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A Review of Anisotropic Polar lee Models: 
from Crystal to Ice-Sheet Flow Models 

Olivier Gagliardini, Fabien Gi llel-Chau1ct, Maurine Mo ntagna! 

LGGE CNRS/ UlP-Grelloble I. BP 96, F-38402 Saillf-Man ill d' Heres Cede.\". France. gagliar@glaciog.lljf-grelloble.fr 

Abstract: The icc single crystal is onc of the most 
anisotropic natural materi als and the resulting viscous 
behaviour o f polycrystalline ice can also be strongly 
anisotropic and is a fu nction o f the distribution of the 
cryslal c-axis orientations, i.e. ils fa bric. Such a strong 
and s trai n-dependant an isotropy o f the icc pol ycryslaJ 
ccnai nly affects the general flow of polar ice. The aim 
of this paper is to present an exhausti ve overview of most 
of the glaciological efforts mndc from morc than two 
decades to account for pol <l f icc <l nisotropy in ice now 
mode lling , from the crystal to the icc-sheets seale. Wc 
firs t reeall the deformation and recrystallization proccsses 
occurr ing withi n icc-sheets and their respective effect on 
the polar icc textures. Then. the different models devel­
oped to describe the behaviour of the ice crystal and the 
polycrystal are presentcd, with a speci al emphasis on ho­
mogenization methods and fabric descript ion. Finally, 
ex isting anisotropic ice now models and their applica­
tions are reviewed. 

Key words : Anisotropic model, Crystal , Fabric, Polycrys­
tal, lee 

Introduction 

The ice single cryst31 is onc o f the most 3tlisotropic 
natur31 matcrials. Thi s s trong 3nisotropy results cssen­
ti:llly fro m di slOC:lti on gl ide on the b:ls:ll pl ane, perpen­
dicul ar 10 the crystal hexagonal symmetry ax is, c:l lled 
the c-axis. During the gravity driven now of ice with in 
an icc-sheet, the polycrystal develops a strain-induced 
fabric, that is, a preferred orientation o f the c-axes of 
its grai ns. Near the surface, polycrystalline icc results 
from the tmnsformation of deposited snow, and since 
the ice crystals are di stributed at random, its mechani­
cal behaviour is isotropic. Observations o f deep icc cores 
drilled in Antarctica and Greenl and have shown very di f­
ferent fabric patterns within the ice-shcet, corresponding 
10 different now condit ions. Strain-induced fabric, com­
bined with the s trong ani sotropy o f the crystal, result in a 
strong fabric-dependent anisotropy o f the polycrystalline 

I AtM) called dynamic discontinuous recry,ta llizat ion. 

ice. As shown experimentall y by Pimienta and others 
[78]. a polycrystal of ice with all the c-axcs of its grains 
orientated in the same direction deforms ten times faster 
than an equi valent isotropic sample, whe n it is sheared 
parallclto the basal pl anes. 

The spatial vari ability of the observed fabrics. from 
sing le max imum fabrics l23 , 88]10 girdle type fabrics 
[58], ind icates the strong coupling ex isting between the 
fabric and the local now conditions. At some stage. it is a 
chance. because ice-shects can be secn as a huge database 
contai ning fabric evolution experimcnts for a very large 
range o f stra in-history and te mperature conditions. On 
the reverse, the very small amount of data (few icc cores) 
rcgarding the icc-sheets typical size renders the expl oita­
tion of all these data very d ifficult. Moreover, the very 
small s train-rates and very low temperatures prevail ing 
inside an ice-sheet are quasi- imposs ible 10 be reproduced 
by cold-room experiments of fabric evolution. All these 
together clearly ind icate that a strong modelling effort is 
needed in order to analyse the measured fabrics at a par­
ticulardrilling site. Due to the complex coupl ing between 
the anisotropic now and the fabric evolution, thi s mod­
ell ing effort sho uld incl ude the coupl ing of both in a local 
flow model. 

Very oft en, ice is assumed to be an isotropic med ium, 
the behaviour of which foll ows a classical Norton-HolT 
type law. namely the Glen's law in glaciology. link ing 
the strain rate b to the deviatoric Cauchy stress 5: 

( I ) 

where 7 2 = t r 52 /2 is the second invariant of the dc­
viatoric Cauchy stress and Bn is a fl uidity parameter 
function of the temperature. T he stress exponent entering 
the G len 's law is found 10 be close 10 3 for laboratory 
experiments [26], whereas an exponent equal or even 
smaller th an 2 is certainl y more adapted 10 describe the 
behaviour of in-situ polycrystall inc icc in the mai n part o f 
the icc-sheets [ 19, 59. 6 1J. Within an icc-sheet. a stress 
exponent equal to 3 would be associated with deforma­
tion occurring in the bottom part of some cores. whcre 
the temperature can be higher than - 10 °C and where 
dynamic migrat ion t recrystallization is assumed to be 

-149-



the main softening mechanism. 

As far as the polyerystalline iee is textured, the Glen's 
law docs not hold anymore, and an anisotropic formula­
tion must be adopted to describe properly the polycrys­
talline anisotropic behaviour. TIle aim of this paper is to 
present the differcnt classes of anisotropic models used 
so far in glaciolo£y. 

We first reeall the deformation and reerystallization 
processes of polar ice. Then, the three existing models 
for the crystal are presented as well as the equations for 
crystal rotation. The different fabric descriptors are re­
viewed, and general relation linking these descriptors are 
given. A special emphasis is given to the comparison of 
the diflcrent parameterized orientation distribution func­
tions presented in the glaciological1iterature so far. The 
various classes of anisotropic polycrystal models arc then 
presented. At last. the existing anisotropic flow models 
and the results obtaincd from their applications are dis­
cussed. 

2 Deformation and recrystallization pro­
cesses of pola r ice 

2.1 Defo rma tion mechanisms 
When an ice core is located at a domc. a fi rst order ap­

proximation is to assumc a uniform stcady-state vertical 
strain-rate ~zz along the core, given by: 

~u = b/ H, (2) 

where b is the accumulation rate and H is the icc thick­
ness. By taking values from Vostok (Antarctica) icc core, 
wi th the present accumulation rate of2.3 g cm - 2 a- I, the 
vertical strain-rate is about 7 x 10- 6 a - I [58[. Lipcnkov 
and others [58] estimated the horizontal shear strain-rate 
along Vostok icc core by assuming a flow law with a 
stress exponent n=3. With a surface slope of 10- 3 , the 
horizontal shear stress at 2000 m depth is lower than 
0.02 MPa, leading to a shear strain-rate of the order of 
4 x 10- 6 a- I at the salTle depth. 

Although strain-rales and dcvialoric stresses arc very 
low, it is now commonly accepted that dcfomlation pro­
cesses along polar iee cores are dominated by the vis­
coplastic mechanism of dislocation glide mainly along 
the basal plane. Diffusional creep, commonly associated 
wi th such condit ions in many materials, yields a viscos­
ity much higher than that deduced from field data l61J. 
Deformation by basal glide of dislocations is associated 
with efficient processes of accommodation such as nor­
mal grain growth and dynamic recrystall ization which arc 
described in the next paragraph. 

2.2 G rain growth and recrystallization in ice-sheets 
From texture and microstructure measurements along 

polar ice cores, it W~IS evidenced that the evolution of 
icc structure is mainly associated with deformation pm­
cesscs but infl uenced by grain growth and recrystalliza-

tion mechanisms [2, 8. 58]. Normal grain growth is 
dis tinctly observed in the upper layers of the icc sheets 
(several hundreds of meter) where thc mean grain size 
is incrcasing with depth. Such a grain growth is driven 
by the decrease in rree energy related to the reduction 
in grain boundary area. The gr:tin size is generally 
larger than 1 mm and the grain boundary free encrgy 
is 19b = 0.065 J m- 2 [3]. A parabolic growth relation­
shi p between grain size and time was found along several 
cores in Greenland and Antarctica [47. 58. 88J. 

Below this normal grain growth region, heterogeneous 
deformation within grains leads 10 localized high inter­
nal stresses that can relax through the formation o r sub­
boundaries, by the gathering of dislocations 13]. The mis­
orientation associated with these sub-boundaries is sup­
posed 10 increase with deformation and sub-boundaries 
to evolve into high-angle boundaries, leading to the cre­
ation of new grains (polygonization). Such a mecha­
nism can be associated with grain boundary migration 
driven by the difference in deformation stored energy 
between boundaries and is named rotarion or continll­
OilS recry.~tallil.ario", but also with normal grain growth 
if the corrcsponding driv ing force remai ns higher (very 
low strain-rate conditions). Evidences of polygon ization 
arc givcn by the visual isation of low angle boundaries 
on icc thin sections, and the measurement of an average 
constant grain size along cores where temperature and 
impurity contents remain constant. For the Byrd icc core 
(Antarctica). Alley and others [4] indicate lhat polygo­
nizalion processes associated with rotation recrystalliza­
tion counteract further normal grain growth below 400 m 
dcpth. The same explanation was given [13, 88J for the 
constant average grai n size measured along the GRIP icc 
core (Grecnland) between 650 and 1500 m dept h. Along 
the VoslOk and EPICA Dome C icc cores (Antarctica), 
due 10 the continuous increase in temperature from the 
surface, such an interruption in the grain size profile is 
not observed. 

