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Derivation of the generalized Langevin equation in nonstationary
environments

Shinnosuke Kawaia) and Tamiki Komatsuzaki
Molecule & Life Nonlinear Sciences Laboratory, Research Institute for Electronic Science, Hokkaido
University, Kita 20 Nishi 10, Kita-ku, Sapporo 001-0020, Japan

(Received 28 December 2010; accepted 11 February 2011; published online 18 March 2011)

The generalized Langevin equation (GLE) is extended to the case of nonstationary bath. The deriva-
tion starts with the Hamiltonian equation of motion of the total system including the bath, without
any assumption on the form of Hamiltonian or the distribution of the initial condition. Then the
projection operator formulation is utilized to obtain a low-dimensional description of the system
dynamics surrounded by the nonstationary bath modes. In contrast to the ordinary GLE, the mean
force becomes a time-dependent function of the position and the velocity of the system. The friction
kernel is found to depend on both the past and the current times, in contrast to the stationary case
where it only depends on their difference. The fluctuation–dissipation theorem, which relates the sta-
tistical property of the random force to the friction kernel, is also derived for general nonstationary
cases. The resulting equation of motion is as simple as the ordinary GLE, and is expected to give
a powerful framework to analyze the dynamics of the system surrounded by a nonstationary bath.
© 2011 American Institute of Physics. [doi:10.1063/1.3561065]

I. INTRODUCTION

Many chemical events such as chemical reactions involve
a huge number of atoms. For the understanding of the com-
plex manybody behavior, one has represented the behavior by
projecting the total system onto some selected degrees of free-
dom (dof) with friction kernel and random force arising from
all the other dof called bath.1, 2 The equation of motion for
the selected variables is called generalized Langevin equation
(GLE).3 While there is a proof3–5 that any dynamical system
can be reduced to the form of GLE, it is useful only when we
know, or can reasonably assume, the statistics of the random
force appearing as a stochastic variable in GLE. Thus an equi-
librium distribution of the bath is usually assumed when the
GLE is used.3 An example of such statistical property of the
random force is the fluctuation–dissipation theorem, where
the autocorrelation function of the random force is related to
the friction kernel. It was found recently6–17 that even though
one cannot know an instantaneous value of the random force
in advance since the initial condition of the bath is unknown,
the statistical property enables us to analytically derive the
boundary of the reaction in the state space, that is, a surface
on which the system should end up with the reactant and the
product with equal probability of one half. Following the pi-
oneering works by Kramers1 and by Grote and Hynes,2 great
progress6–21 in the study of reaction dynamics in condensed
phase have been made by using the GLE or the Langevin
equation (a memoryless limit of GLE).

The statistical property of the random force is derived by
assuming a thermal equilibrium (or more generally, a station-
ary distribution) of the bath dof. More precisely, the distri-
bution is assumed to be a so-called constrained equilibrium,3

a)Electronic mail: skawai@es.hokudai.ac.jp. Research Fellow of the Japan
Society for the Promotion of Science.

where the initial condition of the system can be specified arbi-
trarily but the distribution of the other modes (bath) is in equi-
librium. However, one has often encountered many nonequi-
librium molecular phenomena occurring with a nonstationary
initial distribution of the bath. For example, in photo-excited
reactions the initial distribution is determined by the response
of the system to the light and thus can be different from the
stationary one even along the coordinate other than the naïve
“reaction coordinate.” Sometimes one also excites the bath
mode vibrations to obtain different reaction product.22–24 How
we can acquire a low-dimensional description for such non-
stationary systems has been a contemporary intriguing sub-
jects to be resolved.

For the last decade there have been several attempts at
establishing the nonstationary representation termed as the ir-
reversible generalized Langevin equation (iGLE).25–34 In par-
ticular, the idea of generalized friction kernel28, 34 dependent
on both the time values at the past and the present was pro-
posed. As the (nonstationary) bath relaxes to the equilibrium
state as time proceeds, the friction kernel is shown to converge
to the usual equilibrium one, which depends only on the time
difference. The generalization of the fluctuation–dissipation
theorem was also proposed: the autocorrelation of the random
force averaged over a given distribution of the initial condition
of the bath dof corresponds to the generalized time-dependent
friction kernel28–34 or with an exponentially dumping correc-
tion term,25–27 depending on how to formulate the iGLE. The
iGLE can be applied not only to phenomena subject to an
outside force that changes the solvent response,28 but also
to systems whose nonstationarity is induced by the dynam-
ics of the system itself.30 The growth of polymer was taken
as an example where the property of the environment changes
with the increase of the polymer length. It can also be ap-
plied to temperature-ramped chemical reactions31 where the
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environment temperature changes with time due to heating,
for example, by a laser pulse. A further extension of iGLE
(Ref. 32) was provided to describe an ensemble of systems
each of which is subject to a different random force and which
are allowed to interact with each other.

Despite their stimulating insights, these theories, how-
ever, have been so far limited to special systems where the
bath is assumed to be a collection of harmonic oscillators and
their coupling to the system is bilinear. Especially, they re-
quire a special form for the total-system Hamiltonian that de-
pends on the history of the system dynamics,29, 33 in deriving
the form of iGLE in a heuristic fashion.28

In this paper, we present a rigorous and general deriva-
tion of iGLE that does not depend on any specific form of
the original Hamiltonian, by using the projection-operator
formalism.3–5 With the firm mathematical framework free
from the setting of the form of the underlying Hamiltonian,
the iGLE is expected to be the potential means to address var-
ious dynamical events occurring in nonequilibrium, fluctuat-
ing environments. This paper is organized as follows: after
reviewing the GLE and the iGLE in Sec. II, we present a the-
ory for generalizing them to any nonstationary environment
in Sec. III. The versatility of the theory is demonstrated nu-
merically by using a simple example in Sec. IV. Finally, in
Sec. V, the summary and outlook is presented.

II. REVIEW OF GLE AND IGLE

The most generic form of the nonlinear GLE is given
by3, 5

d2

dt2
q j = −∂V (q)

∂q j
−

∫ t

0
K j (t − t ′; q(t ′), q̇(t ′))dt ′ + ξ j (t),

(1)

where q = (q1, q2, . . . , qn) is a set of variables to describe the
system, and V (q) is the potential of mean force, whose gradi-
ent with respect to q gives the force felt by the system aver-
aged over the probability distribution of the bath. The friction
term K j (t − t ′; q(t ′), q̇(t ′)) depends on the history of the sys-
tem. Possible physical interpretation of this term is that the
bath is kicked by the system at time t ′ and this kick affects
the bath configuration and its dynamics after time t ′. Then,
at time t , the system feels a force from the bath that depends
on the bath configuration at time t , the latter in turn depend-
ing on the kick in the past (at time t ′) by the system. If the
bath is in a stationary distribution, this response of the bath
only depends on the time difference, hence we have the argu-
ment t − t ′ in K . The time-dependent force ξ j (t) represents
the force from the bath that is purely determined by the initial
condition of the bath. This third term is the so-called random
force, because we only observe the system and do not know
the initial condition of the bath.

