<table>
<thead>
<tr>
<th>Title</th>
<th>Spherical shell structure of distribution of images reconstructed by diffractive imaging</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Shioya, Hiroyuki; Maehara, Yosuke; Gohara, Kazutoshi</td>
</tr>
<tr>
<td>Citation</td>
<td>Journal of the Optical Society of America A, 27(5): 1214-1218</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2010-05</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/45416</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2010 Optical Society of America, Inc.</td>
</tr>
<tr>
<td>Type</td>
<td>article</td>
</tr>
</tbody>
</table>

Hokkaido University Collection of Scholarly and Academic Papers: HUSCAP
Spherical shell structure of distribution of images reconstructed by diffractive imaging

Hiroyuki Shioya,1,* Yosuke Maehara,2 and Kazutoshi Gohara2

1Division of Information and Electronic Engineering, Muroran Institute of Technology, 27-1 Mizumoto, Muroran 050-8585, Japan
2Division of Applied Physics, Graduate School of Engineering, Hokkaido University, N13, W8, Kita-ku, Sapporo 060-8628, Japan
*Corresponding author: shioya@csse.muroran-it.ac.jp

Received January 14, 2010; revised February 26, 2010; accepted March 5, 2010; posted March 23, 2010 (Doc. ID 122473); published April 30, 2010

Image reconstruction from Fourier intensity through phase retrieval was investigated when the intensity was contaminated with Poisson noise. Although different initial conditions and/or the instability of the iterative phase retrieval process led to different reconstructed images, we found that the distribution of the resulting images in both the object and Fourier spaces formed spherical shell structures. Averaging of the images over the distribution corresponds to the position of the image at the sphere center. © 2010 Optical Society of America

OCIS codes: 100.5070, 100.3008.

1. INTRODUCTION

General scattering experiments give us only the scattered intensity without phase information. Since a scattered field with amplitude and phase information is a Fourier transform of the scatterer density, the use of an inverse Fourier transform, for example, by using lenses in visible optics, allows us to reconstruct the image of the scatterers. However, when ideal lenses are not available as probes in a scattering experiment, phase retrieval from the intensity is essential to reconstruct the object density. The possibility of phase retrieval was first pointed out by Sayre [1] in terms of Shannon’s sampling theorem. An iterative algorithm with the Fourier transform for phase retrieval was presented by Gerchberg and Saxton [2]. Fienup presented an error reduction (ER) algorithm based on the steepest-descent method and the hybrid input-output (HIO) algorithm [3]. Phase retrieval with these algorithms has been widely used in various fields including astronomy, general optics, x-ray crystallography, and electron microscopy. A good explanation of why phases can be retrieved from the oversampled diffraction intensities is introduced in [4]. After the first report of lensless imaging in a soft x-ray region by Miao et al. [5], this field—often called diffractive imaging [6]—has expanded rapidly by using various probes such as x-rays [7–10], electrons [11–14], and the higher harmonics of tabletop lasers [15].

The theoretical and empirical analyses of phase retrieval have been proposed for an advanced usage. One is the use of different runs of phase retrieval by [18,19] and the other is the average of various images obtained in the final process of iterative phase retrieval [20]. These methods differ in the preparation of prior images fitting the given noisy Fourier intensity. However, the grounds for averaging the estimated images are not yet clear. Making up this lack of clarity is important to establish this usage as a confident algorithm for imaging. More concretely, we focus on the structure of a distribution of the estimated images in the object space and the relationship between these images and their average.

In this paper, the spherical shell structures of a distribution consisting of phase-retrieved images are found from the Poisson-noise-contaminated Fourier intensity through numerical examples. The spherical structure gives theoretical support to the use of an average image by [18–20].