Nevertheless, as shown along the EPICA Dome C ice 
core by Durand and others [24J. the grain size variations 
along the main part of the core can only be well repro­
duced by modelling the effect of normal grain growth and 
rotation recrystallization, associated with the impact of 
impurity contents on the grain boundary migration rate. 
The pinning of grain boundaries by dust (insoluble im­
purities) explains most of the obscrved modifications of 
the microstructure. which arc highly visible at the transi­
tion betwecn glacial ice and interglacial icc. but rotation 
recrystallization becomes very active to balance normal 
grain growth in the rangc 1000 - 1750 m. Below this 
depth, Durand and others 124J suggest a thermally acti­
vated unpinning of grain boundaries from p.!rticies and 
provide a good estimation of the average grain size evo­
lution up to 2135 m. 

More recently. Obbard and othcrs have measured ori-
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entation relations between neighbouring grains in ice 
from the GISP2 icc core (Green land) [75J and the Vostok 
icc core [74J, using the electron backscatter difrraction 
technique. Such a technique provides full c- and a -ax is 
orientation of individual grains, and then allows to com­
pare nearest-neighbour orientation relationships. Along 
both cores they measured correlations between adjacent 
grains that reveal the presence of polygonizat ion associ­
ated with rotation recrystallizat ion. 

Deeper in some icc cores, very large amplitudes of 
grai n size variations can be measured, such as below 
2780 m along the GRIP core. Such high variations are at­
tribuled to the effect of a tcmperatuTC increase in the core 
which can become higher than - 10 0c. and favour the 
occurrence of migration rccrystall ization. This recrys­
tallization process is characterised by a very fa st grain 
growth , with a boundary velocity that can be 10 times 
higher than in the normal grain growth regime f27J. Such 
a recrystallization process is associated with the nuele­
ation of new grai ns through a process that should be elose 
to the bulging described for geological materials l48J. 
Migration recrystallization fabrics di f'fer completely from 
strain-induced fabrics because the new grains are orien­
tatcd favourably for tbe macroscopic dcformation. Gow 
and Williamson [47[ have reportcd simil ar observations 
on the lowcr part of the Byrd ice core. 

2.3 Fabric development 

In pol ar ice, the fabric is measured via the orientation 
of the grain c-axes [8, 58. 88, 92J. The fabric develop­
ment as observed along pol ar icc cores is mainly associ­
ated with the rotation of grai ns induced by deformation. 
meaning by intracrystalline glide of dislocat ions, but can 
be influenced by recrystall ization processes f3. 6, 17J . 

In the main par! of the icc core, only normal grai n 
growth and rotation recrystallization can influencc fabric 
development. The exaet influence on the c-ax is rotation 
rate is not elear yet, although the observed fabrics in the 
corresponding part of the core are generally very elose 
to what is expected considering the main imposed stra in. 
Along the EPICA Dome C ice core, the strain is mainly 
vertical compression, due to the location of the core the­
oretically at a topographical dome. Such a main strain 
induces a rotation of the c·axes toward the vertical ax is 
[21 , 92J. This configurat ion was also observed along the 
GR IP and the Dome Fuji icc cores [7, 88]. Along the 
Vostok ice core, the main strai n is horizontal tension , 
leadi rig the c-axes to orientate in a vertical plane, perpen­
dicular to the tension direction !58J. 

Nevertheless. texture observat ions (grain shape ,lI1d 
orientat ion) reveal some areas where horizontal shear 
seems to have a noticeable effect [22, 21). Such a shear 
will induce a sharp change in the texture development, 
by accelerating the rotation toward the vertical axis. As 
it will be discussed in the application part of this paper, 

such a shear can have a strong impact on icc flow, by in­
ducing a positive feedback in some initially softer layers 
[2 1[. 

Although rOlation recrystallization is on ly supposed to 
slow down the fabric development induced by the defor­
mation , migration recrystallization induces fabrics which 
are much differcnt than deformation-induced fabrics. As 
observed in alpine glaciers [61. 90J. during lab experi­
ments [5 1. 52[ or at the bottom of the GRIP core [88[, 
the c-axes are rotating toward a direction of easy glide, 
betwccn 30° and 45° from the vcrtical axis. Such a fab­
ric provides orientations that arc favouring the imposed 
compression strain . 111e so-formed fabrics arc either im­
posed by the nueleation of so-ca lled \fell oriented grains, 
and/or the favoured growth of such grains. They arc. 
then , controlled by the stress state within the polycrystal 
L25J. The induced softening of the polycrystal behaviour 
in the bottom part of the core can have a non-negligible 
impact on the global flow around the core. and shou ld be 
accurately takcn into account in modell ing. 

3 Models for the ice single crysta l 

3. 1 Crystal viscous laws 
Such models arc rcq uired hy homogenization mod­

cis to derive the macroscopic behaviour from the micro­
scopic properties. We present hereafter thc three di ffcrent 
approaches that can be found in the glac iologica l litera­
ture. 

3. 1.1 Schmid law 

The classical approach in material se ience to describe the 
viseopl astic behaviour of a crystall ite is the use of the so­
called Schmid law, which consist of the sum of all thc 
slip system contributions f9, II, 12, 13J. To definc thc 
orientation of all these slip systems, one can introducc 
the Schmid tensor: 

(3) 

wherc n 8 and b8 arc the unit vcctors norma l and parallel 
to the Burgers vector of the slip system s, respectively. 
For a givcn deviatoric Cauchy stress 5 , the strai n-rate D 
is obtained as: 

{. s r'® r'l r" SI"-'} D = 10L $ --,- :5, 
$=1 TO TO 

(4) 

where to is a reference shear rate and the T6 are the ref­
eTCnce resolved shear stresses (RRSS) which control the 
sti ffness of each slip system. The stress sensiti vity cxpo­
nent n can be different for each slip system, but in prac­
tise the same value is always adopted. For icc. Castel­
nau and ot hers [I 11 have numbercd nine independent slip 
systems arising from the choicc of the thrcc families of 
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planes: basal (two independent systems), prismatic (two) 
and pyramidal (five). Due to the very strong anisotropy 
of the crystal, the RRSS for the basal plane,$ is expected 
to be much larger than the prismatic and pyramidal ones 
(,r and ,t;y, respectively). [n order 10 define the position 
of the slip systems relative 10 a fixed reference frame, the 
three Euler angles are needed. 

3.1.2 Basal slip system model 

Considering that mOSt of \he deformation of a single crys­
tal results from basal glide and noticing that the basal 
plane is isotropic when n = 1 or n = 3 [53]' many 
authors have adopted a simple model for the icc crystal 
assuming only deformation by basal glide [5 , 10, 45, 60, 
91]. When expressed in the grain reference frame {9R} 
defined by e~ = c , th is law simply reads: 

D9 _ Wn "- 'S' . I 2 
i3 - 2'1> i3 t = , , (5) 

where,; = (SY3 'l + S~3'l)/2 , and ·r/Jn is the reference 
fluidity for basal glide. This simple law considers that all 
the other non-basal strain-rate components van ish. The 
main advantilge of this law is its simplicity, and that only 
one orientation (two angles) is needed in order to orien­
tate the grain relative 10 a fixed reference frame. On the 
OIher homd, the main drawback of this law is to conductIO 
zero deformation in some directions for strongly textured 
polycrystal (one max im um or girdle type fabrics). 

3.1.3 Continuous Transversely Isotropic (CTI) 
model 

With the idea of keeping the advantage of a grain orien­
tatcd solely by one unit vcctor, while ameliorating the be­
haviour description of the previous model , Meyssonnier 
and Philip [67[ have proposed a continuous transversely 
isotropic (CTI) law in the particular case of a linear be­
haviour (n = 1): 

0+ 2 
+ "l/JdJ-- tr(M 3 · S)M f, 

41' - 1 

(6) 

where 1\13 = c ® c is the structure tensor used to de­
scribe the axial symmetry around the crystal c axis. The 
notation OD denotes the symmetric part o f a tensor. The 
three introduced rheological parameters allow 10 quan­
tify the crystal anisotropy: 1/; , is the basal shear fluidit y, {3 
characteri ses the fluidity ratio in and parallel 10 the basal 
planes. and l' is the tension-compression fluidity ratio in 
and perpendicular to the basal planes. The strong crystal 
anisotropy and the condition that the dissipation poten­
tial must be positive, lead to the following inequalities: 
o :::; {3 « 1 and 1/ 4 :s; l' :::::: 1. The extension to the 
non-linear case (n 1= 1) is not straightforward and has 

not been devcloped so far. 

