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ABSTRACT
In many E-commerce sites, recommender systems, which
provide personalized recommendation from among a large
number of items, are recently introduced. Collaborative �l-
tering is one of the most successful algorithms which provide
recommendations using ratings of users on items. There are
two approaches such as user-based and item-based collab-
orative �ltering. Additionally a unifying method for user-
based and item-based collaborative �ltering was proposed
to improve the recommendation accuracy. The unifying
approach uses a constant value as a weight parameter to
unify both algorithms. However, because the optimal weight
for unifying is actually di�erent by the situation, the algo-
rithm should estimate an appropriate weight dynamically,
and should use it. In this research, �rst, we investigated
the relationship between recommendation accuracy and the
weight parameter. The results show the optimal weight is
di�erent depending on the situation. Second, we propose
an approach for estimation of the appropriate weight value
based on collected ratings. Then, we discussed the e�ective-
ness of the proposed approach based on both multi-agent
simulation and MovieLens dataset. The results show that
the proposed approach can estimate the weight value within
an error rate of 0.5% for the optimal weight.

1. INTRODUCTION
Recommender system predicts users' preference to pro-

vide personalized recommendation [6]. E�ective recommen-
dation improves usefulness of searching items and provides
information of new items on the web. On the other hand,
the recommender system also gives advertising e�ects for
the users. Therefore, the system bene�ts both users and
operators. Several websites especially e-commerce sites are
already applied such as Amazon.com1, MovieFinder.com2,
Ebay3e�ectively. Additionally, other applications with rec-
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ommender system were introduced by Schafer, et al. [8].
User-based and item-based collaborative �ltering are the

most successful and adopted algorithms to provide recom-
mendations in many systems. However, if the recommender
system has few ratings at the beginning of operation for ex-
ample, the system cannot compute the rating predictions.
The problem is commonly known as cold start problem [9]．
Therefore, Wang et. al. proposed unifying method for

these algorithms by weighted sum with a constant weight
parameter, which is represented as λ, in such a way that the
system recommends more e�ciently when the system has
few ratings [11].
For the unifying method, one of the most important chal-

lenge is how determine the λ parameter in adapting to the
situation. Wang et. al. propose the unifying method by
weight parameter λ which is empirically determined as a
constant value at all times. Generally, recommendation ac-
curacy of collaborative �ltering is a�ected by the system
condition such as input frequency of ratings by users and
distribution of users' preference. Thus, user-based collabo-
rative �ltering may be relatively more e�ective than item-
based collaborative �ltering, or we may have the opposite
kind of situation. Consequently, optimal weight parameter
λ seems to change according to the situations. Notice that,
the system should estimate optimal λ not to adapt previ-
ously collected ratings, but to maximize next recommenda-
tion accuracy.
Therefore, we propose adaptive unifying method for user-

based and item-based collaborative �ltering by estimating
appropriate weight parameter dynamically. Actually, the
weight is determined by simulated recommendation using
previously collected ratings. In this paper, we also describe
the result of evaluation experiment for proposed adaptive
unifying method with both multi-agent simulations based
on rating-recommendation interaction model and MovieLens
dataset.

2. COLLABORATIVE FILTERING

2.1 User-based Collaborative Filtering
The baseline of user-based collaborative �ltering algorithm

1http://www.amazon.com/
2http://www.movie�nder.com/
3http://www.half.ebay.com/



was proposed by GroupLens project in 1994, and it is used
in some of the earliest collaborative �ltering systems [5].
The algorithm remains a popular baseline algorithm of rec-
ommender systems today, since it is easy to implement and
demonstrates high accuracy.
The algorithm is referred to as �user-based collaborative

�ltering�, since the core of the algorithm is the computation
of similarity weight between each pair of users. Figure 1
illustrates this process; here the matrix rows represent users
and the columns represent items. Note that user-user sim-
ilarity is computed based on ratings on items which were
rated by both of the pair of users.