2. PHASE RETRIEVAL

The retrieval of the Fourier phase using intensity measurements was first presented in the cyclic transform of the Gerchberg–Saxton iterative algorithm shown in Fig. 1 [2]. The previous object ρ is transformed into \(F \) by the Fourier transform \(\mathcal{F} \); \(F \) is replaced with \(F' \) (the amplitude is given by the experiment in the Fourier domain, and the phase of \(F' \) is the same as that of \(F \), while the replaced amplitude is the constraint in the Fourier domain); \(\rho' \) is obtained by the inverse Fourier transform \(\mathcal{F}^{-1} \) of \(F' \); and \(\rho' \) is replaced with the updated object as the next \(\rho \) using some constraints in the object domain. The object domain \(X \) is defined as a discrete squared array, and the Fourier domain \(K \) is also defined as the same as domain \(X \) with the discrete Fourier transform for practical computation.
In the following, the terminologies of object and domain are referred to interchangeably as image and space.

In the mathematical treatment of phase retrieval, let \(S_{\text{obj}} \) be the set of objects satisfying the object-domain constraints and \(S_{\text{obs}} \) be the set of objects satisfying the Fourier-domain constraint \(|F_{\text{obs}}|^2\). However, there are certain kinds of obstacle factors in the measured \(|F_{\text{obs}}|^2\)—e.g., Poisson noise and the lack of intensity caused by the direct beam—that make it difficult to estimate the missing Fourier phase. Thus an implausible object influenced by such factors could be derived with an iterative phase-retrieval algorithm. The most plausible object, \(\rho_{\text{obj}} \), is presented as a pair given by minimizing the distance between elements of \(S_{\text{obj}} \) and \(S_{\text{obs}} \) as

\[
(\rho_{\text{obs}}, \rho_{\text{obj}}) = \arg\min_{\rho_1 \in S_{\text{obs}}, \rho_2 \in S_{\text{obj}}} L(\rho_1, \rho_2),
\]

where \(\rho_{\text{obs}} \in S_{\text{obs}}, \rho_{\text{obj}} \in S_{\text{obj}} \), and \(L(\rho_1, \rho_2) = \sum_{r \in \Omega}|r_1(r) - r_2(r)| \). If \(S_{\text{obs}} \cap S_{\text{obj}} \neq \emptyset \), there exists a target element \(\rho_{\text{obj}} \) satisfying \(\rho_{\text{obs}} = \rho_{\text{obj}} \). Otherwise, in the case of \(S_{\text{obs}} \cap S_{\text{obj}} = \emptyset \), \(\rho_{\text{obj}} \) in Eq. (1) is an estimated object not satisfying the Fourier-domain constraint.

The iterative phase-retrieval algorithm by Gerchberg and Saxton [2] is regarded as a method of establishing minimization with an update from the \(n \)th object \(\rho_n \) to the \((n+1) \)th object \(\rho_{n+1} \) as

\[
\rho_{n+1}(r) = \begin{cases}
\rho_n(r), & r \notin D \\
0, & r \in D
\end{cases},
\]

where \(D \) is the set of points at which \(\rho_n \) violates the object-domain constraints. Based on the minimization in Eq. (1), \(\rho_n \) and \(\rho_{n+1} \) are in \(S_{\text{obs}} \) and \(S_{\text{obj}} \), respectively, and for a sufficiently small difference between \(\rho_n \) and \(\rho_{n+1} \), an estimate of the object is given by \(\rho_{n+1} \).

In the initial state of the phase-retrieval process, a prior object is very far from the plausible object; hence, the HIO algorithm is often used as an improved version of the updating method with respect to the region violating the object-domain constraints [3],

\[
\rho_{n+1}(r) = \begin{cases}
\rho_n(r), & r \notin D \\
\rho_n(r) - \beta \rho_n(r), & r \in D
\end{cases},
\]

where \(\beta \) is a positive constant. The HIO provides a typical change to the object \(\rho_n \) on the set of points not satisfying the object-domain constraints. Both of these algorithms have been used connectively, and a charge-flipping algorithm was recently introduced with a different object-domain constraint [16].