One ean show that in the linear case, the Schmid law 
(4) and thc CTll aw (6) arc fully equivalent, and the rhe­
ological parameters of one can be identified from thosc 
of thc other [66]. Moreover. when considering only basal 
planes, by setting infinite RRSS in prismatic and pyram i­
dal planes for the Schmid law (4) and {3 = 0 in the CTI 
law (6), the three presented crystal laws arc equivalents. 

3.2 Crystal rotation 

The crystal deformation resulting from dislocation 
glide in the different slip planes induces an evolution of 
the orientation of thesc planes. For a large part of the ice­
sheet, this rotation induced by deformation is the most 
important mechanism contributing to the fabric evolut ion. 
The rotation rate of the orientat ion of a crystal can be 
wrillen as: 

(7) 

where W and 0 arc the spin and strain-rate on the grain, 
respectively [411 and..\ is a parameter depending on the 
grain m{x1el. Thi s relation indicates that the rotation of 
the grain's reference frame {9R} (the tcrm c) is equal to 
the total spin ( W .c) minus the viscoplastic spin induced 
by defonnation (..\ [D .c - (cT .D .c)j). This lasttcrm can 
be identified as the c-axis spin relative to the cryst:ll ref­
erence frame {9R}. For the basal plane model (5) and the 
CTI model (6), assuming that the grain rotation is solely 
induced by the glide in basal planes ]67J. thc strain-ratc 
and spin verify the following relation when expressed in 
{' R}, 

W;~ = D~3' i = 1, 2 , (8) 

which do correspond to ..\ = J. Thi s assumption. which 
assumes that the viscoplastic spin of the grain c-axis is 
only due to the contribution of b:lsal planes and ncglects 
contributions of thc prismatic and pyramidal planes is 
well-founded for polar icc and has becn used in many 
models [5, 45, 60, 85. 861 . 

For the Sdmid law model (4), grain rotation is 
the result of all contributions of the threc consid­
ered plancs, and onc can show that it corresponds 
to..\ = ('6Y + 2x,8)/('6Y + 2x'l , 8) :::; 1, where 
X ~ (I - (c/a)' (/( I + (c/a)'1 "d cIa ~ 1.629 " 
the ratio of the crystal lattice di mens ions [39 J. 

When ..\ = 1, similarly to what was done by Dinh and 
Armstrong ]181 for fiber material, one can show that the 
grain orientation at time t can be uniquely expressed as a 
function of its initial orientation CO and the deformation 
gradient F (Fij = ()x;/8:r:~) undergone from to to t, by: 

'r p - . Co 
c - (9) 

- (C6 . F '. F T . co) ' /'1 . 
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4 Fabric descr iption 

Althe macroscopic scale, the anisotropic behaviour is 
strongly related to the distribution of the orientations of 
all the crystals which compose the polyerysta1. The aim 
of this part is to review the possible methods to describe 
this distribution of orientations. With regard to other ma­
terials, most of the proposed methods take advantage of 
the crystal hexagonal symmctry which allows to orientate 
the icc crystal with only one unit vector. 

4.1 Discrete description 
The more natural way to describe the fabric of a poly­

crystal is 10 give the orientation and associated volume 
fraction h. of a finite number of cryslals Ng . For the ori­
entation, the three Euler angles should be used in order 10 
define with no ambiguity the crystal reference frame i III 
relative 10 the polycrystal reference frame. Such a de­
scription is in fact only used when the crystal behaviour 
is inferred from the Schmid law, for which all the slip 
system are described. As shown in the previous scction, 
in the linear case. the Schmid law is transversely isotropic 
and is identical to the CTI law presented in Section 3.1.3. 
Whcn accounting only for the basal slip systems, the 
crystal behaviour is also transversely isotropic for both 
linear and non-l inear (n = 3) behaviours. Therefore, for 
all these cases, only one orientation, i.e .. the c-axis unit 
vector, is necessary 10 define the crystal posi tion . The e­
ax is orientation is generally defined by two angles using 
a spherical coordinate system, namely the longitude CP A: 
and the co-latitude OA:. This feature is exploited to derive 
the continuous description presented in the next section. 

For the volume fraction f A:, if the fabric is inferred 
from data measurements on thin sections. it should be 
estimated using the cross-sectional area of the grain as 
suggested by Gagliardini and others 1341. 

Using the discrete descript ion for the fabric , a macro­
scopic quantity f ' is determined as the average of the mi­
croscopic quantities Yk over all the grains: 

N" 

Y =< Yk>= LhYJ.:( ed , ( 10) 
k=l 

and by dcfinition L~:' l h = 1. 

4.2 C ontinuous desc ription 
4.2.1 Orienta tion Distribution Function (OOF') 

The Orientation Distribution Function (ODF) is a contin­
uous , positive and infinitely differentiable function of the 
orientation. The probability Pk to find grain orientations 
with in the solid angle de centred around the direction c. 
which expresses the volume fmelion dV(e)/Vo of these 
grai ns, reads: 

1 
h ~ dV (c)/ Vo ~-J(c) dc. (11) 

2" 

By definition, this implies 

~ 1 J(c) dc ~ L 
2" JS/2 

( 12) 

This volumc fraction reduces 10 a relative number of 
grains only in the vcry idealised case where all the grains 
have the samc volume. In practice, thc ODF f(c ) itself 
can be seen as the density of orientations over the half 
unit sphere, because common praclice is to sct f (c) = 1 
for a uniform distribution of orientations. 

Since it is not possible 10 distinguish a grain with an 
orientation c from a grain with an orientation - c. the 
space of all possible orientations is the half unit sphcre 
S/ 2 or, using the spherical coordinate system. () x cP E 
[0, IT / 2[ x [0, 2<[. 

When using an ODF, the volume average of a micro­
scopic quantity Y(c) is given as: 

- 1 Is l' ~< l' (c) >~ - J(c)l' (c)dc. 
2r. S/ 2 

(13) 

4.2.2 Orientation tensors 

The oriemation tensors are defined as the different mo­
ments of the ODF: 

a lp) = < e ® c ® ... c > 
'-.--' ,-, 

(14) 

where the average < . > is either given by (10) for a d is­
crete description of the fabric or by (13) for.t continuous 
description. Consequcntly, the oricntation tensors allow 
<In objective comparison of these two different fabric de­
scriptions. 

By analogy with the inertial products which charac­
terise the mass repartition over a unit sphere. the orien­
tation tensors characterise the repartit ion of the c-axis 
intersections with the unit sphere of oricntation. 

The second-order oricntation tensor a(~) is now com­
monly uscd to describe the measured fabr ics [20, 88, 93, 
92]. It gives a more pertinent information than the older 
parameters like thc strength of the fabr ic or the spher­
ical apcrture 120.]. The cigenvalues of a ( 2 ) arc rclated 
to the spatial strength of the fabric, whereas the eigen­
vectors give the disorientation of the maximum strengths 
rdative to a reference frame. The eigenvectors arc often 
assimilated as the best material symmctry basis. Since by 
dcfinition tr a(~) = 1 and the orientation tcnsors are sym­
mctric, only 5 components of a(~ ) are independent. 11le 
different observed fab rics can be classified as a function 
of the v.tlues of the eigenvalues: 
- ai~) :::::: a~~) :::::: aj2 ) :::::: 1/ 3 for an isotropic fabric, 
- 1 ~ a j2) > 1/ 3 > a~~) :::::: ai2 ) ~ 0 for a single max i-
mum fabric, 
- 1 > a\2) :::::: a~2J > 1/ 3 > aj~) ~ 0 for a gird le fabric, 
- 1 > ai~J > a~~ ) > a~2 ) > 0 for more general fabric 
pallcrns. 
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Two different fabri cs (d ifferent distributions of grain ori­
entations) ean have the same a(~ ). but the higher even or­
der orientat ion tensors will be different, and consequently 
these two fabric samples should behave slightly ditTer­
ently. In the reverse, a (4) conta ins all the fabric informa­
tion included in a(~); for example: 

On the other hand, the second order orientation tensor 
is <l lso used as a fabric parameter to describe the f<lhric in 
po lycrystal models 141, 44 1. In Section 5.1, an <lnalyti­
cal derivation of the polycrystal behaviour is inferred for 
the uniform stress modcl using the orientation tensors to 
descri be the fabric. 