Figure 1: Similarity computation process in user-based col-
laborative �ltering

Therefore, the �rst step of recommendation in the algo-
rithm is to weight all users with respect to similarity with
the active user. Several expressions are proposed as the
similarity weight such as Pearson's correlation coe�cient ,
cosine distance [2] and Tanimoto coe�cient [10]. Selection
of similarity weight expression is one of the most important
design factor of collaborative �ltering, a�ecting recommen-
dation accuracy. In this paper, Pearson's correlation co-
e�cient is adopted to conventional approach, since several
previous studies conclude the Pearson's correlation coe�-
cient perform better than the others [1]. The similarity is
formulated as follows:

simu(a, u) =

∑
i∈Ia∩Iu

(ra,i−ra) (ru,i−ru)√ ∑
i∈Ia∩Iu

(ra,i−ra)
2

√ ∑
i∈Ia∩Iu

(ru,i−ru)
2

, (1)

Iu is the set of items rated by user u while ru,i is the rating
of user u on item i. The rating averages ru, ra are taken
over the common items rated by both users.
Having assigned similarity weights to users, in the next

step, the system determines which other users' ratings will
be used in the computation of a prediction for the active
user. Formally, the neighbors S(a) ∈ Ui of active user a are
selected based on the similarity weights, where Ui is the set
of all users who have rated item i. Selection of neighbors is
also important design factor of collaborative �ltering. Her-
locker, et. al.[3] and Ma, et. al.[4] determined the e�ect of
neighborhoods selection in recommendation accuracy. Typ-
ically, Su(a) is consisted of the top of k users most similar to
active user a, i.e. k-Nearlest Neighbor method. Or weight

threshold, which sets a minimum correlation weight that a
neighbor must have in order to be accepted into the neigh-
bors, are used to consist Su(a). In this paper, Su(a) is con-
sisted by top of kuser similar users and weight threshold is
ξuser, i.e. Su(a) = {u|simu(a, u) ≥ ξuser, rank(simu(a, u)) ≤
kuser}.
The ratings of these user neighbors are combined into a

rating prediction r̂a,i as follows:

r̂a,i = ra +

∑
u∈Ui∩S(a)

simu(a, u)(ru,i − ru)

∑
u∈Ui∩S(a)

∣∣∣simu(a, u)
∣∣∣ (2)

If Ui∩S(a) = ϕ, rating prediction r̂a,i cannot be calculated.
Figure 2 illustrates the rating prediction process based on
user similarity. Here, the matrix rows represent users and
the matrix columns represent items.

Figure 2: rating prediction based on user-based collabora-
tive �ltering

Finally, recommender system recommends the items which
has high rating prediction r̂a,i for active user a.

2.2 Item-based Collaborative Filtering
The user-based collaborative �ltering calculates rating pre-

diction based on similarity weight between each pair of users.
An alternate approach is to �nd items rated by the active
user that are similar to the item being predicted. Sarwar et
al.[7] proposed several di�erent algorithms that used simi-
larities between items, rather than users, to compute rating
predictions.
One critical step in the item-based collaborative �ltering

algorithm is to compute the similarity weight between each
pair of items and then to select the most similar items. Fig-
ure 3 illustrates this process; here the matrix rows represent
users and the columns represent items. Like user-based col-
laborative �ltering, several expression are proposed as the
similarity weight such as Pearson's correlation coe�cient
and cosine distance [7]. In this paper, Pearson's correlation
coe�cient is adopted to compute item similarity weights for-
mulated as follows:

simi(b, i) =

∑
u∈Ub∩Ui

(ru,b− rb) (ru,i− ri)√ ∑
u∈Ub∩Ui

(ru,b− rb)
2
√ ∑

u∈Ub∩Ui

(ru,i− ri)
2
, (3)



Ub is the set of users who rated item b and Ui is the set of
users who rated item i. The rating averages ri, rb are taken
over the common users who rated both items.

