the solution
y(t ′) to the equation of motion. However, this can usually be
expected to hold since the right hand side is of first order of
perturbation, while the left hand side is of zeroth order.

The minimal normal form is expected to have better con-
vergence property because it contains less terms in the trans-
formation. The difference of convergence will be discussed in
the following sections.



6

FIG. 2: Some representative trajectories forkBT = 2 plotted in timet and (a) phase space normal mode coordinateu1, which is a linear
combination of the position coordinateq1 and the velocityq̇1, (b) shifted coordinatex1 with the shift depending on time to incorporate
the effect of the random force (in the linear part), and (c) normal form coordinatey1 constructed by a nonlinear transformation fromx.
Computational details is given in Sec. III. The trajectories have complicated shapes due to the random force in (a), which is attenuated in (b)
by the time-dependent shift. The trajectories plotted in (b) still experiences crossings with each other and crossings with the linex1 = 0. If the
coordinatey1 is used, there is no crossings and the liney1 = 0 separates the reactive and the nonreactive trajectories.

B. Error estimate

The present theory is based on series expansions and trun-
cations. The coordinate transformation and the equation of
motion fory are only an approximate description. It must be
checked whether the error of this approximation is sufficiently
small. For Hamiltonian systems, an energy error criterion was
used38,39 to check the convergence property of the NF trans-
formation. This exploits the fact that the time-independent
canonical transformation (if exact) leaves the value of the
Hamiltonian unchanged. In the present case, however, the sys-
tem is non-Hamiltonian and we cannot use total energy as a
criterion for convergence. We define the following criterion
for the error check in our dissipative system:

δ ẏ1
def=

d
dt

y1(q(t), q̇(t))−
{λ1 + c̃1(y(q(t), q̇(t), t)}y1(q(t), q̇(t)), (26)

which is the error in the velocity alongy1. In the above equa-
tion, q(t) andq̇(t) are calculated by numerical simulation and
then substituted into the transformation ofy1 with givenξ (t)
andγ by Eq. (16). The first term on the right hand side is thus
the numerical derivative ofy1 with respect to timet. The rest
terms correspond to the right hand side of the equation of mo-
tion for y1 [Eq. (23)]. If the transformation and the equation
of motion were exact, it should be equal to the first term on
the right hand side of Eq. (26). Hence the quantityδ ẏ1 can be
regarded as an estimate of the error in the NF transformation.

In order to compare the error or preciseness at the different
levels of approximations, we take the ensemble average of the
square ofδ ẏ1 relative to the average of the square ofẏ1 in the
region of the saddle:

〈(δ ẏ1)2〉
〈(ẏ1)2〉 , (27)

where the bracket denotes thermal average on the surface:

〈A〉def=
∫

dqdq̇A(q, q̇)δ (s(q)−s0)exp

[
−E(q, q̇)

kBT

]
. (28)

HereA is any function of(q, q̇), andE is the energy defined
as the kinetic energy(q̇2

1 + q̇2
2)/2 plus the potentialU . The

conditions(q) = s0 gives a surface over which the averages
are taken. In this paper we take the surface as the ridge of
the potential surface (see Sec. III and Fig. 3), which can be
considered as lying approximately between the reactant and
the product.

III. MODEL

As a model system we use Müller-Brown potential,63 which
has often been used as a test system for searching algorithms
of minima and saddle points. The potentialU is expressed in
terms of two position coordinates(Q1,Q2) by

U(Q1,Q2) =
4

∑
i=1

Ai exp
[
ai(Q1−Q0

1,i)
2

+bi(Q1−Q0
1,i)(Q2−Q0

2,i)+ci(Q2−Q0
2,i)

2] ,
(29)

with A = (A1,A2,A3,A4) = (−200,−100,−170,15),
a = (−1,−1,−6.5,0.7), b = (0,0,11,0.6), c =
(−10,−10,−6.5,0.7), Q0

1 = (1,0,−0.5,−1), and
Q0

2 = (0,0.5,1.5,1). The contour plot of the potential is
shown in Fig. 3. This system possesses three minima and
two saddle points. In this paper we deal with the saddle point
with higher energy (called “saddle 2” in preceding papers),
which has a significant asymmetrical feature of potential
compared to the other saddle. The barrier height from each
minimum is 41 and 107 (in the unit of energy), respectively
(the barrier height of the other “saddle 1” at lower energy is
9 and 36, respectively).59,60 The potential and the directions
of the normal modes in the configuration space are shown in
Fig. 3. The orange curve in the figure shows the ridge of the
potential surface, on which the ensemble is taken in Eq. (28).