4.2.3 Link between O DF and orientation tensors 

As shown by Zhcng and Zou 194J , the ODF can be ex­
pressed as a ICnsoria l expansion of the even order ori­
entation tcnsors. For the two first terms, this expansion 
t<lkes the form: 

15 
f(c ) = 1 + - L a ( 2) ..J : c 0 c 

2 

315 (4) 
+SL a .J ::c 0 c 0 c 0 c + ... , 

( 16) 

where L a ( " ) ..J denotes the irreducible part2 of the tcnsor 
a ( n ) . From ( 16), the link between the eigcnvalues of a ( 21 

<lnd the ODF becomes clear: whcn expressed in the prin­
cipal reference framc, the ODF constructed from (16) up 
10 a (21 is an el lipsoid. length axis o f which in direct ion i 
is proportional to a~2 ) . As an example, the contribut ion of 
the diffe rent terms of the tensorial expansion ( 16) is plot­
ted in Figure I for a plane iSOlropic fabric and a plane bi­
axial fabri c . Obviously these two fabrics have the same 
second order orientation tensor (ai'? = a~2d = 1/ 2 and 
othcr compone llls zero), so that the ODF is identical up 
10 the second-order orientation tensor expansion. while 
the contributi on from the fourth-ordcr orientati on tensors 
are different. 

10 10 

5 5 

@ 0 (@) 0 

-5 -5 
, b 

-10 -10 
-10 -5 0 5 10 - 10 -5 0 5 10 

Figure I: Section in the planes 1 and 2 of tfle OOF 
( 16)jor (a) a plane isotropic fabric (c-GJ.·is randomly dis­
tributed in a plane) and (b) a I)lane bi-axial fabric (half 
c -axis horizontal and half I'utical). TIl e rhin black line 

shows the contribution of a(~) . the thick blue line the COII­
tribution of a(~ ) and the thick red fine indicates the con­
tributionfrom borh a( ~ ) ami a (4 ) . 

4.2.4 Analytical ODF 

By definition , for the unifoml strain-rate model (see Sec­
tion 5.1). each grain expcriences the same de formation 
grad ient tensor, which is equal to the macroscopic de­
formation gradient experienced by the ice polycrystal F, 
defi ned by 

- 8:Ci 
Fij = '::'-0 

u X j 
<l nd (17) 

where Xi and x? are the coordinates at time t and to re­
spectively. 

Following Dinh and Armstrong [ 18J , if the ice fabric is 
isotropic at Lime to, i.e. f == L thcn we can check that 

is a solution of the equation for the evolution of the ODF 
(36) for the uniform strain-rate model (see its definition 
in Section 5.1), wi th the c - ax is rotation velocity g iven 
by (7) assum ing). = 1. The ODF is then onl y a fu nc­
tion of the deformation gradient experienced by the icc 
polycrystal F . which is a sol ution of the linear equll tion 
(17b, and which ex hibits ana lyt ical solutions for sevcral 
flow cond itions. The generic expression (18) should have 
been used to deri ve the more spec ific ones obtained laler 
and restricted to some particular loading conditi ons, as in 
[35 , 43, 45,46, 85J. 

As an example, the analytical expression for a si mple 
shear solic itation , defined by FIl = P22 = F33 = 1, 
Ft2 = Ii <lnd other terms zero. is obtained directly from 
( 18) as: 

f = (oos20 +sin20(cos2rp + (sin i.p + licos rp)2)) - 3/2 . 
( 19) 

Similar analytical solution can also be derived under 
the static assumption (uniform stress. see Section 5.1 ), 
but for less general loading conditi ons [35, 43J. 

4.2.5 Paramelerized ODF 

From heuristic considerations or using the previous ana­
lytical soluti ons, some parameterized OOF (PODF) have 
been proposed in order to decrease the number of param­
eters needed to describe the fabric. In th is section, these 
POOF arc presented and compared. 

Lliboutry [6OJ has proposed to use a Fisherian distri-
bution: 

kek oos O 

e" - 1 • 

but fina lly adopted the following POOF: 

f,, (O) = /.IooS ,,-tO . 

(20) 

(2 1) 

2For the ~e(:on d order orientation ten,or. LOP ).J "" aP l - 1/ 3. where J is the identity ten-or: more detail. can be found in [391. page 36. 

-154-



Meyssonnier and Ph ili p [671 used a d iscreti zcd ODF 
over 90 intervals between 0 and 1r / 2. They showed th at 
the di screti zcd OOF can be very accurate ly fi lled using 
the following POOF: 

From an analytical solution. GOdert 1431 has dcrived 
a semi-parameteri zed ODF restricted to pl anar fl ow. As­
suming that the direction 3 is the d irection perpendicular 
10 the plane flow. the proposed POI)F takes the form: 

[a.b,c(O,({!) = [>. - 2/3 COSZ 0 

+ (a + bsin 2({! + CCOS 2({!)"\ 1/3 sin2 Or3/ Z , (23) 

where ,.\ = e - 3 L t.tD~~ . In (23), onl y Ihe in-pl anc form 
of the fabric is paramcterized since the concentra tion per­
pendicul ar to the pl ane fl ow is give n analytically as a 
function of the strain-rate normal to the plane fl ow (D 33). 

Using the same an;llytical approach 135J. Gagliar­
d ini a nd Meyssonn ier have proposed a PODF for an OT­

thotropic f<l bric [36J: 

h, ,l.: l,<,oo(8 ,({!) = [(k]kz)-2 cos2 8 

+ s in2 8(kr cos2 «{! - ({!o) + k~ sin2 «{! - ({!0»]-3/2. 

(24) 

The two p<lrameters kl and k2 control the f<lbric strength , 
whereas !Po g ives the inclination of the mmeri al symme­
try reference frame in the particul ar case of planar fl ow. 

PODF (23) and (24) lead 10 exactly the same ori­
entation distribution since analytical re lations3 C3n 
be obtained betwecn the two sets of parameters 
(kJ, k2 , !Po) and (a, b, c, ,.\ ). Using the conservation 
equation (1 2) in (23). one of the four parameters can 
be expressed as a function of the three others: a = 
(b2/sin(arctan(b/ c))2 _ 1) ]/2 . 

Noticing thm most o f the observed fabrics have <I verti­
cal axis o f rot<ltional symmetry, lllOrsteinsson L86] built 
his POOF by assuming a uniform distribution with in Ihe 
two a ngles 0"0 and 0, such Ihat: 

1 rr 
100.0(8) = ----- ,O S 00 S () S a S? 

cosOo cos a _ 
(25) 

More recently, Placidi ;l nd Huller 179J h;lve 3dopted 
the following POOF: 

; (B - Bo ) 
[o,,(B) ~ 'B • 

8m 0 
(26) 

where 0 denotes the Dirac function. 

Except for (23) and (24), all the other POOF found in 
the literature are restricted to a fabric which shows a rota­
tional symmetry. Since all these POOF arc expressed in 
the material symmetry re fere nce frame of lhe polycrystal, 
two Euler angles have 10 be added 10 the set of paramelers 
to give the posit ion of the fabric symmetry ax is relative 
to a general reference fm me. The PODF (23) and (24) 
incl ude the orientati on of one of the axes of the material 
symmetry re fere nce frame, and arc restricted to the par­
tic ul ar case of a planar fl ow. For more complex flow, one 
should for example SCI !Po = 0 in (24) and usc three Eu­
ler angles to fi x the material symmetry re ference frame 
rel ative 10 a general reference frame. 

Except for (22) and (23), all the other POOF fulfil im­
plicitly the total volume conservation ( 12). No simple 
relation was found for the three parameters in (22) in or­
der 10 ex press one of the parameters as a funct ion of the 
two others. As a consequence, neither combination of 
the three parameters q; in (22) guarantees thallhe volume 
conservation is fulfilled. Thi s condition must be verified 
afterwards, which in reality render the usc of this POOF 
very complicated. 

Except for (26), all the presented POOF reduce to the 
expected value 1 = 1 fo r isotropic icc. 

As presented in the prev ious section, the orientation 
tensors allow <In objecti ve compari son of f<l brics. As­
suming a tr<l nsversely isotropic f<l bric around e3, i.e. 

(2) _ I 2 (ll (21 _ (2) . d - 0 'r '-'- ' a33 - - all , all -a22all a'j- 1 ~r J , onecan 

compare the different PODF for a give n a~~ . The relation 
between the PODF parameter(s) 1) and a~2d is given by: 

rl
' a~i = 10 j,)(O) COS

2 OsinOdO, (27) 

and therefore a~j = [(k 2 
- 2k + 2)ek - 2J1[(k2(Ck - 1)] 

and a~i = v/ (v +2) for Ltiboulry 's PODF (20) and (2 1), 

respectively, a~i = (cos2 00 + cas 00 cosa + cos2 0')/3 
for lllOrslcinsson 's POOF (25) and a~i = cos2 ()o for 
Pl ac idi and HUller's PODF (26). [n the case of a trans­
versely isotropic fabric, k, = k2 • and the Gagli ardi ni and 
Meyssonn ier's rODF (24), as well as the GOdert 's PODE 
is only a function of O. Foll owing [35]. an analytical rela­
tion can be derived between a~i and the PODF parameter 
k\ (from equations (40), (42) and (43) in 135]). 

