<table>
<thead>
<tr>
<th>Title</th>
<th>学位論文 "DIFFERENTIAL GEOMETRY OF SPACELIKE SUBMANIFOLDS IN DE SITTER SPACE"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kasedou, Masaki</td>
</tr>
<tr>
<td>Citation</td>
<td>Hokkaido University technical report series in mathematics, 149, 1</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2011-02-16</td>
</tr>
<tr>
<td>DOI</td>
<td>10.14943/49036</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://eprints3.math.sci.hokudai.ac.jp/2135; http://hdl.handle.net/2115/45518</td>
</tr>
<tr>
<td>Type</td>
<td>bulletin (article)</td>
</tr>
<tr>
<td>File Information</td>
<td>tech149.pdf</td>
</tr>
</tbody>
</table>

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP
DIFFERENTIAL GEOMETRY OF SPACELIKE SUBMANIFOLDS IN DE SITTER SPACE

Masaki Kasedou

Department of Mathematics
Hokkaido University
Sapporo 060-0810, Japan
Contents

1 Introduction 3

2 Preliminaries 8
 2.1 Basic notations .. 8

I Spacelike hypersurfaces in de Sitter space 9

3 Spacelike hypersurfaces 9
 3.1 Spacelike hypersurfaces and lightcone Gauss images 9
 3.2 Lightcone height functions 12
 3.3 Contact with de Sitter hyperhorospheres 14
 3.4 Spacelike Monge forms .. 16
 3.5 Spacelike surfaces in de Sitter 3-space 18
 3.6 Examples of spacelike surfaces in S^3_1 21

II Spacelike submanifolds of codimension two in de Sitter space 22

4 Spacelike submanifolds of codim two 22
 4.1 Spacelike submanifolds and lightcone normal frames 22
 4.2 Construction of lightlike hypersurfaces 27
 4.3 Contact with lightcones and spacelike submanifolds 29
 4.4 Lightcone Gauss maps and lightcone height functions 32
 4.5 Contact with lightlike cylinders 34
 4.6 Spacelike surfaces in de Sitter 4-space 36
III Spacelike submanifolds in de Sitter space 38

5 Spacelike canal hypersurfaces 38
 5.1 Spacelike submanifolds and timelike unit normal vector fields 38
 5.2 Spacelike canal hypersurfaces 41
 5.3 Horospherical hypersurfaces and height functions 42
 5.4 Horospherical hypersurfaces as wave fronts 46
 5.5 Contact with de Sitter hyperhorospheres 48

6 Timelike canal hypersurfaces 51
 6.1 Review of timelike hypersurfaces 51
 6.2 Spacelike submanifolds and spacelike unit normal vector fields 53
 6.3 Timelike canal hypersurfaces 55
 6.4 Generic properties for the spacelike submanifolds 62

IV Appendix 64
 A Theory of Legendrian singularities 64
 B Contacts of submanifolds 66
 C Generic properties 67
1 Introduction

In this thesis, we investigate the differential geometry of spacelike submanifolds in de Sitter space as an application of the theory of Legendrian singularities.

Bleeker and Wilson [3] studied the singularities of the Gauss map of a surface in Euclidean 3-space. Gauss map is defined by the normal vector field of the surface. In their paper, the main theorem asserts that the generic singularities of the Gauss maps are folds or cusps. Banchoff et al. [2], Landis [15] and Platnova [17] studied geometric meanings of cusps of the Gauss map of the surface. The notion of Gauss-Kronecker curvature is defined by the determinant of the differential map of the Gauss map. Therefore, the set of singularities of the Gauss map coincides with the set of parabolic points, where the Gauss-Kronecker curvature vanishes. Bruce [4] and Romero-Fuster [18] have also independently studied the singularities of the Gauss map and the dual of a hypersurface in Euclidean space. The main tool of Bruce and Romero-Fuster in their study is the family of height functions on a hypersurface.

On the other hand, the differential geometry of Minkowski space, hyperbolic space and de Sitter space is also studied by several people. Izumiya, Pei and Sano [6] investigated extrinsic differential geometry of hypersurfaces in hyperbolic space as an application of Legendrian singularities. They observed the geometrical meanings of the singularities of lightcone Gauss indicatrice and lightcone Gauss maps of the spacelike hypersurface.

The case of spacelike submanifolds of codimension two are particularly important in the theory of general relativity. Izumiya, Kossowski, Pei and Romero Fuster [7] investigated lightlike hypersurfaces of spacelike surfaces in Minkowski four space, which is deeply related to the several kinds of horizons. Izumiya and Romero Fuster [8] investigated spacelike submanifolds of codimension two in general dimensional Minkowski space. They showed Gauss-Bonnet type formula in terms of the Gauss-Kronecker curvature with respect to the lightlike normals.

For general codimension case, the normal vector is not uniquely determined, however it is possible to construct hypersurfaces from normal unit vector fields of the spacelike submanifold. Izumiya, Pei, Romero Fuster and Takahashi [9] introduced the notion of canal hypersurfaces and
horospherical hypersurfaces from the parallel normal frames of submanifolds in the hyperbolic space, and investigated submanifolds of higher codimension in the hyperbolic space.

It is known that de Sitter space is a Lorentzian space form with a positive curvature. In this thesis (cf. [11]) we investigate singularities of lightcone Gauss maps of spacelike hypersurfaces in de Sitter space, which is analogous to the case of hyperbolic space [6]. The singularities of the Gauss image coincide with the lightcone parabolic sets of spacelike hypersurface.

In the case of spacelike submanifold of codimension two, the normal direction of spacelike submanifold cannot be chosen uniquely. However, we can determine the lightcone normal frames. Fusho and Izumiya [5] investigated lightlike surfaces of spacelike curves in de Sitter 3-space by using the Frenet-Serret type formula and gave a classification of singularities of lightlike surfaces of generic spacelike curves, which are a cuspidal edge and a swallowtail. Here, we investigate singularities of the lightcone Gauss maps and lightlike hypersurfaces, as the generalization of the study [5]. We use analogous tools to those applied in [7, 8] to the study of spacelike submanifolds in Minkowski space. The singularities of lightlike hypersurfaces are described by the principal curvatures of Minkowski space.

In the general codimension case, we investigate the differential geometry of spacelike submanifolds of codimension at least two in de Sitter space. In Euclidean space, the canal hypersurface of a submanifold is very useful and it has been classically known. Moreover, the analogous definition has been given in the hyperbolic space [9]. We introduced the notion of de Sitter horospherical hypersurfaces and spacelike canal hypersurfaces by using the parallel unit orthonormal section. The singular point of the de Sitter horospherical hypersurface corresponds to the parabolic point of spacelike canal hypersurface, which we call a de Sitter horospherical point.

Moreover, we can construct another kind of canal hypersurfaces. It is called as a timelike canal hypersurface. We study the geometrical property of the timelike canal hypersurfaces similarly as the case of spacelike canal hypersurface, and we find different properties from these of the spacelike canal hypersurface.

More precisely, in the first part of this thesis, we investigate the relationships between
singularities of lightcone Gauss image and geometric properties of the spacelike hypersurface in de Sitter space.

In §3.1 we introduce the notion of the lightcone Gauss image and the lightcone Gauss-Kronecker curvature of the spacelike hypersurfaces. The lightcone Gauss-Kronecker curvature is an invariant under the Lorentzian transformation in de Sitter space. In §3.2 we introduce a family of functions that is called the lightcone height function on the spacelike hypersurface. The lightcone Gauss image is interpreted as the discriminant set of the family of height functions, and the singular set of the lightcone Gauss image is the lightcone parabolic set of the spacelike hypersurface. In §3.3 we discuss the contact of hypersurfaces with de Sitter hyperhorospheres. We apply the theory of Legendrian singularities for the study of lightcone Gauss images of generic hypersurfaces. In §3.5 we classify the singularities of lightcone Gauss images for generic spacelike surfaces in de Sitter 3-space. We have two types of singularities of the lightcone Gauss image in generic, which are cuspidal edges and swallowtails. In §3.4 and §3.6 we define the notion of spacelike Monge forms in de Sitter space. It makes us to give examples which are corresponding to generic singularities of the lightcone Gauss image.

In the second part of this thesis, we investigate the differential geometry of spacelike submanifolds of codimension two in de Sitter space.

In §4.1 we introduce the notion of the lightcone Gauss map, the normalized lightcone Gauss-Kronecker curvature and principal curvatures. The lightcone Gauss map does not depend on the choice of the future directed normal frame. In §4.2 we introduce the notion of the lightlike hypersurface and a family of functions that is called the Lorentzian distance squared function on the spacelike submanifold. The lightlike hypersurface is interpreted as the discriminant set of the family of the Lorentzian distance squared function, and the singular set of the lightlike hypersurface is described by the normalized lightcone principal curvatures of the spacelike submanifold. In §4.3 we discuss the contact of spacelike submanifold with lightcone in de Sitter space. We apply the theory of Legendrian singularities for the study of lightcone Gauss map of generic spacelike submanifolds. In §4.4 we introduce the notion of a family of functions that is called the lightcone height function. The lightcone Gauss map is interpreted as the discriminant
set of the family of lightcone height function, and the singular set of the normalized lightcone Gauss map corresponds to the normalized lightcone parabolic set on the spacelike submanifold. In §4.5 we discuss the contact of spacelike submanifolds with lightlike cylinders in de Sitter space. In §4.6 we classify the singularities of lightlike hypersurfaces and lightcone Gauss maps of generic spacelike surfaces in de Sitter 4-space, and give some examples which have their singularities.

In the last part of this thesis, we investigate the differential geometry of spacelike submanifolds of codimension at least two in de Sitter space, and construct two types of canal hypersurfaces.

In §5 we consider geometric properties of the spacelike canal hypersurfaces. In §5.1 we define a timelike normal vector field of spacelike submanifolds in de Sitter space and introduce the notion of the de Sitter horospherical Gauss-Kronecker curvature and principal curvatures. In §5.2 and §5.3 we introduce a notion of de Sitter horospherical height function and de Sitter horospherical hypersurface. We also define a spacelike canal hypersurface, whose lightcone Gauss image is diffeomorphic to the de Sitter horospherical hypersurface. In §5.4 we naturally interpret the de Sitter horospherical hypersurfaces of the spacelike submanifold as a wave front set of de Sitter horospherical height functions in the theory of Legendrian singularities. In §5.5 we use the theory of contacts between the submanifolds due to Montaldi [16], and we discuss geometric properties of singularities of de Sitter horospherical hypersurfaces. We also consider generic properties of spacelike submanifolds.

In §6 we consider geometric properties of the spacelike canal hypersurfaces. In §6.1 we briefly review the differential geometry of timelike hypersurfaces in de Sitter space due to Izumiya [10]. In §6.2 we introduce the notion of the de Sitter horospherical Gauss-Kronecker curvature and principal curvatures with respect to the spacelike normal vector field. In §6.3 we construct the timelike hypersurface from the parallel pseudo orthonormal sections of the spacelike submanifold, and consider the geometric properties of the timelike canal hypersurface. We also use the notion of de Sitter Gauss image and de Sitter height function of the timelike hypersurfaces defined in [10]. The singularities of the timelike canal hypersurface and the de
Sitter Gauss image are related to the geometrical property of the spacelike submanifold. We also consider contacts between spacelike submanifolds and non-flat hyperbolic hyperquadrics. In §6.4 we finally consider the generic condition of the spacelike submanifolds.

Acknowledgment

The author wishes to express his thanks to Professor Shyuichi Izumiya for useful advices and valuable discussions.
2 Preliminaries

2.1 Basic notations

In this section we review the basic notion to study the differential geometry of spacelike hypersurfaces and submanifolds in de Sitter space. Let \(\mathbb{R}^{n+1} = \{ x = (x_0, \ldots, x_n) \mid x_i \in \mathbb{R} \ (i = 0, \ldots, n) \} \) be an \((n+1)\)-dimensional vector space. For any vectors \(x = (x_0, \ldots, x_n) \) and \(y = (y_0, \ldots, y_n) \) in \(\mathbb{R}^{n+1} \), the pseudo scalar product of \(x \) and \(y \) is defined by

\[
\langle x, y \rangle = -x_0 y_0 + \sum_{i=1}^{n} x_i y_i.
\]

We call \((\mathbb{R}^{n+1}, \langle \cdot, \cdot \rangle)\) a Minkowski \((n+1)\)-space and write \(\mathbb{R}^{n+1}_1 \) instead of \((\mathbb{R}^{n+1}, \langle \cdot, \cdot \rangle)\). We say that a vector \(x \in \mathbb{R}^{n+1}_1 \) \(\neq \{0\} \) is spacelike, timelike or lightlike if \(\langle x, x \rangle > 0 \), \(\langle x, x \rangle < 0 \) or \(\langle x, x \rangle = 0 \) respectively. The norm of the vector \(x \in \mathbb{R}^{n+1}_1 \) is defined by

\[
||x|| = \sqrt{|\langle x, x \rangle|}.
\]

We respectively define hyperbolic \(n \)-space and de Sitter \(n \)-space by

\[
H^n_{\pm}(-1) = \{ x \in \mathbb{R}^{n+1}_1 \mid \langle x, x \rangle = -1, sgn(x_0) = \pm 1 \},
\]

\[
S^n_1 = \{ x \in \mathbb{R}^{n+1}_1 \mid \langle x, x \rangle = 1 \},
\]

and we write \(H^n(-1) = H^n_+(-1) \cup H^n_-(-1) \). For any \(x_1, x_2, \ldots, x_n \in \mathbb{R}^{n+1}_1 \), we define an pseudo-external product of vectors \(x_1 \wedge x_2 \wedge \ldots \wedge x_n \) by

\[
x_1 \wedge x_2 \wedge \ldots \wedge x_n = \det \begin{pmatrix}
-e_0 & e_1 & \cdots & e_n \\
-x^1_0 & x^1_1 & \cdots & x^1_n \\
\vdots & \vdots & \ddots & \vdots \\
x^n_0 & x^n_1 & \cdots & x^n_n
\end{pmatrix},
\]

where \(\{e_1, \ldots, e_n\} \) is a standard basis of \(\mathbb{R}^{n+1}_1 \) and \(x_i = (x^i_0, \ldots, x^i_n) \) for \(i = 1, \ldots, n \). Since

\[
\langle x, x_1 \wedge \ldots \wedge x_n \rangle = \det(x, x_1, \ldots, x_n),
\]

so that \(x_1 \wedge \ldots \wedge x_n \) is pseudo-orthogonal to any \(x_i \) for \(i = 1, \ldots, n \). Let \(\lambda \in \mathbb{R}^{n+1}_1 \), we define a set

\[
LC_\lambda = \{ x \in \mathbb{R}^{n+1}_1 \mid \langle x - \lambda, x - \lambda \rangle = 0 \},
\]

which is called a closed lightcone with vertex \(\lambda \). We also define future (resp. past) lightcone at
the origin by

\[LC_+^* = \{ x \in \mathbb{R}^{n+1} | \langle x, x \rangle = 0, \ x_0 > 0 \} , \]

\[LC_-^* = \{ x \in \mathbb{R}^{n+1} | \langle x, x \rangle = 0, \ x_0 < 0 \} , \]

and we write \(LC^* = LC_+^* \cap LC_-^* \).

For a vector \(v \in \mathbb{R}^{n+1} \setminus \{0\} \) and a real number \(c \), we define a hyperplane with pseudo normal \(v \) in the Minkowski space by

\[HP(v, c) = \{ x \in \mathbb{R}^{n+1} | \langle x, v \rangle = c \} . \]

We say that a hyperplane \(HP(v, c) \) is spacelike, timelike or lightlike if the vector \(v \) is timelike, spacelike or lightlike. We now consider hyperquadrics in de Sitter space. We say that \(HP(v, c) \cap S^n_1 \) is an elliptic hyperquadric or a hyperbolic hyperquadric if \(HP(v, c) \) is spacelike or timelike.

Let \(v \) be lightlike, we say that \(HP(v, c) \cap S^n_1 \) is a de Sitter hyperhorosphere and a lightlike cylinder if \(c \neq 0 \) and \(c = 0 \) respectively. We denote the de Sitter hyperhorosphere by

\[HS(v, c) = HP(v, c) \cap S^n_1 . \]

Let \(v' = (1/c)v \) then we have \(HS(v, c) = HS(v', 1) \).

Let \(v \) be spacelike, we say that the hyperbolic hyperquadric \(HP(v, c) \cap S^n_1 \) is a flat timelike hyperquadric and a non-flat hyperbolic hyperquadric if \(c = 0 \) and \(c \neq 0 \) respectively. If \(c = ||v|| \) then the timelike hyperplane \(HP(v, c) \) is not transversal to de Sitter space at the point \((1/c)v \). In this case the hyperbolic hyperquadric \(HP(v, c) \cap S^n_1 \) is not a smooth manifold.

PART I SPACELIKE HYPERSURFACES IN DE SITTER SPACE

3 Spacelike hypersurfaces

3.1 Spacelike hypersurfaces and lightcone Gauss images

In this section we study extrinsic differential geometry of spacelike hypersurfaces in de Sitter space. Let \(U \) be an open subset of \(\mathbb{R}^{n-1} \) and \(X : U \rightarrow S^n_1 \) be an embedding map. We say
that \mathbf{X} is a **spacelike hypersurface** in de Sitter space S^n_1 if every non zero vector generated by tangent vectors $\{\mathbf{X}_{u_i}(\mathbf{u})\}_{i=1}^{n-1}$ is always spacelike, where $\mathbf{u} = (u_1, \cdots, u_{n-1})$ is an element of U and \mathbf{X}_{u_i} is a partial derivative of \mathbf{X} with respect to u_i. We denote $M = \mathbf{X}(U)$ and identify M with U through the embedding \mathbf{X}. Since $\langle \mathbf{X}, \mathbf{X} \rangle \equiv 1$, we have $\langle \mathbf{X}_{u_i}, \mathbf{X} \rangle \equiv 0$ for $i = 1, \ldots, n-1$. It follows that a hyperplane spanned by $\{\mathbf{X}, \mathbf{X}_{u_1}, \cdots, \mathbf{X}_{u_{n-1}}\}$ is spacelike. We define a vector $e(\mathbf{u}) = \frac{\mathbf{X}(\mathbf{u}) \wedge \mathbf{X}_{u_1}(\mathbf{u}) \wedge \cdots \wedge \mathbf{X}_{u_{n-1}}(\mathbf{u})}{||\mathbf{X}(\mathbf{u}) \wedge \mathbf{X}_{u_1}(\mathbf{u}) \wedge \cdots \wedge \mathbf{X}_{u_{n-1}}(\mathbf{u})||}$.

Since $\langle e, \mathbf{X}_{u_i} \rangle \equiv \langle e, \mathbf{X} \rangle \equiv 0$ and $\langle e, e \rangle \equiv -1$ for $i = 1, \ldots, n-1$, so that $e(\mathbf{u})$ is a timelike normal of the spacelike hypersurface M. By replacing coordinates on U, we may assume that $e(\mathbf{u})$ is future directed. Therefore we have $\mathbf{X}(\mathbf{u}) \pm e(\mathbf{u}) \in LC^*_\pm$. We define a map $\mathbb{L}^\pm : U \longrightarrow LC^*_\pm$ by

$$\mathbb{L}^\pm(\mathbf{u}) = \mathbf{X}(\mathbf{u}) \pm e(\mathbf{u}),$$

which is called a **lightcone Gauss image** of \mathbf{X}.