One may expand the friction term in polynomial form

K j (t − t ′; q(t ′), q̇(t ′)) =
∑
n,m

γnm(t − t ′)q(t ′)mq̇(t ′)n, (2)

or, more generally, in a complete set of basis functions {φn}:
K j (t − t ′; q(t ′), q̇(t ′)) =

∑
n

γn(t − t ′)φn(q(t ′), q̇(t ′)).

(3)

Approximation of K j by truncating the summation and taking
only the terms proportional to the velocity in these expansions
yields

K j (t − t ′; q(t ′), q̇(t ′)) ≈
∑

i

γi j (t − t ′)q̇i (t
′), (4)

giving the approximated GLE

d2

dt2
q j = −∂V (q)

∂q j
−

∫ t

0

∑
i

γi j (t − t ′)q̇i (t
′)dt ′ + ξ j (t).

(5)

This is the most commonly used form of the GLE. This is
shown35 to be exact, when the bath is a collection of har-
monic oscillators and the coupling to the system is bilinear.
The friction kernel and the random force are related by the
fluctuation–dissipation theorem:

〈ξi (t)ξ j (t
′)〉 = kBT γi j (t − t ′), (6)

where the bracket denotes the ensemble average over station-
ary distribution, kB is the Boltzmann constant, and T is the
temperature.

For stationary state, the friction kernel γi j depends only
on the time difference. References 28–33, and 34 proposed
the extension of Eq. (5) to the nonstationary case as

d2

dt2
q j = −∂V (q)

∂q j
−

∫ t

0

∑
i

γi j (t, t ′)q̇i (t
′)dt ′ + ξ j (t),

(7)

and called it iGLE. The key difference is the dependence of
the friction kernel γi j (t, t ′) on both the “initial” (t ′) and the
“final” (t) times. They further proposed a scaling of the ran-
dom force as

ξ j (t) = g(t)ξ eq
j (t), (8)

where the superscript “eq” denotes the equilibrium state, and
g(t) is the scaling factor depending on time t . Extension of
the fluctuation–dissipation theorem was also proposed,

〈ξi (t)ξ j (t
′)〉 = kBT γi j (t, t ′), (9)

where 〈·〉 is an ensemble average with respect to a given distri-
bution of the bath. Combining Eqs. (8) and (9) together with
the fluctuation–dissipation relation at the equilibrium yields

γi j (t, t ′) = g(t)γ eq
i j (t − t ′)g(t ′), (10)

where γ
eq
i j is the equilibrium friction kernel. Reference

34 introduced a more generalized form of the fric-
tion kernel allowing for multiple heat baths and time
dilatation in the arguments of the equilibrium friction
kernels:

γi j (t, t ′) =
∑

k

Tk(t)

Tk(0)
gk(t)gk(t ′)γ eq(k)

i j (τk(t) − τk(t ′)), (11)
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where k labels each heat bath and Tk is the time-dependent
“temperature” of the kth bath. The function τk(t) is a mono-
tonically increasing function of t with time-dependent rate of
increase reflecting the change of the frequency (and there-
fore the characteristic response time) of each bath with
time.

In order to obtain Eqs. (7)–(11), however, they needed
to assume a special type of the total Hamiltonian where the
bath is harmonic, the coupling is bilinear, and there is a po-
tential depending on the history,29 which was called nonlo-
cal potential. The equivalence between this nonlocal Hamil-
tonian and iGLE was proved theoretically in Ref. 29 and its
numerical evidence was provided in Ref. 33 within the frame-
work of bilinearly coupled harmonic oscillators Hamiltonian
systems.

In this paper, we present a general derivation of iGLE
without imposing any particular form of the total Hamilto-
nian. The summary of the results in this article is:

� The idea of the time-dependent friction kernel [Eq. (7)]
holds generally without any assumption about the total
system.

� In contrast to the previous simplified treatments, the
mean force potential V (q) in Eq. (7) must be time de-
pendent in general nonstationary cases.

� The extended fluctuation–dissipation theorem [Eq. (9)]
holds generally for any irreversible system with an ap-
propriate reinterpretation of the “temperature.”

� The simple scaling [Eqs. (8) and (10)] does not hold
for general nonstationary cases.

III. GENERAL DERIVATION

A. Settings

Let the phase space of the total system (including both
the system and the bath) be

N = {(q, p)} , (12)

where q = (q1, q2, . . . , qN ) denotes the position coordinates
of the total system and p their conjugate momenta. The equa-
tion of motion is given by

d

dt
q j = ∂ H

∂p j
,

d

dt
p j = −∂ H

∂q j
, (13)

with the Hamiltonian H which is a (possibly time-dependent)
function on N :

H = H (q, p, t). (14)

We define the Liouvillian operator iL̂ by

iL̂ A
def= {A, H} =

∑
j

(
∂ A

∂q j

∂ H

∂p j
− ∂ A

∂p j

∂ H

∂q j

)
, (15)

for any function A on N (complex-valued in general),

A : N → C, (16)

and {·, ·} denotes the Poisson bracket.

Let us consider a distribution ρ(q, p, t) on the phase
space N . The time evolution of the distribution is given by
the Liouville equation

∂ρ

∂t
+ {ρ, H} = 0, (17)

that is,

∂ρ

∂t
= −iL̂ ρ. (18)

The distribution is called stationary if ∂ρ/∂t = 0, and nonsta-
tionary otherwise. The word equilibrium distribution refers to
either the canonical

ρ ∝ exp

(
− H

kBT

)
, (19)

or the microcanonical distribution

ρ ∝ δ(H − E), (20)

where δ(·) denotes Dirac’s delta function. It is an easy matter
to prove that the equilibrium distribution is stationary, but not
all stationary distributions are equilibrium.