Figure 3: similarity computation in item-based collaborative
�ltering

As with the user-based collaborative �ltering, the next
step is determine which other items' ratings will be used
in the computation of a prediction for the active user. For-
mally, the item neighborhoods Si(b) ∈ Ia of active user a are
selected based on the item similarity weights, where Ia is the
set of all items which are rated by active user a. In this pa-
per, Si(b) is consisted by top of kitem similar items and cor-
relation weight threshold is ξitem, i.e. Si(b) = {i|simi(b, i) ≥
ξitem, rank(simi(b, i)) ≤ kitem}.
The ratings of these item neighbors are combined into

a rating prediction r̂a,i based on item-based collaborative
�ltering as follows:

r̂a,b =

∑
i∈Ia∩Si(b)

simi(b, i)(ra,i)∑
i∈Ia∩Si(b)

|simi(b, i)|
(4)

If Ia∩Si(b) = ϕ, rating prediction r̂a,b cannot be calculated.
Figure 4 illustrates the prediction process based on the item
similarity. Here the matrix rows represent users and the
matrix columns represent items.
Finally, recommender system recommends the items which

has high rating prediction r̂a,b for active user a.

2.3 Fusion Method for User-based and Item-
based Collaborative Filtering

User-based collaborative �ltering calculates linear com-
bination of other user's ratings to predict target rating.
Similarly, Item-based collaobrative �ltering calculates lin-
ear combination of other item's rating to predict target rat-
ing. Therefore, linear combination between rating predic-
tion based on User-based and Item-based collaborative �l-
tering is also rating prediction. Wang et.al. propose relative
importance value λ to unifying User-based and Item-based
collaborative �ltering by mathematical form, and it could
improve recommendation accuracy [11]. Actually, the rating
prediction of the unifying method is computed by weighted
sum of rating predictions from user-based and item-based
collaborative �ltering as follows:

Figure 4: rating prediction based on item-based collabora-
tive �ltering

r̂a,b= λfu(a, b) + (1− λ)fi(a, b) (5)

Figure 5 illustrates the unifying process. In this paper,
we focus that how the λ, which is the weight parameter of
the unifying process, was computed.

Figure 5: Unifying user-based and item-based collaborative
�ltering

3. ADAPTIVE FUSION METHOD BASED ON
SIMULATED RECOMMENDATION PRO-
CESS

Wang et. al. set λ as empirically determined a constant
value at all times. However, the system cannot assign opti-
mal λ as a constant value since the accuracy of next recom-
mendation cannot be computed in advance. On the other
hand, recommendation accuracy is a�ected by the situa-
tion such as input frequency of ratings by users, distribution
of users' preference and the number of ratings. Therefore,
recommendation accuracy increase when the system assigns



appropriate λ sequentially and adaptively by predicting an
accuracy of next recommendation. Thus, the λ should be
dynamically assigned based on previously collected ratings.
In this paper, we propose the computation method for the

λ based on previously collected ratings. Particularly, the
system extract one rating randomly from whole collected
ratings. Then, the system calculates the rating prediction
of the extracted ratings and calculates MAE (Mean Abso-
lute Error) by the error of the prediction. Let us call this
operation as simulated recommendation. The recommender
system repeats the simulated recommendation where λ is
assigned as several values. Then, the value which provide
lowest MAE is adopted as λ. The �owchart of the proposed
method is illustrated as �gure 6.

Figure 6: Computation procedure of λ based on simulated
recommendation process

Notice that, there are several parameter such as the num-
ber of simulated recommendation represented as T and the
step size of λ represented as δ. These parameter have to be
assigned with consideration for trade-o� between the adapt-
ability and the time complexity.