We have the following proposition which is analogous to ([6], Proposition 2.2).

Proposition 3.1 ([11]). Let $\mathbf{X} : U \longrightarrow S^n_1$ be a spacelike hypersurface in S^n_1. The lightcone Gauss image \mathbb{L}^\pm is constant if and only if the spacelike hypersurface $M = \mathbf{X}(U)$ is a part of a de Sitter hyperhorosphere.

Proof. Since $\mathbb{L}^\pm(\mathbf{u})$ is constant \mathbb{L}^\pm, so we have $\langle \mathbf{X}(\mathbf{u}), \mathbb{L}^\pm \rangle = \langle \mathbf{X}(\mathbf{u}), \mathbf{X}(\mathbf{u}) \pm e(\mathbf{u}) \rangle = 1$ for any $\mathbf{u} \in U$. Therefore, we have $\mathbf{X}(U) \subset HP(\mathbb{L}^\pm, +1) \cap S^n_1$.

If $\mathbf{X}(U) \subset HP(\mathbf{v}, c) \cap S^n_1$ for some $\mathbf{v} \in LC^*$ and $c \neq 0$, then we have $\langle \mathbf{X}(\mathbf{u}), \mathbf{v} \rangle = r$ and $\langle \mathbf{X}_{u_i}(\mathbf{u}), \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{v} \rangle = 0$. This means that $\mathbf{v} = r\mathbb{L}^+(\mathbf{u})$ or $\mathbf{v} = r\mathbb{L}^-(\mathbf{u})$. Therefore, \mathbb{L}^\pm is a constant vector $(1/c)\mathbf{v}$. \qed

Let $\mathbf{u} \in U$ and $p = \mathbf{X}(\mathbf{u})$, under the identification of U and M, we can identify a derivative map $d\mathbf{X}(\mathbf{u})$ with an identity mapping id_{T_pM}. By the similar arguments as those of the proof of ([6], Lemma 2.1), $de(\mathbf{u})$ is a linear transformation on the tangent space T_pM. This means that a derivative of the lightcone Gauss image is a linear transformation on the tangent space T_pM given by $d\mathbb{L}^\pm(\mathbf{u}) = id_{T_pM} \pm de(\mathbf{u})$. We respectively call $S^\pm_p = -d\mathbb{L}^+(\mathbf{u}) : T_pM \longrightarrow T_pM$ the
Proposition 2.3. Suppose that $M = X(U)$ at $p = X(u)$ and $A_p = -de(u) : T_pM \rightarrow T_pM$ the shape operator of M at p. We denote the eigenvalue of S_p^\pm by $\bar{\kappa}_{p,i}^\pm$ and the eigenvalue of A_p by $\kappa_{p,i}$. We respectively call $\bar{\kappa}_{p,i}^\pm$ by lightcone principal curvatures of M at p and $\kappa_{p,i}^\pm$ by principal curvatures of M at p. By the relation $S_p^\pm = -id_{T_pM} \pm A_p$, S_p^\pm and A_p have the common eigenvectors and we have a relation $\bar{\kappa}_{p,i}^\pm = -1 \pm \kappa_{p,i}$. We also define a lightcone Gauss-Kronecker curvature of M at p by determinant of S_p^\pm and denote it by $K^\pm_f(u)$. Since A_p is the shape operator with respect to the Riemannian metric on M induced from the Lorentzian metric on \mathbb{R}^{n+1}, we define the Gauss-Kronecker curvature of M at $p = X(u)$ by $K(u) = \det A_p$.

We say that a point $u \in U$ or $p = X(u)$ is a lightcone parabolic point if the Gauss-Kronecker curvature of M at p equals to zero. We also say that a point u or p is an umbilic point if all the eigenvalues of S_p^\pm are equal. If all points on the spacelike hypersurface M are umbilic points, then M is called by totally umbilic. we say that a point p is a lightcone flat point if p is an umbilic point and a lightcone flat point. The following proposition is analogous to ([6], Proposition 2.3).

Proposition 3.2 ([11]). Suppose that $M = X(U)$ is totally umbilic. Then $\bar{\kappa}_p^\pm, \kappa_p$ are constant functions $\bar{\kappa}_p^\pm, \kappa_p$. Under this condition, we have the following classification.

1. If $0 \leq |\kappa| = |\bar{\kappa}_p^\pm + 1| < 1$, then M is a part of a hyperbolic hyperquadric.

2. If $1 < |\kappa| = |\bar{\kappa}_p^\pm + 1|$, then M is a part of an elliptic hyperquadric.

3. If $\bar{\kappa}_p^\pm = 0$, then M is a part of a de Sitter hyperhorosphere.

Proof. By definition, we have $-L_{u_i}^\pm(u) = \bar{\kappa}_p^\pm X_{u_i}(u)$ (for $i = 1, \cdots, n-1$) for any $p = X(u) \in M$. Therefore, we have $L_{u_iu_j}^\pm(u) = \bar{\kappa}_{p,ij}^\pm X_{u_i}(u) + \bar{\kappa}_p^\pm X_{u_iu_j}(u)$. Since $L_{u_iu_j}^\pm = L_{u_iu_j}^\pm$ and $X_{u_iu_j} = X_{u_iu_j}$, we have $\bar{\kappa}_{p,ij}^\pm X_{u_i}(u) - \bar{\kappa}_{p,ij}^\pm X_{u_j}(u) = 0$. On the other hand, X_{u_i} for $i = 1, \cdots, n-1$ are linearly independent, so that $\bar{\kappa}_p^\pm$ is constant $\bar{\kappa}_p^\pm$. Since $\bar{\kappa}_p^\pm = \pm \kappa_p - 1$, this means that κ_p^\pm is a constant function κ_p^\pm.

We now assume that $\bar{\kappa}_p^\pm \neq 0$. By the assumption, we have $-e_{u_i} = \kappa X_{u_i}$ (for $i = 1, \cdots, n-1$), so that there exists a constant vector $a \in \mathbb{R}_1^{n+1}$ such that, $a = \kappa X(u) + e(u)$ for any $u \in U$. If
If \(|\kappa| = |\tilde{\kappa}^\pm + 1| \neq 0 \), then the vector \(v = (1/\kappa)a \) satisfies \(\langle v, v \rangle = 1 - 1/\kappa^2 \) and \(\langle X, v \rangle = +1 \). If \(\kappa = 0 \), then \(v = a \) satisfies \(\langle v, v \rangle = -1 \), \(\langle X, v \rangle = 0 \). so that the assertion (1), (2) follows.

Finally, we assume that \(\tilde{\kappa}^\pm = 0 \). In this case, we have \(L^\pm_{ui} = 0 \) (for \(i = 1, \cdots, n - 1 \)), so that \(L^\pm \) is constant. Therefore we apply Proposition 3.1. This completes the proof.

We now consider the Riemannian metric (the first fundamental form) \(ds^2 = \sum_{i,j=1}^{n-1} g_{ij} du_i du_j \) on \(M = X(U) \), where \(g_{ij}(u) = \langle X_{ui}(u), X_{uj}(u) \rangle \) for any \(u \in U \). We also define a positive (or negative) lightcone second fundamental form \(\bar{h}^\pm_{ij}(u) = \langle -L^\pm_{ui}(u), X_{uj}(u) \rangle \) for any \(u \in U \). We have the following Weingarten-type formula which is analogous to ([6], Proposition 2.4).

\[
L^\pm_{ui} = - \sum_{j=1}^{n-1} (\bar{h}^\pm_{ij}) X_{uj},
\]

where \((\bar{h}^\pm_{ij}) = (\bar{h}^\pm_{ik})(g^{kj}) \) and \((g^{kj}) = (g_{kj})^{-1} \).

Therefore, we have an explicit expression for the lightcone Gauss-Kronecker curvature by Riemannian metric and the lightcone second fundamental invariant.

\[
K^\pm = \frac{\text{det}(\bar{h}^\pm_{ij})}{\text{det}(g_{\alpha\beta})}.
\]

By the above formula, we have that a point \(p \) is a lightcone parabolic point (or, briefly an \(L^\pm \)-parabolic point) if and only if the second fundamental quantity matrix \((\bar{h}_{ij})(p) \) is not regular.

3.2 Lightcone height functions

In this section we introduce families of functions on a spacelike hypersurface in de Sitter space. Let \(X : U \to S^n_1 \) be a spacelike hypersurface in \(S^n_1 \). We define a family of functions \(H : U \times LC^* \to \mathbb{R} \) by

\[
H(u, v) = \langle X(u), v \rangle - 1.
\]

We call \(H \) a lightcone height function on \(X : U \to S^n_1 \).

We denote the Hessian matrix of the lightcone height function \(h_{v_0}(u) = H(u, v_0) \) at \(u_0 \) by \(\text{Hess}(h_{v_0})(u_0) \). We have the following lemma which is analogous to ([6], Propositions 3.1, 3.2).
Proposition 3.3 ([11]). Let \(X : U \rightarrow S^n_1 \) be a spacelike hypersurface in \(S^n_1 \), then \(H(u, v) = 0 \) and \(\partial H(u, v)/\partial u_i = 0 \) \((i = 1, \ldots, n - 1)\) if and only if \(v = \mathbb{L}^\pm(u) \). Under this condition, we have:

1. \(p_0 = X(u_0) \) is an \(L^\pm \)-parabolic point if and only if \(\det \Hess(h^\pm_v)(u_0) = 0 \).
2. \(p_0 = X(u_0) \) is an \(L^\pm \)-flat point if and only if \(\rank \Hess(h^\pm_v)(u_0) = 0 \).

Now we apply the arguments in Appendix A and naturally interpret the lightcone Gauss image of a spacelike hypersurface in \(S^n_1 \) as a wave front set in the theory of Legendrian singularities.

Proposition 3.4 ([11]). The lightcone height function \(H : U \times LC^* \rightarrow \mathbb{R} \) is a Morse family of hypersurfaces.

Proof. We denote \(X(u) = (x_0(u), \ldots, x_n(u)) \) and \(X_u(u) = (x_{0, u}(u), \ldots, x_{n, u}(u)) \). For any \(v = (v_0, \ldots, v_n) \in LC^*_\pm \), we have \(v_0 \neq 0 \). Without loss of generality, we assume that \(v_0 = \sqrt{v_0^2 + \cdots + v_n^2} > 0 \), so that we have \(H(u, v) = -1 - x_0(u) \sqrt{v_0^2 + \cdots + v_n^2} + \sum_{k=1}^n x_k(u) v_k \). We have to prove that the mapping \(\Delta^*H : U \times LC^*_\pm \rightarrow \mathbb{R}^n \) is non-singular on \((\Delta^*H)^{-1}(0) \). Therefore it is sufficient to show that the Jacobian matrix of \(\Delta^*H \)

\[
J\Delta^*H(u, v) = \begin{pmatrix}
-\frac{v_j}{v_0} + x_j & \cdots & -\frac{v_n}{v_0} + x_n \\
-\frac{v_j}{v_0} + x_{j, u} & \cdots & -\frac{v_n}{v_0} + x_{n, u}
\end{pmatrix}
\]

is regular on \(\Sigma_*(H) \). We denote vectors \(\tilde{a}, \tilde{b}_i \) \((i = 1, \ldots, n)\) by \(\tilde{a} = \langle x_0, x_{0, u_1}, \ldots, x_{0, u_{n-1}} \rangle \) and \(\tilde{b}_j = \langle x_j, x_{j, u_1}, \ldots, x_{j, u_{n-1}} \rangle \) for \(j = 1, \ldots, n \). Then the determinant of \(J\Delta^*H(u, v) \) is

\[
\det J\Delta^*H(u, v) = \det \left(-\frac{v_1}{v_0} + \tilde{b}_1, \ldots, -\frac{v_n}{v_0} + \tilde{b}_n \right) = \det(\tilde{b}_1, \ldots, \tilde{b}_n) - \frac{v_1}{v_0} \det(\tilde{a}, \tilde{b}_2, \ldots, \tilde{b}_n) - \cdots - \frac{v_n}{v_0} \det(\tilde{b}_1, \ldots, \tilde{b}_{n-1}, \tilde{a}) = \left\langle \left(\frac{v_0}{v_0}, \ldots, \frac{v_n}{v_0} \right), X(u) \wedge X_{u_1}(u) \wedge \cdots \wedge X_{u_{n-1}}(u) \right\rangle = \frac{1}{v_0} \langle \mathbb{L}^\pm(u), e(u) \rangle.
\]

Since \(v = \mathbb{L}^\pm(u) \), so that we have \(\det J\Delta^*H(u, v) = +1/v_0 \neq 0 \). This completes the proof. \(\square \)
By the arguments in appendix A, we obtain the following Legendrian immersion germs.

\[\mathcal{L}^\pm : (\Sigma^\pm(H), (u_0, v_0)) \to PT^*(LC^\pm), \]

\[\mathcal{L}^\pm(u, v) = \left(v, \left[\frac{\partial H}{\partial v_1}(u, v) : \cdots : \frac{\partial H}{\partial v_n}(u, v) \right] \right), \]

where \(v_0 = L^\pm(u_0) \) and \(\Sigma^\pm_\ast(H) \) are singular sets of \(H \)

\[\Sigma^\pm_\ast(H) = \{ (u, v) \in U \times LC^\pm_\ast | v = L^\pm(u) \}. \]

By Proposition 3.3, the lightcone Gauss images are the discriminant sets of the lightcone height function \(H \). Therefore the wave front sets of the Legendrian immersion germs \(\mathcal{L}^\pm \) are the lightcone Gauss image germs \(L^\pm \).

3.3 Contact with de Sitter hyperhorospheres

In this section we consider the contact between spacelike hypersurfaces and de Sitter hyperhorospheres. Let \(v_0 \in LC^\ast \), we define \(h_{v_0} : S^\ast_1 \to \mathbb{R} \) by \(h_{v_0}(w) = \langle w, v_0 \rangle - 1 \). Then we have a de Sitter hyperhorosphere \(h_{v_0}^{-1}(0) = HS(v_0, +1) \). For any \(u_0 \in U \), we consider the lightlike vector \(v_0^\pm = L^\pm(u_0) \). Then we have

\[(h_{v_0}^\pm \circ X)(u_0) = H(u_0, L^\pm(u_0)) = 0 \]

\[\frac{\partial h_{v_0}^\pm \circ X}{\partial u_i}(u_0) = \langle X_{u_i}(u_0), L^\pm(u_0) \rangle = 0 \quad \text{for} \ i = 1, \cdots, n - 1. \]

This means that the de Sitter hyperhorosphere is tangent to the spacelike hypersurface \(M = X(U) \) at \(p_0 = X(u_0) \). In this case, we call \(HS(v_0, +1) \) the tangent de Sitter hyperhorosphere of \(M \) at \(p_0 \) (or \(u_0 \)). Let \(v_1, v_2 \in LC^\ast \), we say that de Sitter hyperhorospheres \(HS(v_i, +1) \) \((i = 1, 2)\) are parallel if \(v_1 \) and \(v_2 \) are linearly dependent. We have the following proposition which is analogous to ([6] Lemma 6.2).

Proposition 3.5 ([11]). Let \(X : U \to S^\ast_1 \) be a spacelike hypersurface. Consider two points \(u_1, u_2 \in U \). Then \(L^\pm(u_1) = L^\pm(u_2) \) if and only if \(HS(X, L^\pm(u_1)) = HS(X, L^\pm(u_2)) \).
Let $X_i : (U, u_i) \to (S^n_1, p_i)$ be map germs of spacelike hypersurfaces and L_i^\pm be corresponding lightcone Gauss image germs. We denote germs of lightcone height functions with fixed parameters $v_i^\pm = L_i^\pm(u_i)$ by $h_i, v_i^\pm : (U, u_i) \to (\mathbb{R}, 0)$. Then we have $h_i, v_i^\pm(u_i) = (h_i^\pm) \circ X_i(u_i)$.

By Theorem B.1, $K(X_1(U), HS(X, v_i^\pm); u_1) = K(X_2(U), HS(X, v_2^\pm); u_2)$ if and only if h_1, v_1^\pm and h_2, v_2^\pm are K-equivalent.

Let $u_0 \in U, v_0^\pm = L^\pm(u_0)$ and $C_\infty(u_0)$ be the local ring of function germs at u_0. We denote $Q^\pm(X, u_0)$ the local ring of the function germ $h_{v_0^\pm} : (U, u_0) \to \mathbb{R}$ by

$$Q^\pm(X, u_0) = C_\infty(U) / \langle h_{v_0^\pm} \rangle C_\infty(U).$$

By the above arguments and Appendix A, we have the following theorem which is analogous to ([6] Theorem 6.3).

Theorem 3.6 ([11]). Let $X_i : (U, u_i) \to (S^n_1, p_i)$ (for $i = 1, 2$) be spacelike hypersurface germs such that the corresponding Legendrian immersion germs are Legendrian stable. Then the following conditions are equivalent:

1. Lightcone Gauss image germs L_1^\pm and L_2^\pm are A-equivalent.

2. Legendrian immersion germs L_1 and L_2 are Legendrian equivalent.

3. Lightcone height function germs H_1 and H_2 are P-K-equivalent.

4. h_1, v_1^\pm and h_2, v_2^\pm are K-equivalent.

5. $K(X_1(U), HS(X_1, v_1^\pm); u_1) = K(X_2(U), HS(X_2, v_2^\pm); u_2)$

6. $Q^\pm(X_1, u_1)$ and $Q^\pm(X_2, u_2)$ are isomorphic as \mathbb{R}-algebras.

Proof. Since L_1 and L_2 are Legendrian stable, regular sets of L_1 and L_2 are respectively dense. By Proposition A.2, the conditions (1) and (2) are equivalent. We apply Theorem A.3, the conditions (2) and (3) are equivalent. By the previous arguments from Theorem B.1, the conditions (4) and (5) are equivalent.
If we assume the condition (3), then the \(P/K \)-equivalence preserves the \(K \)-equivalence, so that the condition (4) holds. Since the local ring \(Q^\pm(X_i, u_i) \) is \(K \)-invariant, this means that the condition (6) holds. By Proposition A.4, the condition (6) implies the condition (2).

We now consider the generic property of spacelike hypersurfaces in de Sitter space. We consider the map space of spacelike embeddings \(\text{Sp-Emb}(U, S^n_1) \) with Whitney \(C^\infty \)-topology. Applying the arguments in appendix C, we have the following proposition as a corollary of Theorem C.2.

Proposition 3.7. If \(n \leq 6 \), then assumption of the Theorem 3.6 is generic property. That is, there exists an open dense subset \(\mathcal{O} \subset \text{Sp-Emb}(U, S^n_1) \) such that for any \(X \in \mathcal{O} \), corresponding Legendrian immersion germ \(L \) is Legendrian stable.

In general we have the following proposition.

Proposition 3.8 ([11]). Let \(X_i : (U, u_i) \to (S^n_1, p_i) \) (for \(i = 1, 2 \)) be hypersurface germs such that their \(L^\pm \)-parabolic sets have no interior points as subspaces of \(U \). If lightcone Gauss image germs \(L^\pm_1 \) and \(L^\pm_2 \) are \(A \)-equivalent, then

\[
K(X_1(U), HS(X_1, v_1^+); u_1) = K(X_2(U), HS(X_2, v_2^+); u_2),
\]

where \(v_i = L^\pm(u_i) \) for \(i = 1, 2 \). In this case, \((X_i^{-1}(HS(L^\pm(u_i), +1)), u_i) \) (\(i = 1, 2 \)) are diffeomorphic as set germs.

