

HOKKAIDO UNIVERSITY

Title	Notes on Interpolation by Bounded Analytic Functions
Author(s)	Nakazi, Takahiko
Citation	Hokkaido University Preprint Series in Mathematics, 5, 1-10
Issue Date	1987-06
DOI	10.14943/49125
Doc URL	http://eprints3.math.sci.hokudai.ac.jp/901/; http://hdl.handle.net/2115/45297
Туре	bulletin (article)
File Information	pre5.pdf

Notes On Interpolation By Bounded

Analytic Functions

Takahiko Nakazi

Series #5. June 1987

HOKKAIDO UNIVERSITY PREPRINT SERIES IN MATHEMATICS

Author Title

- 1. Y. Okabe, On the theory of discrete KMO-Langevin equations with reflection positivity (1)
- 2. Y. Giga and T. Kambe, Large time behavior of the vorticity of two-dimensional flow and its application to vortex formation
- 3. A. Arai, Path Integral Representation of the Index of Kahler-Dirac Operators on an Infinite Dimensional Manifold
- 4. I. Nakamura, Threefolds Homeomorphic to a Hyperquadric in P⁴

Notes On Interpolation By Bounded Analytic Functions

By

Takahiko Nakazi*

Department of Mathematics Faculty of Science Hokkaido University Sapporo 060, Japan

*This research was partially supported by Grant-in-Aid for Scientific Research, Ministry of Education. Let $\{z_n\}$ be a sequence in the open unit disc and write $\rho_n = \prod_{\substack{m \ m \neq n}} |(z_n - z_m)(1 - \overline{z}_m z_n)^{-1}|$. In the case of $|w_n| \le \rho_n$ for all n, the interpolation problems are considered.

§1. Theorems

Let H^{∞} be the Hardy space of bounded analytic functions in the unit disc D with boundary values in $L^{\infty} = L^{\infty}(d\theta/2\pi)$. Let $\{z_n\}$ be a sequence of distinct points in D and $\{w_n\}$ be a bounded sequence of complex numbers. Our notes concern the interpolation problem

$$f(z_n) = w_n, n = 1, 2, ...$$

for f in H^{°°}. Put

$$\rho_n = \prod_{\substack{m; m \neq n}} \left| \frac{z_n - z_m}{1 - \overline{z}_m z_n} \right|.$$

Carleson [1] proved that every interpolation problem has a solution if and only if $\inf_n \rho_n > 0$. Such a sequence is called uniformly separated. We wish to consider the interpolation problem when $\inf_n \rho_n = 0$. Gleason has observed (unpublished) that Earl's proof of Carleson's theorem yiels a solution of the interpolation problem whenever $|w_n| \le \rho_n^2$ for all n (cf. [3]). Moreover Garnett [3] shows that interpolation is possible if we have $|a_n| \le$ $\rho_n(1 + \log 1/\rho_n)^{-2}$ but interpolation is sometimes impossible if $|a_n| = \rho_n(1 + \log 1/\rho_n)^{-1}$.

In this paper we show the following two theorems. If $\{z_n\}$ is a finite union of interpolating sequences, then theorem 1 says ρ_n is the slowest possible rate of decay in $|w_n|$ for interpolation to occur and theorem 2 shows that if $|w_n|$ decays at a faster rate,

- 3 -

then the interpolant of minimal norm is unique and an inner function.

Theorem 1. $\{z_n\}$ is the union of a finite number of uniformly separated sequences if and only if for $|w_n| \leq \rho_n$ for all n, there exists a function in H^{∞} such that $f(z_n) = w_n$ for all n.

The referee kindly pointed out us the following : If $\{z_n\}$ is a finite union of interpolating sequences, then there is a constant M so that if $|w_n| \leq \rho_n$ for all n, then there exists an f in H^{∞} such that $f(z_n) = w_n$ and $||f||_{\infty} \leq M$. This is a little surprising, since there are interpolating sequences $\{z_n\}$ and sequences $\{w_n\}$ with $|w_n| \leq \rho = \inf \rho_n$ with $M \geq C/(\log 1/\rho)$.

The similar theorem for H^1 is not true. For when $\sum_{n=1}^{\infty} (1 - |z_n|) < \infty$, we can show that if $\sum_{n=1}^{\infty} p_n^{-1} |w_n| < \infty$ then n=1 there exists a function f in H^1 such that $(1 - |z_n|) f(z_n) = w_n$ for all n.

Theorem 2. Let $\{z_n\}$ be the union of a finite number of uniformly separated sequences and $P_n^{-1}w_n \rightarrow 0$. Then there exists a unique f in H^{∞} of minimal norm such that $f(z_n) = w_n$ for all n. This function is a complex constant times an inner function and has analytic continuation across $\partial D \setminus \overline{\{z_n\}}$.

When $\{z_n\}$ is uniformly separated, \emptyset yma [6] proved theorem 2.

§2. Proof of Theorem 1.

