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A boundary to divide the phase space into the reactive and the nonreactive trajectories robustly exists even in thermal fluctuation.
[ Dynamical Structure |
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Nonlinear dynamics in the passage over rank-one saddle is investigated as a function of temperature in the
presence of stochastic, thermal fluctuation. The analyses are based on a framework we developed recently adopt-
ing multidimensional underdamped Langevin equation (without any assumption for the form of the potential of
mean force). The framework can in principle provide a single coordinate to enable us to predict the final desti-
nation of the reaction in a thermally fluctuating media. At each temperature, the preciseness or the error of the
reaction coordinate is evaluated in capturing the true reaction dynamics at different levels of approximations. By
using the Miiller-Brown potential as an illustrative example, it is found that a hierarchy of dynamical structure
exists in the region of rank-one saddle, in which the crossing dynamics qualitatively changes as the temperature
increases. We discuss the mechanism of how the reaction coordinate persists, which provides a boundary of the
reaction to divide the phase space into the reactive and the nonreactive regions, even in the presence of thermal
fluctuation.

I. INTRODUCTION phase is that the system is always subject to external stochas-
tic forces by the environment. Even for a fixed initial con-
. . . ) dition of all the variables in the system, the final destination
Chemical reactions are ubiquitous in n%zture, and can be 1 ot necessarily unique but has a certain probability distribu-
gardedl as pr]?togype,s Olf change O_f mattefhe most COM- " tjon. Thus, concepts like the resonance ovetfapased on the
mon class of chemical reactions Is a system moving on @amitonjan formalism, or the deterministic area-preserving
single effective potential surface from one local minimum t0pgincarg mals are not feasible for systems with dissipation
another, through a saddle region. Chemists have long envii siochastic, external driving force that fluctuates thermally.
sioned the existence of a dividing surface in the saddle regiog, o approaches to define an appropriate “TS” and/or to over-
through which the system passes only once in going from ong, g the recrossing problem in a fluctuating media have been
o _ _ ransitiof 5 qe by variational TS theory (VTS which optimizes a
state (TS):"" The TS is supposed to lie transverse {0 a 0Neyq iy rational dividing surface by minimizing the number of
dimensional coordinate axis, called the ‘reaction coordinate,. crossings and by Kraméfsand later by Grote and Hynés
which describe the progress of the reaction. The concept gf,qeq on (generalized) Langevin formalism which regards the
the TS has provided us with great insights for understandingy .. 5ssings “as the natural consequence arising from friction
not only the rate of chemical reactions but also, for exampleby the surrounding environment.”
lonization of a hydrpge_n atom in crossed electric and mag- In the former, the VTST has been applied with explicit har-
netic fields'® isomerization of clusters' the escape of aster- monic bath mode&-20VTST has provided excellent phys-
; 2 ) X . >
oids from Mars’? and the folding/unfolding of proteiris. ical insights about the location of the dividing surface as

Lots of reactions in biology or chemical synthesis occurwell as improved expressions for rate constants. In prac-
in condensed phase. The most striking difference from gasice, VTST needs a certain small number of selected variables



to parametrize the dividing surface (usually position coordi-per, using the Miller-Brown potential as an illustrative ex-
nate(s) of the system (e.g., solute)). However, as indicated bgmple, we investigate how the crossing dynamics through the
Van der Zwan and Hynés and later by Pollaf using har- first-rank saddle qualitatively change along the reaction coor-
monic bath Hamiltonian system, the reaction coordinate musdinate with temperature, and we discuss the hierarchical struc-
be, in principle, a nonlinear function of all the position co- ture of dynamics and its implication in relevance to reaction
ordinates and velocities of the reacting system and all the efeontrol and robustness of functions in biological (nonlinear)
fects exerted by the surroundings. It is non-trivial to identify systems under thermal fluctuation.

which degrees of freedom are actually required to be involved.

In the latter, the system-bath Hamiltonian approach can for-

mally bridge the descriptions @fny Hamiltonian system and Il. THEORY

the generalized Langevin formulat®r?324 projected onto

an arbitrarily chosen coordinate. The very question of the \ve present a brief summary of the theory we devel-

description of dynamical systems in the presence of thermalped in the previous papet.The framework utilizes am-
fluctuation is one of the most intriguing subjects in nonequi-gimensional Langevin equation:

librium statistical mechanic¥:2® There remains the funda-

mental question of what reaction coordinate a sysaetually . ou

follows under the disturbance of thermal fluctuation. g= aq ya+<&(t), (1)

In this article we use the term ‘transition state (TS)’ to mean
the original definition by Wignet,that is, a dividing surface whereq = (qy,...,qn)" is the normal mode position coor-
free from recrossing problem and ‘reaction coordinate’ a sindinates of the system (solutd), the potential of the mean
gle coordinate that is decoupled from the other coordinate dorce, y the friction constant, and(t) describes the random
least in the region of saddle which supports the concept of T®rce from the solvent. As an illustrative example, we use the
and enables us to predict the destination of the reaction at ariiiller-Brown potentid® (See Sec. Ill) abl. In this example,
instant. the dimensiom is two, but our theory presented in this paper