For a hypersurface germ \(X \), we call \((X^{-1}(HS(L^\pm(u_0), +1)), u_0) \) the *tangent de Sitter hyperhorospherical indicatrix germ* of \(X \). By Proposition 3.8, the diffeomorphic type of the tangent de Sitter horospherical indicatrix germ is an invariant under the \(A \)-equivalence among lightcone Gauss image germs.

3.4 Spacelike Monge forms

In this section we introduce the notion of spacelike Monge forms in de Sitter space which is analogous to [6]. We now consider the function \(f(u_1, \cdots, u_{n-1}) \) with \(f(0) = 0 \) and \(f_{u_i}(0) = 0 \).
for \(i = 1, \ldots, n - 1 \). Then we have a spacelike hypersurface in \(S^n_1 \) by

\[
X_f(u) = \left(-f(u), -\sqrt{1 + f^2(u) - u_1^2 - \cdots - u_{n-1}^2}, u_1, \ldots, u_{n-1} \right).
\]

where \(U \) is some sufficiently small open neighborhood at the origin. Since \(e(0) = (1,0,\cdots,0) \), so that we have \(\mathbb{L}^\pm(0) = (\pm1,-1,0,\cdots,0) \). We call \(X_f \) a spacelike Monge form in de Sitter space. Then we have the following proposition.

Proposition 3.9 ([11]). Any spacelike surface in \(S^n_1 \) is locally given by some spacelike Monge form.

Proof. Let \(X : U \rightarrow S^n_1 \) be a spacelike hypersurface. Since the Lorentzian group operates transitively \(S^n_1 \), we may assume that \(p = X(0) = (0,-1,0,\cdots,0) \). We have a basis \(\{X(0), e(0), X_u(0), \cdots, X_{u_{n-1}}(0)\} \) of \(T_p\mathbb{R}^{n+1} \). Applying the Gram-Schmidt procedure on \(\{X_u(0), \cdots, X_{u_{n-1}}(0)\} \), we have a pseudo orthonormal basis \(\{X(0), e(0), e_1, \cdots, e_{n-1}\} \) of \(\mathbb{R}^{n+1} \) such that \(T_pM = (e_1, \cdots, e_{n-1})_\mathbb{R} \). In particular, \(\{e_1, \cdots, e_{n-1}\} \) is an orthonormal basis of spacelike subspace \(T_pM \), so that \(T_pM \) is considered to be a subspace of \(\mathbb{R}^{n+1}_0 = \{(0,x_1,\cdots,x_n) \mid x_i \in \mathbb{R} \} \). By a rotation of the space \(\mathbb{R}^n_0 \), we assume that \(T_pM = \{(0,0,x_2,\cdots,x_n) \mid x_i \in \mathbb{R} \} \).

We remark that this rotation can be considered to be a Lorentzian motion of \(\mathbb{R}^{n+1}_0 \).

Therefore, the hypersurface germ \((M,p)\) is written in the form

\[
X(u) = (-f(u), -g(u), u_1, \cdots, u_{n-1}).
\]

with function germs \(f(u), g(u) \). Since \(M \subset S^n_1 \), we have a relation \(g^2(u) = 1 + f^2(u) - u_1^2 - \cdots - u_{n-1}^2 \). By a rotation of the space \(\mathbb{R}^n_0 \), we can assume \(g(u) \geq 0 \), so that we have

\[
g(u) = \sqrt{1 + f^2(u) - u_1^2 - \cdots - u_{n-1}^2}.
\]

Since \(T_pM = \{(0,0,x_2,\cdots,x_n) \mid x_i \in \mathbb{R} \} \), the conditions \(f(0) = f_{u_1}(0) = 0 \) \(i = 1, \cdots, n-1 \) are automatically satisfied. This completes the proof. \(\blacklozenge \)

For the lightlike vector \(v^+_0 = (\pm1,-1,0,\cdots,0) \), we consider the de Sitter hyperhorosphere \(HS(v^+_0, +1) \). Then we have the spacelike Monge form of \(HS(v^+_0, +1) \).

\[
X_{HS^\pm}(u) = \left(\pm \frac{1}{2}(u_1^2 + \cdots + u_{n-1}^2), -1 + \frac{1}{2}(u_1^2 + \cdots + u_{n-1}^2), u_1, \cdots, u_{n-1} \right).
\]
Here we can check the relation \(\langle v_0^\pm, X_{HS^\pm}(u) \rangle = 1 \). On the other hand, we have \(X_{HS^\pm}(0) = (0, -1, 0, \cdots, 0) \) and \(X_{HS^\pm, u_i}(0) \) is the \(x_{i+1} \)-axis for \(i = 1, \cdots, n - 1 \). This means that \(T_p M = T_p(X_{HS^\pm}(U)) \). Therefore \(X_{HS^\pm}(U) \subset HS(v_0^\pm, +1) \) is the tangent de Sitter hyperhorosphere of \(M = X(U) \) at \(p = X(0) \). It follows from this fact that the tangent de Sitter hyperhorospherical indicatrix germ of the spacelike Monge form \(X_f \) is given as follows:

\[
X_f^{-1}(HS(v_0^\pm, +1)) = \{(u_1, \cdots, u_{n-1}) \mid \pm 2f(u) = u_1^2 + \cdots + u_{n-1}^2 \}.
\]

Since the lightcone height function of \(X_f \) at \(v_0^\pm \) is

\[
h_{v_0^\pm}(u) = \pm f(u) + \sqrt{1 + f^2(u) - u_1^2 - \cdots - u_{n-1}^2} - 1,
\]
we can calculate the Hessian matrix, so that we have

\[
\text{Hess } h_{v_0^\pm}(0) = \pm \text{Hess } (f(0)) - I_{n-1},
\]
where \(I_{n-1} \) is an identity matrix.

On the other hand, since \(f(0) = f_{u_i}(0) = 0 \), we may write

\[
f(u) = \frac{1}{2} \kappa_1 u_1^2 + \cdots + \frac{1}{2} \kappa_{n-1} u_{n-1}^2 + g(u),
\]
where \(g \in \mathbb{M}_{n-1}^3 \) and \(\kappa_1, \cdots, \kappa_{n-1} \) are eigenvalues of \(\text{Hess } (f(0)) \). Under this representation, we can easily calculate \((X_f)_{u_i, u_j}(0) = (-f_{u_i, u_j}(0), \delta_{ij}, 0, \cdots, 0) \). It follows from that

\[
\bar{h}^\pm_{ij}(0) = \pm f_{u_i, u_j}(0) - \delta_{ij} = \delta_{ij}(\pm \kappa_i - 1),
\]
and \(g_{ij}(0) = \delta_{ij} \). Therefore, we have \(\bar{\kappa}^\pm_i(0) = -1 \pm \kappa_i \) and

\[
K^\pm_\ell(0) = \prod_{i=1}^{n-1} \bar{\kappa}^\pm_i(0) = \prod_{i=1}^{n-1} (-1 \pm \kappa_i).
\]
The tangent de Sitter hyperhorospherical indicatrix germ is given by

\[
X_f^{-1}(HS(v_0^\pm, +1)) = \left\{ (u_1, \cdots, u_{n-1}) \left| \sum_{i=1}^{n-1} \kappa_i^\pm(0) u_i^2 \pm 2g(u) = 0 \right. \right\}.
\]

3.5 Spacelike surfaces in de Sitter 3-space

In this section we restrict the dimension \(n = 3 \) and observe the geometrical properties corresponding to the singularities of lightcone Gauss images. We consider the space of spacelike embeddings \(\text{Sp-Emb}(U, S^n_1) \) with Whitney \(C^\infty \)-topology.
Let \(u_0 \in U \subset \mathbb{R}^3 \) and \(X : U \rightarrow S^3_1 \) be a spacelike hypersurface in de Sitter three-space. We define the \(K \)-codimension (or Tyurina number) of the lightcone height function germ \((h_{v^\pm_0}, u_0)\) by

\[
H\text{-ord}^\pm(X, u_0) = \dim C^\infty_u / \langle h_{v^\pm_0}(u_0), \partial h_{v^\pm_0}(u_0) / \partial u_i \rangle C^\infty_u,
\]

We also have the notion of corank of the function germ:

\[
H\text{-corank}^\pm(X, u_0) = (n - 1) - \text{rank Hess}(h_{v^\pm_0}(u_0)).
\]

By Proposition 3.3, \(p = X(u_0) \) is an \(L^\pm \)-parabolic point if and only if \(H\text{-corank}^\pm(X, u_0) \geq 1 \). Moreover \(p \) is an \(L^\pm \)-flat point if and only if \(H\text{-corank}^\pm(X, u_0) = 2 \). (\(H\text{-corank}^\pm(X, u_0) = n - 1 \) in general dimension \(n \).)

By the classification of stable Legendrian singularities for \(n = 3 \) [1, 20] and the transversal theorem of [19], we have the following theorem.

Theorem 3.10 ([11]). There exists an open dense subset \(O \subset \text{Sp-Emb}(U, S^3_1) \) such that for any \(X \in O \), the following conditions holds.

1. The \(L^\pm \)-parabolic set \(K_\ell^{-1}(0) \) is a regular curve. We call such a curve the \(L^\pm \)-parabolic curve.

2. The lightcone Gauss image \(L^\pm \) along the \(L^\pm \)-parabolic curve is a cuspidal edge except at isolated points. At this point \(L^\pm \) is swallowtail.

Here, a map germ \(f : (\mathbb{R}^{n-1}, a) \rightarrow \mathbb{R} \) has the \(A_k \)-type singularity at \(a \) if \(f \) is \(K \)-equivalent to the germ \(g(u_1, \cdots, u_{n-1}) = \pm u_1 \pm \cdots \pm u_{n-2} + u_{n-1}^{k+1} \).

By the classification of stable Legendrian singularities for \(n = 3 \) [1, 20] and the transversal theorem of [19], we have the following theorem.

Theorem 3.10 ([11]). There exists an open dense subset \(O \subset \text{Sp-Emb}(U, S^3_1) \) such that for any \(X \in O \), the following conditions holds.

1. The \(L^\pm \)-parabolic set \(K_\ell^{-1}(0) \) is a regular curve. We call such a curve the \(L^\pm \)-parabolic curve.

2. The lightcone Gauss image \(L^\pm \) along the \(L^\pm \)-parabolic curve is a cuspidal edge except at isolated points. At this point \(L^\pm \) is swallowtail.

Here, a map germ \(f : (\mathbb{R}^{2}, a) \rightarrow (\mathbb{R}^{3}, b) \) is called the *cuspidal edge* if it is \(A \)-equivalent to the map germ \(g_1 : (\mathbb{R}^{2}, 0) \rightarrow (\mathbb{R}^{3}, 0) \) with \(g_1(u) = (u_1, u_2^2, u_3^3) \) and the *swallowtail* if it is \(A \)-equivalent to the map germ \(g_2 : (\mathbb{R}^{2}, 0) \rightarrow (\mathbb{R}^{3}, 0) \) with \(g_2(u) = (3u_1^4 + u_2^2u_2, 4u_1^3 + 2u_1u_2, u_2) \).

(c.f. Figure 1 and 2) The swallowtail point is an isolated singular point.

The assertion of Theorem 3.10 can be interpreted as saying that the Legendrian lift \(L^\pm \) of the lightcone Gauss image \(L^\pm \) is Legendrian stable at each point. In this case, the lightcone Gauss image \(L^\pm \) has only cuspidal edges and swallowtails as singularities.
Corollary 3.11 ([11]). Let $\mathcal{O} \subset \text{Sp-Emb}(U, S^n_1)$ be the same open dense subset as in Theorem 3.10. Let $X \in \mathcal{O}$, $v^+_0 = L^+(u_0)$ and $h^+_v : (U, u_0) \rightarrow \mathbb{R}$ be the lightcone height function germ at u_0. Then we have the following.

(1) The point u_0 is an L^\pm-parabolic point of X if and only if $H-\text{corank}^\pm(X, u_0) = 1$ (that is, u_0 is not an L^\pm-flat point). In this case, h^+_v has the A_k-type singularity for $k = 2, 3$.

(2) Suppose that u_0 is an L^\pm-parabolic point of X. Then the following conditions are equivalent:

(a) L^\pm has the cuspidal edge at u_0;
(b) h^+_v has the A_2-type singularity;
(c) $H-\text{ord}^\pm(X, u_0) = 2$;
(d) The tangent de Sitter horospherical indicatrix germ is an ordinary cusp, where a curve $C \subset \mathbb{R}^2$ is called an ordinary cusp if it is diffeomorphic to the curve given by
{(u_1, u_2) \mid u_1^2 - u_2^3 = 0};

(3) Suppose that \(u_0 \) is an \(L^\pm \)-parabolic point of \(X \). Then the following conditions are equivalent:

(a) \(L^\pm \) has the swallowtail at \(u_0 \);
(b) \(h_{v_0^\pm} \) has the \(A_3 \)-type singularity;
(c) \(H\text{-ord}^\pm(X, u_0) = 3 \);
(d) The tangent de Sitter horospherical indicatrix germ is a point or a tachnodal, where a curve \(C \subset \mathbb{R}^2 \) is called an tachnodal if it is diffeomorphic to the curve given by \(\{(u_1, u_2) \mid u_1^2 - u_2^3 = 0\} \);
(e) For each \(\varepsilon > 0 \), there exist \(L^\pm \)-non-parabolic points \(u_1, u_2 \in U \) such that \(||u_0 - u_i|| < \varepsilon \) for \(i = 1, 2 \), and the tangent de Sitter horospheres to \(M = X(U) \) at \(u_1 \) and \(u_2 \) are equal.

Proof. Since \(n = 3 \), \(u_0 \) is an \(L^\pm \)-parabolic point if and only if \(H\text{-corank}^\pm(X, u_0) \geq 1 \). By the classification of singularities of function germs, \(h_{v_0^\pm} \) has only the \(A_2 \) or \(A_3 \)-type singularities. We can avoid the case when \(u_0 \) is an \(L^\pm \)-flat point, so that \(H\text{-corank}^\pm(X, u_0) = 1 \).

By Theorem 3.6, the conditions of (2) are equivalent. Similarly, the all conditions (a),(b),(c) and (d) of (3) are also equivalent. Suppose that corresponding Gauss image has swallowtail at \(u_0 \). We can observe that there is a self-intersection curve approaching \(u_0 \). (cf. Figure 2.) On this curve, there are two distinct points \(u_1 \) and \(u_2 \) such that \(L^\pm(u_1) = L^\pm(u_2) \). By Lemma 3.5, this means that tangent de Sitter horospheres to \(M = X(U) \) at \(u_1 \) and \(u_2 \) are the same. On the other hand, if the Gauss image has cuspidal edge at \(u_0 \), there are no self-intersection on \(L^\pm \). (cf. Figure 1.) This means that (3)(a) is equivalent to (3)(e). This completes the proof.

3.6 Examples of spacelike surfaces in \(S^3_1 \)

In this section we give some examples using the spacelike Monge form introduced in 3.4 in de Sitter space.
Example 3.12. If \(f(u_1, u_2) = \frac{1}{3}u_1^3 + \frac{1}{2}u_2^2 \), then
\[
X_f(u_1, u_2) = \left(-\frac{1}{3}u_1^3 - \frac{1}{2}u_1^2, -\sqrt{1 + \left(\frac{1}{3}u_1^3 + \frac{1}{2}u_1^2\right)^2 - u_1 - u_2^2}, u_1, u_2\right),
\]
and \(\kappa_1 = 1, \kappa_2 = 0 \). Then we have \(\bar{\kappa}_1^+(0) = 0, \bar{\kappa}_2^+(0) = -1, \bar{\kappa}_1^-(0) = -2 \) and \(\bar{\kappa}_2^-(0) = -1 \). So the origin is not an \(L^- \)-parabolic point but an \(L^+ \)-parabolic point. The positive tangent de Sitter horospherical indicatrix germ is the ordinary cusp \(\{ (u_1, u_2) \mid 2u_1^3 = 3u_2^2 \} \). Therefore, the lightcone Gauss image \(\mathbb{L}^- \) is non-singular at the origin and \(\mathbb{L}^+ \) is a cuspidal edge at the origin.

Example 3.13. If \(f(u_1, u_2) = \frac{1}{2}u_1^4 + \frac{1}{2}u_2^2 \), then
\[
X_f(u_1, u_2) = \left(-\frac{1}{2}u_1^4 - \frac{1}{2}u_1^2, -\sqrt{1 + \left(\frac{1}{2}u_1^4 + \frac{1}{2}u_1^2\right)^2 - u_1 - u_2^2}, u_1, u_2\right),
\]
and \(\kappa_1 = 1, \kappa_2 = 0 \). By the same reason as in the previous example, the origin is not an \(L^- \)-parabolic point but an \(L^+ \)-parabolic point. The positive tangent de Sitter horospherical indicatrix germ is the tachnodal \(\{ (u_1, u_2) \mid u_1^4 = u_2^2 \} \). Therefore, the lightcone Gauss image \(\mathbb{L}^- \) is non-singular at the origin and \(\mathbb{L}^+ \) is a swallowtail at the origin.

Part II Spacelike submanifolds of codimension two in de Sitter space

4 Spacelike submanifolds of codim two

4.1 Spacelike submanifolds and lightcone normal frames

Let \(U \) be an open subset of \(\mathbb{R}^{n-2} \) and \(X: U \to S_1^n \) be an embedding, we say that \(X \) is spacelike in \(S_1^n \) if every non zero vector generated by tangent vectors \(\{X_{u_i}(u)\}_{i=1}^{n-2} \) is always spacelike, where \(u \in U \) and \(X_{u_i} = \partial X/\partial u_i \). We identify \(M = X(U) \) with \(U \) through the embedding \(X \) and call \(X \) and \(M \) a spacelike submanifold of codimension two in \(S_1^n \).
Since $\langle X, X \rangle \equiv 1$, we have $\langle X_{u_i}, X \rangle \equiv 0$ for $i = 1, \cdots, n - 2$. For any $p = X(u)$, the pseudo-normal space $N_p M := T_p M^\perp \subset \mathbb{R}^{n+1}$ is a timelike 3-plane. We can choose a future directed unit normal section $n_T(u) \in N_p M \cap H^\perp_{+1}(-1)$ satisfying $\langle n_T(u), X(u) \rangle = 0$. Therefore we can construct a spacelike unit normal section $n^S(u) \in N_p M \cap S^1$ by

$$n^S(u) = \frac{n_T(u) \wedge X_{u_1}(u) \wedge \cdots \wedge X_{u_{n-2}}(u)}{||n_T(u) \wedge X_{u_1}(u) \wedge \cdots \wedge X_{u_{n-2}}(u)||},$$

and we have $\langle n_T(u), n_T(u) \rangle = -1, \langle n_T(u), n^S(u) \rangle = 0, \langle n^S(u), n^S(u) \rangle = 1$. Therefore vectors $n_T(u) \pm n^S(u)$ are lightlike. We call (n_T, n^S) a future directed normal frame along $M = X(U)$. The system $\{X(u), n_T(u), n^S(u), X_{u_1}(u), \cdots, X_{u_{n-2}}(u)\}$ is a basis of $T_p \mathbb{R}^{n+1}$. We have the following lemma which is analogous to Lemma 3.1 in [8].