3. STRUCTURE OF DISTRIBUTION OF PHASE-RETRIEVED IMAGES

The following is an example of our numerical simulations to investigate the structures of phase-retrieved images. We chose a two-dimensional figure \(\rho_{\text{org}} \) as the original image on a discrete square array domain \(X \) \((256 \times 256)\) shown in Fig. 2(a). \(F_{\text{org}} \) is the Fourier transform of \(\rho_{\text{org}} \). The observed Fourier intensity including Poisson noise is regarded as a random sample from the Poisson distribution with the intensity \(I_{\text{org}} = |F_{\text{org}}|^2 \) as the expectation. Following Choi and Lanterman [17], the Poisson-noise-contaminated intensity for each element \(k \) in the Fourier domain \(K \) is obtained by

\[
Poisson(c I_{\text{org}}(k)) \sim I_{\text{noi}}(k),
\]

where the coefficient \(c \) is \(3.332 \times 10^{-9} \) based on \(c = \text{(total count)/}\sum_{k \in K} |F_{\text{org}}(k)|^2 \) and the total count is settled by \(2 \times 10^4 \), and where “\(\sim \)” means that the right part of the equation is a random sample from the probability distribution of the left part. Figures 2(b) and 2(c) are the Fourier intensity \(I_{\text{org}} = |F_{\text{org}}|^2 \) and the Poisson noise intensity \(I_{\text{noi}} = |F_{\text{poisson}}|^2 \) due to Eq. (4) with the logarithmic scale, respectively. A sufficient support area is given as one of the object-domain constraints. The objective is to find the image that best fits the original one using the Fourier intensity \(I_{\text{noi}} \) contaminated by Poisson noise.

Using 10,000 different initial images, 10,000 kinds of the estimated images \(\rho_1, \ldots, \rho_{10^4} \), with \(M = 10,000 \) are obtained with the HIO \((1000 \text{ iterations})\) and the ER \((2000 \text{ iterations})\). Figures 3(a)–3(c) are three examples of these estimated images. Although they closely resemble each other at the first glance, their structures differ upon

\[
\begin{array}{ccc}
\rho_{\text{org}} & I_{\text{org}} & I_{\text{noi}} \\
(a) & (b) & (c)
\end{array}
\]
closer inspection. Figures 3(d) and 3(i) are the average image \(\bar{\rho} \) \((=\frac{\sum_{i=1}^{M}\rho_i}{M})\) and the original image \(\rho_{\text{org}} \), respectively. The profile under each image is a line profile marked by a horizontal line. The average image \(\bar{\rho} \) and \(\rho_{\text{org}} \) resemble each other. The zero intensity region of the profile in Fig. 3(h) is the average image \(\bar{\tau} \) \((=\frac{\sum_{i=1}^{M}\tau_i}{M})\). Figure 3(h) is the average image \(\bar{\tau} \) \((=\frac{\sum_{i=1}^{M}\tau_i}{M})\) and \(\rho_{\text{org}} \), whereas each estimated image is not. This means that an averaging method is feasible for phase retrieval when the Poisson noise contaminates the Fourier intensity.

To assess the validity of the averaging of estimated images, we investigate the distributions of the individual images \(\rho_i \)’s or \(\tau_i \)’s that are used to calculate the average image. Let \(X \) and \(K \) be the object and Fourier spaces; we use a distance \(L \) to represent the difference between two images or these Fourier transformations.

We formalize the subset of \(\{\rho_1, \ldots, \rho_M\} \) in order to satisfy the constraint of the distance \(L \) from the average image \(\bar{\rho} \) as

\[
A_\rho = \{\rho_i|L(\bar{\rho}, \rho_i) \in [s, s+q), \quad i = 1, \ldots, M\},
\]