Since the Thorstcinsson 's PODF (25) depends on two 
parameters, for a given value of a~j , Ihe choice of these 
two parlllTIctcrs is nOI unique. As done by Thorslci nsson 
[86], one can adopt no = 0 for single max imum fabrics 
(cone fabrics), but as far as a~j < 1/ 3 (girdle fa bric), 
the parameters must verify no :?: a !'ccos ( 3a~j) I / 2 and 
a = 1r / 2. 

All these PODF. as well as measured ODE are com­
pared in Fi gure 2. Obviously. the Fisherian di stribut ion 
proposed by U iboutry 160J, which has never becn ap­
plied in glaciology, fits best the observed distribution of 
grain orientations. PODF (25) and (26) g ive unrealistic 
distribut ions whercas PODF (22), (23) and (24) lead to a 

32r.po = a rc t nn (b/c) . k~ = A 1/3(a + b/ s in 21"0) and k~ = A 1/3(0 - b/ s in 21"0) . 
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too much concentrated fabric. Sincc the POOF (23) and 
(24) werc derived from an analytical solution assuming 
that the grain rotation is on ly the result of the gl ide of 
disloc:uions along the crystallograph ic planes, thc ditTcr­
ence between the measured fabrics and the PODF (23) 
and (24) might be explaincd by the rotation recrystalliza­
tion which has the effect of decrcasing the fabric strength 
in compression. 

d " , 
• • • • " " • • " • • • • • " 

, • • , 
" • " " • • 

Figure 2: Comparison oflhe differel1l PODF - ~-(20). - A ­

(2 1), -. -(22), -__ (23) and (24), -. -(25) alld -110 ~")"mbol­

(26)for (a) a~j = 0.20. (b) a~'d = 0.44. (c) a~'d = 0.60 
alld (d) ail = 0.78. The Ihick red curve represellls mea­
suremelllS from lite Dome C core for lire same ralue of 
a~j and ai'i ::::: a~2.] (G. Durand. /Jersonal communica­
lion). 

The choice of a PODF implicitly determines all thc 
even order orientation tensors. Even if for a particular 
value of the parametcr{s) of the POOF, one can obtain 
the sollne second-order orientation tensor, the higher or­
der orientation tcnsors will be different (clse the PODF 
curves in Figure 2 would be superimposed). Thcrefore. 
even for the samc sccond-order oricn\<ltion tensor and the 
same homogenization model. the polycrystal response 
should he different for all these PODF. 

In order to comparc the difference in terms of poly­
crystal behaviour induced by these ditTerenccs in thc dis­
tribution of orientations, the enh ancements in shear E el! 
and in compression E CO relative 10 isotropic ice arc plot­
ted in Figure 3 as a fU llct ion of a~j . For all the POOF. the 
same grain behaviour (CTJ law (6) with f3 = 0.01 and 
'Y = 1) and the same homogenization model (uni form 
stress model from Eq uat ion (29) in Section 5. 1) have 
becn used. Because in the linear case the polycrystal be­
haviour depends on ly on the second and fourth order ori­
entation tensors, the observed differences are on ly due 10 
dificrences in the fou rth-order orientation tensor. More­
over, for ax isymmetric fabrics, Eei

$ and EGO depend 

only on ai4izz. For perfect girdle (a~j = 0), isotropic 
(a~j = 1 / ;~) and perfect single maximum (a~j = 1) 
fabrics , the same values for a\4i22 (a j·i22 = 1/ 8, 1/ 15 
and 0, respectively) are obtained for all the POOF. except 
for (26). The maximum relative difference between all 
the PODF (excluding (26» is about 20% for E ei. with 
aYd = 0.5 and up to 125% for EGO with a.~j = 0.6. As 
expected in compression, for all the POl)F the ice is eas­
ier to deform (Eeo > 1) for 1/ 3 < a~j < a&jum ;r, and 
for more concentrated fabrics. the icc becomes harder to 
deform. As shown in Figurc 3c, the value of a &j/,m it ' for 
which EGO is equal 10 one agai n, varies from 0.54 for the 
Mcyssonnier's POOF (22) up 10 0.85 for the Thorsteins­
son 's POOF (25). 

Figure 3: El'olulioll of (a) ai"i22. (b) E ci8 alld (c) E eo 
as a/uncrion 0/ a~'d for II,e different PODF - ~ -(20). -, ­
(21). -. -(22). -__ (23) alld (24). -. -(25) and -I/O symbol­
(26). Red circles represelll en/wllcemell ifaciors/or some 
of Ihe measured Dome C fabrics (G. Duralld. perSOI/­
na/ commllllicatioll). En/wllcements in shear Eci~ alld 
in compression ECO relatil'e 10 isolropy halle beell calcu­
lated IISill8 lite slatic model alld a grain anisolrop)" given 
by f3 = 0.01 alld 'Y = 1. 

Thesc differences might be l<lrger for <l non-linc<lr be­
h<lviour because the polycryslal l<lw will depend on the 
first four evcn orientmion tensors (when n = 3). 

5 Polycrystal models 

5. 1 Homogenization models 
The concept of homogenizmion modcls, also called 

micro-macro models or volume fr<lction models, is 10 de­
rive the polycrystal behaviour from the crystal one and 
thc f<lbric. The fabric description can contain topological 
informat ion to take into account neighbour innuence (see 
Section 5.1.3), but generally it is only given as an orien­
tation distribution, either discrete (Section 4.1) or contin­
UOliS (Section 4.2). 
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The dilTerence between all the homogenization mod­
els comes from thcir formulations and the hypotheses, 
implicit or explicit, used to take into account the grain­
to-grain interaction. 

For all these models, the macroscopic strain-rate b 
and the macroscopic deviatoric stress S are evaluated as 
the average of the strain-rate and deviatoric stress, respec­
tively. over all the grnins that compose the polycrystal; 

b =< D > and S =< S > . (28) 

The average < . > is either defined by (10) for a discrete 
description of the fabric or by (13) for a continuous one. 

5.1.1 Static and Taylor bounds 

T he Taylor model assumes a uniform strain-rate distribu­
tion over all the grains, so that the strai n-rale experienced 
by a grain is the same as that experienced by the poly­
crystal considered as a homogeneous medium: D = b. 
On the other side, the static model supposes a uniform 
stress distribution (8 = S). For a given applied strai n­
rate, the static and Taylor models provide the lower and 
upper bounds, respectively, for the d issipation potential 

1541. 
Due to the strong crystal anisotropy, the static model 

has been shown to be well adapted to describe the poly­
crystalline ice behaviour, whereas it is the opposite for 
the Tay lor model [II J. 

11le static model has been onen used either with a dis­
crete description of the fabric 110, 91j or a continuum 
description l35 , 45, 50, 85], mainly because it allows an­
alytical developments. Using either the CTI law (5) or 
(6) and the orientation tensor to describe the fabric, an­
alytical expressions for the static model can be derived 
easily. As an example, this expression using the CTI law 
(6) with 'Y = 1, simply reads: 

jj ~ 12 (rJS + (1 - iJ)(a"' · S + S· aP ')] 
2 (29) 

+ 1h ({3 - 1)a (4) ; S. 

As shown by Equation (29), in the linear case, the macro­
scopic expression depends on the first two even order ori­
entat ion tensors. 

In the limit case of an isotropic fabric , the second and 
fourth order orientation tensors simply read a;~) = 6ij / 3 
and aj;~l = (dij dkl + 6ik 6j/ + 6i/ djk)/15 (i,j, k , l = 
1, 2, 3). The static law (29) reduces then to the isotropic 
Glen's law ( I), and the following relation between the 
grai n parameters" tPl, (3 and 'Y, and the macroscopic 
Glen's law nuidity 8 1 is obtained: 

For a one-site model, the grain-to-grain interaction is 
not taken into account, so that the behaviour of a poly­
crystal with a single maximum fabric is fully equivalent 

to that o f the single crystal. Therefore, the grain pa­
rameters should be identified. not regard ing the crystal 
behaviour, but from experimerllal tests on a polyerystal 
with a strong single maximum fabric. Experimentally, it 
is then found thm such a polycrystal is approximately 10 
times easier to shear perpendicular to the mean c-axis ori­
entation than a polycrystal with an isotropic fabric [78J. 
The ratio I/Jd Bl = 10 can then be used to select the pa­
rameters ({3, , ). For the static model , the max imum value 
for this ratio is 5/ 2 in the linear case and 35/8 = 4.375 
when n = 31601. Thecxperimcntal rat io o f 10 is then not 
reached by the static model, and th is is the main drawback 
of th is model. With the static model , the an isotropy en­
hancement of the now is always underestimated for sin­
gle max imum 1:1brics by a factor 4 in the linear case and 
greater than 2 when n = 3. The use of intermediate mod­
els, as presented below, allows to avoid th is drawback. 