Lemma 4.1. ([12]) Let $n_T(u)$ and $\tilde{n}_T(u) \in N_p M$ be the future directed unit timelike normal sections of M then the corresponding lightlike normal sections $n_T(u) \pm n^S(u)$ and $\tilde{n}_T(u) \pm \tilde{n}^S(u)$ are parallel.

Proof. First of all, we show that $\tilde{n}_T(u) + \tilde{n}^S(u)$ is parallel to either $n_T(u) + n^S(u)$ or $n_T(u) - n^S(u)$. By assumption, $\tilde{n}_T(u) + \tilde{n}^S(u)$ is a lightlike normal at p on M, then there exist real numbers λ and μ such that

$$\tilde{n}_T(u) + \tilde{n}^S(u) = \lambda n_T(u) + \mu n^S(u).$$

Since $\tilde{n}_T(u) + \tilde{n}^S(u)$ is lightlike, it follows that $|\lambda| = |\mu|$. Therefore we have

$$\tilde{n}_T(u) + \tilde{n}^S(u) = \lambda (n_T(u) + \sigma n^S(u)).$$

for some $\sigma \in \{\pm 1\}$. It follows that both lightlike vectors $\tilde{n}_T(u) + \tilde{n}^S(u)$ and $n_T(u) + \sigma n^S(u)$ are future directed, therefore we have $\lambda > 0$.

Next, we show that $\sigma = +1$. By definition of $n^S(u)$, there exist a positive number $\alpha > 0$ such that

$$n^S(u) = \alpha (n_T(u) \wedge X(u) \wedge X_{u_1}(u) \wedge \cdots \wedge X_{u_{n-2}}(u)),$$
On the other hand, there are some real number \(\beta \in \mathbb{R} \) such that
\[
\mathbf{n}^T (\mathbf{u}) = \beta (\mathbf{n}^S (\mathbf{u}) \wedge \mathbf{X} (\mathbf{u}) \wedge \mathbf{X}_{u_1} (\mathbf{u}) \wedge \cdots \wedge \mathbf{X}_{u_{n-2}} (\mathbf{u})) .
\]
In this case we have
\[
\langle \mathbf{n}^T (\mathbf{u}), \mathbf{n}^S (\mathbf{u}) \wedge \mathbf{X} (\mathbf{u}) \wedge \cdots \wedge \mathbf{X}_{u_{n-2}} (\mathbf{u}) \rangle = - \langle \mathbf{n}^S (\mathbf{u}), \mathbf{n}^T (\mathbf{u}) \wedge \mathbf{X} (\mathbf{u}) \wedge \cdots \wedge \mathbf{X}_{u_{n-2}} (\mathbf{u}) \rangle .
\]
So that we have \(-\alpha = \langle \mathbf{n}^T (\mathbf{u}), \alpha \mathbf{n}^T (\mathbf{u}) \rangle = - \langle \mathbf{n}^S (\mathbf{u}), \beta \mathbf{n}^S (\mathbf{u}) \rangle = - \beta \) and \(\alpha = \beta \). Therefore,
\[
\mathbf{n}^T (\mathbf{u}) + \mathbf{n}^S (\mathbf{u}) = \alpha (\mathbf{n}^T (\mathbf{u}) + \mathbf{n}^S (\mathbf{u})) \wedge \mathbf{X} (\mathbf{u}) \wedge \mathbf{X}_{u_1} (\mathbf{u}) \wedge \cdots \wedge \mathbf{X}_{u_{n-2}} (\mathbf{u}) .
\]
On the other hand, we obtain a real number \(\alpha' > 0 \) such that
\[
\tilde{\mathbf{n}}^T (\mathbf{u}) + \tilde{\mathbf{n}}^S (\mathbf{u}) = \alpha' (\tilde{\mathbf{n}}^T (\mathbf{u}) + \tilde{\mathbf{n}}^S (\mathbf{u})) \wedge \mathbf{X} (\mathbf{u}) \wedge \mathbf{X}_{u_1} (\mathbf{u}) \wedge \cdots \wedge \mathbf{X}_{u_{n-2}} (\mathbf{u}) .
\]
Then we have,
\[
\tilde{\mathbf{n}}^T (\mathbf{u}) + \tilde{\mathbf{n}}^S (\mathbf{u}) = \alpha' (\tilde{\mathbf{n}}^T (\mathbf{u}) + \tilde{\mathbf{n}}^S (\mathbf{u})) \wedge \mathbf{X} (\mathbf{u}) \wedge \cdots
\]
\[
= \alpha' \lambda (\mathbf{n}^T (\mathbf{u}) + \sigma \mathbf{n}^S (\mathbf{u})) \wedge \mathbf{X} (\mathbf{u}) \wedge \cdots
\]
\[
= \alpha^{-1} \alpha' \lambda (\mathbf{n}^S (\mathbf{u}) + \sigma \mathbf{n}^T (\mathbf{u})) \quad (\alpha^{-1} \alpha' \lambda > 0).
\]
Since the vector \(\tilde{\mathbf{n}}^T (\mathbf{u}) + \tilde{\mathbf{n}}^S (\mathbf{u}) \) is future directed, so that we have \(\sigma = +1 \). Therefore
\[
\tilde{\mathbf{n}}^T (\mathbf{u}) + \tilde{\mathbf{n}}^S (\mathbf{u}) = \lambda' (\mathbf{n}^T (\mathbf{u}) + \mathbf{n}^S (\mathbf{u})),
\]
where \(\lambda' = \alpha^{-1} \alpha' \lambda > 0 \). We can show that the lightlike vectors \(\tilde{\mathbf{n}}^T (\mathbf{u}) - \tilde{\mathbf{n}}^S (\mathbf{u}) \) and \(\mathbf{n}^T (\mathbf{u}) - \mathbf{n}^S (\mathbf{u}) \) are parallel in similar way. In this case, we have
\[
\tilde{\mathbf{n}}^T (\mathbf{u}) - \tilde{\mathbf{n}}^S (\mathbf{u}) = \frac{1}{\lambda'} (\mathbf{n}^T (\mathbf{u}) - \mathbf{n}^S (\mathbf{u})).
\]

We remark that the matrix
\[
\begin{pmatrix}
\lambda' & 0 \\
0 & 1/\lambda'
\end{pmatrix}
\quad (\lambda' > 0)
\]
would
is the matrix of a Lorentzian transformation on the 2-plane spanned by the lightlike normal frames, with respect to the basis \(\{ n^T(u) \pm n^S(u) \} \) and \(\{ \tilde{n}^T(u) \pm \tilde{n}^S(u) \} \).

Under the identification of \(M \) and \(U \) through \(X \), we have the linear mapping
\[
d_p(n^T \pm n^S) : T_p M \rightarrow T_p \mathbb{R}^{n+1}_1 = T_p M \oplus N_p M.
\]
We consider a orthonormal projection \(\pi^t : T_p \mathbb{R}^{n+1}_1 \rightarrow T_p M \) and define a linear transformation \(d_p(n^T \pm n^S)^t \) by
\[
d_p(n^T \pm n^S)^t = \pi^t \circ d_p(n^T \pm n^S).
\]
We call the linear transformation \(S^\pm_p(n^T, n^S) = -d_p(n^T \pm n^S)^t \) an \((n^T, n^S)\)-shape operator of \(M = X(U) \) at \(p = X(u) \).

The eigenvalues of \(S^\pm_p(n^T, n^S) \) denoted by \(\{ \kappa^\pm_i(n^T, n^S)(p) \}_{i=1}^{n-2} \) are called the lightcone principal curvatures of \(M \) with respect to \((n^T, n^S)\) at \(p \). We also define a lightcone Gauss-Kronecker curvature of \(M \) with respect to \((n^T, n^S)\) at \(p \) by
\[
K^\pm_p(n^T, n^S)(p) = \det S^\pm_p(n^T, n^S).
\]
We say that a point \(p \) is an \((n^T, n^S)\)-umbilic point if all the principal curvatures coincide at \(p \).

In this case we have \(S^\pm_p(n^T, n^S) = \kappa^\pm \operatorname{id}_{T_p M} \) for some \(\kappa^\pm \in \mathbb{R} \). We say that \(M \) is \((n^T, n^S)\)-totally umbilic if all points on \(M \) are \((n^T, n^S)\)-umbilic.

Since \(X \) is spacelike submanifolds, we may define a Riemannian metric (or the first fundamental form) on \(M \) by \(ds^2 = \sum_{i,j=1}^{n-2} g_{ij} du_i du_j \), where \(g_{ij}(u) = \langle X_{u_i}(u), X_{u_j}(u) \rangle \) for any \(u \in U \). We also define a lightcone second fundamental form (or the lightcone second fundamental invariant) with respect to the normal vector field \((n^T, n^S)\) defined by \(h^\pm_{ij}(u) = -\langle (n^T \pm n^S)_{u_i}(u), X_{u_j}(u) \rangle \) for any \(u \in U \). We have the following Weingarten-type formula.

Lemma 4.2 ([12]). Let \((n^T, n^S)\) be a lightlike normal frame on the spacelike submanifold \(M \) of codimension two in de Sitter space, then we have:
\[
(n^T \pm n^S)_{u_i} = \pm(n^S, n^T_{u_i})(n^T \pm n^S) - \sum_{j=1}^{n-2} h^\pm_{ij}(n^T, n^S) X_{u_j},
\]
where \((h_i^{\pm}(\mathbf{n}^T, \mathbf{n}^S))_{ij} = (h_{ik}(\mathbf{n}^T, \mathbf{n}^S))_{ik} (g^{kj})_{kj} \) and \((g^{kj})_{kj} = (g_{kj})^{-1} \). Therefore we have

\[
\pi^t \circ (\mathbf{n}^T \pm \mathbf{n}^S)_{u_i} = -\sum_{j=1}^{n-2} h_i^{\pm}(\mathbf{n}^T, \mathbf{n}^S)X_{uj}.
\]

Therefore we have an explicit expression of the lightcone Gauss-Kronecker curvature in terms of the lightcone first and second fundamental forms.

\[
K^\pm_\ell(\mathbf{n}^T, \mathbf{n}^S)(p) = \frac{\det(h_{ij}(\mathbf{n}^T, \mathbf{n}^S)(u))}{\det(g_{\alpha\beta}(u))}
\]

We say that a point \(p \) is an \((\mathbf{n}^T, \mathbf{n}^S)\)-parabolic point if \(K^\pm_\ell(\mathbf{n}^T, \mathbf{n}^S)(p) = 0 \), and \(M \) is an \((\mathbf{n}^T, \mathbf{n}^S)\)-umbilic if \(K^\pm_\ell(\mathbf{n}^T, \mathbf{n}^S)(p) = 0 \).

For a lightlike vector \(\mathbf{v} = (v_0, v_1, \cdots, v_n) \) we define \(\bar{\mathbf{v}} = (1, v_1/v_0, \cdots, v_n/v_0) \). By Lemma 4.1, if we choose another future directed unit timelike normal section \(\bar{\mathbf{n}}^T(\mathbf{u}) \), then we have \(\bar{\mathbf{n}}^T(\mathbf{u}) \pm \bar{\mathbf{n}}^S(\mathbf{u}) = \bar{\mathbf{n}}^T(\mathbf{u}) \pm \bar{\mathbf{n}}^S(\mathbf{u}) \in S^{n-1}_+ \). Therefore we define a lightcone Gauss map \(\bar{L}^\pm : U \rightarrow S^{n-1}_+ \) of \(M = X(U) \) by

\[
\bar{L}^\pm(\mathbf{u}) = \bar{\mathbf{n}}^T(\mathbf{u}) \pm \bar{\mathbf{n}}^S(\mathbf{u}).
\]

The lightcone Gauss map is analogous to the Minkowski space which is studied in [8]. Under the identification of \(U \) and \(M \) we define a linear mapping \(d\bar{L}^\pm : T_pM \rightarrow T_p\mathbb{R}^{n+1} \), where \(p = X(\mathbf{u}) \).

By Lemma 4.2, we have the following normalized lightcone Weingarten formula.

\[
\pi^t \circ \bar{L}^\pm_{u_i} = \frac{1}{\ell^\pm_0}(\pi^t \circ L^\pm_{u_i}) = -\sum_{j=1}^{n-2} \frac{1}{\ell^\pm_0} h_i^{\pm j}(\mathbf{n}^T, \mathbf{n}^S)X_{uj},
\]

where \(L^\pm(\mathbf{u}) = (\ell^\pm_0(\mathbf{u}), \cdots, \ell^\pm_n(\mathbf{u})) \). We call linear transformation \(S^\pm_p = -\pi^t \circ d\bar{L}^\pm_p : T_pM \rightarrow T_pM \) by a normalized lightcone shape operator of \(M \) at \(p \). The eigenvalues \(\{\bar{\kappa}^\pm_i(p)\}_{i=1}^{n-2} \) of \(\bar{S}^\pm_p \) are called normalized lightcone principal curvatures. By the above proposition, we have a relation

\[
\bar{\kappa}^\pm_i(p) = \frac{1}{\ell^\pm_0(\mathbf{u})}\kappa^\pm_i(\mathbf{n}^T, \mathbf{n}^S)(p).
\]

The normalized lightcone Gauss-Kronecker curvature of \(M \) at \(p \) is defined to be \(\bar{K}^\pm_\ell(\mathbf{u}) = \det \bar{S}^\pm_p \).

Therefore we have the following relation between the normalized lightcone Gauss-Kronecker curvature and the lightcone Gauss-Kronecker curvature:

\[
\bar{K}^\pm_\ell(\mathbf{u}) = \left(\frac{1}{\ell^\pm_0(\mathbf{u})}\right)^{n-2} K^\pm_\ell(\mathbf{n}^T, \mathbf{n}^S)(\mathbf{u}).
\]
It is clear from the corresponding definitions that the lightcone Gauss map, the normalized lightcone principal curvatures and the normalized lightcone Gauss-Kronecker curvature are independent on the choice of the normal frame \((n^{T}, n^{S})\) of \(M\).

We say that a point \(u \in U\) or \(p = X(u)\) is a lightlike umbilic point if
\[
\tilde{S}^{\pm}_{p} = \tilde{K}^{\pm}_{p}(p)id_{T_{p}M}.
\]

By the above proposition, \(p\) is a lightlike umbilic point if and only if \(p\) is a \((n^{T}, n^{S})\)-umbilic point for any \((n^{T}, n^{S})\). We say that \(M\) is \textit{totally lightlike umbilic} if all points on \(M\) are lightlike umbilic. We also say that \(p\) is a lightlike parabolic point if
\[
\tilde{K}^{\pm}(u) = 0.
\]

Moreover, \(p\) is called a lightlike flat point if \(p\) is both lightlike umbilic and lightlike parabolic. The spacelike submanifold \(M\) in \(S_{1}^{n}\) is called \textit{totally lightlike flat} if every point in \(M\) is lightlike flat.

4.2 Construction of lightlike hypersurfaces

In this section we define a lightlike hypersurface from the spacelike submanifold of codimension two in de Sitter space, and introduce the Lorentzian distance squared function in order to study the singularities of lightlike hypersurfaces.

Let \(M = X(U)\) be a spacelike submanifold of codimension two in de Sitter space. We define a hypersurface \(LH^{\pm}_{M} : U \times \mathbb{R} \rightarrow S_{1}^{n}\) by

\[
LH^{\pm}_{M}(u, \mu) = X(u) + \mu \tilde{L}^{\pm}(u).
\]

We call \(LH^{\pm}_{M}\) the \textit{lightlike hypersurface along} \(M\). It is analogous to the Minkowski four space which is studied in [7]. It has been introduced by Izumiya and Fusho [5]. We define a family of functions \(G : U \times S_{1}^{n} \rightarrow \mathbb{R}\) on a spacelike submanifold \(M\) by

\[
G(u, \lambda) = \langle X(u) - \lambda, X(u) - \lambda \rangle,
\]

where \(p = X(u)\). We call \(G\) by a \textit{Lorentzian distance squared function} on the spacelike submanifold \(M\). For any fixed point \(\lambda_{0} \in S_{1}^{n}\), we write \(g_{\lambda_{0}}(u) = G(u, \lambda_{0})\). We have following proposition.
Proposition 4.3 ([12]). Let M be a spacelike submanifold of codimension two in de Sitter space and $G : U \times S^n_1 \rightarrow \mathbb{R}$ the Lorentzian distance squared function on M. Suppose that $p_0 = X(u_0) \neq \lambda_0$, then we have the following.

(1) $g_{\lambda_0}(u_0) = \partial g_{\lambda_0}(u_0)/\partial u_i = 0$ $(i = 1, \cdots, n - 2)$ if and only if $\lambda_0 = LH^\pm_M(u_0, \mu)$ for some $\mu \in \mathbb{R} \setminus \{0\}$.

(2) $g_{\lambda_0}(u_0) = \partial g_{\lambda_0}(u_0)/\partial u_i = 0$ $(i = 1, \cdots, n - 2)$ and $\det \text{Hess}(g_{\lambda_0})(u_0) = 0$ if and only if $\lambda_0 = LH^\pm_M(u_0, \mu_0)$ for some $\mu_0 \in \mathbb{R} \setminus \{0\}$ and $-1/\mu_0$ is one of the non-zero normalized lightcone principal curvatures $\tilde{\kappa}^\pm_i(p_0)$.

Now we apply the arguments in Appendix A.

Proposition 4.4. Let G be the Lorentzian distance squared function on M. For any point $(u, \lambda) \in \Delta^*G^{-1}(0)$, G is a Morse family of hypersurfaces around (u, λ).

Proof. For $\lambda = (\lambda_0, \cdots, \lambda_n) \in S^n_1$, $\lambda_k \neq 0$ for some k. Without loss of generality, we assume that $\lambda_n > 0$ and local coordinates around λ in de Sitter space S^n_1 is given by $\lambda = (\lambda_0, \cdots, \lambda_k, \cdots, \lambda_{n-1})$, where $\lambda_n = \sqrt{1 + \lambda_0^2 - \lambda_1^2 - \cdots - \lambda_{n-1}^2}$. Jacobian of Δ^*G is given by

$$B(u, \lambda) = \begin{pmatrix}
-X_j(u) + \frac{X_n(u)}{\lambda_n} \lambda_j & X_n(u) \\
-\frac{X_j(u)}{\lambda_n} + \frac{X_n(u)}{\lambda_n} \lambda_j & X_n(u)
\end{pmatrix}_{j=0,\cdots,n-1}$$

where $X(u) = (X_0(u), \cdots, X_n(u)), X_{u_i} = (X_{0, u_i}(u), \cdots, X_{n, u_i}(u))$ for $(i = 1, \cdots, n - 1)$. On the other hand, $\lambda, X(u), X_{u_1}(u), \cdots, X_{u_{n-2}}(u)$ are linearly independent on $(u, \lambda) \in \Delta^*G^{-1}(0)$, so that rank of $n \times (n-1)$ matrix

$$
\begin{pmatrix}
\lambda_0 & -\lambda_1 & \cdots & -\lambda_{n-1} & -\lambda_n \\
X_0(u) & -X_1(u) & \cdots & -X_{n-1}(u) & -X_n(u) \\
X_{0, u_1}(u) & -X_{1, u_1}(u) & \cdots & -X_{n-1, u_1}(u) & -X_{n, u_1}(u) \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
X_{0, u_{n-2}}(u) & -X_{1, u_{n-2}}(u) & \cdots & -X_{n-1, u_{n-2}}(u) & -X_{n, u_{n-2}}(u)
\end{pmatrix}
$$

28
is \(n \). We subtract the first row multiplied by \(X_{n}(u)/\lambda_{n} \) from the second row, and then subtract the first row multiplied by \(X_{n,u_{k}}(u)/\lambda_{n} \) from the \((2 + k)\)-th row for \(k = 1, \cdots, n - 2 \). We have

\[
\begin{pmatrix}
\lambda_{0} - \lambda_{1} \cdots - \lambda_{n-1} & -\lambda_{n} \\
B(u, \lambda) & 0 \\
& \vdots \\
& 0
\end{pmatrix}
\]

Therefore rank \(B(u, \lambda) = n - 1 \). This completes the proof.