Recently, extensive analyses of nonlinear dynamics aroun§ applicable to systems of any dimension. We use uniform
rank-one saddle for gas phase reactions (i.e., Hamiltonian sy§iction y in the numerical example of the present paper, but
tems) have been performed in terms of geometrical structhe theory is also applicable to the case where the friction has
tures of the phase spat&!127-43ollowing several develop- Off-diagonal par® The trajectory calculation is perform¥d
ments in experiment$4° and theorie¥-5on characterizing With the random force sampled according to the fluctuation-
the regularity in dynamics through saddles. It was revealedlissipation theorem
that such a TS and a reaction coordinate robustly exist in the -
multidimensional phase space for a wide class of Hamilto- (E(1)E(0)") = 2kaTyd (1), )

nian systems in the region of rank-one saddle. It was also T
revealed!40-43.56.5%hat a hierarchy of the dynamical struc- whereé (0)' is the transpose of the vectd(0), T the temper-

ture exists in those regions, dependent on the total energgture anks Boltzmar_m constant. Theforce from the potential
of the system. In particular the firm mathematical founda-J can be expanded in a Taylor series

tion was established for the robust existence of no-return TS, oU

which arises from thg generic fact that. any resonance cannot e —kjq; + Z\m\>2 aj’mqlml VLR ()
occur between reactive and non-reactive degrees of freedom Q;j -

whose frequencies are real and imaginary, respectively, in the. . - :
region of rank-one saddPRé. with the expansion coefficients; and ajn, for the linear

H f . in chemi 4 biol and the nonlinear parts, respectively. Here, = y;m; and
owever, most of reaction system in chemistry and biol- im>2 SUMSs over combinations af; satisfying|m| > 2.
ogy is subject to stochastic random force and frictions. Thi iagonalization of the linear part:
is eﬁsentially diffe(rjentffrom t%gﬁiosolated systems. _Recently, We introduce normal mode coordinates () in the
we have presented a framew to extract a reaction co- L ; . : P
ordinate that is decoupled from the other coordinates even iﬁosmon-velocny space that diagonalize the linear part
a thermally fluctuating environment. The crux was the appli- d (q 0 1 q
cation of the non-Hamiltonian normal form (NF) thebtyo- at (q) = (K _,_> (q> (4)
gether with the time-dependent formulation given by Ref. 62
to multidimensional underdamped Langevin equation with aryhere1 is n x n unit matrix, I" is equal toyl, andK is the

bitrary potential of mean force. The new reaction coordinateqessian matrix of) at g = 0. The normal mode coordinate

is represented by an analytical functional with respect o the, — (y;, u,, ..., up,)T is obtained by diagonalizing the matrix
original position coordinates and velocities of the system and

the random force and the friction constants exerted by the en- (0 1 )

vironment. Similarly to the isolated systerfs!:2’~43under v (K _,—> V =diag(As, -+, Az),

certain moderate conditions, this theory can provide a single

coordinate decoupled from the other coordinates which can (q) —Vu (5)

tell us the final destination of the reaction. In the present pa- q
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Here we assume that the system has a rank-one saddle pointTo incorporate the effect of nonlinear terms in Eq. (9), we
to link the reactant and the product regions such Mat 0, employ non-Hamiltonian normal form (NF) theStyto in-
Re(Aj) <0 (j =2,...,2n). The rank-one saddle point in- troduce a nonlinear transformation froxto y so that the
cludes both the information of the linear parts of potential ofequation of motion fog; contains no coupling with the other
mean force (i.e., the curvature of the potential) and frictioncoordinates. The calculation proceeds in a similar way to
constants. Thel; > 0 corresponds to the unstable motion Lie canonical perturbation thedt/’° (a classical analog of
sliding down the barrier. The analytical expressions of theVan Vleck perturbation theory). The equation of motiorxin
eigenvalues is given in Appendix of Ref. 59. [Eq. (9)] is cast into

After the diagonalization, the equation of motion becomes

d
q g =AY ey, (10)
—uj =AU+ & (t )+ Y 2 Bimup uz” U, (6)

dt by the transformation; = y; +w;j(y,t). Introducing polyno-
i =i j
. 0 mial expansions for two unknown functions @ndw;) as
whereé (t) =V (E(t)) , and the coefficientg; m are obtained
m Mpn
by substituting Eq. (5) into the nonlinear terms in Eq. (3). Cj(Y,t) = 3 mCim(O)yL™ Yo",
The surface defined by; = 0 would perform the role of w;(y,t) ZmWJ m(t)yr™ - - - yppMen (12)

the boundary between reactive and non-reactive trajectories if
there were no random force or nonlinearities. In reality, how-The coefficientswj n(t) are determined so as to diminish
ever, trajectories cross thg = 0 axis many times due to the C;jm(t) order by order: Substituting these unknown functions
random force and nonlinear couplings. into Eq. (9), we obtain
Shift of the origin:

Recent studié8—8introduced relative coordinates, which <<)\ ,m) —Aj+ d) Wj m(t) =gjm(t) — cjm(t), (12)
we callx; here, by dt

U =S5, &0 +x; 7y Where (A,m) = 2 Amye and gjm(t) er:a the coeffi-
cients of the polynomial expansion gf(y,t)= f;(y+w,t) —
where we have introduced a notatiBas in Ref$2:68 $2 G (yt )f’WJ OY As is shown in the previous papgin

_ the process of determining m(t) andw; m(t) perturbation-
SAj (M) = { S exp( ADE(+dT  (ReAj <0) ally order by order,gjﬁm(t)ni% known from the results of the
—Jo " exp(=AiD)&j(t+T)dT (Re}; >0) lower orders. There thus exist two unknown quantitigs(t)

(8) andw; m(t) with the knowng; m(t) at each order. One can then
determine either of the two unknown quantities as one wishes.
To simplify the equation of motion for the new variabkas
one can eliminate; y(t) order by order by setting

Wi m(t) = S[A1— (A, m),g1m] (1), (23)

Then the equation of motion foris given by

d
P =Ajxj+ Z\m\ZO Fim(OXXG7 - X", 9)

where the coefficient$; n(t) are obtained from the nonlinear
terms in Eq. (6). The expansion coefficierijgn(t) are now

time-dependent du_e to the tim_e-dependent shift [Eq. (.7)]‘ Icase thes-symbol cannot be defined. This makes it necessary
there were no nonlinear terms i the poteritiathe equation 00070 o termy m(t) in Eq. (12), wherem = 1,m, =
m . ’ - -

of motion inx; would not depend on the random force. Then ~ :

the solution would be (t) = x3 (to) explA1(t —to)] wheretg is = Mn = 0. The equation of motion thus becomes
a certain instant of time. Sind&n;_, . expAi(t —tg)] = oo, d
the system would move away from the barrier regiornt as Pl {Ar+ci(t) s, (14)
increases, with the direction [the sign xif(t)] determined

solely by the sign of(to). However, due to the presence With a time-dependent coefficierts (t). The solution of

of the nonlinear terms, the dynamicsxfdepends on alf  EQ. (14) is given by

through the time dependenceﬁﬁ() (x,1) that originates from t ) .

that of random forcé (t). Hereinafter for the sake of brevity ya(t) ~ ya(to) exp Vt (A+c(t)) dt} ) (15)

we will not insert the notations of (t) and A into the nota- 0

tions of time-dependent coefficients appeared in the followingvherety is a certain instant of time (the initial condition). The
procedures (i.ec;j(y,t), wj(y,t), andg;(y,t)) but all these co-  exponent in Eq. (15) goes to infinity &s— + if the long-
efficients generally depend on bajfit) andA exerted by the time average of the perturbative tern(t) is less than;.
surrounding environment. SinceA; is O(1) andc;(t) is O(¢g) with a small parametes
Nonlinear transformation to incorporate the effect of nonlin- in the perturbation calculation, this inequality can usually be
ear couplings: expected to hold. As long as this condition is fulfilled, the

using theS-symbol as in Egs. (7) and (8%:°8 For my =
,Mp = --- = my, = 0, we haveA; — (A, m) = 0, for which
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sign ofy; at timetg can predict the destination of the reaction can normalize the equation ¥f while leaving other modes as
a priori before the system reaches either the reactant or thihey are:
product region.

o N+1
Once we determine the functiomék) (y,t) up to a desired = [As+ca(t)]ys +O(7)

order, the transformation fromto x is given byx; = y;j + Y2 =fa(y)

w;j(y,t). The inverse transformation, i.g.as a function ok y3 =f3(y)

(hence ofy), can be given by the iterative technique [Egs. (27)
and (28) in the previous papél. The transformation from :
the 0r|g|nal_ coordinategq, g) (throughu andx) toy can be Yo = fan(y). (18)
expressed in the form of a polynomial expansion
- We call this “partial normal form.” The solution for the motion
y1 =a10h + az01 — SA1, &1](t) + Fo €] () of y1 is given by

m My 4Mh+1 .
+z‘m‘22qul 1"'Qn 1 gbn

t
+ Y Fl€) @™ g™ (16) wmyNMWﬂAjM+qw»mﬂ+mﬁ“m (19)

[m>1
Here,A; comes from the harmonic approximation, which cor-

In the previous papé® the physical interpretation of each responds to the zeroth order of the perturbation in our normal
term appearing in Eq. (16) was also given. Briefly, the firstfrom treatmen®® The other ternt, (t) originates from the ef-
two terms correspond to linear approximation. The third ternfect of nonlinearity, which begins with first-order perturbation
—SA1, &1](t) expresses direct environment effect, that is, thel®rm. . . o
kick by the random force along the reactive normal mode di- Of particular importance is the behaviortir- +-c. The
rection. The terms with the coefficients, come from the ~ €xponentin Eq. (19) goes to infinity &s- +oo if the long-
nonlinearity of the system. The rest terms (Wi${&] (t) and ~ lime average of the perturbative termscit) is less tham\;
Fm[&] (1)) are the combined effects of the environment and the
nonlinearity, in the sense that they arise only when there ex- lim
ist both the random force and the nonlinearity in the potential e
of mean force. Note here that all the coefficients depend o
the friction constants, while onl§A1, &1)(t), Fo[&] (t), and
Fm[€] (t) include the random force and are therefore time
dependent. have