4. EVALUATION MODEL BASED ON HUMAN-
SYSTEM INTERACTION

The e�ectiveness of recommender systems improves as a
result of interaction between the system and its users, i.e.,
the usage of collected ratings as user feedback. Therefore,
certain real dataset is just one example which constructed
based on the system-user interaction. In this paper, we use
not only real dataset but also agent-based model to investi-
gate the e�ectiveness of our proposed approach. In this sec-
tion, the simulation model, which is named human-system
interaction model, based on agent modeling is explained.

4.1 Model Components
The rating-recommendation interaction model has three

components: agents (correspond to users), items and rec-

ommender system. This model can be formulated as fol-
lows: Let U = {u|u = 1, 2, . . . , Nuser} be the set of all
agents, let I = {i|i = 1, 2, . . . , Nitem} be the set of all items.
The preference of each agent u is represented by the vector
pu = (pu,1, pu,2, . . . , pu,d), and the feature of each product i
is represented by the vector vi = (vi,1, vi,2, . . . , vi,d), where
d is the dimension of pu and vi. The range of each elements
in the preference vector pu and feature vector vi are [−1, 1].
When an agent u is recommended an item i, the agent u

computes rating ru,i according to the distance between the
preference vector pu and the feature vector vj. Then the
agent u inputs rating ru,i to recommender system. The rat-
ings can be represented as agent-item metrix in the recom-
mender system, which is named rating matrix in this paper.

4.2 Distribution of the Preference Vector pu

In this model, each element of the vector pu is set as ran-
dom numbers according to the following distribution. Three
types of the distribution were applied to investigate an e�ect
of the recommendation by the di�erence of the distribution.

4.2.1 Uniform Distribution
Uniform distribution represents a situation without trend

of the preference. pi is set as random numbers according to
the uniform distribution, and the range is [−1, 1].

4.2.2 Multivariate Normal Distribution
Multivariate Normal distribution represents a situation

where the trend exists. When the dimension of vector is d,
random vector x from the d-dimensional multivariate nor-
mal distribution with mean vector µ and covariance matrix
Σ is generated as follows: �rst, compute the cholesky de-
composition of Σ, that is, �nd the unique lower triangular
matrix L such that LLT = Σ. then, Let z = (z1, z2, . . . , zd)
be a vector whose components are d independent standard
normal variates. x is computed by the product of L and z
as follows:

x = Lz+ µ ∼ N(µ,Σ), (6)

In this paper, µ = 0 and Σ is set as diagonal metrix as
expression (7) for simplicity. Particularly, the trend is strong
when the variance v in Σ is small in the multivariate normal
distribution.

Σv =

{
σij = v where i = j
σij = 0 otherwise

. (7)

4.2.3 Two-peak Distribution
Two-peaks distribution is obtained by sum of two normal

distributions: N(µ = −0.5, σ2 = 0.2) and N(µ = 0.5, σ =
0.2). This distribution represents a situation that the users
form several group by their preference. The number of
groups is calculated by 2d where d is the dimension of the
vector pi, because random numbers are independently given
to each element.

4.3 Distribution of the Feature Vector vi

In this paper, various items are provided as the recom-
mendation targets, for investigating e�ects of user prefer-
ence on that recommendation performance. If there is bias
in the distribution of feature vectors vi, it also e�ects the
recommendation result. However, in these experiments, we
focus on the e�ect of the distribution of preference vector.
Thus, we eliminate the e�ect of the distribution of vi on



the recommendation result by providing the feature vector
vi at random. More formally, the vector vi is set as vectors
according to the uniform distribution of range[−1, 1].

4.4 Rating
In this model, let R be the set of all ratings by agents,

and rating ru,i ∈ R represents the rating of agent u ∈ U on
item i ∈ I. ru,i is computed based on the distance of pu

and vi. In this model, every agent computes ratings based
on a common rating function for simplicity, i.e. all agents
rate for items without biasing to a low or high rating.
In this paper, �ve-grade rating was used in this model.