We consider a point \(\lambda = (\lambda_{0}, \lambda_{1}, \cdots, \lambda_{n}) \in S_{1}^{n} \), then we have the relation

\[
\lambda_{k} = \pm \sqrt{\lambda_{0}^{2} - \cdots - \lambda_{k-1}^{2} - \lambda_{k+1}^{2} - \cdots - \lambda_{n}^{2} + 1} \neq 0
\]

for some \(k \). So we adopt the coordinate system by \((\lambda_{1}, \cdots, \lambda_{k}, \cdots, \lambda_{n}) \) on \(V^{\pm} := \{ \lambda \mid \text{sgn}(\lambda_{k}) = \pm 1 \} \). We consider the local trivialization \(PT^{*}(V_{k}^{\pm}) \equiv V_{k}^{\pm} \times P\mathbb{R}^{n-1} \) of \(PT^{*}(S_{1}^{n}) \). Since \(G \) is a Morse family of hypersurfaces, we have the Legendrian immersion germs \(L_{G}^{\pm} : (\Sigma^{*}(G), (u_{0}, \lambda_{0})) \rightarrow PT^{*}(S_{1}^{n}) \) by

\[
L_{G}^{\pm}(u, \lambda) = \left(\lambda, \left[\frac{\partial G}{\partial \lambda_{0}}(u, \lambda) : \cdots : \frac{\partial G}{\partial \lambda_{k}}(u, \lambda) : \cdots : \frac{\partial G}{\partial \lambda_{n}}(u, \lambda) \right] \right)
\]

where \(\lambda = (\lambda_{0}, \cdots, \lambda_{n}) \) is a local coordinate \(V_{k}^{\pm} \) around \(\lambda_{0} \in S_{1}^{n} \), and \(\Sigma^{*}(G) = (\Delta^{*}G)^{-1}(0) = \{(u, \lambda) \in U \times S_{1}^{n} \mid \lambda = LH_{M}^{\pm}(u, \mu), \mu \in \mathbb{R} \} \). The Lorentzian distance squared function \(G \) is a generating family of the Legendrian immersion \(L_{G}^{\pm} \) whose wave front set is the image of \(LH_{M}^{\pm} \).

4.3 Contact with lightcones and spacelike submanifolds

In this section we use the theory of contacts between submanifolds due to Montaldi [16]. Let \(\lambda_{0} \in S_{1}^{n} \), we call a set

\[
LC_{\lambda_{0}} \cap S_{1}^{n} = \{ x \in S_{1}^{n} \mid \langle x - \lambda_{0}, x - \lambda_{0} \rangle = 0 \}
\]

by a de Sitter lightcone with vertex \(\lambda_{0} \). The following proposition is generalization of Proposition 4.1 in [7].

29
Proposition 4.5 ([12]). Let \(\lambda_0 \in S^n_1 \) and \(M \) be a spacelike submanifold of codimension two without umbilic points satisfying \(\bar{K}_t \neq 0 \). Then \(M \subset LC_{\lambda_0} \cap S^n_1 \) if and only if \(\lambda_0 \) is an isolated singular value of the lightlike hypersurface \(LH^\pm_M \) and \(LH^\pm_M(U \times \mathbb{R}) \subset LC_{\lambda_0} \cap S^n_1 \).

Proof. We assume that \(M \subset LC(S^n_1)_{\lambda_0} \). By Proposition 4.3, there exists a smooth function \(\mu : U \to \mathbb{R} \) such that \(X(u) = \lambda_0 + \mu(u) \cdot (\mathbf{n}^T \pm \mathbf{n}^S)(u) \). Therefore, \(LH^\pm_M(U \times \mathbb{R}) \subset LC(S^n_1)_{\lambda_0} \).

We now show that \(\lambda_0 \) is isolated singularity. It follows that

\[
\frac{\partial LH^\pm_M}{\partial t}(u, t) = (\mathbf{n}^T + \mathbf{n}^S)(u)
\]

\[
\frac{\partial LH^\pm_M}{\partial u_i}(u, t) = \mu_{u_i}(u)(\mathbf{n}^T + \mathbf{n}^S)(u) + (t + \mu(u))(\mathbf{n}^T + \mathbf{n}^S)_{u}(u) \quad (i = 1, \ldots, n - 2).
\]

Then, we have

\[
P(u) := X(u) \wedge \frac{\partial LH^\pm_M}{\partial t}(u, t) \wedge \frac{\partial LH^\pm_M}{\partial u_1}(u, t) \wedge \cdots \wedge \frac{\partial LH^\pm_M}{\partial u_{n-2}}(u, t)
\]

\[
= (t + \mu(u))^{n-2} \cdot X(u) \wedge (\mathbf{n}^T + \mathbf{n}^S)(u) \wedge (\mathbf{n}^T + \mathbf{n}^S)_{u_1}(u) \wedge \cdots \wedge (\mathbf{n}^T + \mathbf{n}^S)_{u_{n-2}}(u).
\]

On the other hand, \(X(u) - \lambda_0 = \mu(u) \cdot (\mathbf{n}^T + \mathbf{n}^S)(u) \neq 0 \) is a lightlike vector and \(T_pM \) are spacelike, so that \(X(u), X(u) - \lambda_0, X_{u_1}(u), \ldots, X_{u_{n-2}}(u) \) are linearly independent. Therefore we have

\[
0 \neq X(u) \wedge (X(u) - \lambda_0) \wedge X_{u_1}(u) \wedge \cdots \wedge X_{u_{n-2}}(u)
\]

\[
= \mu(u)^{n-1} \cdot X(u) \wedge (\mathbf{n}^T + \mathbf{n}^S)(u) \wedge (\mathbf{n}^T + \mathbf{n}^S)_{u_1}(u) \wedge \cdots \wedge (\mathbf{n}^T + \mathbf{n}^S)_{u_{n-2}}(u)
\]

so that \(X(u) \wedge (\mathbf{n}^T + \mathbf{n}^S)(u) \wedge (\mathbf{n}^T + \mathbf{n}^S)_{u_1}(u) \wedge \cdots \wedge (\mathbf{n}^T + \mathbf{n}^S)_{u_{n-2}}(u) \neq 0 \). Therefore \(P(u) = 0 \) if and only if \(t + \mu(u) = 0 \). This means that \(\lambda_0 \) is an isolated singular value of \(LH^\pm_M \). The converse is trivial. \(\square \)

We now consider the contact of spacelike submanifolds of codimension two with de Sitter lightcones due to Montaldi’s result [16]. We define a function \(\mathcal{G} : S^n_1 \times S^n_1 \to \mathbb{R} \) by \(\mathcal{G}(x, \lambda) = (x - \lambda, x - \lambda) \). For a given \(\lambda_0 \in S^n_1 \), we denote \(g_{\lambda_0}(x) = \mathcal{G}(x, \lambda_0) \), then we have \(g_{0}^{-1}(0) = LC(S^n_1)_{\lambda_0} \). For any \(u_0 \in U \), we take the point \(\lambda_0^\pm = X(u_0) + \mu_0 L^\pm(u_0) \) and have

\[
(g_{\lambda_0^\pm} \circ X)(u_0) = \mathcal{G} \circ (X \times id_{S^n_1})(u_0, \lambda_0^\pm) = G(u_0, \lambda_0^\pm) = 0.
\]
where \(p_0 = X(u_0) \) and \(\mu_0 = -1/\kappa_1(u_0), \ (i = 1, \cdots, n - 1) \). We also have

\[
\frac{\partial (g_{\lambda_0^\pm} \circ X)}{\partial u_i}(u_0) = \frac{\partial G}{\partial u_i}(u_0, \lambda_0^\pm) = 0.
\]

It follows that the de Sitter lightcone \(g_{\lambda_0^\pm}^{-1}(0) = LC(S_{1}^n) \cap S_{1}^{n} \) is tangent to \(M \) at \(p_0 = X(u_0) \).

In this case, we call each \(LC_{\lambda_0^\pm} \) a de Sitter tangent lightcone of \(M \) at \(p_0 \).

We denote \(g_{i,\lambda_0^\pm} : (U, u_{0}) \rightarrow (\mathbb{R}, 0) \) by \(g_{i,\lambda_0^\pm}(u) = G_i(u, \lambda_0^\pm) \). Then we have

\[
g_{i,\lambda_0^\pm}(u) = (g_{i,\lambda_0^\pm} \circ X_i)(u).
\]

By Theorem B.1,

\[
K(X_1(U), LC_{\lambda_0^\pm}; \lambda_0^\pm) = K(X_2(U), LC_{\lambda_0^\pm}; \lambda_0^\pm)
\]

if and only if \(g_{1,\lambda_0^\pm} \) and \(g_{2,\lambda_0^\pm} \) are \(K \)-equivalent.

Let \(Q^\pm(X, u_0) \) be the local ring of the function germ \(g_{\lambda_0^\pm} : (U, u_0) \rightarrow \mathbb{R} \) defined by

\[
Q^\pm(X, u_0) = C^\infty_{u_0}(U)/\langle g_{\lambda_0^\pm} \rangle C^\infty_{u_0}(U),
\]

where \(\lambda_0 = LH^{-1}_{M}(u_0, \mu_0) \) and \(C^\infty_{u_0}(U) \) is the local ring of function germs at \(u_0 \).

By the arguments in Appendix A, we have following theorem.

Theorem 4.6 ([12]). Let \(X_i : (U, u_i) \rightarrow (S_{1}^n, p_i) \) \((i = 1, 2)\) be spacelike submanifold germs of codimension two in de Sitter space such that the corresponding Legendrian immersion germs \(L_i^\pm \) are Legendrian stable. Then the following conditions are equivalent:

1. Lightlike hypersurface germs \(LH_{M,1}^\pm \) and \(LH_{M,2}^\pm \) are \(\mathcal{A} \)-equivalent.
2. Legendrian immersion germs \(L_1^\pm \) and \(L_2^\pm \) are Legendrian equivalent.
3. Lorentzian distance squared function germs \(G_1 \) and \(G_2 \) are \(\mathcal{P}-\mathcal{K} \)-equivalent.
4. \(g_{1,\lambda_1}^\pm \) and \(g_{2,\lambda_2}^\pm \) are \(K \)-equivalent.
5. \(K(X_1(U), LC_{\lambda_1^\pm}; p_1) = K(X_2(U), LC_{\lambda_2^\pm}; p_2) \)
6. Local rings \(Q^\pm(X_1, u_1) \) and \(Q^\pm(X_2, u_2) \) are isomorphic as \(\mathbb{R} \)-algebras.
Proof. Since \(LH_{M,1}^\pm \) and \(LH_{M,2}^\pm \) are Legendrian stable, regular sets of \(LH_{M,1}^\pm \) and \(LH_{M,2}^\pm \) are respectively dense, by Proposition A.2, the conditions (1) and (2) are equivalent. Applying Theorem A.3, the conditions (2) and (3) are equivalent. By the previous arguments from Theorem B.1, the conditions (4) and (5) are equivalent. If we assume the condition (3), then \(P^{-K} \)-equivalence preserves the \(K \)-equivalence, so that the condition (4) holds. Since the local ring \(Q^\pm(X_i, u_i) \) is \(K \)-invariant, this means that the condition (6) holds. By Proposition A.4, the condition (6) implies the condition (2).

By Appendix C, the assumption of the above theorem is a generic property in the case when \(n \leq 6 \). In general we have the following proposition.

Proposition 4.7 ([12]). Let \(X_i : (U, u_i) \rightarrow (S^n_+, p_i) \) (for \(i = 1, 2 \)) be spacelike submanifold germs of codimension two in de Sitter space and regular sets of their lightlike surfaces \(LH_{M,i}^\pm \) are dense in \(U \). If lightlike hypersurface germs \(LH_{M,1}^\pm \) and \(LH_{M,2}^\pm \) are \(\mathcal{A} \)-equivalent, then

\[
K(X_1(U), LC_{\lambda_i^+}; p_1) = K(X_2(U), LC_{\lambda_i^+}; p_2).
\]

In this case, \((X_1^{-1}(LC_{\lambda_i^+}), u_1)\) and \((X_2^{-1}(LC_{\lambda_i^+}), u_2)\) are diffeomorphic as set germs.

Proof. By Proposition A.2, if \(LH_{M,1}^\pm \) and \(LH_{M,2}^\pm \) are \(\mathcal{A} \)-equivalent, then \(L_1^\pm \) and \(L_2^\pm \) are Legendrian equivalent. By Theorem A.3, \(G_1 \) and \(G_2 \) are \(\mathcal{P}-\mathcal{K} \)-equivalent, so that \(g_{1,\lambda_i^+} \) and \(g_{2,\lambda_i^+} \) are \(\mathcal{K} \)-equivalent. Applying Theorem B.1, the first assertion holds. On the other hand, \(g_{1,\lambda_i^+}^{-1}(0) = (X_i^{-1}(LC_{\lambda_i^+}), u_i) \) and \(\mathcal{K} \)-equivalence preserves the zero level sets, so that \((X_1^{-1}(LC_{\lambda_i^+}), u_1)\) and \((X_2^{-1}(LC_{\lambda_i^+}), u_2)\) are diffeomorphic as set germs.

4.4 Lightcone Gauss maps and lightcone height functions

In this section, we define the lightcone height function whose wave front set is the image of the lightcone Gauss map. We also describe contacts of submanifolds with lightlike cylinders by applying Montaldi’s theory.

We define a *lightcone height function* \(H : U \times S^{n-1}_+ \rightarrow \mathbb{R} \) by \(H(u, v) = \langle X(u), v \rangle \). For \(v_0 \in S^{n-1}_+ \), we write \(h_{v_0}(u) = H(u, v_0) \) and have following proposition.
Proposition 4.8 ([12]). Let H be the lightcone height function of spacelike submanifold X of codimension two in de Sitter space S^n_1, then we have the following:

1. $H(u_0, v_0) = H_{u_i}(u_0, v_0) = 0$ for $i = 1, \ldots, n - 2$ if and only if $v_0 = \tilde{L}^\pm(u_0)$.

2. $H(u_0, v_0) = H_{u_i}(u_0, v_0) = 0$ for $i = 1, \ldots, n - 2$ and $\det \text{Hess} (h_{v_0})(u_0)$ if and only if $v_0 = \tilde{L}^\pm(u_0)$ and $\tilde{K}_\ell^+(u_0) = 0$.

Proof. Let $v_0 = \lambda X(u_0) + \eta^T n^T(u_0) + \eta^S n^S(u_0) + \sum_{j=1}^{n-2} \xi_j X_j(u_0)$ for some $\lambda, \eta^T, \eta^S, \xi_j \in \mathbb{R}$. By the assumption, we have $\lambda = 0, |\eta^T| = |\eta^S|$ and $\tilde{H}'(u_0, v_0) = (g_{ij}(u_0)) \tilde{\xi}$, where $\tilde{H}' = t_1(H_{u_1}, \ldots, H_{u_{n-2}})$, $\tilde{\xi} = \xi_1, \xi_{n-2}$ and (g_{ij}) is the first fundamental form on M. Since $(g_{ij}(u_0))$ is regular, $\tilde{H}'(u_0, v_0) = 0$ if and only if $\tilde{\xi} = 0$. Therefore we have $v_0 = \tilde{L}^\pm(u_0)$. The converse of (1) is trivial. By the calculation,

$$
\left(\frac{\partial^2 H}{\partial u_i \partial u_j}(u_0, v_0) \right)_{ij} = \left(X_{u_i u_j}(u_0), \tilde{L}^\pm(u_0) \right)_{ij} = \frac{1}{\ell^\pm_0(u_0)} (h^\pm_{ij}(u_0)),
$$

where $\ell^\pm_0(u_0)$ is the first component of $\tilde{L}^\pm(u_0)$ and $(h^\pm_{ij}(u_0))$ is the lightcone second fundamental form with respect to the lightcone normal frame (n^T, n^S). Therefore $\text{Hess} H(u_0, v_0)$ is degenerate if and only if u_0 is a lightcone parabolic point. This completes the proof.

By the above proposition, the discriminant set of the lightcone height function is given by

$$
D_H = \left\{ v \in S^{n-1} \left| v = \tilde{L}^\pm(u), \ u \in U \right. \right\}.
$$

Therefore D_H is the image of the lightcone Gauss map of M and the singular set of the lightcone Gauss map is the normalized lightcone parabolic set of M.

Proposition 4.9 ([12]). Let H is the lightcone height function on the spacelike submanifold M of codimension two in de Sitter space. Then H is a Morse family of hypersurfaces around $(u, v) \in \Delta^* H^{-1}(0)$.

Proof. We denote that $X = (X_0, \ldots, X_n)$, $X_{u_i} = (X_{0, u_i}, \ldots, X_{n, u_i})$ and $v = (v_0, \ldots, v_n)$. Without the loss of generality, we assume that $v_n > 0$. Therefore we denote a matrix B and C...
by

\[B = \begin{pmatrix} X_j(u) - \frac{v_j}{v_n} X_n(u) \\ \vdots \\ X_{j,u_i}(u) - \frac{v_j}{v_n} X_{n,u_i}(u) \end{pmatrix}, C = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ \widetilde{L}^\pm(u) \\ X(u) \\ X_{u_1}(u) \\ \vdots \\ X_{u_{n-2}}(u) \end{pmatrix}. \]

Then we have \(J(\Delta^* H) = (\ast \mid B) \) and \(\det B = (-1)^{n-2} \det C/v_n. \)

On the other hand, determinant of a matrix

\[C = \begin{pmatrix} -1 & 0 & \ast & \cdots & \ast \\ 0 & 1 & 0 & \ast & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 1 & \ast & \cdots & \ast \end{pmatrix}^t \]

equals to \(- \det(g_{ij}) \neq 0\), where \((g_{ij})\) is the first fundamental form on \(M \). This implies that both \(B \) and \(C \) are regular, therefore rank \(J(\Delta^* H) = n - 1 \). This completes the proof.

By the above proposition and Proposition A.1, we have the Legendrian immersion \(\mathcal{L}^\pm_H : \Sigma_\ast(H) \to PT^*(S^n_+ \mathbb{1}) \) defined by

\[\mathcal{L}^\pm_H(u,v) = \left(\lambda, \left[\frac{\partial H}{\partial v_1}(u,v) : \cdots : \frac{\partial H}{\partial v_k}(u,v) : \cdots : \frac{\partial H}{\partial v_n}(u,v) \right] \right) \]

where \(v = (v_0, v_1, \cdots, v_n) \in S^n_+ \mathbb{1} \) and \(\Sigma_\ast(H) = \{ (u,v) \in U \mid v = \widetilde{L}^\pm(u), \widetilde{K}^\pm_{\ell}(u_0) = 0 \} \). The lightcone height function \(H \) is the generating family of the Legendrian immersion \(\mathcal{L}^\pm_H \) whose wave front set is the image of lightcone Gauss map \(\widetilde{L}^\pm \).

