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A Review of Anisotropic Polar Ice Models:
from Crystal to Ice-Sheet Flow Models

Olivier Gagliardini, Fabien Gillet-Chaulet, Maurine Montagnat

LGGE CNRS / UJF-Grenoble I, BP 96, F-38402 Saint-Martin d’Héres Cedex, France, gagliar@ glaciog.ujf-grenoble.fr

Abstract: The ice single crystal is one of the most
anisotropic natural materials and the resulting viscous
behaviour of polycrystalline ice can also be strongly
anisotropic and is a function of the distribution of the
crystal c-axis orientations, i.e. its fabric. Such a strong
and strain-dependant anisotropy of the ice polycrystal
certainly affects the general flow of polar ice. The aim
of this paper is to present an exhaustive overview of most
of the glaciological efforts made from more than two
decades to account for polar ice anisotropy in ice flow
modelling, from the crystal to the ice-sheets scale. We
first recall the deformation and recrystallization processes
occurring within ice-sheets and their respective effect on
the polar ice textures. Then, the different models devel-
oped to describe the behaviour of the ice crystal and the
polycrystal are presented, with a special emphasis on ho-
mogenization methods and fabric description. Finally,
existing anisotropic ice flow models and their applica-
tions are reviewed.

Key words: Anisotropic model, Crystal, Fabric, Polycrys-
tal, Ice

1 Introduction

The ice single crystal is one of the most anisotropic
natural materials. This strong anisotropy results essen-
tially from dislocation glide on the basal plane, perpen-
dicular to the crystal hexagonal symmetry axis, called
the c-axis. During the gravity driven flow of ice within
an ice-sheet, the polycrystal develops a strain-induced
fabric, that is, a preferred orientation of the c-axes of
its grains. Near the surface, polycrystalline ice results
from the transformation of deposited snow, and since
the ice crystals are distributed at random, its mechani-
cal behaviour is isotropic. Observations of deep ice cores
drilled in Antarctica and Greenland have shown very dif-
ferent fabric patterns within the ice-sheet, corresponding
to different flow conditions. Strain-induced fabric, com-
bined with the strong anisotropy of the crystal, result in a
strong fabric-dependent anisotropy of the polycrystalline

! Also called dynamic discontinuous recrystallization.

ice. As shown experimentally by Pimienta and others
[78]. a polycrystal of ice with all the c-axes of its grains
orientated in the same direction deforms ten times faster
than an equivalent isotropic sample, when it is sheared
parallel to the basal planes.

The spatial variability of the observed fabrics, from
single maximum fabrics [23, 88] to girdle type fabrics
[58], indicates the strong coupling existing between the
fabric and the local flow conditions. At some stage, it is a
chance, because ice-sheets can be seen as a huge database
containing fabric evolution experiments for a very large
range of strain-history and temperature conditions. On
the reverse, the very small amount of data (few ice cores)
regarding the ice-sheets typical size renders the exploita-
tion of all these data very difficult. Moreover, the very
small strain-rates and very low temperatures prevailing
inside an ice-sheet are quasi-impossible to be reproduced
by cold-room experiments of fabric evolution. All these
together clearly indicate that a strong modelling effort is
needed in order to analyse the measured fabrics at a par-
ticular drilling site. Due to the complex coupling between
the anisotropic flow and the fabric evolution, this mod-
elling effort should include the coupling of both in a local
flow model.

Very often, ice is assumed to be an isotropic medium,
the behaviour of which follows a classical Norton-Hoff
type law. namely the Glen’s law in glaciology, linking
the strain rate D to the deviatoric Cauchy stress S

B,
D:?Tn S, (l)

where 72 = tr§°/2 is the second invariant of the de-
viatoric Cauchy stress and B,, is a fluidity parameter
function of the temperature. The stress exponent entering
the Glen’s law is found to be close to 3 for laboratory
experiments [26], whereas an exponent equal or even
smaller than 2 is certainly more adapted to describe the
behaviour of in-situ polycrystalline ice in the main part of
the ice-sheets [19, 59, 61]. Within an ice-sheet, a stress
exponent equal to 3 would be associated with deforma-
tion occurring in the bottom part of some cores, where
the temperature can be higher than —10 °C and where
dynamic migration' recrystallization is assumed to be
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the main softening mechanism.

As far as the polycrystalline ice is textured, the Glen’s
law does not hold anymore, and an anisotropic formula-
tion must be adopted to describe properly the polycrys-
talline anisotropic behaviour. The aim of this paper is to
present the different classes of anisotropic models used
so far in glaciology.

We first recall the deformation and recrystallization
processes of polar ice. Then, the three existing models
for the crystal are presented as well as the equations for
crystal rotation. The different fabric descriptors are re-
viewed, and general relation linking these descriptors are
given. A special emphasis is given to the comparison of
the different parameterized orientation distribution func-
tions presented in the glaciological literature so far. The
various classes of anisotropic polycrystal models are then
presented. At last, the existing anisotropic flow models
and the results obtained from their applications are dis-
cussed.

2 Deformation and recrystallization pro-
cesses of polar ice

2.1 Deformation mechanisms
When an ice core is located at a dome, a first order ap-
proximation is to assume a uniform steady-state vertical
strain-rate €. along the core, given by:
€., =b/H, 2
where b is the accumulation rate and H is the ice thick-
ness. By taking values from Vostok (Antarctica) ice core,
with the present accumulation rate of 2.3 gecm ™2 a~ !, the
vertical strain-rate is about 7 x 1075 a—! [58]. Lipenkov
and others [58] estimated the horizontal shear strain-rate
along Vostok ice core by assuming a flow law with a
stress exponent n=3. With a surface slope of 1072, the
horizontal shear stress at 2000 m depth is lower than
0.02 MPa, leading to a shear strain-rate of the order of
4 x 10~% a~! at the same depth.

Although strain-rates and deviatoric stresses are very
low, it is now commonly accepted that deformation pro-
cesses along polar ice cores are dominated by the vis-
coplastic mechanism of dislocation glide mainly along
the basal plane. Diffusional creep, commonly associated
with such conditions in many materials, yields a viscos-
ity much higher than that deduced from field data [61].
Deformation by basal glide of dislocations is associated
with efficient processes of accommodation such as nor-
mal grain growth and dynamic recrystallization which are
described in the next paragraph.

2.2  Grain growth and recrystallization in ice-sheets
From texture and microstructure measurements along
polar ice cores, it was evidenced that the evolution of
ice structure is mainly associated with deformation pro-
cesses but influenced by grain growth and recrystalliza-

tion mechanisms [2, 8, 58]. Normal grain growth is
distinctly observed in the upper layers of the ice sheets
(several hundreds of meter) where the mean grain size
is increasing with depth. Such a grain growth is driven
by the decrease in free energy related to the reduction
in grain boundary area. The grain size is generally
larger than 1 mm and the grain boundary free energy
is vg5 = 0.065 1 m~? [3]. A parabolic growth relation-
ship between grain size and time was found along several
cores in Greenland and Antarctica [47, 58, 88].

Below this normal grain growth region. heterogeneous
deformation within grains leads to localized high inter-
nal stresses that can relax through the formation of sub-
boundaries, by the gathering of dislocations [3]. The mis-
orientation associated with these sub-boundaries is sup-
posed to increase with deformation and sub-boundaries
to evolve into high-angle boundaries, leading to the cre-
ation of new grains (polygonization). Such a mecha-
nism can be associated with grain boundary migration
driven by the difference in deformation stored energy
between boundaries and is named rotation or continu-
ous recrystallization, but also with normal grain growth
if the corresponding driving force remains higher (very
low strain-rate conditions). Evidences of polygonization
are given by the visualisation of low angle boundaries
on ice thin sections, and the measurement of an average
constant grain size along cores where temperature and
impurity contents remain constant. For the Byrd ice core
(Antarctica), Alley and others [4] indicate that polygo-
nization processes associated with rotation recrystalliza-
tion counteract further normal grain growth below 400 m
depth. The same explanation was given [13, 88] for the
constant average grain size measured along the GRIP ice
core (Greenland) between 650 and 1500 m depth. Along
the Vostok and EPICA Dome C ice cores (Antarctica),
due to the continuous increase in temperature from the
surface, such an interruption in the grain size profile is
not observed.