Thus, the rating function has four thresholds. The thresh-
olds were set where each grade occurs same frequency if
the distribution of pu is generated based on uniform distri-
bution. Note that, if pu is generated based on the other
distribution, each grade occurs di�erent frequency.
The parameter d, which is the dimension of vector pi and

vector vj, a�ects a computation of distance between pu and
vi. Then, the thresholds should be assigned each dimension
d respectively, however, every experiments in this paper was
performed where d = 5.

5. EXPERIMENT AND DISCUSSION BASED
ON MULTI-AGENT BASED SIMULATION

5.1 Experimental Settings
In this section, several experiments are performed to eval-

uate the e�ectiveness of proposed unifying method based on
rating-recommendation interaction model described in sec-
tion 4. Generally, sequence of ratings and variance of rating
frequency among users or items a�ect recommendation ac-
curacy. First of all, selection process is de�ned to determine
next active agent. Every agent was assigned its own score
which is generated based on normal random number where
average is 0.5, variance is σ2 at the beginning of a simulation.
Then, the system select next active agent by roulette-wheel
selection based on the score. The selected agent (i.e. active
agent) rates one item randomly. Notice that, the variance
σ2 was assigned as three di�erent values as follows:

• σ2 = 0 (Every agent is selected at same possibility)

• σ2 = 0.1 (The possibility is assigned based on normal
distribution)

• σ2 = ∞ (The possibility is assigned based on uniform
distribution)

In this section, the experiments were performed based on
rating-recommendation interaction model. Table. 1 shows
the settings for the experiments.
We use the metric of recommendation accuracy as MAE.

Therefore, the optimal λ represented as λopt is de�ned as
the value which provide the lowest MAE. In the �rst ex-
periment described in section 5.2, an λopt was computed at
each setting illustrated in table 1. Then, in the second ex-
periment described in section 5.3, the λ which was obtained
by the proposed method described in section 3 is compared
with λopt, moreover, the availability and the performance
are discussed.

5.2 Relationship between MAE and λ

First, the λopt at each experimental settings was com-
puted. The total number of ratings is 25000 since the num-
ber of agent Nu = 500 and the number of items Ni = 500.
In this experiment, the λopt was computed when the recom-
mender system was obtained 5%, 10%, 15% ratings each.
Figure 7 illustrates the experimental results at σ2 = 0,
σ2 = 0.1 and σ2 = ∞. In those �gures, the horizontal axis
denotes λ, and the vertical axis denotes MAE. Notice that,
the MAE at λ = 0 represents the result based on item-based
collaborative �ltering only, meanwhile, the MAE at λ = 1
represents the results based on user-based collaborative �l-
tering contrastively. Obviously, λ which provides the lowest
MAE is λopt.
In all �gures, MAE decreased according to increase the

number of ratings. Moreover, the unifying method of user-
based and item-based collaborative �ltering can provide lower
MAE than stand-alone algorithms. Let us focus about λopt.
For example, λopt is less than 0.5 when pu was generated
based on normal distribution according to Figure 7(b)(e)(h).
On the other hand, λopt is more than 0.5 when pu was gen-
erated based on two-peak distribution according to Figure
7(c)(f)(i). Therefore, λopt is di�erent depending on experi-
mental settings.

5.3 Experimental Validation and Discussion
In this section, the λ provided based on the proposed

method described in section 3 is compared with the λopt

shown in section 5.2. Table 2 denotes averages and vari-
ances of λ provided based on the proposed method in 20
trials.
For instance, the average of λ provided based on the pro-

posed method increases from 0.455 (when the system was
obtained 5% of ratings) to 0.700 (when the system was ob-
tained 15% of ratings) in settings that σ2 = 0 and pu was
generated based on two-peak distribution. By compare the
results with Figure 7(c), the proposed method can provide
λ close to λopt.
In contrast, the average of λ provided based on the pro-

posed method decreases from 0.470 (when the system was
obtained 5% of ratings) to 0.275 (when the system was ob-
tained 15% of ratings) in settings that σ2 = 0.1 pu was gen-
erated based on multivariate normal distribution. Similarly,
λopt illustrated in Figure 7(e) decreases according to the
number of ratings increase. Likewise, the proposed method
provides λ close to λopt in any experimental settings.
On the other hand, a variance of λ is about more than 0.1

in some settings. Actually, minimization of MAE is impor-
tant instead of estimation of λ. Hence, error rate represented
as ϵ between the MAE by λ provided based on the proposed
method and the MAE by λopt was calcurated as expression
(8). Table 3 denotes averages and a variances of the error
rate ϵ.