4.5 Contact with lightlike cylinders

In this section we describe contacts of submanifolds with lightlike cylinders by applying Montaldi’s theory.
For any $v \in S^{n-1}_+$, we define a lightlike cylinder along v by $HP(v, 0) \cap S^n_1$. It is an $(n-1)$-dimensional submanifold in S^n_1 which is isomorphic to $S^{n-2} \times \mathbb{R}$. We observe that its tangent space at each point has lightlike directions.

Proposition 4.10 ([12]). Let \tilde{L}^\pm be a lightcone Gauss map of X. Then \tilde{L}^\pm is a constant map if and only if M is a part of lightlike cylinder $HP(v, 0) \cap S^n_1$ for some $v \in S^{n-1}_+$.

Proof. Necessity is trivial, so we prove sufficient condition. If $M \subset HP(v, 0) \cap S^n_1$, then $v = \alpha(u)n^T(u) + \beta(u)n^S(u)$ for some functions $\alpha, \beta : U \rightarrow \mathbb{R}$. Since v is lightlike, we have $\alpha = |\beta| > 0$. Therefore $v = \tilde{L}^\pm(u)$ for all $u \in U$. This completes the proof. \qed

We now consider the function $H : S^n_1 \times S^{n-1}_+ \rightarrow \mathbb{R}$ defined by $H(x, v) = \langle x, v \rangle$. Given $v_0 \in S^{n-1}_+$, we denote $h_{v_0}(x) = H(x, v_0)$, so that we have $h_{v_0}^{-1}(0) = HP(v_0, 0) \cap S^n_1$. For any $u_0 \in U$, we take the point $v^\pm_0 = \tilde{L}^\pm(u_0)$ and have

$$(h_{v_0} \circ X)(u_0) = H \circ (X \times id_{S^{n-1}_+})(u_0, v^\pm_0) = H(u_0, v^\pm_0) = 0,$$

where $p_0 = X(u_0)$. We also have

$$\frac{\partial (h_{v^\pm_0} \circ X)}{\partial u_i}(u_0) = \frac{\partial H}{\partial u_i}(u_0, v^\pm_0) = 0.$$

It follows that the lightcone $h_{v^\pm_0}^{-1}(0) = LC_{v_0}$ is tangent to M at $p_0 = X(u_0)$. In this case, we call $LC_{v^\pm_0}$ a tangent lightlike cylinder of M at p_0.

From the arguments in Appendix A and 4.5, we have following theorem.

Theorem 4.11 ([12]). $X_i : (U_i, u_i) \rightarrow (S^n_i, p_i)$ $(i = 1, 2)$ be spacelike submanifold germs and $v_i = \tilde{L}^\pm_i(u_i)$. If the corresponding Legendrian immersion germs are Legendrian stable. Then the following conditions are equivalent:

1. Lightcone Gauss map germs \tilde{L}^\pm_1 and \tilde{L}^\pm_2 are A-equivalent.

2. Legendrian immersion germs L^\pm_1 and L^\pm_2 are Legendrian equivalent.

3. Lightcone height function germs H_1 and H_2 are $P-K$-equivalent.

35
(4) h_{1,v_1}^\pm and h_{2,v_2}^\pm are K-equivalent.

(5) $K(X_1(U), HP(v_1,0) \cap S_1^n; p_1) = K(X_2(U), HP(v_2,0) \cap S_1^n; p_2)$

Proof. This proof is similar to the proof of Theorem 3.6.

As in the case with the section 4.5, if $n \leq 6$ there exists an open subset $O \subset \text{Sp-Emb}(U, S_1^n)$ (with the Whitney C^∞-topology) such that for any $X \in O$ suffices the assumption of the above theorem.

Proposition 4.12 ([12]). Let X_i (for $i = 1, 2$) be spacelike submanifold germs and regular sets of their lightcone Gauss maps \tilde{L}_i^\pm are dense in U. If lightcone Gauss map germs \tilde{L}_1^\pm and \tilde{L}_2^\pm are A-equivalent, then we have

$$K(X_1(U), HP(v_1^\pm,0) \cap S_1^n; p_1) = K(X_2(U), HP(v_2^\pm,0) \cap S_1^n; p_2)$$

In this case, $(X_1^{-1}(HP(v_1^\pm,0) \cap S_1^n), u_1)$ and $(X_2^{-1}(HP(v_2^\pm,0) \cap S_1^n), u_2)$ are diffeomorphic as set germs.

Therefore we call $(X_i^{-1}(HP(v_i^\pm,0) \cap S_1^n), u_i)$ a *tangent lightlike cylindrical indicatrix germ* of M_i at p_0.

4.6 Spacelike surfaces in de Sitter 4-space

In this section we consider the case of $n = 4$ and classify singularities of lightlike hypersurfaces and lightcone Gauss maps. We now define K-invariants of spacelike surfaces in de Sitter 4-space. For open subset $U \subset \mathbb{R}^2$ and spacelike submanifold $X : U \rightarrow S_4^1$, we define the K-codimension (or Tyurina number) of the function germs $h_{v_0^\pm, g_{\lambda_0}^\pm}$ and corank of $h_{v_0^\pm, g_{\lambda_0}^\pm}$ by

$$\text{H-ord}^\pm(X, u_0) = \dim C^\infty_{u_0}(U)/(h_{v_0^\pm}(u_0), \partial h_{v_0^\pm}(u_0)/\partial u_i)C^\infty_{u_0}(U),$$

$$\text{H-corank}^\pm(X, u_0) = 2 - \text{rank Hess}(h_{v_0^\pm}(u_0)),$$

$$\text{G-ord}^\pm(X, u_0) = \dim C^\infty_{u_0}(U)/(g_{\lambda_0}^\pm(u_0), \partial g_{\lambda_0}^\pm(u_0)/\partial u_i)C^\infty_{u_0}(U),$$

$$\text{G-corank}^\pm(X, u_0) = 2 - \text{rank Hess}(g_{\lambda_0}^\pm(u_0)),$$

where $v_0^\pm = \tilde{L}_0^\pm(u_0)$ and $\lambda_0^\pm = X(u_0) + t_0\tilde{L}_0^\pm(u_0)$.
Figure 5: The list of tangent lightcone indicatrix germs

Theorem 4.13 ([12]). Let Sp-Emb(U, S^n) be the set of spacelike submanifolds. We have open dense subset $\mathcal{O} \subset \text{Sp-Emb}(U, S^n)$ such that for $X \in \mathcal{O}$ and $\lambda_0^\pm = LH_{\lambda_0^\pm}(u_0, t_0)$, λ_0^\pm is a singular value of $LH_{\lambda_0^\pm}$ if and only if $G\text{-corank}^\pm(X, u_0) = 1$ or 2.

1. If $G\text{-corank}^\pm(X, u_0) = 1$ then there are distinct normalized lightcone principal curvatures $\tilde{\kappa}_1^\pm, \tilde{\kappa}_2^\pm$ such that $\tilde{\kappa}_1^\pm \neq 0$ and $t_0 = -1/\tilde{\kappa}_1^\pm$. In this case we have $G\text{-ord}^\pm(X, u_0) = k$ ($k = 2, 3$ or 4) and the lightlike hypersurface $LH_{\lambda_0^\pm}$ has A_k type singularity:

\[
\begin{align*}
(A_2) & \quad f(u_1, u_2, u_3) = (3u_1^2, 2u_1^3, u_1, u_2) \\
(A_3) & \quad f(u_1, u_2, u_3) = (4u_1^3 + 2u_1u_2, 3u_1^2 + u_2u_1, u_2, u_3) \\
(A_4) & \quad f(u_1, u_2, u_3) = (5u_1^4 + 3u_2u_1^2 + 2u_1u_3, 4u_1^5 + 2u_2u_1^3 + u_3u_1^2, u_2, u_3).
\end{align*}
\]

2. If $G\text{-corank}^\pm(X, u_0) = 2$ then u_0 is a non-flat umbilic point and $t_0 = -1/\tilde{\kappa}_1^\pm$. In this case we have $G\text{-ord}^\pm(X, u_0) = 4$ and $LH_{\lambda_0^\pm}$ has D_4^+ or D_4^- type singularity:

\[
\begin{align*}
(D_4^+) & \quad f(u_1, u_2, u_3) = (2(u_1^3 + u_2^2) + u_1u_2u_3, 3u_1^2 + u_2u_3, 3u_2^2 + u_1u_3, u_3) \\
(D_4^-) & \quad f(u_1, u_2, u_3) = (2(u_1^3 - u_1u_2^2) + (u_1^2 + u_2^2)u_3, u_2^2 - 3u_1^2 - 2u_1u_3, u_1u_2 - u_2u_3, u_3).
\end{align*}
\]

Theorem 4.14 ([12]). There exists an open dense subset $\mathcal{O}' \subset \text{Sp-Emb}(U, S^n)$ such that for any $X \in \mathcal{O}'$, $u_0 \in U$ is an L^\pm-parabolic point if and only if $H\text{-corank}^\pm(X, u_0) = 1$. That is, M has non flat point and $\tilde{K}_\ell^{-1}(0)$ is a regular curve.
(1) If $\text{H-ord}^\pm(X, u_0) = 2$, then \tilde{L}^\pm has the cuspidal edge point at u_0, and the tangent lightlike cylindrical indicatrix germ is an ordinary cusp.

(2) If $\text{H-ord}^\pm(X, u_0) = 3$, then \tilde{L}^\pm has the swallowtail point at u_0, and the tangent lightlike cylindrical indicatrix germ is a tacnode or a point.

**PART III **SPACELIKE SUBMANIFOLDS IN DE SITTER SPACE

5 **Spacelike canal hypersurfaces**

We consider the differential geometry of spacelike submanifolds of codimension at least two in de Sitter space, which is analogous to [9]. We construct the spacelike canal hypersurfaces from the spacelike submanifold and observe their geometrical properties.

5.1 **Spacelike submanifolds and timelike unit normal vector fields**

Let $r \geq 2$ be an integer and $X : U \rightarrow S^n_1$ be an embedding from an open set $U \subset \mathbb{R}^{n-r}$. We say that X is spacelike in S^n_1 if every non zero vector generated by $\{X_{u_i}(u)\}_{i=1}^{n-r}$ is spacelike, where $u \in U$ and $X_{u_i} = \partial X/\partial u_i$. We identify $M = X(U)$ with U through the embedding X and call M a spacelike submanifold of codimension r in de Sitter space. Since $\langle X, X \rangle \equiv 1$, so that $\langle X_{u_i}, X \rangle \equiv 0$ for $i = 1, \ldots, n-r$. The tangent space of M at $p = X(u)$ is spanned by the vectors $X_{u_i}(u)$ for $i = 1, \ldots, n-r$.

Let N_pM be the normal space of M at p in \mathbb{R}^{n+1}_1 and we define $N^*_p(M) = N_pM \cap T_pS^n_1$. Let $n : U \rightarrow N^*_p(M)$ be a timelike unit normal vector field on M. Since $\langle n, n \rangle \equiv -1$ and $\langle X, n \rangle \equiv 0$, n_{u_i} is pseudo orthogonal to both of X and n for $i = 1, \ldots, n-r$. Therefore we have $n_{u_i}(u) \in T_pM \oplus N^*_p(M)$. Consider two pseudo orthonormal projections

$$
\pi^t_p : T_p\mathbb{R}^{n+1}_1 \rightarrow T_pM, \quad \pi^n_p : T_p\mathbb{R}^{n+1}_1 \rightarrow N_pM.
$$

Let $d_u n$ be the derivative of n at u, under the identification of M and U through X, we have
the linear transformations on $T_p M$

$$d_p n^T = \pi^t_p \circ d_u n, \quad d_p n^N = \pi^n_p \circ d_u n.$$ We respectively call the linear transformation $A_p(n) = -d_p n^T$ and $S_p(n) = -(\text{id}_{T_p M} + d_p n^T)$ an n-shape operator and a de Sitter horospherical n-shape operator of M at $p = X(u)$. We also call the linear map $d_u n^N$ a normal connection with respect to the timelike normal n of M.

We denote eigenvalues of $A_p(n)$ and $S_p(n)$ by $\kappa_p(n)$ and $\bar{\kappa}_p(n)$, which we respectively call an n-principal curvature and a de Sitter horospherical n-principal curvature. The de Sitter horospherical Gauss-Kronecker curvature with respect to n at $p = X(u)$ is defined to be

$$K_h(n)(u) = \det S_p(n).$$

We say that a point $p_0 = X(u_0)$ is an n-umbilic point if $S_{p_0}(n) = \bar{\kappa}_{p_0}(n)\text{id}_{T_{p_0} M}$. Since the eigenvectors of $S_{p_0}(n)$ and $A_{p_0}(n)$ are the same, the above condition is equivalent to $A_{p_0}(n) = \kappa_{p_0}(n)\text{id}_{T_{p_0} M}$. We say that the spacelike submanifold M is totally n-umbilic if every point on M is n-umbilic. We also say that the timelike unit normal vector field n is parallel at p_0 if $d_{p_0} n^N = 0_{T_{p_0} M}$. The timelike unit normal field n is parallel if n is parallel at any points on M. Then we have the following result which is analogous to ([9], Proposition 3.1).

Proposition 5.1 ([14]). Let X be a spacelike submanifold of codimension $r \geq 2$ in de Sitter space. Suppose that n is a timelike unit normal parallel vector field and $M = X(U)$ is totally n-umbilic. Then the principal curvatures $\kappa_p(n)$ and $\bar{\kappa}_p(n)$ are constant function $\kappa(n)$ and $\bar{\kappa}(n)$, and there exists a vector $v \in \mathbb{R}^{n+1}$ and real number c such that M is a part of some hyperquadric $HP(v, c) \cap S^n_1$ in de Sitter space. In this case, we have following classification.

1. If $1 < |\bar{\kappa}(n) + 1| = |\kappa(n)|$ then M is a part of a hyperbolic hyperquadric $HP(v, +1)$.

2. If $0 < |\bar{\kappa}(n) + 1| = |\kappa(n)| < 1$ then M is a part of an elliptic hyperquadric $HP(v, +1)$.

3. If $\bar{\kappa}(n) + 1 = \kappa(n) = 0$ then M is a part of an elliptic hyperquadric $HP(v, 0)$.

4. If $\kappa(n) = 1$ (namely $\bar{\kappa}(n) = 0$) then M is a part of a de Sitter hyperhorosphere $HP(v, +1)$. 39
Proof. By the assumption, we have $A_p(u) \equiv \kappa_p \operatorname{id}_{T_p M}$. This means that $\pi_p^T \circ n_{u_i}(u) \equiv \kappa_p X_{u_i}(u)$. Since n is parallel, we have $n_{u_i}(u) = \kappa_p X_{u_i}(u)$. So that $n_{u_i u_j}(u) = \kappa_{u_j, p} X_{u_i}(u) + \kappa_p X_{u_i u_j}(u)$ and $n_{u_i u_j}(u) = \kappa_{u_j, p} X_{u_i}(u) + \kappa_p X_{u_i u_j}(u)$. It follows that $X_{u_i u_j} \equiv X_{u_i u_j}$ and $n_{u_i u_j} \equiv n_{u_i u_j}$, then we have $\kappa_{u_j, p} X_{u_i}(u) = \kappa_{u_j, p} X_{u_i}(u)$. Since $X_i(u)$ and $X_j(u)$ are linearly independent, $\kappa_{u_j, p} = \kappa_{u_j, p} = 0$. This means that κ_p and κ_p are constant κ and κ.

We now assume that $\kappa + 1 = \kappa \neq 0$. By the assumption, we have $n_{u_i}(u) = -\kappa X_{u_i}(u)$, so that there exists a constant vector v such that $X(u) = v - (1/\kappa) n(u)$. Then the vector v satisfies $\langle v, v \rangle = 1 - 1/\kappa^2$ and $\langle X(u) - v, X(u) - v \rangle = -1/\kappa^2$, so that $\langle X(u), v \rangle = 1$ for any $u \in U$. This means that M is a part of a hyperquadric in de Sitter space $HP(v, +1)$. Therefore we have (1), (2) and (4).

On the other hand, if $\kappa + 1 = \kappa = 0$ then there exists a constant timelike vector v such that $n(u) = v$ for any $u \in U$. So that $\langle X(u), v \rangle = \langle X(u), n(u) \rangle = 0$ for any $u \in U$. This means that $M \subset HP(v, 0)$ Therefore (3) holds. This completes the proof.

We now consider the following Weingarten type formula. Since $X_{u_1}, \ldots, X_{u_{n-r}}$ spans a spacelike vector subspace, we may induce a Riemannian metric by $ds^2 = \sum_{i,j=1}^{n-r} g_{ij} du_i du_j$ on $M = X(U)$, where $g_{ij} = \langle X_{u_i}, X_{u_j} \rangle$. We respectively define the second fundamental invariant and de Sitter horospherical second fundamental invariant with respect to the timelike unit normal vector field n by $h_{ij}(n) = -\langle n_{u_i}, X_{u_j} \rangle$ and $\bar{h}_{ij}(n) = -\langle X_{u_i} + n_{u_i}, X_{u_j} \rangle$. We have the relation

$$\bar{h}_{ij}(n) = -g_{ij} + h_{ij}(n),$$

for $i, j = 1, \ldots, n - r$. We also have the following Weingarten-type formula with respect to n, which is analogous to Proposition 3.2 in [9].

Proposition 5.2 ([14]). Let X be a spacelike submanifold of codimension $r \geq 2$ and n a timelike unit normal vector field on $M = X(U)$. Then we have:

$$\pi^T \circ (X + n)_{u_i} = -\sum_{k=1}^{n-r} \bar{h}_{ij}^k(n) X_{u_j},$$

where $\bar{h}_{ij}^k(n)_{ij} = (\bar{h}_{ik}(n))_{ik}(g^{kj})_{kj}$ and $(g^{kj}) = (g_{kj})^{-1}$.

40
Therefore, the Gauss-Kronecker curvature with respect to n is given by
\[K_h(n) = \frac{\det(\bar{h}_{ik}(n))}{\det(g_{kj})}. \]

Since $\langle X + n, X_{u_i} \rangle \equiv 0$, the coefficients of the second fundamental invariant with respect to the timelike parallel unit normal vector field n are expressed by
\[\bar{h}_{ij}(n) = -\langle X_{u_i} + n_{u_i}, X_{u_j} \rangle = -\partial\langle X + n, X_{u_j} \rangle/\partial u_i + \langle X + n, X_{u_i}u_j \rangle. \]

So that the de Sitter horospherical second fundamental invariant at a point $p_0 = X(u_0)$ depends only on the timelike normal direction $n_0 = n(u_0)$ at p_0. Therefore it is independent of the choice of timelike parallel unit normal vector field n with $n_0 = n(u_0)$.

Let n_0 be a timelike unit normal vector. We say that a point $p_0 = X(u_0)$ is an n_0-parabolic point (resp. n_0-umbilic point) of M if $K_h(n)(u_0) = 0$ ($S_{p_0}(n) = \bar{r}_{p_0}(n)\text{id}_{r_{p_0}M}$) for some timelike parallel unit normal vector field n with $n(u_0) = n_0$. We also say that p_0 is an n_0-de Sitter horospherical point if it is an n_0-parabolic point and an n_0-umbilic point.