Nevertheless, as shown along the EPICA Dome C ice
core by Durand and others [24], the grain size variations
along the main part of the core can only be well repro-
duced by modelling the effect of normal grain growth and
rotation recrystallization, associated with the impact of
impurity contents on the grain boundary migration rate.
The pinning of grain boundaries by dust (insoluble im-
purities) explains most of the observed modifications of
the microstructure, which are highly visible at the transi-
tion between glacial ice and interglacial ice, but rotation
recrystallization becomes very active to balance normal
grain growth in the range 1000 — 1750 m. Below this
depth, Durand and others [24] suggest a thermally acti-
vated unpinning of grain boundaries from particles and
provide a good estimation of the average grain size evo-
lution up to 2135 m.

More recently, Obbard and others have measured ori-
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entation relations between neighbouring grains in ice
from the GISP2 ice core (Greenland) [75] and the Vostok
ice core [74], using the electron backscatter diffraction
technique. Such a technique provides full ¢- and a-axis
orientation of individual grains, and then allows to com-
pare nearest-neighbour orientation relationships. Along
both cores they measured correlations between adjacent
grains that reveal the presence of polygonization associ-
ated with rotation recrystallization.

Deeper in some ice cores, very large amplitudes of
grain size variations can be measured, such as below
2780 m along the GRIP core. Such high variations are at-
tributed to the effect of a temperature increase in the core
which can become higher than —10 °C. and favour the
occurrence of migration recrystallization. This recrys-
tallization process is characterised by a very fast grain
growth, with a boundary velocity that can be 10 times
higher than in the normal grain growth regime [27]. Such
a recrystallization process is associated with the nucle-
ation of new grains through a process that should be close
to the bulging described for geological materials [48].
Migration recrystallization fabrics differ completely from
strain-induced fabrics because the new grains are orien-
tated favourably for the macroscopic deformation. Gow
and Williamson [47] have reported similar observations
on the lower part of the Byrd ice core.

2.3 Fabric development
In polar ice, the fabric is measured via the orientation
of the grain c-axes [8, 58, 88, 92]. The fabric develop-
ment as observed along polar ice cores is mainly associ-
ated with the rotation of grains induced by deformation,
meaning by intracrystalline glide of dislocations, but can
be influenced by recrystallization processes [3, 6, 17].

In the main part of the ice core, only normal grain
growth and rotation recrystallization can influence fabric
development. The exact influence on the c-axis rotation
rate is not clear yet, although the observed fabrics in the
corresponding part of the core are generally very close
to what is expected considering the main imposed strain.
Along the EPICA Dome C ice core, the strain is mainly
vertical compression, due to the location of the core the-
oretically at a topographical dome. Such a main strain
induces a rotation of the c-axes toward the vertical axis
[21, 92]. This configuration was also observed along the
GRIP and the Dome Fuji ice cores [7, 88]. Along the
Vostok ice core. the main strain is horizontal tension,
leading the c-axes to orientate in a vertical plane, perpen-
dicular to the tension direction [58].

Nevertheless, texture observations (grain shape and
orientation) reveal some areas where horizontal shear
seems to have a noticeable effect [22, 21]. Such a shear
will induce a sharp change in the texture development,
by accelerating the rotation toward the vertical axis. As
it will be discussed in the application part of this paper,

such a shear can have a strong impact on ice flow, by in-
ducing a positive feedback in some initially softer layers
[21].

Although rotation recrystallization is only supposed to
slow down the fabric development induced by the defor-
mation, migration recrystallization induces fabrics which
are much different than deformation-induced fabrics. As
observed in alpine glaciers [61, 90], during lab experi-
ments [51, 52] or at the bottom of the GRIP core [88],
the c-axes are rotating toward a direction of easy glide,
between 30° and 457 from the vertical axis. Such a fab-
ric provides orientations that are favouring the imposed
compression strain. The so-formed fabrics are either im-
posed by the nucleation of so-called well oriented grains,
and/or the favoured growth of such grains. They are,
then, controlled by the stress state within the polycrystal
[25]. The induced softening of the polycrystal behaviour
in the bottom part of the core can have a non-negligible
impact on the global flow around the core, and should be
accurately taken into account in modelling.

3 Models for the ice single crystal

3.1 Crystal viscous laws
Such models are required by homogenization mod-
els to derive the macroscopic behaviour from the micro-
scopic properties. We present hereafter the three different
approaches that can be found in the glaciological litera-
ture.

3.1.1 Schmid law

The classical approach in material science to describe the
viscoplastic behaviour of a crystallite is the use of the so-
called Schmid law, which consist of the sum of all the
slip system contributions [9, 11, 12, 13]. To define the
orientation of all these slip systems, one can introduce
the Schmid tensor:

1 3
r'=c(n'eb +b"gn’), (3)

where ¥ and b® are the unit vectors normal and parallel
to the Burgers vector of the slip system s, respectively.
For a given deviatoric Cauchy stress S, the strain-rate DD
is obtained as:

S n—1
) rRr?|r®: 8 _
D = {0 E —— =5 : S, @)
s=1 o 0

where 4 is a reference shear rate and the 75 are the ref-
erence resolved shear stresses (RRSS) which control the
stiffness of each slip system. The stress sensitivity expo-
nent n can be different for each slip system, but in prac-
tise the same value is always adopted. For ice, Castel-
nau and others [11] have numbered nine independent slip
systems arising from the choice of the three families of
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planes: basal (two independent systems), prismatic (two)
and pyramidal (five). Due to the very strong anisotropy
of the crystal, the RRSS for the basal plane 7 is expected
to be much larger than the prismatic and pyramidal ones
(78" and 75¥, respectively). In order to define the position
of the slip systems relative to a fixed reference frame, the

three Euler angles are needed.

3.1.2 Basal slip system model

Considering that most of the deformation of a single crys-
tal results from basal glide and noticing that the basal
plane is isotropic when n = 1 or n = 3 [53], many
authors have adopted a simple model for the ice crystal
assuming only deformation by basal glide [5, 10, 45, 60,
91]. When expressed in the grain reference frame {YR}
defined by e} = e, this law simply reads:

where 72 = (59% + 5%,%)/2, and 1, is the reference
fluidity for basal glide. This simple law considers that all
the other non-basal strain-rate components vanish. The
main advantage of this law is its simplicity, and that only
one orientation (two angles) is needed in order to orien-
tate the grain relative to a fixed reference frame. On the
other hand, the main drawback of this law is to conduct to
zero deformation in some directions for strongly textured
polycrystal (one maximum or girdle type fabrics).

3.1.3 Continuous Transversely Isotropic (CTI)

model

With the idea of keeping the advantage of a grain orien-
tated solely by one unit vector, while ameliorating the be-
haviour description of the previous model, Meyssonnier
and Philip [67] have proposed a continuous transversely
isotropic (CTI) law in the particular case of a linear be-
haviour (n = 1):

D :% (88 + (1 - B)(S - M3+ Ms - S)P)
(6)
+ At ’ tr(Mj - S)M? ,
hB g ,

where M3 = e @ ¢ is the structure tensor used to de-
scribe the axial symmetry around the crystal ¢ axis. The
notation () denotes the symmetric part of a tensor. The
three introduced rheological parameters allow to quan-
tify the crystal anisotropy: t is the basal shear fluidity, 3
characterises the fluidity ratio in and parallel to the basal
planes, and 7 is the tension-compression fluidity ratio in
and perpendicular to the basal planes. The strong crystal
anisotropy and the condition that the dissipation poten-
tial must be positive, lead to the following inequalities:
0 <3 << land1/4 <~ = 1. The extension to the
non-linear case (n # 1) is not straightforward and has

not been developed so far.