The time dependence of the distribution, and the possible
time dependence of the Hamiltonian, can be treated similarly
to the stationary case when we change to the extended phase
space,36

Mdef= {(q, p, t, Pt )} , (21)

where the time t is treated as a dynamical variable, and Pt is
the conjugate momentum to t taking the same value as −H . A
new independent variable τ is used to describe the evolution
of the trajectory by the equation of motion,

d

dτ
q j = ∂K

∂p j
= ∂ H

∂p j
,

d

dτ
p j = − ∂K

∂q j
= −∂ H

∂q j
,

d

dτ
t = ∂K

∂ Pt
= 1,

d

dτ
Pt = −∂K

∂t
, (22)

with the extended Hamiltonian K defined by

K (q, p, t, Pt )
def=H (q, p, t) + Pt . (23)

Note that dt/dτ = 1, therefore by setting the initial condition
t |τ=0 = 0 we have

t = τ, (24)

and the same equation of motion for (q, p) with Eq. (13) is
obtained.

We define the extended Liouvillian operator i	̂ by

i	̂F
def=iL̂ F + ∂ F

∂t
, (25)

for any differentiable function F on M. The time evolution
of a function F = F(q, p, t) is given by

F(τ ) = F(τ ; q, p, t)
def= exp

(
i	̂τ

)
F, (26)
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where we use the symbol F(τ ) as an abbreviation of
F(τ ; q, p, t). Note that, although we use the same symbol
F for the original function F(q, p, t) and its time evolu-
tion F(τ ; q, p, t), their functional forms are different (distin-
guished by the notation of the argument “τ ;”). It is because
the operation of exp(i	̂(q, p, t)τ ) on F(q, p, t) in Eq. (26)
results in a complicated, nonlinear function of q, p, and t ,
whose functional form becomes different from the original
F . It is known that the function F(τ ; q, p, t) gives the value
of the physical quantity F at τ as a function of the initial con-
dition (q, p, t) at τ = 0:

F(τ ; q(0), p(0), t(0)) = F(q(τ ), p(τ ), t(τ )), (27)

where (q(τ ), p(τ ), t(τ )) is a trajectory evolving by the equa-
tion of motion Eq. (22). Equation (27) can be proved by
Eqs. (22), (25) and (26) (e.g., see the appendix on the Lie
transformation in Ref. 37).

The time-dependent distribution ρ(q, p, t) can be re-
garded as a “distribution” on the extended phase space M.
From Eqs. (18) and (25) it is seen that

i	̂ρ(q, p, t) = 0. (28)

In this sense we can regard ρ(q, p, t) as a “stationary distri-
bution” in the extended phase space M. By virtue of Eq. (28),
we can follow a mathematical procedure similar to that of the
projection operator formalism as was done for the stationary
system.3–5

B. Inner product and projection operator

There are several ways to derive the GLE, slightly differ-
ent from each other. In this paper we follow that of Ref. 5. Let
A and B be functions on N . We define an inner product of the
two functions by using the distribution

(A| B)t
def=

∫
A∗(q, p)B(q, p)ρ(q, p, t)dqd p. (29)

Note that the inner product is time dependent due to the
time dependence of the distribution, in contrast to the usual
treatments.3–5

We also define an inner product on the extended phase
space. Let 
 and � be functions of (q, p, t), and

((
|�))
def=

∫

∗(q, p, t)�(q, p, t)ρ(q, p, t)dqd pdt.

(30)

The relation between these two kinds of inner product is easily
seen:

((
|�)) =
∫

(
|t |�|t )t dt, (31)

where the symbol |t denotes the restriction of the function
at t , that is, the function of (q, p, t) is regarded as a func-
tion of (q, p) by fixing the value of t . Note that, in order for
the integration over t to converge, at least one of the func-
tions 
(q, p, t) and �(q, p, t) must decay sufficiently fast as
|t | → ∞. We must therefore restrict the range of functions for
which the inner product is well-defined.

Note that the extended Liouvillian operator i	̂ is anti-
Hermitian with respect to the inner product ((·|·)):

(i	̂)† = −i	̂, (32)

where the symbol † denotes Hermitian conjugate. For any op-
erator F̂ and functions A and B, the Hermitian conjugate F̂ †

is defined by

((F̂ A|B)) = ((A|F̂ †B)). (33)

Equation (32) can be proved by partial integration and
Eq. (28). In contrast, the operator iL̂ is not anti-Hermitian
with respect to the inner product (·| ·)t due to the nonstation-
arity of the distribution.

Let us next prepare a certain set of functions
f1, f2, . . . , fm on N . These are functions of (q, p) only. The
choice of this function set depends on what we want to project
the system onto. We postpone the concrete choice until Sec.
III C. Through the Gram–Schmidt orthonormalization with
respect to the inner product (·|·)t , we obtain an orthonormal
set {φ j,t } from { f j }:

φ1,t = 1√
( f1| f1)t

f1,

φ2,t = φ̃2,t√
(φ̃2,t |φ̃2,t )t

, φ̃2,t = f2 − (φ1,t | f2)tφ1,t

... (34)

so that

(φi,t |φ j,t )t = δi j , (35)

where δ denotes Kronecker’s delta. Note that φ j,t depends on
t although the original function set { f j (q, p)} does not depend
on t . This is because of the t-dependence of the inner product.

We also prepare a complete orthonormal set along the t-
axis {χn}: ∫

χ∗
n (t)χm(t)dt = δmn,∑

n

χn(t)χ∗
n (t ′) = δ(t − t ′), (36)

where δ(t − t ′) is Dirac’s delta function. An example of
such a complete orthonormal set is Hermite functions,38 but
we do not need to specify it concretely. We then define a func-
tion set {
 j,n} on the extended phase space by


 j,n(q, p, t)
def=φ j,t (q, p)χn(t). (37)

They form an orthonormal set in the extended phase space
with respect to the inner product ((·|·)):
((
i,m |
 j,n))

=
∫

φ∗
i,t (q, p)χ∗

m(t)φ j,t (q, p)χn(t)ρ(q, p, t)dqd pdt,

=
∫

dt(φi,t |φ j,t )tχ
∗
m(t)χn(t),

= δi j

∫
dtχ∗

m(t)χn(t),

= δi jδmn. (38)
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The function set {
 j,n} is complete only for t , that is,∑
j,n


 j,n(q, p, t)
∗
j,n(q ′, p′, t ′)

= δ(t − t ′)
∑

j

φ j,t (q, p)φ∗
j,t (q

′, p′). (39)

By using the orthonormal sets we define a projection op-
erator P̂t at t

P̂t F
def=

∑
j

φ j,t (φ j,t |F)t (40)

and a projection operator in the extended phase space

P̂�
def=

∑
j,n


 j,n((
 j,n|�)), (41)

for function F = F(q, p) and � = �(q, p, t). From the
completeness of {χn}, it can be easily proved that

(P̂�)|t = P̂t (�|t ), (42)

where the symbol |t denotes the restriction of the function at
t .