ϵ=
MAE of the proposed method−MAE of optimal λ

MAE of optimal λ
(8)

In most settings, the error rate ϵ was less than 1%, however,
the ϵ is relatively large when pu is generated based on two-
peak distribution. The cause is assumed that the number of
simulated recommendation represented as T was insu�cient.
For this reason, the number of simulated recommendation
should be assigned depending on the situation.

6. EXPERIMENT AND DISCUSSION BASED
ON MOVIELENS DATASET



Table 1: Settings for experiments based on multi-agent based simulation
the number of agents Nu 500
the number of items Ni 500

The distribution of pu

uniform distribution
multivariate normal distribution

two-peak distribution
the distribution of vi uniform distribution

selection probability of next active
agent

σ2 = 0 ( same probability)
σ2 = 0.1(based on normal distribution)
σ2 = ∞(based on uniform distribution)

the number of simulated
recommendations T

50

δ (the step size of λ) 0.1

Figure 7: Relationship between MAE and λ at σ2 = {0, 0.1,∞}, pi is generated based on uniform distribution (a)(d)(g),
normal distribution (b)(e)(h) and two-peak distribution (c)(f)(i)



Table 2: Average and standard deviation of λ obtained using proposed method (20 trial runs)

dist. of pu
5% 10% 15%

Ave. SD Ave. SD Ave. SD

σ2 = 0
uniform dist. 0.540 0.124 0.465 0.079 0.480 0.125

multivariate normal dist. 0.500 0.077 0.445 0.116 0.425 0.134
2-peak dist. 0.455 0.140 0.595 0.107 0.700 0.114

σ2 = 0.1
uniform dist. 0.450 0.107 0.395 0.092 0.305 0.128

multivariate normal dist. 0.470 0.119 0.350 0.107 0.275 0.089
2-peak dist. 0.530 0.158 0.560 0.097 0.540 0.102

σ2 = ∞
uniform dist. 0.550 0.107 0.445 0.107 0.365 0.101

multivariate normal dist. 0.475 0.094 0.365 0.096 0.290 0.099
2-peak dist. 0.595 0.102 0.575 0.062 0.560 0.102

Table 3: Average and standard deviation of error rate ϵ between the MAE by λ provided based on the proposed method and
the MAE by λopt

dist. of pu
5％ 10％ 15％

Ave. [%] SD Ave. [%] SD Ave. [%] SD

σ2 = 0
uniform dist. 0.42335 1.12985 0.20293 0.13270 0.58782 0.46487

multivariate normal dist. 0.30580 0.65538 0.71956 0.83600 0.69785 0.91000
2-peak dist. 2.52720 3.35148 0.75057 1.48146 0.93756 1.46451

σ2 = 0.1
uniform dist. 0.39421 0.69981 0.50005 0.35279 0.73569 1.07296

multivariate normal dist. 0.61515 1.10575 0.54009 0.79992 0.38074 0.34992
2-peak dist. 2.34030 2.94543 0.30855 0.49440 1.45296 0.88352

σ2 = ∞
uniform dist. 0.54415 0.46722 0.62333 0.50215 0.40684 0.73066

multivariate normal dist. 0.47115 0.63513 0.91722 0.87394 0.36984 0.47256
2-peak dist. 0.45991 0.34179 0.24342 0.56416 0.70325 1.22513