5.1 .2 Visco-Plastic Self-Consistent (VPSC) model 

The VPSC model has been adapted to ice by Castelnau 
and others [II J using a d iscrete description o f the fabric. 
As shown by Castelnau and olhers 112] from mechanical 
tests on GRIP (Greenland) ice specimens, this model re­
produces adequately the dependence of the ice rheology 
on its fabric. The VPSC model is a so-called aile-sire ap­
proximation in which the innuence of the neighbourhood 
of each grain is accounted for by considering this grain 
as an inclusion embedded in a homogeneous matrix. the 
so-called homogeneous equil'alellf medium (HEM). The 
HEM behaviour, which represents that of the polycrystal, 
is to be determined. The basis of the VPSC homogeniza­
tion scheme is the local illleraclionjorlllufa that provides 
a relation bet ween the local stress and the local strain-rate 
acting on a grain (different from grain to grain) and the 
corresponding macroscopic quantities. II is written as 

D - jj ~-M' (S - S) , (3 1) 

where the interaction tensor A1 is a function of the grain 
and of the (unknown) HEM mechanical properties (see 
Equations (17-19) in [II] for details). By construct ion, 
if the same stress sensitivity cxponcnt is adopted for 
all the crystallographic planes. then the HEM and the 
grain will have the same exponent. The macroscopic be­
haviour of the HEM is obtained by solving the equation 
b =< D >. 

To solve this equation. Castelnau and others used the 
averaging formula (10) and the Schmid law (4) with a 
stress exponent n = 3. In the non-linear case, the results 
are strongly dependent on the linearisation of the local 
behaviour, leading to the so-called secant. tangenr and 
affine formulations; however. Castelnau and others used 
only the tangent formulation [9J. T he above assumption 
may be questionable for icc, where a strong directional­
ity and large variations in local properties arc expected. 

"Formally. 10 obtain relation (30). one ~houtd derive an exprc"ion ~imi1ar 10 (29) without as~uming ')' = I. 
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FurthemlOre, the tangent formulation was shown to satu­
rate for high anisotropy [42J. The non-dependence with 
higher-order statistical moments is particularly crit ical 
for the treatmelll of those highly-contrasted materials, 
since such information is essential to capture, in an av­
erage sense, the effect of the strong strain-nile gradients 
that are likely 10 develop inside grains which are highly 
anisotropic. In order to overcome the above limitations, 
Lcbensohn and others have applied to ice a rigorous non­
linear homogenization scheme, the second-order VPSC 
model, that takcs into account informat ion on the av­
crage fiekl fluc tuations at thc grain level [56[. Among 
the various nonlinear extensions of the self-consistelll 
approximation, the secolld-order method gives the best 
overall agreemelll wi th the effective properties and field 
fluctuations obtained by means of full-field simulmions 
(see below), for both 2-D and 3-D polycrystals [56J. 

In the linear case, there is only one formulation for 
the VPSC model, and the macroscopic behaviour of the 
HEM can be obtained by solving either the equation 
b =< D > or 5 =< 5 >. Meyssonnier and Philip 
have derived a semi-analytical solution in this particular 
linear case, using the CTI modcl (6) with '"Y = 1 for the 
grain and an ODF with transverse symmetries to describe 
the fabric [67]. 

When using the VPSC model it is not possible to 
achieve the HEM behaviour in closed analytical fonn. 
The ratio t/Jn/Bn of the isotropic fluidity obtained with 
the VPSC model (on an isotropic fabric ) 10 the grain ref­
erence fluidity ¢n must be computed. In the linear case, 
Meyssonnier and Philip [67] derived the following rela­
tion when I = I: 

(32) 

This relation can be used to choose appropriate values of 
grain paT(IITleter {3 when I = 1. As an example, the ex­
pected experimental value of 10 is obtained for {3 = 0.04 
and I = 1 [67], In the non-linear case with the tan­
gent linearisation scheme of the VPSC, Castclnau and 
others [9[ estimated from a comparison with experimen­
tal tests that the RRSS for the pyramidal and prismatic 
planes should be 70 times larger than the basal plane 
RRSS (rr ~ rt y ~ 70r8)· 

S. J.3 Topological models 

For this particular elass of homogenization models, the 
fabric description contains some topological information 
so that the neighbourhood is taken into accou nt to es­
timate the stress and strain-rate of a partic ular grain. 
Azuma and Goto-Azuma [5J and Thorsteinsson 187[ have 
developed topological models in which the fabric de­
script ion is discrete and the grain deforms only by basal 
glide with 71 = 3. In both approaches, the local deviatoric 

stress is evaluated from the macroscopic one as: 

S'i = O'ij S ij (no sum) , (33) 

where O' ij is the neighbourhood interaction coefficicnt 
tensor. 

In Azuma and Goto-Azuma [5] , thc neighbourhood in­
teraction coefficients are estimated as 

«l'ij » 
O' ;j = ~ 

Tij 

(34) 

where « . » denotes the local average over the neigh­
bour grains on ly, and r ! is the Schmid tensor (3) for 
one particular direction in the basal plane, determined as 
the maximum resolved shear-stress direction when the 
macroscopic stresses act on the grain. 

Thorstcinsson [871 has adopted a scalar neighbourhood 
interaction cocfficient. defincd as: 

( 
«I L (r ' , S )b'l ») 1 

a.;~ a ~ (+, IL (r' ,S)b'l «(+ 6,) ' 

(35) 
where « » denotes the local average over the six 
ncighbours, and L:& is the sum over the three sl ip sys­
tems of the basal plane. The two parameters C and ~ al­
low to modify the relative influence of the 6 neighbours: 
(C,~) = (1, 0) reduces 10 the uniform stress model, when 
((, ~ ) = (6, 1) the centre crystal contributes as much as 
all the 6 neighbours and when «(,~) = (1, 1) the centre 
crystal contributes as much as each of the neighbours. 
Note th;!t the fabric evolution. as well as grain growth, 
rotation and dynamic recrystallization are implemented 
in Thorsteinsson's model [87]. 

Azuma and Goto--Azuma [51 have first highlighted the 
possible directional effects of anisotropy on the forma­
tion of stratigraphic disturbances. By using their pol y­
crysta lline law, they have shown that at a deeper part of 
an ice-sheet , where a single-maximum fabric develops, a 
positive vertical strai n-rate can be produced with on ly a 
horizontal shear stress as far as the bedrock is not nat. 
Using the feature that a polycrystal with a single maxi­
mum fabric is easier to shear but harder to compress, they 
noticed that a small misorientation of the mean orienta­
tion of the c·axes could induce disturbances of the lay­
ers. For a vertical variation of the mean orientation, both 
layer thinning and thickening can occur depending on the 
mean orientation of the c-axis. If it varies horizontally, 
then layer folding or boudinage could occur. These two 
scenarios are only qualitative because in L5J the complex 
interaction from the surrounding layers was completely 
neglected. 

The so-called cell ular automaton models [30. 551 can 
also be included in the class of the topological mod­
els. Based on a cellu lar automaton algorithm, this ap­
proach allows the modelling of several compet ing pro­
ccsses acting on the fabric evol ution, like defonnation, 
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grai n growth and contin uous and discontinuous rccrystal­
lizations. For numerical reasons, applications arc limitcd 
10 two-dimensional thin section, and the stress is assumed 
uniform in all the grains. which is the main difference 10 
the full-field models presented below. 

5.2 Phenomenological models 
In a phenomenological model, an anisotropic macro­

scopic formu lation for the polyerystal law is postulated. 
To be usable, the rheological parameters that enter this 
law have to be evaluatcd as a function of the fabric. The 
form of the law is assumed to be restricted to particular 
kinds of anisotropic symmetries (orthotropy, transverse 
isotropy or even isotropy), and the approaches mainly 
differ on the way the rheological parameters and the fab­
ric are linked. In the Morland and Staroszczyk approach 
[69,70,71 , 72,80,81,83,84], the anisotropic parame­
ters arc solely phenomenological functions of the defor­
mation, and there is no dirccl link with a fabric descriplOr. 
The limit values of the strain functions are evalu:lled from 
experimental resul ts or by comparison with an homoge­
nizat ion model [82[. 

On the c011lrary, the six rheological parameters e11ler­
ing the Gillet-Chau let and others [40] law arc simply fi t­
ted using a homogenization model , like the VPSC model 
presc11Ied above. In the first formulation, the fabric was 
described using the parameters of the PODF (24) l40J , 
but th is approach was found not to be cfficient for the 
fabric evolution. so that thc f<Jbr ic was later described by 
the usc of the second orientation tensor [411. 