5.2 Spacelike canal hypersurfaces

In this section we introduce the notion of spacelike canal hypersurfaces from the spacelike submanifolds. Let $X : U \rightarrow S^n_1$ be a spacelike submanifolds of codimension $r \geq 2$ in de Sitter space and $p = X(u)$. We choose unit orthonormal sections
\[N_p(M) = \langle X(u), n_0(u), n_1(u), \ldots, n_{r-1}(u) \rangle_R, \]
where $n_0(u)$ is a timelike unit normal vector and $n_i(u)$ for $i = 1, \ldots, r - 1$ are spacelike unit normal vectors. We define a map $e : U \times H^{r-1}(-1) \rightarrow H^{n-1}(-1)$ by
\[e(u, \bar{\mu}) = \mu_0 n_0(u) + \sum_{i=1}^{r-1} \mu_i n_i(u), \]
where $\bar{\mu} = (\mu_0, \ldots, \mu_{r-1})$. Let θ be a fixed real number, we also define a map $\bar{X}_\theta : U \times H^{r-1}(-1) \rightarrow S^n_1$ by
\[\bar{X}_\theta(u, \bar{\mu}) = \cosh \theta X(u) + \sinh \theta e(u, \bar{\mu}). \]
We remark that for any spacelike submanifold X and point $(u_0, \bar{\mu}_0) \in U \times H^{r-1}(-1)$, there are a real number $\theta \neq 0$ and an open neighborhood V of $(u_0, \bar{\mu}_0)$ such that \tilde{X}_θ is spacelike embedding on V. We assume that for any $(u, \bar{\mu}) \in V$ then $(u, -\bar{\mu}) \in V$. We write CM as an image $\tilde{X}_\theta(V)$ and call it a spacelike canal hypersurface of $M = X(U)$. Izumiya, Pei, Romero Fuster and Takahashi [9] introduced the notion of canal surfaces of submanifolds in the hyperbolic space.

5.3 Horospherical hypersurfaces and height functions

We now introduce the notion of de Sitter horospherical hypersurface and de Sitter horospherical height function on a spacelike submanifold. For a spacelike submanifolds X of codimension r, we define the family of functions

\[H : U \times LC^* \rightarrow \mathbb{R} \]

by $H(u, v) = \langle X(u), v \rangle - 1$, and we call H a de Sitter horospherical height function on M. For $v_0 \in LC^*$ we denote $h_{v_0}(u) = \langle X(u), v_0 \rangle - 1$. We have the following proposition which is analogous to ([9], Proposition 3.4).

Proposition 5.3. ([14]) Let $H : U \times LC^* \rightarrow \mathbb{R}$ be a de Sitter horospherical height function of a spacelike submanifold $X : U \rightarrow S^n$ of codimension r. Then $H(u, v) = \partial H(u, v)/\partial u_i = 0$ for $i = 1, \ldots, n - r$ if and only if $v = X(u) + e(u, \bar{\mu})$ for some $\bar{\mu} \in H^{r-1}(-1)$.

The proof of the above proposition is similar to that of Proposition 3.4 in [9], so it is omitted.

The discriminant set of the de Sitter horospherical height function H is

\[D_H = \{X(u) + e(u, \bar{\mu}) \mid (u, \bar{\mu}) \in U \times H^{r-1}(-1)\}. \]

We define a map $HS_X : U \times H^{r-1}(-1) \rightarrow LC^*$ by

\[HS_X(u, \bar{\mu}) = X(u) + e(u, \bar{\mu}), \]

which we call a de Sitter horospherical hypersurface of M. We remark that HS_X depends on the choice of the orthonormal frames of $N(M)$. Let $\{X, n_0, \ldots, n_{r-1}\}$ and $\{X, n'_0, \ldots, n'_{r-1}\}$
be two orthonormal frames of $N(M)$ with $n_0, n'_0 \in H^{n-1}_+(-1)$. Then we have $n_i = \sum_{j=0}^{r-1} \lambda_i^j n'_j$, where

$$\lambda_i^j(u) = \begin{cases} -(n_i, n'_j) & \text{if } j = 0 \\ (n_i, n'_j) & \text{if } j = 1, \ldots, r - 1. \end{cases}$$

Then we have a diffeomorphism $\Phi : U \times H^{r-1}(-1) \rightarrow U \times H^{r-1}(-1)$ defined by

$$\Phi(u, \bar{\mu}) = \left(u, \left(\sum_{i=0}^{r-1} \lambda_i^0(u) \mu_i, \ldots, \sum_{i=0}^{r-1} \lambda_i^{r-1}(u) \mu_i \right) \right).$$

We also define $e'(u, \bar{\mu}) = \sum_{i=0}^{r-1} \mu_i n'_i(u)$. It follows from the above that $e(u, \bar{\mu}) = e' \circ \Phi(u, \bar{\mu})$.

Therefore we have

$$HS_X(u, \bar{\mu}) = HS'_X \circ \Phi(u, \bar{\mu}),$$

where $HS'_X = X(u) + e'(u, \bar{\mu})$. This means that HS_X is independent to the choice of orthonormal frames of $N(M)$ up to the diffeomorphic parametrization. We have a following proposition which is analogous to ([9], Proposition 3.5).

Proposition 5.4 ([14]). Let $X : U \rightarrow S^n_1$ be a spacelike hypersurface of codimension $r \geq 2$ in de Sitter space, then $HS_X(u, \bar{\mu}) = X(u) + e(u, \bar{\mu})$ is constant map for some smooth map $\bar{\mu} : U \rightarrow H^{r-1}(-1)$ if and only if M is a part of de Sitter hyperhorosphere $HP(v, 1) \cap S^n_1$.

By Proposition 5.1, If M is totally $e(u, \bar{\mu}(u))$-umbilic for some parallel normal vector field $e(u, \bar{\mu}(u))$ and $K_h(e(u, \bar{\mu}(u)))(u) = 0$, then the above assertion holds.

Proof. Suppose that $v_0 = X(u) + e(u, \bar{\mu})$ is a constant vector. Since $e(u, \bar{\mu})$ is pseudo orthogonal to $X(u)$, then we have $\langle X(u), v_0 \rangle = +1$ for any $u \in U$. This means that M is a part of a de Sitter hyperhorosphere $HP(v_0, 1) \cap S^n_1$. On the other hand, if $M \subset HP(v_0, 1) \cap S^n_1$ for some lightlike vector, then $\langle v_0 - X(u), X(u) \rangle = 0$ for any $u \in U$. Since $X(u)$ is pseudo orthogonal to $X_{v_0}(u)$, it follows that $\langle v_0 - X(u), X_{v_0}(u) \rangle = 0$. This means that $X(u) - v_0$ is a normal vector of M at $p = X(u)$. We define a function $\bar{\mu}(u)$ by

$$\bar{\mu}(u) = -\langle X(u) - v_0, n_0(u) \rangle n_0(u) + \sum_{i=1}^{r-1} \langle X(u) - v_0, n_i(u) \rangle n_i(u).$$

Then we have $v_0 - X(u) = e(u, \bar{\mu})$. This completes the proof.

43
Since the image of HS_X is the discriminant set of the de Sitter horospherical height function H on M, the singular set of HS_X corresponds to the null set of the Hessian matrix of the de Sitter horospherical height function with the fixed parameter v at each point. Therefore we have the following proposition which is analogous to ([9], Proposition 3.6).

Proposition 5.5 ([14]). The singular set of HS_X is given by

$$\Sigma(HS_X) = \{(u, \bar{\mu}) \in U \times H^{r-1}(-1) \mid K_h(e(u, \bar{\mu}))(u) = 0\}.$$

Proof. Let $h_v(u)$ be a de Sitter horospherical height function with $v \in LC^*$, then we have

$$\text{Hess } h_v(u) = \langle X_{u_i u_j}(u), v \rangle.$$ Suppose that $(u, v) \in \Sigma(H)$, then $v = X(u) + e(u, \bar{\mu})$ for some $\bar{\mu} \in H^{r-1}(-1)$. We recall that $\bar{h}_{ij}(v)(u) = \langle X_{u_i u_j}(u), X(u) + e(u, \bar{\mu}) \rangle$, where $(\bar{h}_{ij}(v)(u))$ is the de Sitter horospherical second fundamental invariant with respect to the timelike direction $e(u, \bar{\mu})$. The de Sitter horospherical Gauss-Kronecker curvature is $K_h(e(u, \bar{\mu}))(u) = \det(\langle X_{u_i u_j}(u), X(u) + e(u, \bar{\mu}) \rangle) / \det(g_{ij}(u)) = \det(\text{Hess } h_v(u)) / \det(g_{ij}(u))$, where $(g_{ij}(u))$ is the first fundamental invariant of M. Therefore $\text{Hess } h_v(u) = 0$ if and only if $K_h(e(u, \bar{\mu}))(u) = 0$. This completes the proof.

The singular set of HS_X corresponds to the parabolic set of M with respect to some timelike parallel normal vector field $e(u, \bar{\mu})$. By the proof of above proposition, we have $\text{rank Hess } h_{v_0}(u_0) = \text{rank } (\bar{h}_{ij}(v_0)(u_0))_{ij}$. Therefore we also have the following proposition which is analogous to ([9], Proposition 3.7).

Proposition 5.6 ([14]). For any spacelike submanifold X of codimension $r \geq 2$ and lightlike vector $v_0 = X(u_0) + e(u_0, \bar{\mu}_0)$, we have the following assertions.

1. A point $p_0 = X(u_0)$ is an $e(u_0, \bar{\mu}_0)$-parabolic point if and only if $\det(\text{Hess } h_{v_0}(u_0)) = 0$.

2. A point p_0 is an $e(u_0, \bar{\mu}_0)$-de Sitter horospherical point if and only if $\text{rank Hess } h_{v_0}(u_0) = 0$.

Here $\text{Hess } h_{v_0}(u_0)$ is a Hessian matrix of $h_{v_0}(u)$ at $u = u_0$.

44
We now consider the lightcone height function and the lightcone Gauss image of spacelike canal hypersurface $\bar{X}_\theta : V \rightarrow S^n_1$ with $V \subset U \times H^{r-1}(-1)$. The lightcone height function $\bar{H} : V \times LC^* \rightarrow \mathbb{R}$ of the spacelike hypersurface \bar{X}_θ is

$$\bar{H}((u, \bar{\mu}), v) = \langle \bar{X}_\theta(u, \bar{\mu}), v \rangle - 1.$$

We denote $\bar{h}_v(u) = \bar{H}((u, \bar{\mu}), v)$ for any $v \in LC^*$. Now we define a map $\bar{e} : V \rightarrow H^{n-1}(-1)$ by $\bar{e}(u, \bar{\mu}) = \sinh \theta X(u) + \cosh \theta e(u, \bar{\mu})$. Then we have $\langle \bar{e}(u, \bar{\mu}), \bar{X}_\theta(u) \rangle = \langle \bar{e}(u, \bar{\mu}), \bar{X}_{\theta, u}(u) \rangle = 0$ for any $(u, \bar{\mu}) \in V$ and $i = 1, \ldots, n - r$. Therefore \bar{e} is a timelike normal of CM. The positive lightcone Gauss image $\mathbb{L}_{CM} : V \rightarrow LC^*$ is defined by

$$\mathbb{L}_{CM}(u, \bar{\mu}) = \bar{X}_\theta(u) + \bar{e}(u, \bar{\mu}) = (\cosh \theta + \sinh \theta)(X(u) + e(u, \mu)).$$

By Proposition 3.3, $\bar{H}((u, \bar{\mu}), v) = \bar{H}_u((u, \bar{\mu}), v) = \bar{H}_{\mu_i}((u, \bar{\mu}), v) = 0$ for $i = 1, \ldots, n - r$ and $j = 0, \ldots, r - 1$ if and only if $v = \bar{X}_\theta(u) \pm \bar{e}(u, \bar{\mu}) = e^{\pm \theta} (X(u) + e(u, \pm \bar{\mu}))$. By assumption, $(u, -\bar{\mu})$ is also an element of V. Therefore the discriminant set of the lightcone height function \bar{H} is

$$D(\bar{H}) = \{ e^{\pm \theta} (X(u) + e(u, \bar{\mu})) \mid (u, \bar{\mu}) \in V \}.$$

We now define a diffeomorphism

$$\mathcal{M}_c : LC^* \rightarrow LC^*$$

given by $M_c(v) = cv$ for a fixed positive real number c. Then we have the following lemma, which is analogous to ([9], Proposition 3.9).

Lemma 5.7 ([14]). Under the above notations, we have

$$\mathcal{M}_c \circ HS_X(u, \bar{\mu}) = \mathbb{L}_{CM}(u, \bar{\mu})$$

on $V \subset U \times H^{r-1}(-1)$, where $c = e^{\pm \theta}$.

By the above lemma, the de Sitter horospherical hypersurface HS_X is locally diffeomorphic to the lightcone Gauss image of the spacelike canal hypersurface \bar{X}_θ.

45
5.4 Horospherical hypersurfaces as wave fronts

In this section we naturally interpret the de Sitter horospherical hypersurfaces of M as a wave front set of the de Sitter horospherical height functions in the theory of Legendrian singularities.

By proceeding arguments in §2, the de Sitter horospherical hypersurface HS_X is the discriminant set of the de Sitter horospherical height function H, and the singular point set of the de Sitter horospherical hypersurface is the de Sitter horospherical point set. We have the following proposition which is analogous to ([9], Proposition 4.1).

Proposition 5.8 ([14]). Let $X : U \rightarrow S^n_1$ be a spacelike submanifold of codimension $r \geq 2$ and $H : U \times LC^* \rightarrow \mathbb{R}$ be a de Sitter horospherical height function of M. Then H is a Morse family.

Proof. We denote $X(u) = (X_0(u), \ldots, X_n(u))$ and $X_{u_i}(u) = (X_{0,u_i}(u), \ldots, X_{n,u_i}(u))$. For any $v = (v_0, \ldots, v_n) \in LC^*$, we have $v_0 \neq 0$. Without loss of generality, we assume that $v_0 = \sqrt{v_1^2 + \cdots + v_n^2} > 0$, so that we have

$$H(u, v) = \langle X(u), v \rangle - 1 = -X_0v_0 + \sum_{i=1}^{n} X_nv_n - 1.$$

We now prove a map

$$\Delta^*H = \begin{pmatrix} H, \frac{\partial H}{\partial u_1}, \ldots, \frac{\partial H}{\partial u_{n-r}} \end{pmatrix}$$

is non singular at any $(u, v) \in \Sigma_*(H)$. The Jacobian matrix of Δ^*H is

$$J\Delta^*H(u, v) = \begin{pmatrix} \ast & \frac{\partial H}{\partial v_j}(u, v) \end{pmatrix}_{j=1, \ldots, n}.$$

We denote an $(n - r + 1) \times n$ matrix B by $J\Delta^*H = (\ast \mid B)$. It is sufficient to show that
rank $B = n - r + 1$ at $(u, v) \in \Sigma_s(H)$. We also denote an $(n-r+3) \times (n+1)$ matrix C by

$$C = \begin{pmatrix}
1 & 0 & \cdots & 0 \\
v_0 & v_1 & \cdots & v_n \\
X_0 & X_1 & \cdots & X_n \\
X_{0,u_1} & X_{1,u_1} & \cdots & X_{n,u_1} \\
\vdots & \vdots & \ddots & \vdots \\
X_{0,u_{n-r}} & X_{1,u_{n-r}} & \cdots & X_{n,u_{n-r}}
\end{pmatrix}.$$

We now show that the rank of the matrix C is equal to $n - r + 3$. Since $v, X(u)$ and $X_{u_i}(u)$ are linearly independent for all $(u, v) \in \Sigma_s(H)$, it is sufficient to show that timelike unit vector $e = (1, 0, \ldots, 0)$ cannot be written by a linear combination of $v, X(u)$ and $X_{u_i}(u)$. If that is not so, there exist some real numbers η, μ, ξ_i such that $e = \eta v + \mu X(u) + w$ and $w = \sum_{i=1}^{n-r} \xi_i X_{u_i}(u)$. Then we have $\langle e, e \rangle = \mu^2 + \langle w, w \rangle$. However, w is a spacelike vector, so that $\langle e, e \rangle$ would not be negative, which contradicts our assumption. This means that $e, v, X(u)$ and $X_{u_i}(u)$ are linearly independent, therefore we have rank $C = n - r + 3$.

We now show rank $B = \text{rank } C'' - 2$. We subtract the second row multiplied by X_0/v_0 from the third row of the matrix C, and add the second row multiplied by $X_{0,u_k}(u)/v_0$ from the $(3+k)$-th row for $k = 1, \ldots, n - r$. Then we have a matrix

$$C'' = \begin{pmatrix}
1 & 0 & \cdots & 0 \\
v_0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & B
\end{pmatrix}.$$

Therefore we have rank $B = \text{rank } C'' - 2 = n - r + 1$. This completes the proof.

Since H is a Morse family of hypersurfaces, we have the Legendrian immersion germ $\mathcal{L}_H : (\Sigma_s(H), (u_0, v_0)) \rightarrow PT^*(LC^*)$ defined by

$$\mathcal{L}_H(u, v) = \left(v, \left[\frac{\partial H}{\partial u_1}(u, v) : \ldots : \frac{\partial H}{\partial u_{n-r}}(u, v) \right] \right).$$
We remark that the wave front set of the Legendrian immersion germ L_H is the de Sitter horospherical hypersurfaces $H S_X$ of M. On the other hand, we define a contact diffeomorphism $	ilde{M}_c : P T^* (L C^*) \rightarrow P T^* (L C^*)$ by

$$\tilde{M}_c (v, [\xi]) = (c v, [\xi]),$$

where c is a fixed real parameter with $c \neq 0$. By definition, we have the following theorem.

Theorem 5.9 ([14]). For a spacelike submanifold $X : U \rightarrow S^n$, we have

$$\tilde{M}_c \circ L_H = L_H,$$

where $c = e^{\pm \theta}$ and L_H is a Legendrian lift of the lightcone Gauss image L_{CM} of the spacelike canal hypersurface of M.

By the above theorem, the Legendrian lift of the lightcone Gauss image L_{CM} is A-equivalent to the Legendrian lift of the de Sitter horospherical hypersurface $H S_X$ of M.

5.5 Contact with de Sitter hyperhorospheres

In this section we use the theory of contacts between the spacelike submanifolds and the de Sitter hyperhorospheres. We consider the function $H : S^n \times L C^* \rightarrow \mathbb{R}$ defined by $H (x, v) = \langle x, v \rangle - 1$. Given $v_0 \in L C^*$, we denote $h_{v_0} (x) = H (x, v_0)$, so that we have $h_{v_0}^{-1} (0) = H P (v_0, +1) \cap S^n$.