Eqg. (16) above can be calculated only when one knew the
instance of the random forégt) for all the past and the future i 0 =
time in advance. In practice, however, what one may assume tlTwyl( )=
a priori is the statistical properties d(t) as an ensemble
rather than a single instance. Therefore the previous paperThe increase dfy1(t)| means that the system departs from the
also has discussed taking the ensemblg afveraged over all  vicinity of the saddle point, going either to the products or to

t
1 / cu(t')dt
t Jtg

Yince the left-hand side is of first order of perturbation and
the right-hand side is zeroth order, this inequality can usually
“be expected to hold. As long as this condition is fulfilled, we

<A (20)

+o0 (y1(to) > 0)
{wwh$<m (1)

realizations of (t): the reactants. The direction of this departing motion is de-
B termined by the sign of;. The most important consequence
(y1) =a101 + a2t + Fo(ksT) is that, irrespective of the other modes,(..,Yy2n), only the
+ Z Wit ™ - - - mnqmn+1 . 4Men knowledge of the sign of; at any one moment in the region
LA no n of saddle is sufficient to tell the fate of the reaction.
+ Z\m|>1 Fn(ks 7)™ - - gn™@y ™1 - g, (17) Figure 1 shows a schematic picture of the phase space flow

projected onto thg;-y, plane. The trajectories are drawn for

where the time-independent coefficienti(ksT) and the case of two independent linear equations

Fm(ksT) are the averages of the corresponding terms in .

Eq. (16) and are functions of temperature through Eq. (2). y1= A1y,

The direct environment effect vanishes by the averadef Y2 = A2Ya. (22)

We can think of the left half of the plane as corresponding to
the reactant and the right half the product. It can be seen that
the trajectories witly; > 0 goes from the reactant to the prod-
. uct or vice versa, while those with < 0 are reflected back
1. partial normal form by the barrier. This figure has a good correspondence with the
preceding studies on the Hamiltonian syst&his?—*3vhere
For the purpose of telling the fate of the reaction, we needhe canonical conjugate pdiy;, p1) was used as the “reaction
only to know the motion along the unstable directyarwhich ~ coordinate.” In the present case, however, the equation of mo-
corresponds to the motion sliding down the barrier. Thus weion of y; depends also on timg and that ofy, on all the

A. Two types of normal form



the reactive and the nonreactive trajectories.

2. minimal normal form

N

Z One of the main theme of this article is to propose another
normal form which has not been noticed in the literature in-
sofar, resulting in the robust reaction boundary to divide the
space into reactive and nonreactive trajectories even though

the reaction coordinatg; is no longer decoupled from the
\ \ \ other in the partial NF structure. This normal form termed as
\ \ \ \ \ minimal NF is designed to reduce the extent of normalization
'\ \\\ \ as follows.
NN . . -
\ \\ y1=[A1+C(y,)]y1+0(e")
Y2 =fa(y)
= ' \\ \ v =fa(y)
Reactant «— Saddle region — Product
FIG. 1: A schematic picture of the phase space flow projected onto Yon =fan(y), (23)

theyi-y» plane. It is seen that the trajectories with posityyegoes

from the left side (the reactant) to the right side (the product), or vicewhere€; can now be a function of. In other words, we elim-
versa, while those with negatiwg are nonreactive. Note that the inate the terms withm = O from the equation oy1, but retain
sign ofy is invariant, and therefore the knowledge of the sigyof — all the terms withm; > 1 (that is, no function consisting only

atany instant time is sufficient to predict the fate of the reaction. Theof y,,ys, ... in the right hand side of equation ¢f). The so-
sety; = 0 makes an invariant set, which functions as a boundary ofytion is formally given by
the reaction.

Y1(t) = ya(to) exp [ / Araye))dr|. (24

other coordinates [Eqg. (18)], thus plotting only andys, is
not a correct way for the representation of the phase SPACEy,is solution is only formal in the sense that the right hand

Since the sign ofy IS suff|C|en_t fpr the purpose of knowing side containg(t’) which would have to be solved according to

the fate of the reaction, we willin the present paper plot the'the very equation of motion Eq. (23). However, the important
phase space flow in th, y1)-plane, where the flow can be oint is thaty; = 0 forms an invariant set just as in the case of
analyzed independently from the other coordinates in the Ca%eartial normal form (i.e.dy: /dt — 0 if y; — 0). This implies

of the partial NF [Eq..(18)]. ) ) . that once the system is in the manifoldyagf= 0, the system
For the purpose of illustrating the transformation, we plotinghouid remain to reside there for—s +. In other words