The experiments and the results based on MovieLens dataset
is described in this section. MovieLnes is recommender sys-
tem of movies. The ratings, which is commonly used as a
benchmark data for recommender system, are disclosed on
the web 4．
The dataset contains 100,000 �ve-grade ratings provided

by 943 users on 1682 items. Each user rated at least 20
items.
First, the ratings were divided into a training dataset

Rtrain and a test dataset Rtest. The recommender system
computes the predictions of the ratings in Rtest based on
Rtrain. Then, MAE, which is an average of error between
the prediction and the actual value of the ratings, were com-
puted. In this paper, the experiments were performed in the
settings that the number ofRtrain is the range from 5000 (5%
of whole ratings) to 40000 (40 % of whole ratings).

6.1 Relationship between MAE and λ

First of all, λopt was calculated when the system obtained
the Rtrain by computing MAE based on Rtest. The exper-
iments were performed where δ = 0.05, which is the step
size of λ, Rtest and Rtrain were selected at random. Figure
8 illustrates the results (average of 60 trials).
In Figure 8,MAE = 1 constantly with any λ where |Rtrain|=

5000. The MAE at |Rtrain|=5000 is similar to random rec-
ommendation, however, MAE is about 0.75 where |Rtrain|=
40000. Additionally, λopt is shown close to 0.5, however, it

4http://www.grouplens.org/node/73#attachments

is important to note that the λopt depends on the situation
described in section 5.2.

Figure 8: Relationship between MAE and λ obtained using
Movie Lens Dataset

6.2 Experimental Validation and Discussion
The λ provided by the proposed method is validated by

the expression (8) based on the results described in section
6.1. Figure 9 illustrates an error rates by λ in the settings
that the number of Rtrain = { 5000, 10000, 15000, 20000,
25000, 30000, 35000, 40000} and the number of simulated
recommendation T = {100, 500, 1000}.



In Figure 9, horizontal axis denotes T and vertical axis
denotes error rate ϵ. The results show ϵ decrease regardless
of the number of training dataset Rtrain. Note that the ϵ is
low where |Rtrain| = 5000 since MAE is approximately con-
stant value due to de�ciency of training dataset accorting
to Figure 8. ϵ is about less than 0.005 where the number of
simulated recommendation T = 1000. Thus, in this experi-
ment using real dataset, the proposed unigying method can
compute λ with an error rate ϵ = 0.005 if the system can run
1000 times simulated recommendation. For practical appli-
cation, the number of simulated recommendation should be
assigned depending on the situation or time complexity.

Figure 9: Experimental results based on agent-based simu-
lation

Figure 9 shows that ϵ was about less than 0.005 when the
number of simulated recommendation T = 1000. Thus, in
this experiment, the proposed unigying method can compute
λ with an error rate ϵ = 0.005 if the system can run 1000
times simulated recommendation.

7. CONCLUSION
Wang et. al proposed unifying method for user-based and

item-based collaborative �ltering by computing weighted sum
of two rating predictions with weight parameter λ. In this
research, the experimental results show the optimal value of
weight parameter λ appears to change under di�erent cir-
cumstances, because recommendation accuracy is a�ected
by system factors such as the input frequency of ratings
by users and the distribution of user preferences. Then we
proposed adaptive unifying method for user-based and item-
based collaborative �ltering by doing simulated recommen-
dation process based on previously collected ratings. More-
over, the experimental validation was performed to evaluate
the e�ectiveness based on both of agent-based simulation
and MovieLens dataset. The result of evaluation experiment
shows that the proposed method can estimate weight param-
eter λ with an error rate, which denotes the recommendation
accuracy, about less than ϵ = 0.5% to unify these collabora-
tive �ltering. Note that computational cost is needed when
the system predicts the optimal rambda by simulated rec-
ommendation process. However, it not really matter in most

cases, because the process can run in the background when
the system not busy and it need not be real-time. Therefore,
the recommender system should optimize weight parameter
dynamically when it uses the unifying algorithm.
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