The friction constant is set to be proportional to unit ma-
trix γi j = 30δi j . This value was regarded as the underdamped
case because it is of the same order with the normal mode fre-
quency of the system at the saddle point. In this paper, NF
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FIG. 3: Configuration space normal mode coordinates at saddle 2
superimposed with the contours of the potential surface spaced by 1.
The coordinateq1 corresponds to the reactive direction, andq2 the
non-reactive one. The ridge of the potential is shown by bold orange
line.

calculations are performed up to the second order of perturba-
tion.

To quantify the validity of Eqs. (9), (18), and (23) for de-
scribing the dynamics of the system in a fluctuating media,
we investigate the flows of trajectories in the position-velocity
space (also called phase space in this article). We fixa ran-
dom forceξ (t) made from one sequence of random numbers
at each temperature. Eqs. (9), (18), and (23) themselves are
formulated for anyξ (t). The reason for fixing the random
forceξ (t) in the analyses is that, once the random forceξ (t)
is fixed, one can scrutinize the uniqueness of the solution of
the dynamical systems ofxi [q, q̇;ξ ], yi [q, q̇;ξ ] along the orig-
inal Langevin dynamics(q, q̇;ξ (t)) obeying Eq. (1). One can
then evaluate the validity of the representation of Eqs. (9),
(18), and (23) as a function of temperature. We employ the
long period random number generator of L’Ecuyer with Bays-
Durham shuffle.71

IV. RESULTS AND DISCUSSION

A. The preciseness of NF approximations

Figure 4 shows the error of the velocity alongy1 calculated
for harmonic approximation (ddt x1≈ λ1x1, see Eq. 9), the par-
tial NF [Eq. (18)] and the minimal NF [Eq. (23)]. The errors
increase with temperature for all the three cases. This is be-
cause the system can experience a wider region of the poten-
tial surface around the saddle point, thus, of a larger nonlin-
earity, as temperature increases. Although the error of the har-

FIG. 4: Error estimates for the NF approximation to the true dy-
namics as functions of the temperature. Circle, square, and diamond
correspond to harmonic approximation, partial NF, and minimal NF,
respectively.

monic approximation starts to exceed a few percents at even
kBT ≈ 1, the error of the partial NF remain less than a few
percents up tokBT ≈ 2. The minimal NF gives yet better ap-
proximation with the error being only a few percents up to
kBT ≈ 4.

B. Geometry of phase space flow

To explore how the dynamical structures of the system
change in the presence of thermal fluctuation with tempera-
ture, we investigate the flows of trajectories in the position-
velocity space. For each plot, we use one instance of the ran-
dom forceξ (t) made from an arbitrary chosen, single same
sequence of random numbers and pick sixty initial conditions
randomly sampled on the ridge of the potential surface. Then
we propagate the trajectories for these initial conditions and
plot them in terms of timet and one coordinate (x1 or y1).
Figure 5 shows the flow of trajectories in thet-x1 space at
the temperaturekBT = 0.1. At such low temperature, the har-
monic part of the potential makes a good approximation of the
system, so that the equation of motion is almost given by [see
Eq. (9)]

d
dt

x1 = λ1x1, (30)

which has a solution

x1(t) = x1(t0)exp(λ1(t− t0)), (31)

wheret0 is an instantaneous time (initial condition) while the
system is in the region of saddle. Thus, for each trajectory,
the absolute value ofx1 increases monotonically witht. All
the trajectories are repelled from the linex1 = 0, which thus
functions as the “boundary” between the reactive and the non-
reactive trajectories. No trajectory can cross this boundary.
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In other words, the linex1 = 0 makes an invariant set of the
system. Note also that no two trajectories cross each other.
This is due to the uniqueness of the solution to the differential
equation (30), which can be (at this temperature) regarded as
a good approximation of the true dynamics. That is, the same
initial conditionx1(t0) will lead to the same solution.

FIG. 5: Trajectories plotted in timet and the shifted normal mode
coordinatex1 at kBT = 0.1. A light blue line marks the setx1 = 0,
which should functions as the boundary of reaction if the harmonic
approximation is valid for this system. Note that a clear lamination
of the flow and no crossing withx1 = 0 are observed.