One can show that in the linear case, the Schmid law
(4) and the CTI law (6) are fully equivalent, and the rhe-
ological parameters of one can be identified from those
of the other [66]. Moreover, when considering only basal
planes, by setting infinite RRSS in prismatic and pyrami-
dal planes for the Schmid law (4) and 3 = 0 in the CTI
law (6), the three presented crystal laws are equivalents.

3.2 Crystal rotation

The crystal deformation resulting from dislocation
glide in the different slip planes induces an evolution of
the orientation of these planes. For a large part of the ice-
sheet, this rotation induced by deformation is the most
important mechanism contributing to the fabric evolution.
The rotation rate of the orientation of a crystal can be
written as:

e=W-c—AD-c—(c"-D-e), (7)

where W and D are the spin and strain-rate on the grain,
respectively [41] and A is a parameter depending on the
grain model. This relation indicates that the rotation of
the grain’s reference frame {YR} (the term ¢) is equal to
the total spin (W.e) minus the viscoplastic spin induced
by deformation (A[D.c — (¢”.D.c)]). This last term can
be identified as the c-axis spin relative to the crystal ref-
erence frame {9R}. For the basal plane model (5) and the
CTI model (6). assuming that the grain rotation is solely
induced by the glide in basal planes [67], the strain-rate
and spin verify the following relation when expressed in
{9R}:

Wh=Dh, i=12, )

which do correspond to A = 1. This assumption, which
assumes that the viscoplastic spin of the grain c-axis is
only due to the contribution of basal planes and neglects
contributions of the prismatic and pyramidal planes is
well-founded for polar ice and has been used in many
models [5, 45, 60, 85, 86].

For the Schmid law model (4), grain rotation is
the result of all contributions of the three consid-
ered planes, and one can show that it corresponds
o A = (78Y + 2x78) /(7Y + 2x%71) < 1, where
x = [1 — (¢/a)?]/[1 + (¢/a)?] and c¢/a = 1.629 is
the ratio of the crystal lattice dimensions [39].

When A = 1, similarly to what was done by Dinh and
Armstrong [ 18] for fiber material, one can show that the
grain orientation at time ¢ can be uniquely expressed as a
function of its initial orientation ¢y and the deformation
gradient F (Fj; = dx;/dxY) undergone from # to t, by:

c= : . )

(ca’" . F—l : F_T‘C{])UQ
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4 Fabric description

At the macroscopic scale, the anisotropic behaviour is
strongly related to the distribution of the orientations of
all the crystals which compose the polycrystal. The aim
of this part is to review the possible methods to describe
this distribution of orientations. With regard to other ma-
terials, most of the proposed methods take advantage of
the crystal hexagonal symmetry which allows to orientate
the ice crystal with only one unit vector.

4.1 Discrete description

The more natural way to describe the fabric of a poly-
crystal is to give the orientation and associated volume
fraction fi of a finite number of crystals N,. For the ori-
entation, the three Euler angles should be used in order to
define with no ambiguity the crystal reference frame [11]
relative to the polycrystal reference frame. Such a de-
scription is in fact only used when the crystal behaviour
is inferred from the Schmid law, for which all the slip
system are described. As shown in the previous section,
in the linear case, the Schmid law is transversely isotropic
and is identical to the CTI law presented in Section 3.1.3.
When accounting only for the basal slip systems, the
crystal behaviour is also transversely isotropic for both
linear and non-linear (n = 3) behaviours. Therefore, for
all these cases, only one orientation, i.e., the c-axis unit
vector, is necessary to define the crystal position. The c-
axis orientation is generally defined by two angles using
a spherical coordinate system, namely the longitude ;.
and the co-latitude fy. This feature is exploited to derive
the continuous description presented in the next section.

For the volume fraction fj.. if the fabric is inferred
from data measurements on thin sections, it should be
estimated using the cross-sectional area of the grain as
suggested by Gagliardini and others [34].

Using the discrete description for the fabric, a macro-
scopic quantity Y is determined as the average of the mi-
croscopic quantities Y over all the grains:

N

r
a2

Y=<V >= kayk(ck).- (10)
k=1

and by definition Z}L’l Fir=1

4.2 Continuous description
4.2.1 Orientation Distribution Function (ODF)

The Orientation Distribution Function (ODF) is a contin-
uous, positive and infinitely differentiable function of the
orientation. The probability P to find grain orientations
within the solid angle de centred around the direction e,
which expresses the volume fraction dV'(e)/Vj of these
grains, reads:

Py =dV(c)/Ve = %j’(c) de. (11)

By definition, this implies

l fle)de = 1. (12)
2T 5/2

This volume fraction reduces to a relative number of
grains only in the very idealised case where all the grains
have the same volume. In practice, the ODF f(¢) itself
can be seen as the density of orientations over the half
unit sphere, because common practice is to set f(¢) = 1
for a uniform distribution of orientations.

Since it is not possible to distinguish a grain with an
orientation ¢ from a grain with an orientation —e, the
space of all possible orientations is the half unit sphere
S/2 or, using the spherical coordinate system, 8 x @ €
[0,7/2] x [0, 27].

When using an ODF, the volume average of a micro-
scopic quantity Y'(c) is given as:

Pecv(e)>=—4 fOY(de. @3)
27 Jsy2

4.2.2 Orientation tensors

The orientation tensors are defined as the different mo-
ments of the ODF:

a? =<c®e®...c>, (14)
—

p=2

where the average < . > is either given by (10) for a dis-
crete description of the fabric or by (13) for a continuous
description. Consequently, the orientation tensors allow
an objective comparison of these two different fabric de-
scriptions.

By analogy with the inertial products which charac-
terise the mass repartition over a unit sphere, the orien-
tation tensors characterise the repartition of the c-axis
intersections with the unit sphere of orientation.

The second-order orientation tensor a‘® is now com-
monly used to describe the measured fabrics [20. 88, 93,
92]. It gives a more pertinent information than the older
parameters like the strength of the fabric or the spher-
ical aperture [20]. The eigenvalues of a‘® are related
to the spatial strength of the fabric, whereas the eigen-
vectors give the disorientation of the maximum strengths
relative to a reference frame. The eigenvectors are often
assimilated as the best material symmetry basis. Since by
definition tr a*® = 1 and the orientation tensors are sym-
metric, only 5 components of ¢’ are independent. The
different observed fabrics can be classified as a function
of the values of the eigenvalues:

-ay’ =~ ay’ = ay’ =~ 1/3 for an isotropic fabric,
-1>af” >1/3 > ay = af’ > 0 for a single maxi-
mum fabric,

-1>a” =ay’ >1/3 > a3’ >0 for a girdle fabric,
-1 > af > ay’ > a’ > 0 for more general fabric
patterns.
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Two different fabrics (different distributions of grain ori-
entations) can have the same a®, but the higher even or-
der orientation tensors will be different, and consequently
these two fabric samples should behave slightly differ-
ently. In the reverse, a‘® contains all the fabric informa-
tion included in a®’; for example:

(2)
a;;

= u.ﬂj—’“ B “:;)zz + a;3s3 - (15)

On the other hand, the second order orientation tensor
is also used as a fabric parameter to describe the fabric in
polycrystal models [41, 44]. In Section 5.1, an analyti-
cal derivation of the polycrystal behaviour is inferred for
the uniform stress model using the orientation tensors to
describe the fabric.