In the approach of Placidi and Hutter l79J, the Glen's 
now l:\w coll inearity between strain-rate and stress ten­
sors is assumed to be conserved, and the anisotropy is 
taken into account by introducing;ln anisotropic enhance­
mcnt factor. This anisotropic enhancement factor is a 
func tion of the so-called de[ormabilit)' of the polycrys­
tal, evaluated from the fabric and the actual macroscopic 
stress. The anisotropic enhancement factor varies from 0 
for a single maximum fabric undcr compression up to a 
maximum valuc E8 for the same fabric but solicited by 
simple shear. 

The main interest of these models is their numerical ef­
ficiency, which allow thei r implementation in now mod­
els as presented in Section 6. 

5,3 Full-field models 

The full-field modcls solve properly the Stokes equa­
tions using either classical Finite Elemcnt methods [65 , 
68] or Fast-Fourier Transforms [56, 57]. The laller has 
beller performance than a Finite Element calculation for 
the same purpose and resolution, but only works for pe­
riodic boundary conditions. In such an approach, each 
crystal is decomposcd in many clements. allowing to in­
fer the stress and strain-rate heterogeneity at the micro­
scopic scale. As an important result, these models show 
that, for a given orientation, the mean strain-rate rllld 
stress are strongly dependent on the neighbour grain ori­
entations. All the same, the average value of all grains 

having the same orientation is still dependent on this ori­
entation. In other words, certainly becausc the ice is 
strongly an isotropic, the neighbourhood infl uence docs 
not counteract the orientation influence when looking to 
average behaviour of a large number of grains having the 
same orientation , but only induce a strong variability. 

The rTf results in [57] clearly contradict the statement 
made by Faria and co-authors [28, 29, 31J that stress and 
strain-rate of a speeies, i.e. an cnsemble of grains having 
the same orientation. should be independent of its orien­
tation because of the huge number of gmins belonging 
in the same species. As discussed by Gagliardini [33], 
the assumption made by Faria and others seems to be 
not insignificant and should he comparable to a uniform 
strain-rate or Taylor assumption in the framework of the 
homogenization model (for a complete discussion of this 
subject, see also the reply to Gagliardini's comment [33J 
by Faria and others [32]). 

5.4 Fa bric evolution 
When thc fabric is described using thc discretc ap­

proach, thc strai n-rate and the spin for each constituent 
can be evaluated from the homogenization model and the 
grain c - axis rotation is simply calculated from Equa­
tion (7) l13, 87, 91J. This formula also holds for eval­
uating the c - axis evolution for the full-fie ld models ["65]. 

Using an ODF, GOdert and Huller 1451 have proposed 
to adopt the following equation for the local balance of 
theOOF: 

j + dive(cf) = rr' + div:c w£ + diVe w{ , (36) 

where diVe and div::t: denote the divergence operator in 
the orientation and Cartesian spaces, respectively, rr' is 
a production o f orientation, w{ is associated with the 
diffusion of orientation in the orientation space and w~ 
describes diffusion of crysta ls from one region 10 the 
neighbouring one. Such production and diffusion terms 
should be used 10 take into account the different recrystal­
lization processes. Nevertheless, the cominuity equation 
(12) only holds when thcse terms arc neglected. 

The PODF (23), (24) and (25) have been used to ex­
press the fabric evolution equation as a set of POOF 
parameter evolut ion equations for some special now con­
ditions and under the static assumption. This is achieved 
by replacing f in Equation (36) by the POOF expres­
sion. lllen , a set of equations for the evolution of the 
parameters is derived by choosing as many particular 
orientations as the number of parameters in the PODE 
Therefore, the resulting parameter cvolution equations 
are not necessarily unique. Gagliardini and Meysson­
nier 138J havc shown that, in the case of 2D plane-strain 
flow, this method leads to a unique set of three cquations 
for the three parameters kl ' k"l and '-Po for thc POOF 
(24). This result was not achieved in a more general 30 
flow. Thorsteinsson and others r891 have derived a simple 
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equation for the cone: angle 0 ' in (25), by a straight-line 
fit of the results obtained with a discrete model [87[. 

Using the orientation tensor, the fabric evolution can 
be described at the macroscopic sca le from the temporal 
derivation of the second order orientation tensor ( 14), as: 

a (2)=< c (8) C>+< C® C> . (37) 

The rotation rate c of the c - axis given by (7), is a func­
tion of the microscopic spin and strain-rate and should 
therefore be expressed as a function of macroscopic 
quantities if one wanls to derive an explicit equation for 
the evolution of the second order orientat ion tensor. This 
is si mply achieved for the Taylor model and also for the 
static one for which D = tPn/2T,,- 1 S. For imermediate 
models. Gi.)dert [44J. and Gillet-Chaulet and others [41], 
have proposed to adopt the following expression for the 
rotation rnte of the orient(lt ion of n crystnl : 

. - - T -
c = W ·c - [C·c - (c ·C·c)c], (38) 

where 6 = (1 - alb +a!/J,, -r n- 1 S / 2 is a tensor, equi v­
alent to a strain-rate, intermediate between the Taylor and 
slatic strain-rates. The sca lar inleraclion parameter a al­
lows to describe intennedinte fnbric evoluti on, from the 
Taylor case (0' = 0) to the stntie case (0 = 1). In [44], 
the macroscopic stress and strain-rate (Ire evaluated using 
the static model, whereas Gillel-Chaulet and others f41] 
used the VPSC approximation. 

Using Ihis intermediate notation for the rotation rate of 
the orientation of a crystal, its follows from (37) that the 
evolution of the second order orientat ion tensor reads: 

uP) = W · a (2 ) _ a (2) , HI _ (C· a ( 2 ) _ a ( 2 ) ·6) 
+ 2 a (4 ) : C. 

(39) 

Equation (39) for the evolution of a(2 ) involves the 
fourth-order orientation tensor a (4). The same proce­
dure applied to a ( 4 ) would show that fi (· ) depends on 
a (e), and, in general, th at any evolution eq uation for an 
even-order orientation tensor fi (2p) will involve the next 
higher even-order orientation tensor a (2P+2) . To obtain 
a closed set of equ:uions we must SlOp at a given or­
der 2p and make a so·called closure approximation, i.e. 
postulate a relation between a (2p+2) and a (2p) . Using a 
elosure approxi mat ion for a (4 ) leads to the assumption of 
macroscopic orthotropy [15]. 

Orientation tensors arc widely used to provide a com­
pact representation of fiber orientations in reinforced 
composites, and many closure approxi mations have been 
proposed (see for example [I , 14, 15J and references 
therein). A simple form for the closure approximation. 
known as the quadratic closure, is: 

(40) 

Note that the quadrat ic closure does not respeel the sym­
metries of a ( · ) and is on ly exact for a perfect single max­
imum fabric. 

A second approach, the linear closure, is built from all 
the possible products of a ( 2 ) and the identity tensor 1 that 
respect the symmetries of a ( 4 ) : 

7d;;~1 = - ~ (O;jl5kl + OikOjl + Oi/Oj k') + a~j)ON 
+ (2H + (2) ~ + <" J + ( 2 ) ~ + ( 2 ) ~ 

a ;k Oj l a il Oj k aN ij a jl Oik a j ko i/ . 

(41) 

Adv;lIli and Tucker II] have proposed an hybrid clo­
sure constructed from the two prev ious ones : 

where 2af = 3 a ( 2 ) : a ( 2) - 1. Since Of = I for a sin­
gle maximum fab ric and a f = 0 for an isotropic one. the 
hybrid closure is exact for both cases. The hybrid closure 
was applied 10 icc by GOdert [44J. 

Gil1ct-Chau let and others [41 J have used the /m'arial1f­
Based Optimal Filling (I.BOF) closure from Chung and 
Kwon LJ4J. Its general form is 

a (4 ) =/31 ( I (8) I )D + f32( 1 (8) a ( 2 )D 

+ /33( a (2) (8) a ( 2) )D + /34(1 (8) a ( 2). a (2 ))D 

+ /3s( a ( 2 ) ® a ( 2 ) . a ( 2»)D 

+ /36(a (2 ) . a (2) (8) a ( 2 ) . a ( 2) )D , 

(43) 

where 1 is the identity tensor, and the six functions /3i 
are functions of the second and th ird invariants of a(2), 

denoted by II and III respectively. It can be shown that, 
owing to the symmetries of a (4 ) and the nonmllisation 
condition tr a ( 2 ) = 1, only 3 functions /3i arc indepen­
dent. Following Chung and Kwon [14J, Gillet-Chau let 
and others f41 J have taken the three independent func­
tions as complete polynomials of degree 5 in II and III , 
so that 63 parameters need 10 be determined. By adding 
two other relations to insure that the IBOF closure ap­
proximation is exact for perfectly aligned fabrics and gir­
dle fabrics , this number is reduced to 61. 