From the orthonormality of {
 j,n}, it can be proved that

P̂2 = P̂,

P̂† = P̂, (43)

where the dagger denotes the Hermitian conjugate, that is,

((P̂�|)) = ((�|P̂)), (44)

for any functions � and .

C. Irreversible generalized Langevin equation

A next step for the derivation of GLE is to note the fol-
lowing operator identity:5

d

dτ
exp(i	̂τ )

= exp(i	̂τ )P̂i	̂

+
∫ τ

0
ds exp(i	̂(τ − s))P̂i	̂ exp((1 − P̂)i	̂s)

× (1 − P̂)i	̂ + exp((1 − P̂)i	̂τ )(1 − P̂)i	̂.

(45)

This identity is obtained if we note that the integrand in the
second term can be written as

− d

ds
exp(i	̂(τ − s)) exp((1 − P̂)i	̂s)(1 − P̂)i	̂.

(46)

We take a certain set of physical quantities A
= (A1, A2, . . . , An), which are functions of (q, p), and a
complete set { f j (A)} of the functions of A. The set is com-
plete only in the function space of A, but not necessarily in
(q, p). By Gram–Schmidt normalization [Eq. (34)] we con-
struct an orthonormal set {φ j,t (A)} which is complete in the

function space of A. From the orthonormality and the com-
pleteness, it is proved (in Appendix A) that

Pt (a)
∑

j

φ∗
j,t (a

′)φ j,t (a) = δ(a − a′), (47)

where Pt (a) is the distribution of the quantity A at t :

Pt (a)
def=

∫
δ(A(q, p) − a)ρ(q, p, t)dqd p. (48)

Here we use the upper case A = A(q, p) to denote the phase
space function, and the lower case a for its numerical values.

When we let Eq. (45) operate on A, the left hand side is

d

dτ
A(τ ), (49)

where A(τ ) is the time evolution of A [Eq. (26)]. Note this
derivative by τ is a differentiation by the first argument τ of
A(τ ; q, p) with the initial condition (q, p) kept intact. The
first term on the right hand side becomes

exp(i	̂τ )P̂i	̂A

= exp(i	̂τ )P̂ Ȧ,

= exp(i	̂τ )
∑

j

φ j,t (A)(φ j,t | Ȧ)t ,

=
∑

j

φ j,t+τ (A(τ ))(φ j,t+τ | Ȧ)t+τ ,

=
∑

j

φ j,t+τ (A(τ ))

×
∫

dq ′d p′ρ(q ′, p′, t + τ )φ j,t+τ (A(q ′, p′)) Ȧ(q ′, p′),

= Pt+τ (A(τ ))−1

×
∫

dq ′d p′ρ(q ′, p′, t + τ )δ(A(q ′, p′) − A(τ ))

× Ȧ(q ′, p′),

= 〈 Ȧ; A(τ )〉t+τ , (50)

where we have used Eq. (42) at the second equality, and

Ȧ
def=i	̂A (51)

is the time derivative of A. At the third equality, noting that
the operator exp(i	̂τ ) gives the time evolution in the extended
phase space, we changed the arguments t of the functions ac-
cordingly. At the fifth equality Eq. (47) was used. Finally we
utilize the symbol 〈F ; a〉t that stands for the average of F with
a fixed value of A = a over the distribution at t :

〈F ; a〉t
def=Pt (a)−1

∫
dqd pρ(q, p, t)δ(A − a)F(q, p),

(52)
and 〈 Ȧ; A(τ )〉t+τ is a substitution of A(τ ) in the place of a.

As for the third term on the right hand side of Eq. (45)
operating on A, we express it by a function ξ (τ ):

ξ (τ ) = ξ (τ ; q, p, t)
def= exp((1 − P̂)i	̂τ )(1 − P̂) Ȧ. (53)
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The τ -dependence of the function ξ (τ ) is given by the evolu-
tion under (1 − P̂)i	̂, in contrast to Eq. (26). Note, because
of P̂2 = P̂ ,

ξ (τ ) = (1 − P̂)ξ (τ ), (54)

which will be used in what follows. Then the integrand of the
second term on the right hand side of Eq. (45) becomes

exp(i	̂(τ − s))P̂i	̂ξ (s),

= exp(i	̂(τ − s))
∑
j,n


 j,n((
 j,n|i	̂ξ (s))),

= exp(i	̂(τ − s))
∑
j,n

φ j,t (A)χn(t)((
 j,n|i	̂ξ (s))),

=
∑
j,n

φ j,t+τ−s(A(τ − s))χn(t + τ − s)((
 j,n|i	̂ξ (s))).

(55)

Since i	̂ is anti-Hermitian, we have

((
 j,n|i	̂ξ (s))) = −((i	̂
 j,n|ξ (s))). (56)

Further,

[exp((1 − P̂)i	̂τ )(1 − P̂)]†

=
⎡
⎣ ∞∑

n=0

τ n

n!
(1 − P̂)i	̂ · · · (1 − P̂)i	̂︸ ︷︷ ︸

n

(1 − P̂)

⎤
⎦†

,

=
∞∑

n=0

τ n

n!
(1 − P̂) (−i	̂)(1 − P̂) · · · (−i	̂)(1 − P̂)︸ ︷︷ ︸

n

,

=
∞∑

n=0

(−τ )n

n!
(1 − P̂)i	̂(1 − P̂) · · · i	̂︸ ︷︷ ︸

n

(1 − P̂),

= exp(−(1 − P̂)i	̂τ )(1 − P̂). (57)

We use this to the last part of Eq. (56) and note Eqs. (53) and
(54) to obtain

−((i	̂
 j,n|ξ (s))),

= −((i	̂
 j,n| exp((1 − P̂)i	̂(s − τ ))ξ (τ ))),

= −((i	̂
 j,n| exp((1 − P̂)i	̂(s − τ ))(1 − P̂)ξ (τ ))),

= −((exp((1 − P̂)i	̂(τ − s))(1 − P̂)i	̂
 j,n|ξ (τ ))).