4.2.3 Link between ODF and orientation tensors

As shown by Zheng and Zou [94], the ODF can be ex-
pressed as a tensorial expansion of the even order ori-
entation tensors. For the two first terms, this expansion
takes the form:

15 .

fle)=1+ EI_CI.{!IJ e®c
(16)
315

+T|_a"”4::c@c|>j¢c:(>'_¢-c+...?

where La'"’_ denotes the irreducible part® of the tensor
a'"’. From (16), the link between the eigenvalues of a'®
and the ODF becomes clear: when expressed in the prin-
cipal reference frame, the ODF constructed from (16) up
to a'? is an ellipsoid, length axis of which in direction i
is proportional to a;”’. As an example, the contribution of
the different terms of the tensorial expansion (16) is plot-
ted in Figure 1 for a plane isotropic fabric and a plane bi-
axial fabric. Obviously these two fabrics have the same
second order orientation tensor (a}] = a5, = 1/2 and
other components zero), so that the ODF is identical up
to the second-order orientation tensor expansion, while
the contribution from the fourth-order orientation tensors
are different.

10 — T T T T T 7 10 — T T T T T
5 |- 4 st .
I © 4>
S+ - 5} -

" a 1 " b :
-10 FIR R T N TR B 10 PR DR TR N TR N

0 5 0 5 10-10 5 0 5 10
Figure 1:  Section in the planes 1 and 2 of the ODF
(16) for (a) a plane isotropic fabric (c-axis randomly dis-
tributed in a plane) and (b) a plane bi-axial fabric (half
c-axis horizontal and half vertical). The thin black line

shows the contribution of a'®', the thick blue line the con-
tribution of a'' and the thick red line indicates the con-
tribution from both a® and a'*.

4.2.4 Analytical ODF

By definition, for the uniform strain-rate model (see Sec-
tion 5.1), each grain experiences the same deformation
gradient tensor, which is equal to the macroscopic de-
formation gradient experienced by the ice polycrystal F,
defined by

— 6‘_.. = = —
F,-J-:’_—r and F=L-F, (17)

where Z; and 7! are the coordinates at time ¢ and t° re-
spectively.

Following Dinh and Armstrong [ 18], if the ice fabric is
isotropic at time t°, i.e. f = 1, then we can check that

fle)=(c"-F-F".¢)™%? (18)
is a solution of the equation for the evolution of the ODF
(36) for the uniform strain-rate model (see its definition
in Section 3.1), with the e—axis rotation velocity given
by (7) assuming A = 1. The ODF is then only a func-
tion of the deformation gradient experienced by the ice
polycrystal F', which is a solution of the linear equation
(17)2. and which exhibits analytical solutions for several
flow conditions. The generic expression (18) should have
been used to derive the more specific ones obtained later
and restricted to some particular loading conditions, as in
[35, 43, 45, 46, 85].

As an example, the analytical expression for a simple
shear solicitation, defined by Fy; = Fyy = F33 = 1,
Fi5 = k and other terms zero, is obtained directly from
(18) as:

-3/2
(19)
Similar analytical solution can also be derived under

the static assumption (uniform stress, see Section 5.1),
but for less general loading conditions [35, 43].

f = (cos® 6+ sin® B(cos® ¢ + (sin ¢ + K cos ©)?))

4.2.5 Parameterized ODF

From heuristic considerations or using the previous ana-
lytical solutions, some parameterized ODF (PODF) have
been proposed in order to decrease the number of param-
eters needed to describe the fabric. In this section, these
PODF are presented and compared.

Lliboutry [60] has proposed to use a Fisherian distri-
bution:

k ek cost
k(l) = —F— 20
Jhn( ) oF _1 (20)
but finally adopted the following PODF:
fu(8) =vcos” 1 4. 21)

2For the second order orientation tensor, La'? 1 = a'® — I/3, where I is the identity tensor; more details can be found in [39], page 36.

— 154 —



Meyssonnier and Philip [67] used a discretized ODF
over 90 intervals between 0 and 7/2. They showed that
the discretized ODF can be very accurately fitied using
the following PODF:

fo.(0) = [qu + q1 08 26 + qg cos® 28]_1 ; (22)

From an analytical solution, Gédert [43] has derived
a semi-parameterized ODF restricted to planar flow, As-
suming that the direction 3 is the direction perpendicular
to the plane flow, the proposed PODF takes the form:

fabc(0,0) = A3 cos® 0
+ (a4 bsin2p + ccos 20)A3sin? 0732, (23)

where \ = e32 &tDsz 1 (23), only the in-plane form
of the fabric is parameterized since the concentration per-
pendicular to the plane flow is given analytically as a
function of the strain-rate normal to the plane flow (Ds3).

Using the same analytical approach [35]. Gagliar-
dini and Meyssonnier have proposed a PODF for an or-
thotropic fabric [36]:

fk ka2, ,o:, '-") [(k J"m (_0::. 7]

+ sin? B(k? cos? (¢ — o) + k2 sin®(¢ _.150))]—3!2_

(24)

The two parameters k; and ko control the fabric strength,
whereas g gives the inclination of the material symme-
try reference frame in the particular case of planar flow.

PODF (23) and (24) lead to exactly the same ori-
entation distribution since analytical relations® can
be obtained between the two sets of parameters
(ky,k2,20) and (a,b,c,A). Using the conservation
equation (12) in (23). one of the four parameters can
be expressed as a function of the three others: a =
(b2 / sin(arctan(b/c))? — 1)1/2,

Noticing that most of the observed fabrics have a verti-
cal axis of rotational symmetry, Thorsteinsson [86] built
his PODF by assuming a uniform distribution within the
two angles ag and a, such that:

1
fﬂt)-ﬂ(g) = L 0 g S 9 S <
COSyg — COS v

Nllﬁ

(25)
More recently, Placidi and Hutter [79] have adopted
the following PODF:

3(6 — 6
fo,(0) = e (26)

sin 6y

where 4§ denotes the Dirac function.

Except for (23) and (24), all the other PODF found in
the literature are restricted to a fabric which shows a rota-
tional symmetry. Since all these PODF are expressed in
the material symmetry reference frame of the polycrysial,
two Euler angles have to be added to the set of parameters
to give the position of the fabric symmetry axis relative
to a general reference frame. The PODF (23) and (24)
include the orientation of one of the axes of the material
symmetry reference frame, and are restricted to the par-
ticular case of a planar flow. For more complex flow, one
should for example set ¢y = 0 in (24) and use three Eu-
ler angles to fix the material symmetry reference frame
relative to a general reference frame.

Except for (22) and (23), all the other PODF fulfil im-
plicitly the total volume conservation (12). No simple
relation was found for the three parameters in (22) in or-
der to express one of the parameters as a function of the
two others. As a consequence, neither combination of
the three parameters ¢; in (22) guarantees that the volume
conservation is fulfilled. This condition must be verified
afterwards, which in reality render the use of this PODF
very complicated.

Except for (26), all the presented PODF reduce to the
expected value f = 1 for isotropic ice.

As presented in the previous section, the orientation
tensors allow an objective comparison of fabrics. As-
suming a transversely isorropic fabric around es, iLe.

ayy =1—2a],a}] = a3 anda;; = 0ifi # j, one can
compare the different PODF for a given r;-‘” The relation
between the PODF parameter(s) p and a4y is given by:

i /2
ay = ]ﬂ fp(#) cos®sinddé, (27)

and therefore agy = [(k* — 2k + 2) e* —2]/[(k*(e* —1)]
and alyy = V/(y—i—?) for Lliboutry’s PODF (20) and (21),
respectively, agy = (cos® ag + cos ag cos a + cos® ) /3
for Thorsteinsson’s PODF (25) and a3, = cos® 6 for
Placidi and Hutter’'s PODF (26). In the case of a trans-
versely isotropic fabric, £y = ko, and the Gagliardini and
Meyssonnier’s PODF (24), as well as the Godert’s PODEF,
is only a function of 4. Following [35], an analytical rela-
tion can be derived between ay, and the PODF parameter
ky (from equations (40), (42) and (43) in [35]).