Gillet-Chaulct and others [4 1 J have computed these 61 
coefficients so that a (4) given by (43) fits the fourth or­
der orientation tensor calculated by using POOF (24) (sec 
Annex C of[ 39] for the values of the 6 1 coefficients). The 
IBOF closure is much more accurate than the hybrid clo­
sure and, in the linear case (n = 1), it conducts 10 the 
same fabric evolution than the one obtained by solving 
the evolution equations for the parameters of the POOF 
(24), but in a much faster Wily. 

Both the hybrid and mOF closures assume implicitly 
that the fabric is orthot ropic. To avoid this hypothesis, 
which should not be so strong for polycrystal ice, one 
can compute the evolution of a (4 ) . but must then adopt a 
closure upproximation bet ween a(4 ) and a (6 ) [50J. 

6 Flow models of anisotropic polar ice 

In order to study the influence of icc anisotropy on the 
flow of icc-sheets, a modell ing efforts have been made in 
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order to implement anisotropic laws in flow models, and 
for a few applications, the anisotropic flow laws have also 
been coupled with the strain-induced fabric evolut ion. 

6. 1 Flow of anisot ropic ice 
In the framework of the Shallow Icc Approximation 

(SIA) [491, initially developed for isotropic ice. Man­
geney and Califano [621 have proposed the extension 
to an isotropic icc of the SIA up to the second order. 
They have adopted the static transversely isotropic law 
of Lliboutry [60J, in which the fabric is described by 
the POOF (21). The symmetry axis of the fabric coin­
cides with the vertical axis, and only vertical changes of 
the fabric strength arc allowed. Mangeney and Califano 
[621 have shown that the zero-order :lpproximation of 
the anisotropic SIA is fully equivalent to the isotropic 
SIA with an enhancement factor. However, when the 
second-order correction is calculated, the isotropic SIA 
with an enhancement t:1ctor docs not correspond to the 
anisotropic SIA anymore. By comparing the anisotropic 
SIA to an exaCT solution, Mangeney and Califano [62J 
have shown that for a perturbed bedrock, the seeond­
order approximation is needed. 

lliese developments were further extended by Philip 
and Meyssonnier [77J to the case of a non-vertical sym­
metry axis of the fabric. They have shown that the di­
agonal eomponems of the devialOric stress can be of 
the same order as the shear stress when the material 
symmetry axis is not vertical, clearly indicating that the 
above conclusion by M:lngeney and Califano regarding 
the enhanccment factor is only valid in thc restricted case 
of a vertical material symmetry axis. Moreovcr, Philip 
and Mcyssonnier havc shown that thc solutions at orders 
grealer than zero remain negligible in the particular case 
of a linear rheology and a flat bed. 

Using the same Lliboutry·s polycrystal model as in 
[621. Mangcney and others [63, 641 have developed a 
two-dimensional isothermal full-Stokes model restricted 
to Newtonian behaviour, withoUl[63] and with 1 6~]tak­

ing into accoum the free surface evolution as a func tion 
of an imposed accumulation. In th is approach, the fabric 
is given and is assumed to be a function of the relative 
depth only. In 164], they have shown that the effect of 
~nisolropy is partly smoothed out by Ihe change of the 
free surface which is flallcr in the ~n isotropic case than 
in the isotropic case. In the p~rticul~r case of a sinusoidal 
bedrock, the anisotropic ice above the bump is found 10 

be younger by more than 10 % comparcd 10 the isolropic 
icc. and in the holes of the relief it is older by more than 
100 %. 

Morc recently. Pettit and others [76J have developed a 
flow model. in which the ice fabric is described using the 
cone-angle POOF (25), and the :ln isotropic icc behaviour 
is inferred from analytical solutions derivcd under the 
Sialic assumption for simple loading cases in [86]. Be-

cause Pettit and others [761 consider complex load con­
di tions in their flow model, these analytic:l1 results were 
linearised. and the flow non-linearity was re- introduced 
by the usc of an iSOlropic bulk elTective viscosity derived 
from Glen's law. Assuming that the cone-angle profile is 
only a function of reduced depth, this non-linear model 
was applied to study the flow ncar an ice divide. They 
have shown that a Strong crystal fabric always increases 
the amplitude of the existing arch in the isochrones, the 
so-called Raymond bump, relative to the isotropic case. 
They h:lve confirmed that with a linear flow law, no arch 
exists in either the anisotropic or isotropic case. 

6.2 Flow and fabric evolution of anisotropic ice 

GWert [43] and GWert and Hutter 146] have devel­
oped an anisotropic flow model with induced anisotropy 
using a coupled Finite-Element Finite-Volume approach. 
In their approach, the Newtonian orthotropic behaviour 
of icc is inferred from the static model , the fabric is 
described using the POOF (23) and ils evolution is inter­
mediate between the Taylor and sl3tic models (Equation 
(38)). As a first application, th is flow modcl was appl icd 
to a rectangular domain 10 times wider than th ick in or­
der to reproduce thc stationary plane flow in the vicinity 
of an icc divide. The resul ts obtained at the divide weTt! 
shown 10 reproduce well the evolution of fabric along the 
GRIP core. 

Also using a static Newtonian orthotropic model and a 
fabric given by the POOF (24), Gagliardini and Meysson­
nier have applied their anisotropic flow model 10 a 21) 
synthetic icc-sheet geometry [36] and to study the fab­
ric evolution along the GRIP ice core [37]. In this later 
application, they ha.ve shown, by comparing the fabric 
evolution obtained with the 20 flow model to the fabric 
evolution inferred from a Oansgaard-Johnsen one dimen­
sional flow model [16], that the flow conditions clearly 
influence the fabric evolution. Because of this complex 
coupling between the flow and the fabric, the use of a 
trivial evaluation of the strain-Tate history, like a one 
dimensional Oansgaard-Johnsen model, renders the ap­
plication of any polycrystalline model open to criticism 
when comparing measured and modeled fabrics. 

Gillet and others 141] have presented a 20 isothermal 
orthotropic flow model wi th induced anisotropy and free 
surface evolution. The polycrystal behaviour is inferred 
from an orthotropic Newtonian phenomenological model 
using the VPSC solution to fit the viscosity parameters. 
The fabric is described by the usc of the orientation ten­
sors. The velocity. pressure and fabric fields , as well as 
the free surface elevation, were calculated in a coupled 
way for a synthetic ice-sheet geometry. consisting of si­
nusoid:ll bedrock elevation. Their results show that, due 
to the bedrock irregularities, the icc fabric field presents 
a strong spatial variability. The same model was later 
applied to quantify the influence of a difference in the 
initial surfacc viscosity on thc fabric development [211. 
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The test consisted in prescribing a time-dependent ini­
tial surface viscosity, supposed to mimic the effect of 
impurities 'lIld/or grain size which vary from glacial to 
inter-gl<lci<ll periods. As expected. as far as some shear 
deformation is possible, a positive feedback is observed , 
i.e. an ini tially softe r layer experiences more shear, so 
that its f<lbrie is morc concentrated and therefore easier 
to shear, and so o n. TIlC model qualitatively reproduces 
the observed strengthening of the fabric during Termi­
nation 11 around 1750 m at Dome C, indicating that the 
Dome C ice certainly underwent shear defonmllion. 

Morland and Staroszczy k !73J have implemented their 
phenomenological law in a steady radial ice-sheet flow 
model. The velocities, the fabric evolution and the free 
surface elevat ion are calculatcd in a coupled way, assum­
ing a givcn temperature profile. In their approach. the 
fabric evolution is simulated by the evolution of the left 
Cauchy-Green strain tensor, leading 10 three independent 
evolution equations. For the flow solution, the typical 
magnitudes of physical variables arc studied, and the re­
sulting equations are simplified by neglecting the terms 
lower than the maxi mum bedrock slope. TIle flow of 
anisotropic and isotropic ice is comparl.'<i in the partic­
ular case of a steady radial geometry. for a flat bed, a bed 
with a sing le sy mme tric hump and a bed with a single 
symmetric basin. 

7 Conclusion 

A review of a large number of models has been pre­
semed, from crystal model s up to anisotropic fl ow mod­
els. [t appears that in glacio[ogy. most o f the modelling 
consists in the devclopmcnt of homogenization models 
under ditTerenl assumptions, using different crystal mod­
els. 

Regard ing the polycrystal models. Figure 4 is a tenta­
tive classification of thc different polycrystal models as 
a func tion of their application. This elassification comes 
from both the numerical cost and the quality of the solu-

tion at the different scales for each of the presented poly­
crystal models. 

In the ncar future , investigation of the interaction be­
tween all these different models should be a good strat­
egy. For example, results from full-field models can be 

used 10 validate an homogen ization model, which itsclf 
can serve as an input to the development of a phenomeno­
logica l model. 1.11 the reverse, streamlines and associated 
strain histories inferred from an anisotropic flow model 
can serve as input to an homogenization model for the 
computation of 1he fabric evolution in an ice core. 
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