Fig. 2 some representative trajectories generated by a nUmé&fy rajectory carcrossthe manifoldy; = 0 from the region

ical simulation of the Langevin equation in the three d|fferenty1 > 0toy; <0, or vice versa. Consequently, once we know
coordinatesy, x, andy;. Computational details of the sim- {he sjgn ofy, (to) at any instant in the saddle region, it fixes
ulation is given in Sec. III. 'F|g. 2(a) plots _the time evolution he sign ofy; for t — oo, telling us the final destination of the

of the normal mode coordinatg [defined in Eq. (5)] along  reaction (the reactant or the product regions, see Fig. 1). The

each trajectory. The plots show noisy shapes due to the raRyngdition corresponding to Eq. (20) is given by
dom force. In Fig. 2(b), they have become much smoother in

the shifted coordinate [Eq. (7)], which means that the shift can 1 AN
cancel the effect of the random force to some extent. However, lim ,/ Z gk5(1k> (y(t"),t')dt'| < Ay (25)
for the purpose of distinguishing the reactive and the nonreac- todel Uty ey

tive trajectories, we cannot use the lixee= 0 to divide them

because some trajectories cross it. The crossings are due to thkis is more difficult to check because it contains the solution
effect of nonlinearity. The normal form transformation from y(t) to the equation of motion. However, this can usually be

X to y treats the nonlinear part. The plot with tih@nd the  expected to hold since the right hand side is of first order of
NF reaction coordinatg; is plotted in Fig. 2(c). It is seen perturbation, while the left hand side is of zeroth order.

that the liney; = 0 separates the reactive and the nonreactive

trajectories [note that a large positive (negative) valug,of The minimal normal form is expected to have better con-
corresponds to the product (reactant), as in Fig. 1]. As on&ergence property because it contains less terms in the trans-
can see in Sec. |V, as temperature increages,0in the par-  formation. The difference of convergence will be discussed in
tial NF can no longer act as a reaction boundary to distinguisithe following sections.
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FIG. 2: Some representative trajectories kgl = 2 plotted in timet and (a) phase space normal mode coordinatevhich is a linear
combination of the position coordinatg and the velocitygs, (b) shifted coordinate; with the shift depending on time to incorporate

the effect of the random force (in the linear part), and (c) normal form coordinat®nstructed by a nonlinear transformation fram
Computational details is given in Sec. lll. The trajectories have complicated shapes due to the random force in (a), which is attenuated in
by the time-dependent shift. The trajectories plotted in (b) still experiences crossings with each other and crossings wit thélitiehe
coordinatey; is used, there is no crossings and the {ipe- 0 separates the reactive and the nonreactive trajectories.

B. Error estimate HereA is any function of(q,q), andE is the energy defined
as the kinetic energyd? + g3)/2 plus the potential. The

The present theory is based on series expansions and trug@nditions(q) = s gives a surface over which the averages
cations. The coordinate transformation and the equation cdré taken. In this paper we take the surface as the ridge of
motion fory are only an approximate description. It must bethe potential surface (see Sec. lll and Fig. 3), which can be
checked whether the error of this approximation is sufficientlyconsidered as lying approximately between the reactant and
small. For Hamiltonian systems, an energy error criterion waghe product.
used®3to check the convergence property of the NF trans-
formation. This exploits the fact that the time-independent
canonical transformation (if exact) leaves the value of the
Hamiltonian unchanged. In the present case, however, the sys-
tem is non-Hamiltonian and we cannot use total energy as a As a model system we use Miiller-Brown potenfiélyhich

criterion for convergence. We define the following criterion has often been used as a test system for searching algorithms
for the error check in our dissipative system: of minima and saddle points. The potentihis expressed in

terms of two position coordinaté®s,Q2) by

Ill. MODEL

59 %' S yi(a(t) 40) -
{ha+ (A0, 40,012 (0,40)),  (26)

which is the error in the velocity along. In the above equa- +bi(Q1—Q2)(Q2— Q) +6i(Q— Q5?7

tion, g(t) andq(t) are calculated by numerical simulation and (29)

then substituted into the transformationygfwith given & (t :

andy by Eq. (16). The first term on the right hand side is)thusWlth A = (ALfo,AgAr) = (-200-100-17015),

the numerical derivative ofy with respect to time. The rest & = (-1,-1,-65,07), 0 b = (0,01106), ¢ :d

terms correspond to the right hand side of the equation of mo<—7010’ ~10,-65,0.7), Q = (1,0,-05-1) ain .

tion for y; [Eq. (23)]. If the transformation and the equation @ = (0:0.5,1.5,1). The contour plot of the potential is

of motion were exact, it should be equal to the first term onSOWN in Fig. 3. This system possesses three minima and

the right hand side of Eq. (26). Hence the quandify can be two sa_ddle points. In this pa“per we d(fgl with the_saddle point

regarded as an estimate of the error in the NF transformationVith higher energy (called "saddle 2” in preceding papers),
In order to compare the error or preciseness at the differeffNich has a significant asymmetrical feature of potential

levels of approximations, we take the ensemble average of tHgPmpared to the other saddle. The barrier height from each

square oBv relative to the average of the squareofn the ~ Minimum is 41 and 107 (in the unit of energy), respectively
rggion of tr)]/é saddle: g quare/e (the barrier height of the other “saddle 1" at lower energy is