(58)

Since 
 j,n = φ j,t (A)χn(t) is a function only of A and t , we
have

(1 − P̂)i	̂
 j,n = (1 − P̂)

(
∂
 j,n

∂ A
· Ȧ + ∂
 j,n

∂t

)
,

= ∂
 j,n

∂ A
· ξ (0), (59)

where we have used Eqs. (B1) [i.e., P̂(∂
 j,n/∂t)
=∂
 j,n/∂t], (B3)[i.e., P̂{(∂
 j,n/∂ A) Ȧ}= (∂
 j,n/∂ A)P̂ Ȧ]
in Appendix B, Eq. (53) [i.e., (1 − P̂) Ȧ = ξ (0)], and the dot
denotes the inner product of vectors.

Further, by using Eq. (B5),

exp((1 − P̂)i	̂(τ − s))
∂
 j,n

∂ A
· ξ (0)

= χn(t + τ − s)ξ̃ j (τ − s), (60)

with

ξ̃ j (σ )
def= exp((1 − P̂)i	̂σ )

∂φ j,t

∂ A
· ξ (0). (61)

Equation (55) thus becomes∑
j,n

φ j,t+τ−s(A(τ − s))χn(t + τ − s)((
 j,n|i	̂ξ (s)))

=
∑
j,n

φ j,t+τ−s(A(τ − s))χn(t + τ − s)

× ((χn(t + τ − s)ξ̃ j (τ − s)|ξ (τ ))),

= −
∑
j,n

φ j,t+τ−s(A(τ − s))χn(t + τ − s)

×
∫

dq ′d p′dt ′ρ(q ′, p′, t ′)χn(t ′ + τ − s)

× ξ̃ j (τ − s; q ′, p′, t ′)ξ (τ ; q ′, p′, t ′),

= −
∑

j

φ j,t+τ−s(A(τ − s))

×
∫

dq ′d p′ρ(q ′, p′, t)ξ̃ j (τ − s; q ′, p′, t)ξ (τ ; q ′, p′, t)

= −
∑

j

φ j,t+τ−s(A(τ − s))
〈
ξ̃ j (τ − s)ξ (τ )

〉
t , (62)

where 〈·〉t denotes the average over the distribution ρ(q, p, t)
at t .

Remember that

A(τ ) = A(τ ; q, p, t) = exp(i	̂τ )A (63)

gives the value of A at τ , as a function of the initial condition
(q, p, t). Similarly, ξ (τ ) = ξ (τ ; q, p, t) gives the value of ξ

at τ , as a function of the initial condition (q, p, t). Since the
initial condition of t is taken as t |τ=0 = 0, we only need the
values at t = 0. Thus we finally obtain the iGLE by substitut-
ing t = 0 in Eqs. (50) and (62):

d

dτ
A(τ ) = 〈 Ȧ; A(τ )〉τ + ξ (τ )

−
∫ τ

0
ds

∑
j

φ j,τ−s(A(τ − s))
〈
ξ̃ j (τ − s)ξ (τ )

〉
0 .

(64)

A useful identity about the function ξ is that it has no
correlation with the chosen physical quantity A:

〈 f (A)ξ (s)〉0 = 0, (65)
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for any function f of only A. The proof is as follows. First,
we have∑

n

χn(0)((χn f (A)|ξ (s))),

=
∑

n

χn(0)
∫

dq ′d p′dt ′χn(t ′) f (A(q ′, p′))ξ (s)

×ρ(q ′, p′, t ′),

=
∫

dq ′d p′ f (A(q ′, p′))ξ (s)ρ(q ′, p′, 0),

= 〈 f (A)ξ (s)〉0 . (66)

On the other hand, because of Eqs. (54) and (B1),∑
n

χn(0)((χn f (A)|ξ (s))),

=
∑

n

χn(0)((χn f (A)|(1 − P̂)ξ (s))),

=
∑

n

χn(0)(((1 − P̂)χn f (A)|ξ (s))),

= 0. (67)

We also note that, in stationary states, 〈ξ̃ j (τ − s)ξ (τ )〉0

in the integrand of Eq. (64) depends only on the time
difference: 〈

ξ̃ j (τ − s)ξ (τ )
〉
0

stationary= 〈
ξ̃ j (0)ξ (s)

〉
0 . (68)

The proof is given in Appendix C.

D. Second-order equation of motion

As a special case, we here take physical quantities

Q = Q(q, p),

V = V (q, p)
def=i	̂Q = iL̂ Q, (69)

and set A = (Q, V ). Let the first function of the complete set
{ f j (Q, V )} be

f1(Q, V ) = V, (70)

and approximate the iGLE [Eq. (64)] by truncating the sum
at the first term. The first step of the Gram–Schmidt orthonor-
malization [Eq. (34)] goes

φ1,t = 1

〈V 2〉1/2
t

V . (71)

Substituting this into Eq. (64) yields

d

dτ
Q(τ ) = 〈Q̇; Q(τ ), V (τ )〉τ + ξQ(τ )

−
∫ τ

0
ds

1

〈V 2〉1/2
τ−s

V (τ − s)
〈
ξ̃1(τ − s)ξQ(τ )

〉
0 ,

d

dτ
V (τ ) = 〈V̇ ; Q(τ ), V (τ )〉τ + ξV (τ )

−
∫ τ

0
ds

1

〈V 2〉1/2
τ−s

V (τ − s)
〈
ξ̃1(τ − s)ξV (τ )

〉
0 , (72)

where we have introduced the notation ξ = (ξQ, ξV ). How-
ever, in this case we have a particular choice of the physical
quantities such that Q̇ = V , and 〈Q̇; Q(τ ), V (τ )〉τ is an aver-
age of Q̇ with fixed values of Q(τ ) and V (τ ), which is simply
V (τ ). Also, from the definition of ξ ,

ξQ(τ ) = exp((1 − P̂)i	̂τ )(1 − P̂)V = 0, (73)

since (1 − P̂)V = 0 because of Eq. (B1). The first equation
of Eq. (72) therefore reduces to

d

dτ
Q(τ ) = V (τ ). (74)

Next, from the definition of ξ̃ [Eq. (61)], we have

ξ̃1(τ ) = exp((1 − P̂)i	̂τ )

[
∂φ1,t

∂ Q
ξQ(0) + ∂φ1,t

∂V
ξV (0)

]
,

= exp((1 − P̂)i	̂τ )
1

〈V 2〉1/2
t

ξV (0),

= 1

〈V 2〉1/2
t+τ

exp((1 − P̂)i	̂τ )ξV (0),

= 1

〈V 2〉1/2
t+τ

ξV (τ ) (75)

[see Eqs. (53) and (B5)]. By substituting t = 0, Eq. (72) be-
comes

d

dτ
V (τ ) = 〈V̇ ; Q(τ ), V (τ )〉τ + ξV (τ )

−
∫ τ

0
ds

1

〈V 2〉τ−s
V (τ − s) 〈ξV (τ − s)ξV (τ )〉0 .

