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Let {zn} be a sequence in the open unit disc and write 

p = n In the case of 

for all n, the interpolation problems are considered. 
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§l. Theorems 

Let H
oo 

be the Hardy space of bounded analytic functions 

in the unit disc D with boundary values in L
oo = Loo(de/2~). 

Let {zn} be a sequence of distinct points in D and {wn } be 

a bounded sequence of complex numbers. Our notes concern the 

interpolation problem 

for f 
00 

in H . 

fez ) = n 

Put 

II I 
m;mr!n 

n = 1,2, ... 

-1 - z z m n 
I . 

Carleson [lJ proved that every interpolation problem has a solution 

if and only if infn Pn > O. Such a sequence is called uniformly 

separated. We wish to consider the interpolation problem when 

infn Pn = o. Gleason has observed (unpublished) that Earl's proof 

of Carleson's theorem yiels a solution of the interpolation problem 

whenever 2 Iwnl ~ Pn for all n (cf. [3J). Moreover Garnett [3J 

shows that interpolation is possible if we have la I < n 

/ ) -2 log 1 Pn but interpolation is sometimes impossible if 

Pn(l + log l/Pn)-l. 

In this paper we show the following two theorems. If {zn} 

is a finite union of interpolating sequences, then theorem 1 says 

Pn is the slowest possible rate of decay in Iwnl for interpolation 

to occur and theorem 2 shows that if Iwnl decays at a faster rate, 
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then the interpolant of minimal norm is unique and an inner 

function. 

Theorem 1. {zn} is the union of a finite number of uniformly 

separated sequences if and only if for Iwnl ~ Pn for all n, 

there exists a function in H
oo 

such that f(zn) = wn for all n. 

The referee kindly pointed out us the following: If {zn} 

is a finite union of interpolating sequences, then there is a 

constant M so that if Iwnl ~ Pn for all n, then there exists 

an f in H
oo 

such that f(zn) = wn and II f 1100 ~ M. This is a 

little surprising, since there are interpolating sequences {Z } 
n 

and sequences {wn } with Iwnl ~ p = inf Pn 

The similar theorem for HI is not true. 

00 00 

with M :: C/(log lip). 

For when 

~ (1 - Iz I) < 00, we can show that if ~ P~llwnl < 00 then 
n=l n n=l 

there exists a function f in HI such that (1 - IZn l ) f(zn) = 

wn for all n. 

Theorem 2. Let {zn} be the union of a finite number of 

uniformly separated sequences and Then there exists 
00 

a unique f in H of minimal norm such that fez ) = w for n n 

all n. This function is a complex constant times an inner function 

and has analytic continuation across aD \ ~. 

When {zn} is uniformly seporated, 0yma [6J proved theorem 2. 
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§2. Proof of Theorem 1. 

In order to prove the theorem we need two well known lemmas. 

j Z - zn 
Let B. (z) = IT B. (z) = Bj (z) 

J 
, 

In n=l 1 - Z n Z 

Bjn(Zn) (1 < n < j ) . Define - -

mj (w) = inf { II fj + Bjg 1100 g 

j -1 
where f j (z) = E b. wnBjn(Z) . 

n=l In 

Lemma 1. Let w = {wn }, then 

j wn 2 
mj(w) = sup {I E -b-.- f(zn)(l - IZnl )1 

n=l In 

The proof is in [4, p197 - p198J. 

-1 - zn z 
and b. = In Z - Z n 

e Roo} 

Lemma 2. {zn} is the union of a finite number of uniformly 

separated sequences if and only if the measure E(l - IZn l )oz 

is a Carleson measure, where Oz denotes point mass at zn' 
n 

The proof is in [5J. 

n 

The proof of Theorem 1. For the part of 'only if', put I = 
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sup mj(w) 
WEi 

= sup sup 
wE":i f 

j 
< sup L: 

f n=l 

j wn on 2 
I L: f ( Zn) (1 - I zn I ) I 

1 
-0- -b-.-

n= n In 

By Lemma 2, sup 
j 

sup 
wEi 

< 00 and this finishes the proof of 

'only if' (see [5, p197]). 