9 and 36, respectivelyf>%° The potential and the directions

V)2 of the normal modes in the configuration space are shown in
(y1)2) (27) Fig. 3. The orange curve in the figure shows the ridge of the
potential surface, on which the ensemble is taken in Eq. (28).

where the bracket denotes thermal average on the surface:  The friction constant is set to be proportional to unit ma-
E(a.d trix yij = 30d;. This value was regarded as the underdamped
<A>d:ef/dqqu(q7q)5(S(q) —so)exp i lE‘Jaq)i . (28) casebecause itis of the same order with the normal mode fre-

BT guency of the system at the saddle point. In this paper, NF

4
U(Qu.Q2) =3 Aexpla(Qi- QR)’
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-1.0 -0.5 0 FIG. 4: Error estimates for the NF approximation to the true dy-
O namics as functions of the temperature. Circle, square, and diamond
1 correspond to harmonic approximation, partial NF, and minimal NF,
respectively.
FIG. 3: Configuration space normal mode coordinates at saddle 2
superimposed with the contours of the potential surface spaced by 1. | . .
The coordinatey; corresponds to the reactive direction, apdthe ~ MONIC approximation starts to exceed a few percents at even
non-reactive one. The ridge of the potential is shown by bold orang&s T ~ 1, the error of the partial NF remain less than a few
line. percents up tig T ~ 2. The minimal NF gives yet better ap-
proximation with the error being only a few percents up to
keT =~ 4.
calculations are performed up to the second order of perturba-
tion.
To quantify the validity of Egs. (9), (18), and (23) for de- B. Geometry of phase space flow
scribing the dynamics of the system in a fluctuating media,
we investigate the flows of trajectories in the position-velocity To explore how the dynamical structures of the system
space (also called phase space in this article). Wa fixn-  change in the presence of thermal fluctuation with tempera-
dom forceé (t) made from one sequence of random numbersure, we investigate the flows of trajectories in the position-
at each temperature. Egs. (9), (18), and (23) themselves avelocity space. For each plot, we use one instance of the ran-
formulated for anyé (t). The reason for fixing the random dom forceé(t) made from an arbitrary chosen, single same
forceé (t) in the analyses is that, once the random faf¢®  sequence of random numbers and pick sixty initial conditions
is fixed, one can scrutinize the uniqueness of the solution ofandomly sampled on the ridge of the potential surface. Then
the dynamical systems af[q,d; £], yi[q,¢; £] along the orig-  we propagate the trajectories for these initial conditions and
inal Langevin dynamic$g, g; & (t)) obeying Eqg. (1). One can plot them in terms of tim& and one coordinatex{ or y;).
then evaluate the validity of the representation of Eqgs. (9)Figure 5 shows the flow of trajectories in they space at
(18), and (23) as a function of temperature. We employ thehe temperaturks T = 0.1. At such low temperature, the har-
long period random number generator of L'Ecuyer with Bays-monic part of the potential makes a good approximation of the

Durham shuffle! system, so that the equation of motion is almost given by [see
Eq. (9)]
d
IV. RESULTS AND DISCUSSION gt = A (30)
A. The preciseness of NF approximations which has a solution
X1(t) = xa(to) exp(As(t —to)), (31)

Figure 4 shows the error of the velocity alopgcalculated
for harmonic approximation(%xl ~ A1X1, see Eq. 9), the par- wherety is an instantaneous time (initial condition) while the
tial NF [Eq. (18)] and the minimal NF [Eq. (23)]. The errors system is in the region of saddle. Thus, for each trajectory,
increase with temperature for all the three cases. This is behe absolute value of; increases monotonically with All
cause the system can experience a wider region of the potetite trajectories are repelled from the lire= 0, which thus
tial surface around the saddle point, thus, of a larger nonlinfunctions as the “boundary” between the reactive and the non-
earity, as temperature increases. Although the error of the hareactive trajectories. No trajectory can cross this boundary.



In other words, the lin; = 0 makes an invariant set of the (a) ”
system. Note also that no two trajectories cross each other.
This is due to the uniqueness of the solution to the differential
equation (30), which can be (at this temperature) regarded as
a good approximation of the true dynamics. That is, the same
initial conditionx (tp) will lead to the same solution.

0.25

0.10 015 020 025
t

0.05

FIG. 5: Trajectories plotted in timeand the shifted normal mode
coordinatex; atkgT = 0.1. A light blue line marks the se =0,
which should functions as the boundary of reaction if the harmonic
approximation is valid for this system. Note that a clear lamination
of the flow and no crossing witky = O are observed.