(76)

Combining this with Eq. (74) we finally obtain

d2

dτ 2
Q(τ ) = 〈Q̈; Q(τ ), Q̇(τ )〉τ

−
∫ τ

0
dτ ′γ (τ, τ ′)Q̇(τ ′) + ξV (τ ), (77)

with the generalized friction kernel defined by

γ (τ, τ ′)def= 〈ξV (τ )ξV (τ ′)〉0

〈Q̇2〉τ ′
, (78)

corresponding to what Refs. 28, 29, and 34 called the gener-
alized fluctuation–dissipation theorem.

When the physical quantity Q can be interpreted as po-
sition, and V velocity, the first term on the right hand side of
Eq. (77) is called the mean force, because it gives the value
of the acceleration averaged over the distribution of the sur-
roundings (degrees of freedom other than Q). Similarly, the
second term is the “frictional” force representing the response
of the surroundings to the motion of the system described by
Q and Q̇. The third term ξV (τ ) is called random force. It rep-
resents the deviation from the average of the force exerted by
the surrounding and felt by the system. Although the value of
ξV (τ ) is given by the deterministic equation of motion [Eq.
(22)] for the total system, the randomness comes from the
fact that we know the initial condition of the surroundings
only as the distribution ρ(q, p, 0). The value of ξV (τ ) has
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uncertainty inherent to the limited information regarding the
environment, that is, all what we can know is just the dis-
tribution of (q, p) at time t = 0. The statistical property of
ξV (τ ) is given, for example, by the generalized fluctuation–
dissipation theorem Eq. (78). Moreover, as special cases
of Eq. (65), we can prove that the average of the random
force and its correlation with the initial condition of (Q, Q̇)
vanish:

〈ξV (τ )〉0 = 0,

〈ξV (τ )Q〉0 = 0,

〈ξV (τ )Q̇〉0 = 0, (79)

and so forth.
Note that, in the equilibrium, the average of the square of

the velocity is the temperature

〈Q̇2〉 = kBT, (80)

and γ (τ, τ ′) depends only on (τ − τ ′) because of Eq. (68). In
the same situation, the mean force also becomes the equilib-
rium average of Q̈. Therefore Eq. (77) reduces to the usual
one. In Eq. (78) for nonstationary cases, we have the av-
erage of the square of the velocity at time τ ′, which may
be interpreted as an effective temperature at time τ ′ in the
nonstationary process. Note also that the form of the fric-
tion term in Eq. (77) is the same with Eq. (7) which was
obtained by the heuristic consideration.28–34 The general-
ized fluctuation–dissipation theorem proposed28–34 has also
been proved on general footing here. Note also that, com-
pared to the equilibrium case, we need to reinterpret the
“temperature” of the nonstationary process as the average
of the square of the velocity. Moreover, in contrast to the
previous treatments,28–34 the mean force 〈Q̈; Q(τ ), Q̇(τ )〉τ
depends generally on both the position Q(τ ) and the ve-
locity Q̇(τ ), and its functional form is also time dependent
due to 〈 〉τ .

The differentiation of “time τ” from the “canonical co-
ordinate t” in the extended phase space was utilized in the
above derivation based on the projection operator formal-
ism. However, once we have obtained the equation of mo-
tion in the form of Eq. (64) or (77), we can change the
argument from τ to t to obtain the usual expression re-
viewed in Sec. II, since their values are in fact the same
by Eq. (24).

IV. SIMPLE EXAMPLE

In this section we illustrate the concept of iGLE derived
in Sec. III by using a simple numerical example. The exam-
ple consists of a harmonic oscillator (q1, p1) that is regarded
as the “system,” and another harmonic oscillator (q2, p2)
coupled to the system and an outer bath of Langevin type:

d

dt
q1 = p1,

d

dt
p1 = −ω1

2q1 + aω2
2 (q2 − aq1) ,

d

dt
q2 = p2,

d

dt
p2 = −ζ p2 − ω2

2 (q2 − aq1) + η(t), (81)

where ω1 and ω2 are the frequencies of the two oscillators,
and a is the coupling constant between modes 1 and 2. The
coupling of (q2, p2) to the outer bath is represented by the
friction constant ζ and the Langevin-type random force η(t).
They are related by fluctuation–dissipation theorem:

〈η(t)η(t ′)〉 = 2kBToζ δ(t − t ′), (82)

with the temperature To of the outer bath.
The “bath” in this model consists of the harmonic oscil-

lator (q2, p2), which is in direct contact to the system (q1, p1),
and the outer bath. While the outer bath is assumed to be in
thermal equilibrium with the temperature To, the initial condi-
tion of (q2, p2) can be given by a nonequilibrium distribution.
Here we give the initial condition of (q2, p2) with a vibra-
tional excitation with a temperature T2 higher than the bulk
temperature To. The dynamics of the system (q1, p1) is sub-
ject to the effects of the nonequilibrium bath such as energy
flow from the excited bath mode and time-dependent rate of
energy dissipation to the outer bath. Its description must be
based on the equation of motion for (q1, p1) with the nonsta-
tionarity of the bath taken into account. Thus we reduce Eq.
(81) to an equation only of q1 by the procedure of Sec. III to
obtain the following iGLE:

q̈1 = f (q1, q̇1, t) −
∫ t

0
γ (t, t ′)q̇1(t ′)dt ′ + ξ (t), (83)

where f (q1(t), q̇1(t), t) is the mean force at time t (averaged
over the given distribution of the bath), and γ (t, t ′) is the time-
dependent friction kernel that is related to the random force
ξ (t) by [as Eq. (78)]

〈ξ (t)ξ (t ′)〉0 = 〈q̇2
1 〉t ′γ (t, t ′), (84)

where the bracket denotes the average over the given distri-
bution of the bath. In this section we use the symbol t for the
independent parameter in place of τ .