where \(L \) is the distance, \(M \) is the number of the prepared estimated images \((M=10,000)\), \(s=0,0.001, \ldots, 0.080 \), and \(q=0.001 \). Also, \(A_\tau \) is defined in the same way. The cardinality of \(A_\rho \) denotes the frequency of the quantized value \(q \) to each distance. Figure 4(a) presents a histogram with a quantized interval \([s, s+q)\) and \(A_\rho \) for \(s=0,0.001, \ldots, 0.080 \). The case of \(A_\tau \) is shown in Fig. 4(b). \(A_\rho \) and \(A_\tau \) each bear a strong resemblance to the other. Both estimated images \(\{\rho_1, \ldots, \rho_M\} \) and \(\{\tau_1, \ldots, \tau_M\} \) form a unimodal distribution. They are distant from the original points of average images \(\bar{\rho} \) and \(\bar{\tau} \). That is, their average images separate from the distribution of each estimated image. This shows that almost all the estimated images are distributed on thick spherical shells and their centers are the average images.
Let us also investigate the structure of the Fourier transformation \(F_{\hat{\rho}}(\rho) \) (for \(i = 1, \ldots, M \)) and the average \(\overline{F_{\hat{\rho}}} \). We note that averaging \(\{\rho_1, \ldots, \rho_M\} \) is equivalent to that of \(\{F_{\rho_1}, \ldots, F_{\rho_M}\} \) by using

\[
\mathcal{F}\left(\frac{1}{M} \sum_{i=1}^{M} \rho_i \right) = \frac{1}{M} \sum_{i=1}^{M} \mathcal{F}(\rho_i) = \frac{1}{M} \sum_{i=1}^{M} F_{\rho_i}.
\]

We define the subsets of \(\{F_{\rho_1}, \ldots, F_{\rho_M}\} \) that satisfy the constraint of the distance from \(F_{\hat{\rho}} \) to each \(F_{\rho_i} \) as

\[
B_{\rho} = \{F_{\rho_i} | L(F_{\hat{\rho}}, F_{\rho_i}) \in [t, t + q'], \ i = 1, \ldots, M\},
\]

where \(t = 0, 40, \ldots, 34,000 \) and \(q' = 40 \). In the same way, \(B_{\tau} \) is defined using \(F_{\tau} = \mathcal{F}(\tau) \) (\(i = 1, \ldots, M \)) and average \(\overline{F_{\tau}} = \mathcal{F}(\overline{\tau}) \). The cardinalities of \(B_{\rho} \) and \(B_{\tau} \) are presented in Figs. 4(c) and 4(d), respectively. They form a unimodal distribution. \(\{F_{\rho_1}, \ldots, F_{\rho_M}\} \) and \(\{F_{\tau_1}, \ldots, F_{\tau_M}\} \) are away from the averages \(\overline{F_{\rho}} \) and \(\overline{F_{\tau}} \) of the original points in the graphs, respectively. That is, their averages are separated from the Fourier transformation of the estimated images. This shows that almost all these transformations are distributed on thick spherical shells and that the centers are the averages. Thus, these are also distributed in the spherical shell structure in the Fourier space. The histograms of \(B_{\rho} \) and \(B_{\tau} \) resemble each other. Figure 4(e) schematically shows the spherical shell structures in both spaces.

4. DISCUSSION

Noise in the observation of Fourier intensity is an obstacle to finding a plausible Fourier phase. In the case of Fourier intensity contaminated by Poisson noise, a spherical shell structure of the distribution consisting of
phase-retrieved images is found in the object space through numerical simulations. This indicates the effectiveness of using the average of many different phase-retrieved images obtained by experimental diffraction waves [18–20]. We preformed many simulations using different images from Fig. 2(a); however, all these simulations revealed a spherical shell structure. Another interesting feature was found in the ensemble of retrieved images. The phase-retrieved images were not distributed uniformly and were not dense. They formed a fractal-like arrangement. Iterative Fourier transform is a statistical dynamical system. The spherical shell structure might be an attractive fractal-like invariant set that is in the final state of iterations. The center of the averaging image also might be a singular point as a repeller. This is related to dynamical systems based on the iterated projections by Elser [21]. This paper is, to the best of our knowledge, the first step toward an advanced analysis based on the structure of the distribution of phase-retrieved images. The investigation of the averaging methods using recent experimental results [22,23] of our groups in electron microscopy is also one of the prominent future related works. The more precise characteristics of the structure and the spatial resolution of the final image by the averaging methods remain to be elucidated.

ACKNOWLEDGMENTS

We would like to thank the reviewers for the constructive comments and suggestions.

REFERENCES