In order to prove the theorem we need two well known lemmas. Let $B_j(z) = \prod_{n=1}^{j} \frac{z - z_n}{1 - \overline{z}_n z}$, $B_{jn}(z) = B_j(z) \frac{1 - \overline{z}_n z}{z - z_n}$ and $b_{jn} = B_{jn}(z_n)$ ($1 \le n \le j$). Define

$$m_j(w) = \inf \{ || f_j + B_j g ||_{\infty} ; g \in H^{\infty} \}$$

where $f_j(z) = \sum_{n=1}^{j} b_{jn} w_n B_{jn}(z)$.

Lemma 1. Let $w = \{w_n\}$, then

$$m_{j}(w) = \sup \{ | \sum_{n=1}^{j} \frac{w_{n}}{b_{jn}} f(z_{n})(1 - |z_{n}|^{2}) | ; f \in H^{1} \text{ and } ||f||_{1} \le 1 \}.$$

The proof is in $[4, p197 \sim p198]$.

Lemma 2. $\{z_n\}$ is the union of a finite number of uniformly separated sequences if and only if the measure $\Sigma(1 - |z_n|)\delta_{z_n}$ is a Carleson measure, where δ_{z_n} denotes point mass at z_n . The proof is in [5].

The proof of Theorem 1. For the part of 'only if', put $l = (w = \{w_n\}; |w_n| \le \delta_n, n = 1, 2, ...)$. By Lemma 1,

- 5 -

$$\sup_{w \in \mathcal{L}} \sup_{w \in \mathcal{L}} \sup_{f} \sup_{n=1}^{j} \frac{w_{n}}{b_{jn}} f(z_{n})(1 - |z_{n}|^{2}) |$$

$$= \sup_{w \in \mathcal{L}} \sup_{f} |\sum_{n=1}^{j} \frac{w_{n}}{\delta_{n}} \frac{\delta_{n}}{b_{jn}} f(z_{n})(1 - |z_{n}|^{2}) |$$

$$\leq \sup_{f} \sum_{n=1}^{j} |\frac{\delta_{n}}{b_{jn}} ||f(z_{n})|(1 - |z_{n}|^{2}) |$$

$$\leq \sup_{f} \sum_{n=1}^{j} |f(z_{n})|(1 - |z_{n}|^{2}).$$

By Lemma 2, sup sup $m_j(w) < \infty$ and this finishes the proof of $j \quad w \in \mathcal{L}$ 'only if' (see [5, p197]).

For the part of 'if', by [5, p197], sup sup $m_j(w) < \infty$. By Lemma 1,

$$\sup_{j} \sup_{\substack{f \ n=1}} \sum_{\substack{j=1 \ j \ n=1}}^{\delta_{n}} |f(z_{n})| (1 - |z_{n}|^{2})$$

$$= \sup_{j} \sup_{\substack{w \in \mathcal{L} \ f \ n=1}} \sup_{\substack{j=1 \ \delta_{n}}} \frac{\delta_{n}}{\delta_{n}} \frac{\delta_{n}}{\delta_{jn}} f(z_{n}) (1 - |z_{n}|^{2})| < \infty.$$

Put $\mu_j = \sum_{n=1}^{j} \left| \frac{\delta_n}{b_{jn}} \right| (1 - |z_n|) \delta_{z=z_n}$, then for any $f \in H^1$

and all $\,j\,$ there exists a finite positive constant $\,\gamma\,$

$$\int_{D} |\mathbf{f}| d\mu_{j} \leq \gamma \int_{0}^{2\pi} |\mathbf{f}(e^{\mathbf{i}\theta})| d\theta/2\pi$$

and $|| \mu_j || \leq \gamma$. Let μ be the weak-* cluster point of $\{\mu_j\}$, then μ is a measure on the closed unit disc \overline{D} and $|| \mu || \leq \gamma$. Since for any continuous function μ on \overline{D} that is analytic in D

$$\begin{split} \int_{n=1}^{j} |\frac{\delta_{n}}{b_{jn}}| (1 - |z_{n}|) |u|^{2}(z_{n}) \\ &= \int_{\overline{D}} |u|^{2} d\mu_{j} \leq \int_{0}^{2\pi} |u(e^{i\theta})|^{2} d\theta/2\pi, \\ \int_{\overline{D}} |u|^{2} d\mu = \sum_{n=1}^{\infty} (1 - |z_{n}|) |u|^{2}(z_{n}) \leq \gamma \int_{0}^{2\pi} |u(e^{i\theta})|^{2} d\theta/2\pi \quad \text{and} \\ \mu|D = \sum_{n=1}^{\infty} (1 - |z_{n}|) \delta_{z=z_{n}}. \quad \text{This implies} \quad \sum_{n=1}^{\infty} (1 - |z_{n}|) \delta_{z=z_{n}} \quad \text{is a} \end{split}$$

Carleson measure and this finishes the proof of 'if' by Lemma 2.