Since the Thorsteinsson’s PODF {2‘3) depends on two
parameters, for a given value of a3y, the choice of these
two parameters is not unique. As done by Thorsteinsson
[86], one can adopt ag = 0 for single maximum fabrics
(cone fabrics), but as far as ay; < 1/3 (girdle fabric),
the parameters must verify ag > arccos(3agy)'/? and

a=m7/2.

All these PODF, as well as measured ODF, are com-
pared in Figure 2. Obviously, the Fisherian distribution
proposed by Lliboutry [60], which has never been ap-
plied in glaciology. fits best the observed distribution of
grain orientations. PODF (25) and (26) give unrealistic
distributions whereas PODF (22), (23) and (24) lead to a

320 = arctan(b/e), k¥ = AY3(a + b/ sin 2¢0) and kZ = A3 (a — b/ sin 2¢0).
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too much concentrated fabric. Since the PODF (23) and
(24) were derived from an analytical solution assuming
that the grain rotation is only the result of the glide of
dislocations along the crystallographic planes, the differ-
ence between the measured fabrics and the PODF (23)
and (24) might be explained by the rotation recrystalliza-
tion which has the effect of decreasing the fabric strength
in compression.
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Figure 2: Comparison of the different PODF -v-(20), -a-
(21), -#-(22), -e-(23) and (24), -m-(25) and -no symbol-
(26) for (a) asy = 0.20, (b) asy = 0.44, (¢) a5y = 0.60
and (d) as, = 0.78. The thick red curve represents mea-
surements from the Dome C core for the same value of
ays and afy = asy (G. Durand, personal communica-
tion).

The choice of a PODF implicitly determines all the
even order orientation tensors. Even if for a particular
value of the parameter(s) of the PODF, one can obtain
the same second-order orientation tensor, the higher or-
der orientation tensors will be different (else the PODF
curves in Figure 2 would be superimposed). Therefore,
even for the same second-order orientation tensor and the
same homogenization model, the polycrystal response
should be different for all these PODFE.

In order to compare the difference in terms of poly-
crystal behaviour induced by these differences in the dis-
tribution of orientations, the enhancements in shear E°**
and in compression £ relative to isotropic ice are plot-
ted in Figure 3 as a function of a4y . For all the PODF, the
same grain behaviour (CTI law (6) with 3 = 0.01 and
v = 1) and the same homogenization model (uniform
stress model from Equation (29) in Section 5.1) have
been used. Because in the linear case the polycrystal be-
haviour depends only on the second and fourth order ori-
entation tensors, the observed differences are only due to
differences in the fourth-order orientation tensor. More-
over, for axisymmetric fabrics, E°* and E° depend

only on a{s,. For perfect girdle (a3, = 0), isotropic
(ayy = 1/3) and perfect single maximum (aj; = 1)
fabrics, the same values for al}s, (aj]sy = 1/8, 1/15
and 0, respectively) are obtained for all the PODF, except
for (26). The maximum relative difference between all
the PODF (excluding (26)) is about 20% for E<* with
a5, = 0.5 and up to 125% for E° with aj; = 0.6. As
expected in compression, for all the PODF the ice is eas-
ier to deform (E° > 1) for 1/3 < a3y < ayaimi» and
for more concentrated fabrics, the ice becomes harder to
deform. As shown in Figure 3c, the value of ajy);,,..,. for
which E“¢ is equal to one again, varies from 0.54 for the
Meyssonnier’s PODF (22) up to 0.85 for the Thorsteins-
son’s PODF (25).
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Figure 3:  Evolution of (a) a\},s, (b) E°** and (c) E°
as a function of aly for the different PODF -v~(20), -a-
(21), -9-(22), -o-(23) and (24), -w-(25) and -no symbol-
(26). Red circles represent enhancement factors for some
of the measured Dome C fabrics (G. Durand, person-
nal communication). Enhancements in shear E“* and
in compression E°° relative to isotropy have been calcu-
lated using the static model and a grain anisotropy given
by 3 =0.01 and v = 1.

These differences might be larger for a non-linear be-
haviour because the polycrystal law will depend on the
first four even orientation tensors (when n = 3).

5 Polycrystal models

5.1 Homogenization models

The concept of homogenization models, also called
micro-macro models or volume fraction models, is to de-
rive the polycrystal behaviour from the crystal one and
the fabric. The fabric description can contain topological
information to take into account neighbour influence (see
Section 5.1.3), but generally it is only given as an orien-
tation distribution, either discrete (Section 4.1) or contin-
uous (Section 4.2).
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The difference between all the homogenization mod-
els comes from their formulations and the hypotheses,
implicit or explicit, used to take into account the grain-
to-grain interaction.

For all these models, the macroscopic strain-rate D
and the macroscopic deviatoric stress S are evaluated as
the average of the strain-rate and deviatoric stress, respec-
tively, over all the grains that compose the polycrystal:

D=<D> and S=<8>. (28)

The average < . > is either defined by (10) for a discrete
description of the fabric or by (13) for a continuous one.

5.1.1 Static and Taylor bounds

The Taylor model assumes a uniform strain-rate distribu-
tion over all the grains, so that the strain-rate experienced
by a grain is the same as that experienced by the poly-
crystal considered as a homogeneous medium: D = D.
On the other side, the static model supposes a uniform
stress distribution (S = S). For a given applied strain-
rate, the static and Taylor models provide the lower and
upper bounds, respectively, for the dissipation potential
[54].

Due to the strong crystal anisotropy, the static model
has been shown to be well adapted to describe the poly-
crystalline ice behaviour, whereas it is the opposite for
the Taylor model [11].

The static model has been often used either with a dis-
crete description of the fabric [10, 91] or a continuum
description [35, 45, 60, 85], mainly because it allows an-
alytical developments. Using either the CTI law (5) or
(6) and the orientation tensor to describe the fabric, an-
alytical expressions for the static model can be derived
easily. As an example, this expression using the CTI law
(6) with v = 1. simply reads:

— 'f;'l.’l _ s s
D="-18854+(1-3)(a® - 8+8-a®)
2 [ ] (29)
+1(B-1)a® : 8.
As shown by Equation (29), in the linear case, the macro-
scopic expression depends on the first two even order ori-
entation tensors.

In the limit case of an isotropic fabric, the second and
fourth order orientation tensors simply read a..i-j’ = 8;;/3
and (1;',]-;‘_; — ((5-,‘_;'5;\-; + 5“\-5‘?‘: -+ 5,‘:5_-";,-)/15 (2,9:% 1 =
1,2.3). The static law (29) reduces then to the isotropic
Glen’s law (1), and the following relation between the
grain parameters* ¢y, 3 and v, and the macroscopic
Glen’s law fluidity B is obtained:

b 4y -1
kot S | . (30)
By 8v(B+1)+8-2

For a one-site model, the grain-to-grain interaction is
not taken into account, so that the behaviour of a poly-
crystal with a single maximum fabric is fully equivalent

to that of the single crystal. Therefore, the grain pa-
rameters should be identified, not regarding the crystal
behaviour, but from experimental tests on a polycrystal
with a strong single maximum fabric. Experimentally, it
is then found that such a polycrystal is approximately 10
times easier to shear perpendicular to the mean e-axis ori-
entation than a polycrystal with an isotropic fabric [78].
The ratio vy /By = 10 can then be used to select the pa-
rameters (3, 7). For the static model, the maximum value
for this ratio is 5/2 in the linear case and 35/8 = 4.375
when n = 3 [60]. The experimental ratio of 10 is then not
reached by the static model, and this is the main drawback
of this model. With the static model, the anisotropy en-
hancement of the flow is always underestimated for sin-
gle maximum fabrics by a factor 4 in the linear case and
greater than 2 when n = 3. The use of intermediate mod-
els, as presented below, allows to avoid this drawback.