For the part of 'if', by [5, p197], sup 
j 

By Lemma 1, 
j 

sup sup L: 
j f n=l 

sup mj(w) 
wei 

< 00 

j wn on 
I zn 12) I = sup sup sup L: f(zn)(l - < 

~ b. j wei f n=l In 

j on HI Put 11 . = L: I (1 IZnl)oz=z then for any f E: b. , 
J n=l In n 

and all j there exists a finite positive constant y 

00 

and II11j II < y. Let 11 be the weak-* cluster point of {11 j }, 

then 11 is a measure on the closed unit disc is and II 1111 S y. 

Since for any continuous function u on D that is analytic in 

D 
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j On 
I (1 - I zn I) luI

2
(zn) l: b. n=l In 

= Sn luI 2d].l. < j :"lu(e i8
) I 2d812" , 

J -

( 00 

IZnl) luI 2 (zn) ::: y J :"lu(e i8
) 12

d8/2" 1 n lul 2d].l = l: (1 - and 
n=l 

00 00 

].lID = l: (1 - Iznl)oz=z. This implies l: (1 - IZnl )oz=z is a 
n=l n n=l n 

Carleson measure and this finishes the proof of 'if' by Lemma 2. 
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§3. Proof of Theorem 2 

Let Q denote the orthogonal projection from L2 onto 

-ieH2 e . For q, in L
co 

let Hq, denote the Hankel operator on 

H2 defined by Hq,x = Q ( q,x) . Let t
CO 

be the space of all bounded 

sequences of complex numbers and t
CO 
0 the subspace of tOO of 

sequences tending to zero. Let {zn} be a sequence of distinct 

points in D and b a Blaschke product with zeros {zn}' If f 

is in H
oo 

and HEf is compact then {f(zn)} is in t CO 
0 [2J. 

Clark [2J showed that when {zn} is uniformly separated, if 

{f(zn)} is in tOO 
0 then HEf is compact. The following lemma is 

a generalization of the Clark's theorem and we need it to prove 

theorem 2. 

Lemma 3. Suppose {zn} is the union of a finite number of 

uniformly separated sequences. If is in then 

HEf is compact. 

Proof. It is Hartman's theorem (cf.[7, p6J) that Hof is 
00 

compact if and only if Sf E H + C where C denotes the space 

of continuous complex valued functions on aD. We shall show 
if 

that 1\, {o~lf (zn)} is in t~ then of €: H
oo 

+ C. There is a 

factorization b = b l b 2 ·· .bt 

Blaschke product of {z(j)} 
n 

and Let 

such that b j 

where { z (j ) } 
n 

(1 :: j :: t) is a 

is uniformly separated 

/ 
b. = II b then 

J krfj k 
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Since is uniformly separated, 

by Carleson's theorem there exist a function f in H
oo 

such 

that 

g = 

then g(z ) = f(zn) n 

Sbjf 
00 

theorem, E. H 

b(g - f) 
00 

Since E H 

I 
l:b.f. , 

j =1 J J 

for all n and 

+ C for each 

, we conclude 

for all n. Set 

so H-bg = HSf ' By Clark's 

j , and hence bg E-
00 

H + C. 

Sf 
00 

E: H + C . 

The proof of Theorem 2. Let b be a Blaschke product with 

zeros {zn} . Then by Nehari' s theorem (cf. [7, p6J) II HSf II = 

II bf + H
oo II. By Theorem 2, Hbf is compact and so by Hartman's 

theorem (cf. [7, p6]), bf E H
oo 

+ C. Suppose f(Zn) = wn for 

all n, then we may assume that f is of minimal norm, that is, 

II f + bH
oo 

II = II f 11
00

, The bf defines a continuous linear 

functional on eieHl. Since bf E. H
oo + C, there exist a function 

g E: eieHl such that f bfg de/2'Tf = II bf + H
oo II and II gill = 1. This 

implies that f is a desired inner function and unique. 
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