§3. Proof of Theorem 2

Let Q denote the orthogonal projection from L^2 onto $e^{-i\theta}H^2$. For ϕ in L^{∞} let H_{ϕ} denote the Hankel operator on H^2 defined by $H_{\phi}x = Q(\phi x)$. Let ℓ^{∞} be the space of all bounded sequences of complex numbers and ℓ_0^{∞} the subspace of ℓ^{∞} of sequences tending to zero. Let $\{z_n\}$ be a sequence of distinct points in D and b a Blaschke product with zeros $\{z_n\}$. If f is in H^{∞} and $H_{\overline{b}f}$ is compact then $\{f(z_n)\}$ is in ℓ_0^{∞} [2]. Clark [2] showed that when $\{z_n\}$ is uniformly separated, if $\{f(z_n)\}$ is in ℓ_0^{∞} then $H_{\overline{b}f}$ is compact. The following lemma is a generalization of the Clark's theorem and we need it to prove theorem 2.

Lemma 3. Suppose $\{z_n\}$ is the union of a finite number of uniformly separated sequences. If $\{\delta_n^{-1}f(z_n)\}$ is in ℓ_0^∞ then $H_{\overline{b}f}$ is compact.

Proof. It is Hartman's theorem (cf.[7, p6]) that $H_{\overline{b}f}$ is compact if and only if $\overline{b}f \in H^{\infty} + C$ where C denotes the space of continuous complex valued functions on ∂D . We shall show that ${}^{if}_{\wedge} \{\delta_n^{-1}f(z_n)\}$ is in ℓ_0^{∞} then $\overline{b}f \in H^{\infty} + C$. There is a factorization $b = b_1 b_2 \dots b_\ell$ such that b_j $(l \le j \le \ell)$ is a Blaschke product of $\{z_n^{(j)}\}$ where $\{z_n^{(j)}\}$ is uniformly separated and $\bigcup_j \{z_n^{(j)}\} = \{z_n\}$. Let $b'_j = \prod_{k \ne j} b_k$ then

- 8 -

 $\{b'_{j}(z^{\binom{j}{n}})^{-1}f(z^{\binom{j}{n}})\} \in \ell_{0}^{\infty}. \text{ Since } \{z^{\binom{j}{n}}\} \text{ is uniformly separated,}$ by Carleson's theorem there exist a function f in H^{\overline{\sigma}} such that $f_{j}(z^{\binom{j}{n}}) = b'_{j}(z^{\binom{j}{n}})^{-1}f(z^{\binom{j}{n}}) \text{ for all n. Set }$

$$g = \sum_{j=1}^{\ell} b_j f_j,$$

then $g(z_n) = f(z_n)$ for all n and so $H_{\overline{b}g} = H_{\overline{b}f}$. By Clark's theorem, $\overline{b}b_j f \in H^{\infty} + C$ for each j, and hence $\overline{b}g \in H^{\infty} + C$. Since $\overline{b}(g - f) \in H^{\infty}$, we conclude $\overline{b}f \in H^{\infty} + C$.

The proof of Theorem 2. Let b be a Blaschke product with zeros $\{z_n\}$. Then by Nehari's theorem (cf. [7, p6]) $|| H_{\overline{b}f} || = || \overline{b}f + H^{\infty} ||$. By Theorem 2, $H_{\overline{b}f}$ is compact and so by Hartman's theorem (cf. [7, p6]), $\overline{b}f \in H^{\infty} + C$. Suppose $f(z_n) = w_n$ for all n, then we may assume that f is of minimal norm, that is, $|| f + bH^{\infty} || = || f ||_{\infty}$. The $\overline{b}f$ defines a continuous linear functional on $e^{i\theta}H^1$. Since $\overline{b}f \in H^{\infty} + C$, there exist a function $g \in e^{i\theta}H^1$ such that $\int \overline{b}fg \ d\theta/2\pi = || \overline{b}f + H^{\infty} ||$ and $|| g ||_1 = 1$. This implies that f is a desired inner function and unique.

References

- L.Carleson, An interpolation problem for bounded analytic functions, Amer. Jour. Math. 80 (1958), 921-930.
- D.N.Clark, On interpolating sequences and the theory of Hankel and Toeplitz matrices, J. Functional Anal. 5 (1970), 247-258.
- 3. J.Garnett, Two remarks on interpolation by bounded analytic functions, Banach Spaces of Analutic Functions (Baker et al., eds.)(Lecture Notes in Math.Vol. 604), Springer Verlag, Berlin.
- 4. K.Hoffman, Banach Spaces of Analytic Functions, Prentice Hall, Englewood Cliffs, New Jersey.
- 5. G.McDonald and C. Sundberg, Toeplitz operators on the disc, Indiana Univ. Math. J. 28 (1979), 595-611.
- K.Øyma, Extremal interpolatory functions in H^w, Proc. Amer.
 Math. Soc. 64 (1977), 272-276.
- 7. S.C.Power, Hankel Operators On Hilbert Space (Research Notes in Math. Vol. 64), Pitman Advanced Publishing Program, Boston • London • Melbourne.

Department of Mathematics Faculty of Science Hokkaido University Sapporo 060, Japan