On the other hand, Fig. 6 (a) shows the plot of trajectories
in thet-x; space at higher temperaturelgfT = 2. Two re-
markable changes from the casekgfl = 0.1 are observed: . \ L
(1) Some trajectories cross the lixg = 0. (2) There are 0 005 0.10 0.15 020 025
crossings of two trajectories with each other. These facts im- t
plies that the harmonic approximation [Eq. (30)] does not give
the correct picture of the dynamics any more. The cross- ) ) ) )
ings of the trajectories with each other are understood fronj'C- 6 Trajectories at the temperatugeT = 2, plotted in (a) time
the effect of couplings as follows. Given one instance oft 2d the shifted normal mode coordinage and (b) timet and the

. . partial normal form coordinatg . Light blue lines mark the set =
the random forcef (t), the solution should be unique once 0andy; = 0.
we specify the initial condition for the whole coordinate
X1(to), X2(to), X3(to), Xa(to)) at timet =ty (irrespective of the o ) )
\(/alli(d(i)t)y é Oﬁaﬁgé’%i?;gi}roximaﬁon) C[Js(ee qu_ (9)]. How- minimal NF (Sec. IIA2). In the part|al_ NF framework, nei-
ever, the figure is a projection onto the axis. Some tra- ther crossings througih = 0 nor crossings between trajec-
jectories can have the same valuexgfto) but different val- tories are ob_served, and_ the_ pha_se space flow_ is t|d||_y lami-
uesxo(to),Xs(to),Xa(to). Such trajectories occupy the same nated. That is, the so_lutlon is unlquely determined with the
point in thet-x; space at = to but have different time evolu- Same valqe_oﬁl’;(to) without mattering the values ok,ys,
tion due to the coupling betweeas and the other coordinates an_dy4. This implies that the normal form reaction coordinate
(X2, X3, Xa). FOr harmonic regions the couplings are negligible,y‘; is actuallydecoupled from the other coordinates. Note also
which is the reason why we did not observe the crossings dhat there is an invariant set defined ly= 0 to separate the
ksT = 0.1 (Fig. 5). reactive and the non-reactive trajectories (at least) up to the

Fig. 6 (b) plots the same trajectories in Fig. 6(a) inttyg ~ ©rder of perturbation.
space wherg; is obtained by partial NF (Sec. IIA1). Here-  As can be seen from Fig. 4, the partial NF also starts to suf-
after we denote this coordinate yisto distinguish from the  fer from larger errors at higher temperature whilst the mini-
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minimal NF coordinate®" in Fig. 7(b). We observe crossings
between the trajectories and the phase space flow looks quite
irregular in contrast to the clear lamination seen in Fig. 6 (b).
This is because the minimal NF allows the couplings between
yi' and the other coordinates [see Eq. (23)]. However, as dis-
cussed in Sec. Il A2, trajectories cannot cross theyhe- 0,
which then functions as the boundary of reaction. In this tem-
perature region, the lamination structure in the donyglig: 0
is lost, whereas the invariant sgt = 0 remains to exist.

At much higher temperature, even the minimal NF gives
a poor description of the system (Fig. 4). We observed both
crossing with the ling/l" = 0 and crossings between the tra-
jectories (not shown here), which results in the disappearance
of well-defined reaction boundary as an analytical functional
of variables to represent the system and the environment.

\\

i ‘ Dynamical

0 0.05 Structure
> “No Structure”
o0
(1) 2 g
p / \ 2
4 \ =
g \ N
4 \ ;" \ Boundary
1 / T Harmonic _‘\\_ )4 of reaction
// approximation =<
E %/ -_‘.. ;\ \
- . / I .'. A\ NN

—_—— < q
R - 1
\\\\:
N
§§\ \ 1 FIG. 8: A schematic picture of the hierarchical structure in the saddle

- ‘ \\\ region of condensed phase reaction dynamics. As the temperature in-
3 \\\\\ \ creases, the system can have higher energy above the saddle point,
\\\\\\\\ causing the appropriate description of the true dynamics to change
N\ \ \ \ from the harmonic approximation to partial normal form, and then

) k\ . \\\\ \ i f to minimal normal form. Very high temperature results in structure-
0 005 0.10 0.15 020 025 less dynamics. At the first two levels of the hierarchy, the dynamics

l‘ along the reaction coordinate is decoupled from the rest degrees of

freedom, and we can find lamination of the phase space flow. At the
third level, the reaction coordinate ceases to be decoupled but yet the
FIG. 7: Trajectories run with the temperatkggT = 4, plotted in (&)  boundary of the reaction still survives.
timet and the partial normal form coordinay%, and (b) timet and
the minimal normal form coordinatg’. Light blue lines mark the
sety; = 0.