On the other hand, Fig. 6 (a) shows the plot of trajectories
in the t-x1 space at higher temperature ofkBT = 2. Two re-
markable changes from the case ofkBT = 0.1 are observed:
(1) Some trajectories cross the linex1 = 0. (2) There are
crossings of two trajectories with each other. These facts im-
plies that the harmonic approximation [Eq. (30)] does not give
the correct picture of the dynamics any more. The cross-
ings of the trajectories with each other are understood from
the effect of couplings as follows. Given one instance of
the random forceξ (t), the solution should be unique once
we specify the initial condition for the whole coordinate
(x1(t0),x2(t0),x3(t0),x4(t0)) at timet = t0 (irrespective of the
validity of harmonic approximation) [See Eq. (9)]. How-
ever, the figure is a projection onto thex1 axis. Some tra-
jectories can have the same value ofx1(t0) but different val-
uesx2(t0),x3(t0),x4(t0). Such trajectories occupy the same
point in thet-x1 space att = t0 but have different time evolu-
tion due to the coupling betweenx1 and the other coordinates
(x2,x3,x4). For harmonic regions the couplings are negligible,
which is the reason why we did not observe the crossings at
kBT = 0.1 (Fig. 5).

Fig. 6 (b) plots the same trajectories in Fig. 6(a) in thet-y1
space wherey1 is obtained by partial NF (Sec. II A 1). Here-
after we denote this coordinate asyp

1 to distinguish from the

FIG. 6: Trajectories at the temperaturekBT = 2, plotted in (a) time
t and the shifted normal mode coordinatex1, and (b) timet and the
partial normal form coordinatey1. Light blue lines mark the setx1 =
0 andy1 = 0.

minimal NF (Sec. II A 2). In the partial NF framework, nei-
ther crossings throughyp

1 = 0 nor crossings between trajec-
tories are observed, and the phase space flow is tidily lami-
nated. That is, the solution is uniquely determined with the
same value ofyp

1(t0) without mattering the values ofy2,y3,
andy4. This implies that the normal form reaction coordinate
yp

1 is actuallydecoupled from the other coordinates. Note also
that there is an invariant set defined byyp

1 = 0 to separate the
reactive and the non-reactive trajectories (at least) up to the
order of perturbation.

As can be seen from Fig. 4, the partial NF also starts to suf-
fer from larger errors at higher temperature whilst the mini-
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FIG. 7: Trajectories run with the temperaturekBT = 4, plotted in (a)
time t and the partial normal form coordinateyp

1, and (b) timet and
the minimal normal form coordinateym

1 . Light blue lines mark the
sety1 = 0.

mal NF can perform as a good approximation to the dynamics
of the system. Figure 7 shows the plot of the trajectories at
kBT = 4 in (a) thet-yp

1 space, and (b) thet-ym
1 space, where

ym
1 is obtained by the minimal NF (Sec. II A 2). In Fig. 7(a),

we observe crossings between the trajectories and with the
line yp

1, which would not be observed if the partial NF were a
true description of the bluesystem. This shows that the partial
NF does not describe the dynamics of the system correctly at
this temperature (consistent with the error estimate in Fig. 4).
We cannot use the setyp

1 = 0 as the reaction boundary at this
temperature. In turn, the error estimate (Fig. 4) tells that the
minimal NF can still give a good description of the dynam-
ics atkBT = 4. The trajectories are plotted in timet and the

minimal NF coordinateym
1 in Fig. 7(b). We observe crossings

between the trajectories and the phase space flow looks quite
irregular in contrast to the clear lamination seen in Fig. 6 (b).
This is because the minimal NF allows the couplings between
ym

1 and the other coordinates [see Eq. (23)]. However, as dis-
cussed in Sec. II A 2, trajectories cannot cross the lineym

1 = 0,
which then functions as the boundary of reaction. In this tem-
perature region, the lamination structure in the domainym

1 6= 0
is lost, whereas the invariant setym

1 = 0 remains to exist.
At much higher temperature, even the minimal NF gives

a poor description of the system (Fig. 4). We observed both
crossing with the lineym

1 = 0 and crossings between the tra-
jectories (not shown here), which results in the disappearance
of well-defined reaction boundary as an analytical functional
of variables to represent the system and the environment.

FIG. 8: A schematic picture of the hierarchical structure in the saddle
region of condensed phase reaction dynamics. As the temperature in-
creases, the system can have higher energy above the saddle point,
causing the appropriate description of the true dynamics to change
from the harmonic approximation to partial normal form, and then
to minimal normal form. Very high temperature results in structure-
less dynamics. At the first two levels of the hierarchy, the dynamics
along the reaction coordinate is decoupled from the rest degrees of
freedom, and we can find lamination of the phase space flow. At the
third level, the reaction coordinate ceases to be decoupled but yet the
boundary of the reaction still survives.