5.1.2  Visco-Plastic Self-Consistent (VPSC) model

The VPSC model has been adapted to ice by Castelnau
and others [11] using a discrete description of the fabric.
As shown by Castelnau and others [12] from mechanical
tests on GRIP (Greenland) ice specimens, this model re-
produces adequately the dependence of the ice theology
on its fabric. The VPSC model is a so-called one-site ap-
proximation in which the influence of the neighbourhood
of each grain is accounted for by considering this grain
as an inclusion embedded in a homogeneous matrix, the
so-called homogeneous equivalent medium (HEM). The
HEM behaviour, which represents that of the polycrystal,
is to be determined. The basis of the VPSC homogeniza-
tion scheme is the local interaction formula that provides
arelation between the local stress and the local strain-rate
acting on a grain (different from grain to grain) and the
corresponding macroscopic quantities. It is written as

D-D=-M:(S-8), (31)

where the interaction tensor M is a function of the grain
and of the (unknown) HEM mechanical properties (see
Equations (17-19) in [11] for details). By construction,
if the same stress sensitivity exponent is adopted for
all the crystallographic planes, then the HEM and the
grain will have the same exponent. The macroscopic be-
haviour of the HEM is obtained by solving the equation

D =< 3

To solve this equation, Castelnau and others used the
averaging formula (10) and the Schmid law (4) with a
stress exponent n = 3. In the non-linear case, the results
are strongly dependent on the linearisation of the local
behaviour, leading to the so-called secant, tangent and
affine formulations; however, Castelnau and others used
only the tangent formulation [9]. The above assumption
may be questionable for ice, where a strong directional-
ity and large variations in local properties are expected.

JForrnally. to obtain relation (30), one should derive an expression similar to (29) without assuming v = 1.
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Furthermore, the tangent formulation was shown to satu-
rate for high anisotropy [42]. The non-dependence with
higher-order statistical moments is particularly critical
for the treatment of those highly-contrasted materials,
since such information is essential to capture, in an av-
erage sense, the effect of the strong strain-rate gradients
that are likely to develop inside grains which are highly
anisotropic. In order to overcome the above limitations,
Lebensohn and others have applied to ice a rigorous non-
linear homogenization scheme, the second-order VPSC
model, that takes into account information on the av-
erage field fluctuations at the grain level [56]. Among
the various nonlinear extensions of the self-consistent
approximation, the second-order method gives the best
overall agreement with the effective properties and field
fluctuations obtained by means of full-field simulations
(see below), for both 2-D and 3-D polycrystals [56].

In the linear case, there is only one formulation for
the VPSC model, and the macroscopic behaviour of the
HEM can be obtained by solving either the equation
D =< D >or§ =< 8 >. Meyssonnier and Philip
have derived a semi-analytical solution in this particular
linear case, using the CTI model (6) with v = 1 for the
grain and an ODF with transverse symmetries to describe
the fabric [67].

When using the VPSC model it is not possible to
achieve the HEM behaviour in closed analytical form.
The ratio 1, /B,, of the isotropic fluidity obtained with
the VPSC model (on an isotropic fabric) to the grain ref-
erence fluidity v»,, must be computed. In the linear case,
Meyssonnier and Philip [67] derived the following rela-
tion when v = 1:

(23 1414245 (32)

By 63 ' )
This relation can be used to choose appropriate values of
grain parameter [ when 7 = 1. As an example, the ex-
pected experimental value of 10 is obtained for F = 0.04
and v = 1 [67]. In the non-linear case with the tan-
gent linearisation scheme of the VPSC, Castelnau and
others [9] estimated from a comparison with experimen-
tal tests that the RRSS for the pyramidal and prismatic

planes should be 70 times larger than the basal plane
RRSS (7F" = 7Y = T070).

5.1.3 Topological models

For this particular class of homogenization models, the
fabric description contains some topological information
so that the neighbourhood is taken into account to es-
timate the stress and strain-rate of a particular grain.
Azuma and Goto-Azuma [5] and Thorsteinsson [87] have
developed topological models in which the fabric de-
scription is discrete and the grain deforms only by basal
glide with n = 3. In both approaches, the local deviatoric

stress is evaluated from the macroscopic one as:

Sij = @;S;;  (nosum), (33)

where a;; is the neighbourhood interaction coefficient
tensor.

In Azuma and Goto-Azuma [5], the neighbourhood in-
teraction coefficients are estimated as
<y >

Qg = —% —» (34)

Tij

where << . => denotes the local average over the neigh-

bour grains only, and r° is the Schmid tensor (3) for

one particular direction in the basal plane, determined as

the maximum resolved shear-stress direction when the
macroscopic stresses act on the grain.

Thorsteinsson [87] has adopted a scalar neighbourhood
interaction coefficient, defined as:

< |3, (r% : 8)b%| > 1
| 22s(r® : S)b°| (C+6¢)°
(35)
where << . => denotes the local average over the six
neighbours, and )~ is the sum over the three slip sys-
tems of the basal plane. The two parameters ¢ and £ al-
low to modify the relative influence of the 6 neighbours:
(¢,€) = (1,0) reduces to the uniform stress model, when
(C.€) = (6,1) the centre crystal contributes as much as
all the 6 neighbours and when ({, &) = (1, 1) the centre
crystal contributes as much as each of the neighbours.
Note that the fabric evolution, as well as grain growth,
rotation and dynamic recrystallization are implemented
in Thorsteinsson’s model [87].

agj=a= |+

Azuma and Goto-Azuma [5] have first highlighted the
possible directional effects of anisotropy on the forma-
tion of stratigraphic disturbances. By using their poly-
crystalline law, they have shown that at a deeper part of
an ice-sheet, where a single-maximum fabric develops, a
positive vertical strain-rate can be produced with only a
horizontal shear stress as far as the bedrock is not flat.
Using the feature that a polycrystal with a single maxi-
mum fabric is easier to shear but harder to compress, they
noticed that a small misorientation of the mean orienta-
tion of the c-axes could induce disturbances of the lay-
ers. For a vertical variation of the mean orientation, both
layer thinning and thickening can occur depending on the
mean orientation of the c-axis. If it varies horizontally,
then layer folding or boudinage could occur. These two
scenarios are only qualitative because in [5] the complex
interaction from the surrounding layers was completely
neglected.

The so-called cellular automaton models [30, 55] can
also be included in the class of the topological mod-
els. Based on a cellular automaton algorithm, this ap-
proach allows the modelling of several competing pro-
cesses acting on the fabric evolution, like deformation,
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grain growth and continuous and discontinuous recrystal-
lizations. For numerical reasons, applications are limited
to two-dimensional thin section, and the stress is assumed
uniform in all the grains, which is the main difference to
the full-field models presented below.

5.2  Phenomenological models

In a phenomenological model, an anisotropic macro-
scopic formulation for the polycrystal law is postulated.
To be usable, the rheological parameters that enter this
law have to be evaluated as a function of the fabric. The
form of the law is assumed to be restricted to particular
kinds of anisotropic symmetries (orthotropy, transverse
isotropy or even isotropy), and the approaches mainly
differ on the way the rheological parameters and the fab-
ric are linked. In the Morland and Staroszczyk approach
[69, 70, 71, 72, 80, 81, 83, 84], the anisotropic parame-
ters are solely phenomenological functions of the defor-
mation, and there is no direct link with a fabric descriptor.
The limit values of the strain functions are evaluated from
experimental results or by comparison with an homoge-
nization model [82].

On the contrary, the six rheological parameters enter-
ing the Gillet-Chaulet and others [40] law are simply fit-
ted using a homogenization model, like the VPSC model
presented above. In the first formulation, the fabric was
described using the parameters of the PODF (24) [40],
but this approach was found not to be efficient for the
fabric evolution, so that the fabric was later described by
the use of the second orientation tensor [41].