mal NF can perform as a good approximation to the dynamics V. SUMMARY AND OUTLOOK

of the system. Figure 7 shows the plot of the trajectories at

ksT =4in (a) thet-yﬁ space, and (b) they!" space, where Figure 8 shows schematically the hierarchical structure
yi' is obtained by the minimal NF (Sec. IlA2). In Fig. 7(a), of crossing dynamics in the saddle region in the presence
we observe crossings between the trajectories and with thef stochastic, thermal fluctuation. At very low temperature
line y?, which would not be observed if the partial NF were awhere the system crossing the rank-one saddle experiences
true description of the bluesystem. This shows that the partiahainly the close proximity of a saddle point, the harmonic
NF does not describe the dynamics of the system correctly approximation is generally validated. As found in Refs. 65—
this temperature (consistent with the error estimate in Fig. 4)67, at such low temperature, all the normal coordinates (in-
We cannot use the sy"i = 0 as the reaction boundary at this cluding the reactive and the non-reactive ones) are decoupled
temperature. In turn, the error estimate (Fig. 4) tells that thédrom each other. The phase space flow is then laminated due
minimal NF can still give a good description of the dynam-to the absence of coupling. One can also find a clear reaction
ics atkg T = 4. The trajectories are plotted in tinteand the  boundary classifying the system into reactive and non-reactive
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trajectories. As the temperature increases, the effect of nowide range of frequency spectrum (especially, in the case of
linearity of the potential and its nonlinear cooperation with thewhite noise, the power spectrum of the random force is uni-
random force become significant. Nevertheless, up to modeferm through all frequencies). Therefore, except the unstable
ately high temperature, it was shown by performing the partiateactive degree of freedom, all the nonreactive coordinates of
NF transformation that one can extract a reaction coordinatthe system should generally be subject to resonance with the
decoupled from all the rest, with properly incorporating thesurrounding environment in condensed phs®.The other
effect of nonlinearity and environment, under thermal fluctua4interesting subject is to investigate whether the correspond-
tion. The phase space flow plotted as a function of the reactioing minimal NF also exists for Hamiltonian systems, which
coordinate and the time is essentially the same with the hahas not been notified insofar. An equation similar to the min-
monic case. That is, there is a lamination of flow because ofmal NF [Eq. (23)] should be able to be constructed in the
the absence of coupling and a clear reaction boundary giveinramework of Hamiltonian systems. The minimal NF in the
by the zero of the partial NF reaction coordinate. Hamiltonian systems may preserve the stable and the unstable
As the temperature further increases, another level of hiemanifolds as invariant sets, even if the action associated with
archy emerges at which the reaction coordinate is no longeeactive degree of freedom in the phase space does no longer
decoupled as at lower temperature. In this temperaturpreserve generically. We will present this subject in the forth-
regime, the lamination structure is lost and the phase spag®ming paper.
looks irregular. However, by the method of the minimal NF One of the most striking consequences of the reaction
we presented in this paper, the boundary which divides theoundary in the phase space persisting up to moderately high
system into the reactive and the nonreactive trajectories raemperature is that one can analytically calculate rate con-
bustly persists with its analytical functional of the position stants of chemical reactiongithout lying on the concept of
coordinates and velocities of the system and friction constantgansition statein condensed phase. Since the reactivity of
and random force. given initial conditions in the region of saddle can be correctly
At very high temperature, the boundary starts to cease. Thaissigned by using the present theory, we can calculate the re-
is, we cannot find any ‘structure’ in the reaction dynamics ofaction probability analytically. The reaction probability inte-
the system to enable us to predict the final destination of thgrated through the Boltzmann distribution of initial conditions
reaction. The reaction dynamics is expected to become purelyives the rate of the reaction (under the assumptions of local
stochastic and it may be inevitable to monitor all the paths okquilibrium and of quantum effects being negligible). We are
the system by many trajectory calculations for the determinain progress in this subjeét
tion of the reaction boundary. However, strictly speaking, it |n this paper we have assumed a Langevin equation with the
means that we cannot find any structure in the framework ofprce-force autocorrelation given by the delta function. When
NF which was formulated as a perturbation from the harmonighe time scale of the solvent motion overlaps with that of the
approximatior?>~®It does not completely exclude the possi- reacting system, the assumption starts to break down, and we
bility of emergence of new structures such as the change gfeed to introduce a generalized Langevin equéfianith the
stability of transition state due to the bifurcatitf!3>/ memory kernal proportional to the force-force autocorrelation
Note also that the boundaries between the different levelfynction because of the fluctuation-dissipation theorem. The
of the hierarchy shown in Fig. 8 are not exactly located at anyaxtension of the present framework of normal form will be
clear place in the temperature or in the phase space. The gfresented in a separate paper. Our preliminary result indicates
rors of the harmonic, the partial and the minimal NF increasehat the similar reaction boundary as the present work can also

COhtinUOUSly with the temperature. There is no strict threShbe found in the System Obeying a genera"zed Langevin equa-
old when the approximation becomes “bad” and should be reggn.

placed by the the other, different level of approximation. The
transition from one level to the next in Fig. 8 should be there-
fore understood as a gradual change, not as a sudden jump.

Itis interesting to compare the hierarchical structure of tran-
sition states in Hamiltonian systerh’s#0-4356.510ne notable
difference is that there exists no full normal form regime in  This work has been supported by Research Fellowships of
condensed phase where all the degrees of freedom are decdbe Japan Society for the Promotion of Science for Young
pled from each other although it does in isolated gas phas&cientists (to SK) and by JSPS, JST/CREST, Priority Area
This is due to the fact that the random force generally has aMolecular Theory for Real Systems’ (to TK).
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