As the distribution ρ, we take a Boltzmann-type distribu-
tion of initial temperature T initial

1 and T initial
2 for the two modes:

ρ(q1, q2, p1, p2, 0) ∝ exp

[
− 1

kBT initial
1

(
1

2
p1

2 + ω1
2

2
q1

2

)

− 1

kBT initial
2

(
1

2
p2

2 + ω2
2

2
q2

2

)]
, (85)

and its time evolution ρ(q1, q2, p1, p2, t) due to Eq. (81).
The numerical values of the parameters are taken as ω1

= 1, ω2 = 2, a = 1/2, ζ = 1/5, kBT initial
1 = 1/2, kBT initial

2
= 3/2, and kBTo = 1/2. Namely, the vibrational mode
(q2, p2) is initially excited compared to (q1, p1) and the outer
bath. It will then be de-excited and relax to the outer bath
temperature kBTo. Details of calculation of the projection op-
erator, the mean force, and the friction kernels are given in a
supplementary material file.39

Downloaded 11 Apr 2011 to 133.87.26.199. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



114523-9 Nonstationary generalized Langevin equation J. Chem. Phys. 134, 114523 (2011)

FIG. 1. Average of the squared velocity 〈q̇2
1 〉t as a function of time.

Figure 1 shows the time evolution of the average of the
squared velocity 〈q̇2

1 〉t , or the “effective temperature,” which
appears in the fluctuation–dissipation relation Eq. (84). At
t = 0, it is equal to kBT initial

1 = 1/2, and then it suddenly in-
creases due to the energy flow from the (q2, p2) mode that
was initially excited. As time goes further, the value 〈q̇2

1 〉t de-
creases gradually with some oscillatory behavior, and finally
relaxes to the temperature kBTo = 1/2 of the outer bath.

Since the original equations of motion [Eq. (81)] are lin-
ear, it can be shown that the mean force in the iGLE (83) is
also linear in q1(t) and q̇1(t):

f (q1, q̇1, t) = α(t)q1 + β(t)q̇1, (86)

with time-dependent coefficients α(t) and β(t). The time-
evolution of the coefficients obtained by numerical calcula-
tions are shown in Fig. 2.

In contrast to the equilibrium version, the mean force in
the iGLE depends also on the velocity, and its functional form
shows oscillatory behavior as a function of time (Fig. 2). As
time goes to infinity, the coefficients converge to the equi-
librium values: α(t) → −ω1

2 = −1 and β(t) → 0, where we

FIG. 2. Coefficients of the mean force as functions of time. The solid curve
shows the coefficient α(t) of q1, and the dotted curve shows the coefficient
β(t) of q̇1.

FIG. 3. Friction kernel as a function of time difference. Functional forms of
the friction kernel are shown for various values of the initial time. The darkest
curve in the lower panel shows the equilibrium friction kernel γeq.

note that the equilibrium version of GLE can be obtained in
the usual way35 and reads

q̈1 = −ω1
2q1 −

∫ t

0
γeq(t − t ′)q̇1(t ′)dt ′ + ξeq(t), (87)

with the equilibrium friction kernel

γeq(t) = a2ω2
2 exp

(
−ζ

2
t

)[
cos(νt) − ζ

2ν
sin(νt)

]
,

ν
def=

(
ω2

2 − ζ 2

4

)1/2

. (88)

Figure 3 shows the friction kernel γ (t, t ′) as a func-
tion of the time difference t − t ′ for various values of the
initial time t ′. Although the rough behavior (oscillation of
frequency ≈ ω2 and decay of ≈ ζ/2) is similar for all t ′,
the amplitude and the positions of the peaks and the ze-
ros deviate appreciably with t ′. As time goes to infinity, the
friction kernel also converges to the equilibrium one. Note
that the equilibrium friction kernel γeq(t − t ′) becomes zero
for ν(t − t ′) = arctan(2ν/ζ ) + nπ with n being integers,
that is, t − t ′ = 0.76, 2.33, 3.91, 5.48, 7.05, 8.63, . . .. If the
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nonstationary friction kernel were given by Eq. (10), it would
be identically zero at these values of t − t ′ for any value of
t ′. However, Fig. 3 shows that, for some t ′, γ (t, t ′) is signifi-
cantly different from zero even at these values of t − t ′. This
implies that the friction kernel of this system does not fall into
the category of Eq. (10).

Note also that the linear friction term in Eqs. (77) and
(83) is an approximation. The exact formula is given by non-
linear friction term as in Eq. (64). It would be interesting in the
future to analyze the simple example presented here or more
realistic systems with the use of Eq. (64), and see whether the
nonlinearity in the friction term changes due to the nonsta-
tionarity of the environment.

V. SUMMARY AND OUTLOOK

The generalized Langevin equation, which enables a low-
dimensional description of a large system consisting of huge
number of atoms including solvents, was extended to the case
of nonstationary distribution of the bath. The derivation uti-
lized the projection operator formalism, which starts from the
original Hamiltonian of the total system without any assump-
tion about the specific functional form of the Hamiltonian.
The resulting form of iGLE is as simple enough as the usual
GLE. The concept of the generalized friction kernel depend-
ing on both the past and the present was found to hold gener-
ally in any nonstationary system. The generalized fluctuation–
dissipation relation,28, 29, 34 found previously by heuristic ar-
guments, was also proved to hold for any nonstationary sys-
tem, when we interpret the temperature as the average of the
square of the velocity of the system. In addition to the general
and rigorous derivation that is free from any preassumption
on the specific form of the underlying total Hamiltonian sys-
tem, the other striking differences from the previous work are
that the mean force appearing in the iGLE is time dependent,
and the simple scaling relation28, 29, 34 of the random force and
the friction kernel does not hold in general.

Recently, some attempts have been reported to eval-
uate the friction kernel from realistic molecular dynamics
simulations,40–42 by which the manybody complex phenom-
ena were successfully explained by combining with the GLE-
based Grote–Hynes theory.2 Such analyses were, however,
limited to equilibrium bath, since GLE is only for stationary
systems. The present study provides us with a firm framework
for the understanding of manybody complex phenomena oc-
curring in a fluctuating environment, covering from equilib-
rium to nonequilibrium conditions with nonstationary bath.
Some interesting subjects to be addressed in terms of the
present theory are, for example, chemical reactions or struc-
tural change of biomolecules following some stimuli (such as
light) not on the progress variable to describe the reaction or
the structural change of the molecule but on the bath degrees
of freedom which couple with the variable, resulting in a non-
stationary environment. The other stimulating subject is the
combination of the present theory and the recently developed
dynamical reaction theory to extract the rigorous reaction co-
ordinate to dominate the fate of reactions under thermal fluc-
tuation in equilibrium.6–17 These should provide us with great

new insights into many molecular events occurring in nonsta-
tionary environments.
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APPENDIX A: PROOF OF EQ. (47)