V. SUMMARY AND OUTLOOK

Figure 8 shows schematically the hierarchical structure
of crossing dynamics in the saddle region in the presence
of stochastic, thermal fluctuation. At very low temperature
where the system crossing the rank-one saddle experiences
mainly the close proximity of a saddle point, the harmonic
approximation is generally validated. As found in Refs. 65–
67, at such low temperature, all the normal coordinates (in-
cluding the reactive and the non-reactive ones) are decoupled
from each other. The phase space flow is then laminated due
to the absence of coupling. One can also find a clear reaction
boundary classifying the system into reactive and non-reactive
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trajectories. As the temperature increases, the effect of non-
linearity of the potential and its nonlinear cooperation with the
random force become significant. Nevertheless, up to moder-
ately high temperature, it was shown by performing the partial
NF transformation that one can extract a reaction coordinate
decoupled from all the rest, with properly incorporating the
effect of nonlinearity and environment, under thermal fluctua-
tion. The phase space flow plotted as a function of the reaction
coordinate and the time is essentially the same with the har-
monic case. That is, there is a lamination of flow because of
the absence of coupling and a clear reaction boundary given
by the zero of the partial NF reaction coordinate.

As the temperature further increases, another level of hier-
archy emerges at which the reaction coordinate is no longer
decoupled as at lower temperature. In this temperature
regime, the lamination structure is lost and the phase space
looks irregular. However, by the method of the minimal NF
we presented in this paper, the boundary which divides the
system into the reactive and the nonreactive trajectories ro-
bustly persists with its analytical functional of the position
coordinates and velocities of the system and friction constants
and random force.

At very high temperature, the boundary starts to cease. That
is, we cannot find any ‘structure’ in the reaction dynamics of
the system to enable us to predict the final destination of the
reaction. The reaction dynamics is expected to become purely
stochastic and it may be inevitable to monitor all the paths of
the system by many trajectory calculations for the determina-
tion of the reaction boundary. However, strictly speaking, it
means that we cannot find any structure in the framework of
NF which was formulated as a perturbation from the harmonic
approximation.65–67 It does not completely exclude the possi-
bility of emergence of new structures such as the change of
stability of transition state due to the bifurcation.42,43,57

Note also that the boundaries between the different levels
of the hierarchy shown in Fig. 8 are not exactly located at any
clear place in the temperature or in the phase space. The er-
rors of the harmonic, the partial and the minimal NF increase
continuously with the temperature. There is no strict thresh-
old when the approximation becomes “bad” and should be re-
placed by the the other, different level of approximation. The
transition from one level to the next in Fig. 8 should be there-
fore understood as a gradual change, not as a sudden jump.

It is interesting to compare the hierarchical structure of tran-
sition states in Hamiltonian systems.11,40–43,56,57One notable
difference is that there exists no full normal form regime in
condensed phase where all the degrees of freedom are decou-
pled from each other although it does in isolated gas phase.
This is due to the fact that the random force generally has a

wide range of frequency spectrum (especially, in the case of
white noise, the power spectrum of the random force is uni-
form through all frequencies). Therefore, except the unstable
reactive degree of freedom, all the nonreactive coordinates of
the system should generally be subject to resonance with the
surrounding environment in condensed phase.59,60 The other
interesting subject is to investigate whether the correspond-
ing minimal NF also exists for Hamiltonian systems, which
has not been notified insofar. An equation similar to the min-
imal NF [Eq. (23)] should be able to be constructed in the
framework of Hamiltonian systems. The minimal NF in the
Hamiltonian systems may preserve the stable and the unstable
manifolds as invariant sets, even if the action associated with
reactive degree of freedom in the phase space does no longer
preserve generically. We will present this subject in the forth-
coming paper.

One of the most striking consequences of the reaction
boundary in the phase space persisting up to moderately high
temperature is that one can analytically calculate rate con-
stants of chemical reactionswithout lying on the concept of
transition statein condensed phase. Since the reactivity of
given initial conditions in the region of saddle can be correctly
assigned by using the present theory, we can calculate the re-
action probability analytically. The reaction probability inte-
grated through the Boltzmann distribution of initial conditions
gives the rate of the reaction (under the assumptions of local
equilibrium and of quantum effects being negligible). We are
in progress in this subject.72

In this paper we have assumed a Langevin equation with the
force-force autocorrelation given by the delta function. When
the time scale of the solvent motion overlaps with that of the
reacting system, the assumption starts to break down, and we
need to introduce a generalized Langevin equation73 with the
memory kernal proportional to the force-force autocorrelation
function because of the fluctuation-dissipation theorem. The
extension of the present framework of normal form will be
presented in a separate paper. Our preliminary result indicates
that the similar reaction boundary as the present work can also
be found in the system obeying a generalized Langevin equa-
tion.
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