In the approach of Placidi and Hutter [79], the Glen’s
flow law collinearity between strain-rate and stress ten-
sors is assumed to be conserved, and the anisotropy is
taken into account by introducing an anisotropic enhance-
ment factor. This anisotropic enhancement factor is a
function of the so-called deformability of the polycrys-
tal, evaluated from the fabric and the actual macroscopic
stress. The anisotropic enhancement factor varies from 0
for a single maximum fabric under compression up to a
maximum value F; for the same fabric but solicited by
simple shear.

The main interest of these models is their numerical ef-
ficiency, which allow their implementation in flow mod-
els as presented in Section 6.

5.3 Full-field models

The full-field models solve properly the Stokes equa-
tions using either classical Finite Element methods [65,
68] or Fast-Fourier Transforms [56, 57]. The latter has
better performance than a Finite Element calculation for
the same purpose and resolution, but only works for pe-
riodic boundary conditions. In such an approach, each
crystal is decomposed in many elements, allowing to in-
fer the stress and strain-rate heterogeneity at the micro-
scopic scale. As an important result, these models show
that, for a given orientation, the mean strain-rate and
stress are strongly dependent on the neighbour grain ori-
entations. All the same, the average value of all grains

having the same orientation is still dependent on this ori-
entation. In other words, certainly because the ice is
strongly anisotropic, the neighbourhood influence does
not counteract the orientation influence when looking to
average behaviour of a large number of grains having the
same orientation, but only induce a strong variability.

The FFT results in [57] clearly contradict the statement
made by Faria and co-authors [28, 29, 31] that stress and
strain-rate of a species, i.e. an ensemble of grains having
the same orientation, should be independent of its orien-
tation because of the huge number of grains belonging
in the same species. As discussed by Gagliardini [33],
the assumption made by Faria and others seems to be
not insignificant and should be comparable to a uniform
strain-rate or Taylor assumption in the framework of the
homogenization model (for a complete discussion of this
subject, see also the reply to Gagliardini’s comment [33]
by Faria and others [32]).

5.4 Fabric evolution
When the fabric is described using the discrete ap-
proach, the strain-rate and the spin for each constituent
can be evaluated from the homogenization model and the
grain c—axis rotation is simply calculated from Equa-
tion (7) [13, 87, 91]. This formula also holds for eval-
uating the e—axis evolution for the full-field models [65].

Using an ODF, Goédert and Hutter [45] have proposed
to adopt the following equation for the local balance of
the ODF:

f+dive(ef) = 7l 4+ dive UL + dive U1, (36)

where div. and div, denote the divergence operator in
the orientation and Cartesian spaces, respectively, 7/ is
a production of orientation, W/ is associated with the
diffusion of orientation in the orientation space and W/
describes diffusion of crystals from one region to the
neighbouring one. Such production and diffusion terms
should be used to take into account the different recrystal-
lization processes. Nevertheless, the continuity equation
(12) only holds when these terms are neglected.

The PODF (23), (24) and (25) have been used to ex-
press the fabric evolution equation as a set of PODF
parameter evolution equations for some special flow con-
ditions and under the static assumption. This is achieved
by replacing f in Equation (36) by the PODF expres-
sion. Then, a set of equations for the evolution of the
parameters is derived by choosing as many particular
orientations as the number of parameters in the PODFE
Therefore, the resulting parameter evolution equations
are not necessarily unique. Gagliardini and Meysson-
nier [38] have shown that, in the case of 2D plane-strain
flow, this method leads to a unique set of three equations
for the three parameters ki, ko and o for the PODF
(24). This result was not achieved in a more general 3D
flow. Thorsteinsson and others [89] have derived a simple
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equation for the cone angle v in (25). by a straight-line
fit of the results obtained with a discrete model [87].

Using the orientation tensor, the fabric evolution can
be described at the macroscopic scale from the temporal
derivation of the second order orientation tensor (14), as:

a? =<e®e>+<e®e> . (37)

The rotation rate ¢ of the e—axis given by (7), is a func-
tion of the microscopic spin and strain-rate and should
therefore be expressed as a function of macroscopic
quantities if one wants to derive an explicit equation for
the evolution of the second order orientation tensor. This
is simply achieved for the Taylor model and also for the
static one for which D = i, /27" 1S, For intermediate
models, Godert [44], and Gillet-Chaulet and others [41],
have proposed to adopt the following expression for the
rotation rate of the orientation of a crystal:

e=W.c—[C-c—(c" - C-c), (38

where C = (1—a)D +a, 7" 18/2 is a tensor, equiv-
alent to a strain-rate, intermediate between the Taylor and
static strain-rates. The scalar inferaction parameter v al-
lows to describe intermediate fabric evolution, from the
Taylor case (a = 0) to the static case (o« = 1). In [44],
the macroscopic stress and strain-rate are evaluated using
the static model, whereas Gillet-Chaulet and others [41]
used the VPSC approximation.

Using this intermediate notation for the rotation rate of
the orientation of a crystal, its follows from (37) that the
evolution of the second order orientation tensor reads:

@ =W -a® —a® . W —(C-a® —a®.C)
+2a@: €.
(39)

Equation (39) for the evolution of a‘® involves the
fourth-order orientation tensor a. The same proce-
dure applied to a® would show that @'* depends on
a'®, and, in general, that any evolution equation for an
even-order orientation tensor @'*” will involve the next
higher even-order orientation tensor a'??*2)_ To obtain
a closed set of equations we must stop at a given or-
der 2p and make a so-called closure approximation, i.e.
postulate a relation between a'>?*2) and a'??). Using a
closure approximation for ¢ leads to the assumption of
macroscopic orthotropy [15].

Orientation tensors are widely used to provide a com-
pact representation of fiber orientations in reinforced
composites, and many closure approximations have been
proposed (see for example [1, 14, 15] and references
therein). A simple form for the closure approximation,
known as the guadratic closure, is:

a® =a@a", (40)

Note that the quadratic closure does not respect the sym-
metries of @ and is only exact for a perfect single max-
imum fabric.

A second approach, the linear closure, is built from all
the possible products of @ and the identity tensor I that
respect the symmetries of a‘®:

~(4)
7(}_..H =

1 c c c 2 ¢
ii —g(ﬂajém + Oikdji + dudjk) + a3 O

+ a1 + ay djk + @y 0ij + aj) dik + aj0u -
(41)

Advani and Tucker [1] have proposed an hybrid clo-
sure constructed from the two previous ones:

a® = (1 -ayp)a"™ +aza?, (42)

where 2ay = 3a® : a® — 1. Since ay = 1 for a sin-
gle maximum fabric and oy = 0 for an isotropic one, the
hybrid closure is exact for both cases. The hybrid closure
was applied to ice by Gaédert [44].

Gillet-Chaulet and others [41] have used the Invariant-
Based Optimal Fiitting (IBOF) closure from Chung and
Kwon [14]. Its general form is

a® =g (I® I)"—’ + B(I® a(z))u
i ,"33((],(2) ® a(:))D i .34(1 ® a(z) ; a(z)){)
+ I,i-}s(a@} ® a(ﬂ} _a(zj)D

+ ,.fjﬁ(atz} _a(z) ® a(z) . a(g;)u )
(43)

where I is the identity tensor, and the six functions [3;
are functions of the second and third invariants of a‘®,
denoted by IT and IIT respectively. It can be shown that,
owing to the symmetries of @ and the normalisation
condition tra‘® = 1, only 3 functions [; are indepen-
dent. Following Chung and Kwon [14], Gillet-Chaulet
and others [41] have taken the three independent func-
tions as complete polynomials of degree 5 in II and II7,
so that 63 parameters need to be determined. By adding
two other relations to insure that the IBOF closure ap-
proximation is exact for perfectly aligned fabrics and gir-
dle fabrics, this number is reduced to 61.

Gillet-Chaulet and others [41] have computed these 61
coefficients so that @™ given by (43) fits the fourth or-
der orientation tensor calculated by using PODF (24) (see
Annex C of [39] for the values of the 61 coefficients). The
IBOF closure is much more accurate than the hybrid clo-
sure and, in the linear case (n = 1), it conducts to the
same fabric evolution than the one obtained by solving
the evolution equations for the parameters of the PODF
(24), but in a much faster way.