Since { f j (A)} is a complete set of the functions of A,
its orthonormalization {φ j,t (A)} is also a complete set. This
means that any arbitrary function g(A) of A can be expressed

g(A) =
∑

j

c jφ j,t (A), (A1)

with the coefficients given by

c j = (φ j,t |g)t , (A2)

from the orthonormality of {φ j,t (A)}. Therefore,

g(a) =
∑

j

(φ j,t |g)tφ j,t (a)

=
∑

j

∫
dqd pρ(q, p, t)φ∗

j,t (A)g(A)φ j,t (a),

=
∑

j

∫
dqd pρ(q, p, t)

∫
da′δ(A − a′)φ∗

j,t (a
′)g(a′)

φ j,t (a),

=
∑

j

∫
da′ Pt (a′)φ∗

j,t (a
′)φ j,t (a)g(a′), (A3)

where we have used the definition of Pt in Eq. (48). Since this
equation holds for any function g, we have∑

j

Pt (a′)φ∗
j,t (a

′)φ j,t (a) = δ(a − a′). (A4)

APPENDIX B: SOME IDENTITIES USED IN TEXT

First we prove

P̂ f (A, t) = f (A, t), (B1)

for any function f of only A and t , and P̂ defined in Sec. III
C. This is proved by

P̂ f (A, t) =
∑
j,n

φ j,t (A)χn(t)
∫

dq ′d p′dt ′ρ(q ′, p′, t ′)

×φ j,t (A(q ′, p′))χn(t ′) f (A(q ′, p′), t ′),
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= Pt (A)−1
∫

dq ′d p′dt ′δ(A(q ′, p′) − A)

× δ(t − t ′) f (A(q ′, p′), t ′)ρ(q ′, p′, t ′)

= Pt (A)−1
∫

dt ′ Pt ′ (A)δ(t − t ′) f (A, t ′),

= f (A, t). (B2)

Next we prove

P̂ f (A, t)G = f (A, t)P̂G, (B3)

where f is a function of only A and t , but G is any function
on the extended phase space. The proof proceeds similarly

P̂ f (A, t)G

=
∑
j,n

φ j,t (A)χn(t)
∫

dq ′d p′dt ′ρ(q ′, p′, t ′)

×φ j,t (A(q ′, p′))χn(t ′) f (A(q ′, p′), t ′)G(q ′, p′, t ′),

= Pt (A)−1
∫

dq ′d p′dt ′δ(A(q ′, p′) − A)

× δ(t − t ′) f (A(q ′, p′), t ′)G(q ′, p′, t ′)ρ(q ′, p′, t ′),

= f (A, t)Pt (A)−1
∫

dq ′d p′dt ′δ(A(q ′, p′) − A)

× δ(t − t ′)G(q ′, p′, t ′)ρ(q ′, p′, t ′),

= f (A, t)
∑
j,n

φ j,t (A)χn(t)
∫

dq ′d p′dt ′ρ(q ′, p′, t ′)

×φ j,t (A(q ′, p′))χn(t ′)G(q ′, p′, t ′)

= f (A, t)P̂G. (B4)

Another useful identity is

exp((1 − P̂)i	̂τ ) f (t)(1 − P̂)G

= f (t + τ ) exp((1 − P̂)i	̂τ )(1 − P̂)G, (B5)

for any function f of only t and any function G on the ex-
tended phase space. To prove this, take the differentiation of
the right hand side:

∂

∂τ
[ f (t + τ ) exp((1 − P̂)i	̂τ )(1 − P̂)G]

= f ′(t + τ ) exp((1 − P̂)i	̂τ )(1 − P̂)G

+ f (t + τ )(1 − P̂)i	̂ exp((1 − P̂)i	̂τ )(1 − P̂)G.

(B6)

Since i	̂ is a first-order differential operator, and because of
Eq. (B3),

(1 − P̂)i	̂ f (t + τ ) exp((1 − P̂)i	̂τ )(1 − P̂)G

= (1 − P̂) f ′(t + τ ) exp((1 − P̂)i	̂τ )(1 − P̂)G

+(1 − P̂) f (t + τ )i	̂ exp((1 − P̂)i	̂τ )(1 − P̂)G,

= f ′(t + τ )(1 − P̂) exp((1 − P̂)i	̂τ )(1 − P̂)G

+ f (t + τ )(1 − P̂)i	̂ exp((1 − P̂)i	̂τ )(1 − P̂)G,

= f ′(t + τ ) exp((1 − P̂)i	̂τ )(1 − P̂)G

+ f (t + τ )(1 − P̂)i	̂ exp((1 − P̂)i	̂τ )(1 − P̂)G.

(B7)

Equation (B6) therefore becomes

∂

∂τ
[ f (t + τ ) exp((1 − P̂)i	̂τ )(1 − P̂)G]

= (1 − P̂)i	̂ f (t + τ ) exp((1 − P̂)i	̂τ )(1 − P̂)G.

(B8)

Thus both sides of Eq. (B5) is a solution of the differential
equation

∂

∂τ
� = (1 − P̂)i	̂�, (B9)

and they are equal at τ = 0. Therefore the two sides of Eq.
(B5) are equal for all τ , because of the uniqueness of the so-
lution of the differential equation Eq. (B9).

APPENDIX C: PROOF OF EQ. (68)

We will show here

〈
ξ̃ j (τ − s)ξ (τ )

〉
0 = 〈

ξ̃ j (0)ξ (s)
〉
τ−s . (C1)

Then, since the distribution does not change in the stationary
state, we have

〈
ξ̃ j (0)ξ (s)

〉
τ−s

stationary= 〈
ξ̃ j (0)ξ (s)

〉
0 . (C2)

The proof of Eq. (C1) is as follows:
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〈ξ̃ j (τ − s)ξ (τ )〉0, =
∑

n

χn(0)((χn(t)ξ̃ j (τ − s)|ξ (τ ))),

=
∑

n

χn(0)((χn(t) exp((1 − P̂)i	̂(τ − s))ξ̃ j (0)|ξ (τ ))),

=
∑

n

χn(0)((exp((1 − P̂)i	̂(τ − s))χn(t − τ + s)ξ̃ j (0)|ξ (τ ))),

=
∑

n

χn(0)((χn(t − τ + s)ξ̃ j (0)| exp((1 − P̂)i	̂(s − τ ))ξ (τ ))),

=
∑

n

χn(0)((χn(t − τ + s)ξ̃ j (0)|ξ (s))),

= 〈ξ̃ j (0)ξ (s)〉τ−s, (C3)

where the similar technique is used as Eqs. (58)–(62).
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