Both the hybrid and IBOF closures assume implicitly
that the fabric is orthotropic. To avoid this hypothesis,
which should not be so strong for polycrystal ice, one
can compute the evolution of @, but must then adopt a
closure approximation between a and a‘®’ [50].

6 Flow models of anisotropic polar ice

In order to study the influence of ice anisotropy on the
flow of ice-sheets, a modelling efforts have been made in
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order to implement anisotropic laws in flow models, and
for a few applications, the anisotropic flow laws have also
been coupled with the strain-induced fabric evolution.

6.1 Flow of anisotropic ice

In the framework of the Shallow Ice Approximation
(SIA) [49], initially developed for isotropic ice, Man-
geney and Califano [62] have proposed the extension
to anisotropic ice of the SIA up to the second order.
They have adopted the static transversely isotropic law
of Lliboutry [60], in which the fabric is described by
the PODF (21). The symmetry axis of the fabric coin-
cides with the vertical axis, and only vertical changes of
the fabric strength are allowed. Mangeney and Califano
[62] have shown that the zero-order approximation of
the anisotropic SIA is fully equivalent to the isotropic
SIA with an enhancement factor. However, when the
second-order correction is calculated, the isotropic SIA
with an enhancement factor does not correspond to the
anisotropic SIA anymore. By comparing the anisotropic
SIA to an exact solution, Mangeney and Califano [62]
have shown that for a perturbed bedrock, the second-
order approximation is needed.

These developments were further extended by Philip
and Meyssonnier [77] to the case of a non-vertical sym-
metry axis of the fabric. They have shown that the di-
agonal components of the deviatoric stress can be of
the same order as the shear stress when the material
symmetry axis is not vertical, clearly indicating that the
above conclusion by Mangeney and Califano regarding
the enhancement factor is only valid in the restricted case
of a vertical material symmetry axis. Moreover, Philip
and Meyssonnier have shown that the solutions at orders
greater than zero remain negligible in the particular case
of a linear rheology and a flat bed.

Using the same Lliboutry’s polycrystal model as in
[62], Mangeney and others [63, 64] have developed a
two-dimensional isothermal full-Stokes model restricted
to Newtonian behaviour, without [63] and with [64] tak-
ing into account the free surface evolution as a function
of an imposed accumulation. In this approach, the fabric
is given and is assumed to be a function of the relative
depth only. In [64], they have shown that the effect of
anisotropy is partly smoothed out by the change of the
free surface which is flatter in the anisotropic case than
in the isotropic case. In the particular case of a sinusoidal
bedrock, the anisotropic ice above the bump is found to
be younger by more than 10 % compared to the isotropic
ice, and in the holes of the relief it is older by more than
100 %.

More recently, Pettit and others [76] have developed a
flow model, in which the ice fabric is described using the
cone-angle PODF (25), and the anisotropic ice behaviour
is inferred from analytical solutions derived under the
static assumption for simple loading cases in [86]. Be-

cause Pettit and others [76] consider complex load con-
ditions in their flow model, these analytical results were
linearised, and the flow non-linearity was re-introduced
by the use of an isotropic bulk effective viscosity derived
from Glen’s law. Assuming that the cone-angle profile is
only a function of reduced depth, this non-linear model
was applied to study the flow near an ice divide. They
have shown that a strong crystal fabric always increases
the amplitude of the existing arch in the isochrones, the
so-called Raymond bump, relative to the isotropic case.
They have confirmed that with a linear flow law, no arch
exists in either the anisotropic or isotropic case.

6.2 Flow and fabric evolution of anisotropic ice

Godert [43] and Gdédert and Hutter [46] have devel-
oped an anisotropic flow model with induced anisotropy
using a coupled Finite-Element Finite-Volume approach.
In their approach, the Newtonian orthotropic behaviour
of ice is inferred from the static model, the fabric is
described using the PODF (23) and its evolution is inter-
mediate between the Taylor and static models (Equation
(38)). As a first application, this flow model was applied
to a rectangular domain 10 times wider than thick in or-
der to reproduce the stationary plane flow in the vicinity
of an ice divide. The results obtained at the divide were
shown to reproduce well the evolution of fabric along the
GRIP core.

Also using a static Newtonian orthotropic model and a
fabric given by the PODF (24), Gagliardini and Meysson-
nier have applied their anisotropic flow model to a 2D
synthetic ice-sheet geometry [36] and to study the fab-
ric evolution along the GRIP ice core [37]. In this later
application, they have shown, by comparing the fabric
evolution obtained with the 2D flow model to the fabric
evolution inferred from a Dansgaard-Johnsen one dimen-
sional flow model [16], that the flow conditions clearly
influence the fabric evolution. Because of this complex
coupling between the flow and the fabric, the use of a
trivial evaluation of the strain-rate history, like a one
dimensional Dansgaard-Johnsen model, renders the ap-
plication of any polycrystalline model open to criticism
when comparing measured and modeled fabrics.

Gillet and others [41] have presented a 2D isothermal
orthotropic flow model with induced anisotropy and free
surface evolution. The polycrystal behaviour is inferred
from an orthotropic Newtonian phenomenological model
using the VPSC solution to fit the viscosity parameters.
The fabric is described by the use of the orientation ten-
sors. The velocity. pressure and fabric fields, as well as
the free surface elevation, were calculated in a coupled
way for a synthetic ice-sheet geometry, consisting of si-
nusoidal bedrock elevation. Their results show that, due
to the bedrock irregularities. the ice fabric field presents
a strong spatial variability. The same model was later
applied to quantify the influence of a difference in the
initial surface viscosity on the fabric development [21].
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Figure 4: Typical size of the modelled object and schematic classification of the adapted applications for each polyerystal

model.

The test consisted in prescribing a time-dependent ini-
tial surface viscosity, supposed to mimic the effect of
impurities and/or grain size which vary from glacial to
inter-glacial periods. As expected, as far as some shear
deformation is possible, a positive feedback is observed,
i.e. an initially softer layer experiences more shear, so
that its fabric is more concentrated and therefore easier
to shear, and so on. The model qualitatively reproduces
the observed strengthening of the fabric during Termi-
nation II around 1750 m at Dome C, indicating that the
Dome C ice certainly underwent shear deformation.

Morland and Staroszczyk [73] have implemented their
phenomenological law in a steady radial ice-sheet flow
model. The velocities, the fabric evolution and the free
surface elevation are calculated in a coupled way, assum-
ing a given temperature profile. In their approach, the
fabric evolution is simulated by the evolution of the left
Cauchy-Green strain tensor, leading to three independent
evolution equations. For the flow solution, the typical
magnitudes of physical variables are studied, and the re-
sulting equations are simplified by neglecting the terms
lower than the maximum bedrock slope. The flow of
anisotropic and isotropic ice is compared in the partic-
ular case of a steady radial geometry, for a flat bed, a bed
with a single symmetric hump and a bed with a single
symmetric basin.

7 Conclusion

A review of a large number of models has been pre-
sented, from crystal models up to anisotropic flow mod-
els. It appears that in glaciology, most of the modelling
consists in the development of homogenization models
under different assumptions, using different crystal mod-
els.

Regarding the polycrystal models, Figure 4 is a tenta-
tive classification of the different polycrystal models as
a function of their application. This classification comes
from both the numerical cost and the quality of the solu-

tion at the different scales for each of the presented poly-
crystal models.

In the near future, investigation of the interaction be-
tween all these different models should be a good strat-
egy. For example, results from full-field models can be
used to validate an homogenization model, which itself
can serve as an input to the development of a phenomeno-
logical model. In the reverse, streamlines and associated
strain histories inferred from an anisotropic flow model
can serve as input to an homogenization model for the
computation of the fabric evolution in an ice core.
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