Let $X : U \rightarrow \mathbb{R}^n$ be a spacelike submanifold of codimension $r \geq 2$. For any $u_0 \in U$ and $\tilde{\mu}_0 \in H^{r-1} (-1)$, we take a point $v_0 = X (u_0) + e (u_0, \tilde{\mu}_0)$. By Proposition 5.3, we have

$$(h_{v_0} \circ X) (u_0) = H \circ (X \times \text{id}_{L C^*}) (u_0, v_0) = H (u_0, v_0) = 0.$$

$$\frac{\partial (h_{v_0} \circ X)}{\partial u_i} (u_0) = \frac{\partial H}{\partial u_i} (u_0, X (u_0) + e (u_0, \tilde{\mu}_0)) = 0.$$

It follows that the de Sitter hyperhorosphere $h_{v_0}^{-1} (0) = H P (v_0, +1) \cap S^n$ is tangent to M at $p_0 = X (u_0)$. In this case we call $H P (v_0, +1) \cap S^n$ a *tangent de Sitter hyperhorosphere* with respect to $X (u_0) + e (u_0, \tilde{\mu}_0)$. In section 3, we have considered the contacts of the spacelike canal surface $C M = \tilde{X} (V)$ and the de Sitter horospheres.
We denote \(h_{i,v_i} : (U, u_i) \rightarrow (\mathbb{R}, 0) \) \((i = 1, 2) \) by \(h_{i,v_i}(u) = H_i(u, v_i). \) Then we have \(h_{i,v_i}(u) = (h_{i,v_i} \circ X_i)(u). \) By Theorem 5.10,
\[
K(X_1(U), HP(v_1, 1) \cap S^1_1; p_1) = K(X_2(U), HP(v_2, 1) \cap S^1_1; p_2)
\]
if and only if \(h_{1,v_1} \) and \(h_{2,v_2} \) are \(K \)-equivalent.

Let \(Q(X, u_0) \) be the local ring of the de Sitter horospherical height function germ \(h_{v_0} : (U, u_0) \rightarrow \mathbb{R} \) defined by
\[
Q(X, u_0; \mu_0) = C_{u_0}^\infty(U)/\langle h_{v_0} \rangle_{C_{u_0}^\infty(U)},
\]
where \(v_0 = X(u_0) + e(u_0, \mu_0), \mu_0 \in H^{r-1}(-1) \) and \(C_{u_0}^\infty(U) \) is the local ring of function germs at \(u_0 \) with the unique maximal ideal \(\mathfrak{m}. \) We also denote \(Q(X_{\theta}, (u_0, \mu_0)) \) as the local ring of the lightcone height function germ \(\bar{h}_{v_0} : (U \times H^{r-1}(-1), (u_0, \mu_0)) \rightarrow (\mathbb{R}, 0) \) of the canal hypersurface \(X_{\theta}, \) where \(v_0' = L_{CM}(u_0, \mu_0). \)

By the arguments in Appendix A, we have following theorem.

Theorem 5.10 ([14]). Let \(X_i : (U_i, u_i) \rightarrow (S^n_i, p_i) \) \((i = 1, 2) \) be spacelike submanifold germs of codimension at least two in de Sitter space. For \(\mu_i \in H^{r-1}(-1) \) \((i = 1, 2) \), we denote \(v_i = HS_i(u_i, \mu_i), v_i' = L_{CM}(u_i, \mu_i), h_{i,v_i} = H_i |_{U \times \{v_i\}}, \bar{h}_{i,v_i} = H_i |_{U \times \{v'_i\}} \) and \(p'_i = X_{i,\theta}(u_i, \mu_i). \)
If the corresponding Legendrian immersion germs \(L_{H_i} \) are Legendrian stable, then the following conditions are equivalent:

1. Horospherical hypersurface germs \(HS_{X_1} \) and \(HS_{X_2} \) are \(\mathcal{A} \)-equivalent.
2. Legendrian immersion germs \(L_{H_1} \) and \(L_{H_2} \) are Legendrian equivalent.
3. Horospherical height function germs \(H_1 \) and \(H_2 \) are \(\mathcal{P}-\mathcal{K} \)-equivalent.
4. \(h_{1,v_1} \) and \(h_{2,v_2} \) are \(K \)-equivalent.
5. \(K(X_1(U), HP(v_1, 1) \cap S_1^n; p_1) = K(X_2(U), HP(v_2, 1) \cap S_1^n; p_2). \)
6. \(Q(X_1, u_1) \) and \(Q(X_2, u_2) \) are isomorphic as \(\mathbb{R} \)-algebras.
(7) Lightcone Gauss image germs \mathbb{L}_{CM_1} and \mathbb{L}_{CM_2} are A-equivalent.

(8) Legendrian immersion germs $\mathcal{L}_{\bar{H}_1}$ and $\mathcal{L}_{\bar{H}_2}$ are Legendrian equivalent.

(9) Lightcone height function germs \bar{H}_1 and \bar{H}_2 are P-K-equivalent.

(10) $\bar{h}_{1,v_1'}$ and $\bar{h}_{2,v_2'}$ are K-equivalent.

(11) $K(CM_1, HP(v_1', +1) \cap S^n_1; p_1') = K(CM_2, HP(v_2', +1) \cap S^n_1; p_2')$,

(12) $Q(\bar{X}_{\theta_1}, (u_1, \bar{\mu}_1))$ and $Q(\bar{X}_{\theta_2}, (u_2, \bar{\mu}_2))$ are isomorphic as \mathbb{R}-algebras.

In this case $(X_1^{-1}(HP(v_1, 1) \cap S^n_1), u_1)$ and $(X_2^{-1}(HP(v_2, 1) \cap S^n_1), u_2)$ are diffeomorphic as set germs.

Proof. Since $\mathcal{L}_{\bar{H}_1}$ and $\mathcal{L}_{\bar{H}_2}$ are Legendrian stable, regular sets of HS_{X_1} and HS_{X_2} are respectively dense, by applying Proposition A.2, the conditions (1) and (2) are equivalent. By Theorem A.3, the conditions (2) and (3) are equivalent. By the arguments in Theorem B.1, the conditions (4) and (5) are equivalent. If we assume the condition (3), then the P-K-equivalence of H_i ($i = 1, 2$) preserves the K-equivalence of h_{i,v_i}, so that the condition (4) holds. Since the local rings $Q(X_i, u_i)$ are K-invariant, this means that the condition (6) holds. By Proposition A.4, the condition (6) implies the condition (2). Therefore the statements from (1) to (6) are equivalent.

By Theorem 5.9, (2) and (8) are equivalent. Since $\mathcal{L}_{\bar{H}_i}$ are Legendrian stable, $\mathcal{L}_{\bar{H}_i}$ are also Legendrian stable. So that we may similarly show the equivalence of the conditions from (7) to (12). On the other hand, $h_{i,v_i}^{-1}(0) = (X_i^{-1}(HP(v_i, 1) \cap S^n_1), u_i)$ and K-equivalence preserves the zero level sets, so that $(X_i^{-1}(HP(v_i, 1) \cap S^n_1), u_i)$ ($i = 1, 2$) are diffeomorphic as set germs. This completes the proof. \qed

We consider generic properties of spacelike submanifolds of codimension $r \geq 2$ in S^n_1. Let U be an open subset of \mathbb{R}^{n-r}. We consider the space of spacelike embeddings $\text{Sp-Emb}(U, S^n_1)$ with Whitney C^∞-topology. By Appendix C, the assumption of Theorem 5.10 is generic conditions if $n \leq 6$. 50
6 Timelike canal hypersurfaces

We consider timelike canal hypersurfaces of spacelike submanifolds of codimension at least two in de Sitter space. In §5 we considered geometrical relations between spacelike canal hypersurfaces and spacelike submanifolds. We can construct the timelike hypersurfaces from the spacelike submanifolds and find out some geometrical relations between spacelike submanifolds and timelike hypersurfaces. In [10] the differential geometry of timelike hypersurfaces in de Sitter space was studied from the viewpoint of singularity theory. Singularities of de Sitter Gauss image are related to the de Sitter parabolic points, where de Sitter Gauss-Kronecker curvature is equal to zero.

6.1 Review of timelike hypersurfaces

We briefly review the differential geometry of timelike hypersurfaces in de Sitter space studied in [10]. Let U be an open subset of Euclidean $(n-1)$-space and $u = (u_1, \cdots, u_{n-1}) \in U$. We say that an embedding map $X : U \to S^n_1$ is a timelike hypersurface if tangent space of X is timelike hyperplane at any point, and we denote $M = X(U)$.

We define a de Sitter Gauss image of the timelike hypersurface by

$$x^d : U \to S^n_1, \quad x^d(u) = \frac{X(u) \wedge X_{u_1}(u) \wedge \cdots \wedge X_{u_{n-1}}(u)}{||X(u) \wedge \cdots \wedge X_{u_{n-1}}(u)||}.$$

We also define a de Sitter shape operator by $A^d_p := -d_u x^d : T_pM \to T_pM$, a de Sitter Gauss-Kronecker curvature $K_d(u)$ by determinant of the de Sitter shape operator and de Sitter principal curvatures $\{\kappa_{d,i}(u)\}_{i}$ by eigenvalues of the de Sitter shape operator. We call a point with $K_d(u) = 0$ by a de Sitter parabolic point and a point with $A^d_p = \kappa_d \cdot \text{id}_{T_pM}$ by a de Sitter umbilic point.

Proposition 6.1. ([10]) Suppose that the timelike hypersurface M is totally umbilic, then the de Sitter principal curvatures $\kappa_{d,i}(u)$ are constant κ_d and M is a part of some hyperbolic hyperquadric $HP(v, c) \cap S^n_1$.

51
(1) If $\kappa_d \neq 0$ then M is a part of some non-flat hyperbolic hyperquadric with
\[
v = \frac{1}{\sqrt{\kappa_d^2 + 1}}(\kappa_d X(u) + x^d(u)) \text{ and } c = \frac{\kappa_d}{\sqrt{\kappa_d^2 + 1}} < ||v||.
\]
(2) If $\kappa_d = 0$ then M is a part of some flat timelike hyperquadric. In this case, we have $v = x^d(u)$ and $c = 0$.

We now consider Weingarten-type formula of the timelike hypersurfaces. We define a de Sitter first fundamental form by $ds^2 = \sum_{i,j=1}^{n-1} g_{ij} du_i du_j$, where $g_{ij} = \langle X_{u_i}, X_{u_j} \rangle$. Since the tangent space of M is always timelike, so ds^2 is a Lorentzian metric of index one. We also define coefficients of de Sitter second fundamental form by $h_{ij} = -\langle X_{u_i}, x^d_{u_j} \rangle$. We have the following Weingarten-type formula.

Proposition 6.2 ([10]). Let X be a timelike hypersurface, the differential map of the de Sitter Gauss image x^d is given by
\[
x^d_{u_i} = \sum_{j=1}^{n-1} (h^d_i)^j x^d_{u_j},
\]
where $(h^d_i) = (h_{ik})(g_{kj})^{-1}$.

We define a de Sitter height function $H^d : U \times S^n_1 \rightarrow \mathbb{R}$ by
\[
H^d(u, v) = \langle X(u), v \rangle,
\]
and denote $h^d_{v_0}(u) = H^d(u, v_0)$. The discriminant set of the de Sitter height function is the image of de Sitter Gauss image of the timelike hypersurfaces in de Sitter space, and the singular point of de Sitter Gauss image corresponds to the de Sitter parabolic point on the timelike hypersurface.

Proposition 6.3 ([10]). The de Sitter height function H^d is a Morse families of hypersurfaces.

Therefore a Legendrian immersion germ $\mathcal{L}_{H^d} : (\Sigma_s(H^d), (u_0, v_0)) \rightarrow PT^*(S^n_1)$ is defined by
\[
\mathcal{L}_{H^d}(u, v) = \left(v, \left[\frac{\partial H^d(u, v)}{\partial v_1}(u, v) : \ldots : \frac{\partial H^d(u, v)}{\partial v_n}(u, v)\right]\right),
\]
52
The wave front set of the Legendrian immersion germ L_H is the de Sitter Gauss image germ x^d.

We now consider the contacts of timelike hypersurfaces and flat timelike hyperquadrics. Let $v_0 = x^d(u_0)$. Since $X(u)$ is immersion and $h_{v_0}(x) = \langle x, v_0 \rangle$ is submersion, a flat timelike hyperquadric $h^{-1}(0) = HP(v_0, 0) \cap S^n_1$ is tangent to the timelike hypersurface $M = X(U)$ at $p_0 = X(u_0)$. By Montaldi’s theory, the contact type of submanifolds $K(M, HP(v_0, 0) \cap S^n_1; p_0)$ corresponds to the K-equivalence class of the de Sitter height function germs $h_{v_0}^{-1}(0)$ at $p_0 = X(u_0)$.

We call a germ $((h_{v_0}^{-1}(0), u_0)$ a tangent flat timelike hyperquadric indicatrix germ.

Proposition 6.4 ([10]). Let $X_i (i = 1, 2)$ be timelike hypersurfaces germs at $u_i \in U$ such that their de Sitter parabolic sets have no interior points as subspaces of U. Then x^d_1 and x^d_2 are A-equivalent if and only if the contact types $K(M, HP(v_i, 0, +1) \cap S^n_1; p_i)$ ($i = 1, 2$) are equivalent. Under this condition, the tangent flat timelike hyperquadric indicatrix germ $h_{v_i}^{-1}(0)$ are diffeomorphic as the set germs.

6.2 Spacelike submanifolds and spacelike unit normal vector fields

We now back to the spacelike submanifolds. Let $X : U \rightarrow S^n_1$ be a spacelike submanifold of codimension $r \geq 2$ in de Sitter space. We take a spacelike unit normal vector field $n : U \rightarrow S^n_1$ with $n(u) \perp X(u)$ and $X_u(u)$ for $i = 1, \ldots, n - r$ and $u \in U$. Let $\pi^r_p : T_p \mathbb{R}^{n+1} \rightarrow T_p M$ be an orthonormal projection to the tangent space. We define a spacelike shape operator with respect to n by $S_p(n) = -\pi^r_p(d_p n)$. We also define spacelike principal curvatures $\kappa_i(n)(u)$ for $i = 1, \ldots, n - r$ and a spacelike Gauss-Kronecker curvature $K(n)(u)$ with respect to n.

We now consider the totally umbilic case of spacelike submanifolds. We say that the spacelike unit normal vector field n is parallel if $n_{u_i}(u) \in T_{X(u)}M$ for any $u \in U$ and $i = 1, \ldots, n - r$. We have following proposition.

Proposition 6.5. Suppose that the spacelike unit normal vector field n is parallel and the spacelike submanifold M is totally umbilic with respect to n, then the principal curvatures $\kappa(n)(u)$ are constant value $\kappa(n)$ and M is a part of some hyperbolic hyperquadric $HP(v, c) \cap$
\(S^n_t = \{ x \in S^n | (x, v) = c \} \). Moreover we have the following cases:

1. If \(\kappa(n) \neq 0 \) then \(c = \frac{\kappa(n)}{\sqrt{\kappa(n)+1}} \) and \(v = \frac{1}{\sqrt{\kappa(n)+1}}(\kappa(n)X(u) + n(u)) \).
2. If \(\kappa(n) = 0 \) then \(v = n(u) \) and \(c = 0 \).

Proof. We will show that the principal curvatures are constant. By assumption, we have \(d_p n = -\kappa(n)(u) \text{id}_{T_p M} \). This means that \(n_{u_i}(u) = -\kappa(n)(u)X_{u_i}(u) \) for \(i = 1, \ldots, n-r \), so that we have

\[
n_{u_i, u_j}(u) = -\kappa(n)_{u_j}(u)X_{u_i}(u) - \kappa(n)(u)X_{u_i, u_j}(u).
\]

It follows that \(\kappa(n)_{u_j}(u)X_{u_i}(u) = \kappa(n)_{u_j}(u)X_{u_j}(u) \). Since \(X_{u_i}(u) \) and \(X_{u_j}(u) \) are linearly independent, \(\kappa(n)_{u_j}(u) \equiv 0 \) for all \(i, j \) and \(u \in U \). Therefore \(\kappa(n)(u) \equiv \kappa(n) \) for some real constant value \(\kappa(n) \).

We now assume that \(\kappa(n) \neq 0 \). We have \(n_{u_i}(u) = -\kappa(n)X_{u_i}(u) \), so that there exists a constant vector \(v \) such that \(X(u) = v - (1/\kappa(n))n(u) \). Then \(\langle v, v \rangle = 1 + (1/\kappa(n))^2 \) and \(\langle X(u) - v, X(u) - v \rangle = (1/\kappa(n))^2 \). So that \(\langle X(u), v \rangle = 1 \). Therefore the spacelike submanifold \(M \) is a part of a hyperbolic hyperquadric \(HP(v, +1) \cap S^n_t \) and \(v \) is a spacelike vector.

If \(\kappa(n) = 0 \), then we have \(n_{u_i}(u) \equiv 0 \). There exists a constant vector \(v \) such that \(n(u) \equiv v \).

So that \(\langle X(u), v \rangle = 0 \) for any \(u \in U \). This means that \(M \) is a part of a hyperbolic hyperquadric \(HP(v, 0) \cap S^n_t \) and \(v \) is spacelike. This completes the proof. \(\square \)

Let \(g_{ij} = \langle X_{u_i}, X_{u_j} \rangle \) be a coefficient of first fundamental quantity and \(h_{ij}(n) = -\langle n_{u_i}, X_{u_j} \rangle \) be that of second fundamental quantity. We have a Weingarten-type formula with respect to the spacelike normal vector field \(n \) of spacelike submanifolds.

\[
\pi^t_p \circ n_{u_i}(u) = -\sum_{k=1}^{n-r} (h_{ij}(n)(u))(g^{jk}(u))X_{u_k}(u),
\]

where \(\pi^t_p \) is an orthogonal projection \(\pi^t_p : T_p \mathbb{R}^{n+1} \longrightarrow T_p M \). Therefore we have the following expression of the spacelike Gauss-Kronecker curvature.

\[
K(n)(u) = \det(h_{ij}(n)(u))/\det(g_{ij}(u)).
\]

54
If \(n \) and \(n' \) are parallel spacelike unit normal vector fields with \(n(u_0) = n'(u_0) = n_0 \), then the corresponding second fundamental forms are coincide. This means that the spacelike Gauss-Kronecker curvature and spacelike principal curvatures are determined by the spacelike normal direction \(n_0 \) at each point on the spacelike submanifolds \(M \), so we may write \(K_{p_0}(n_0) \) and \(\kappa_i(n_0) \).

6.3 Timelike canal hypersurfaces

We now consider timelike canal hypersurfaces. We assume that there exists an unit parallel orthonormal frame of the spacelike submanifold \(M \) denoted by \(\{ X(u), n_0(u), n_1(u), \ldots, n_{r-1}(u) \} \), where \(n_0(u) \) is a timelike unit normal section and others are spacelike unit normal section. Let \(\theta \notin (\pi/2)\mathbb{Z} \) be a fixed real number, we define a map \(\bar{X}^t_\theta : U \times S_{1-r}^{r-1} \to S^n_1 \) by

\[
\bar{X}^t_\theta(u, \bar{\mu}) = \cos \theta X(u) + \sin \theta e(u, \bar{\mu}),
\]

where \(e(u, \bar{\mu}) = \sum_{i=0}^{r-1} \mu_i n_i(u) \) is a spacelike unit normal. We call \(\bar{X}^t_\theta \) a timelike canal hypersurface of the spacelike submanifold \(M \) and denote its image by \(CM^t_\theta \). We remark that \(\bar{X}^t_\theta \) is not always an embedding map.

Proposition 6.6. An element \((u, \bar{\mu}) \in U \times S_{1-r}^{r-1}\) is a singular point of the map \(\bar{X}^t_\theta \) if and only if a value \(\cot \theta \) is one of the corresponding spacelike principal curvatures of spacelike submanifold \(M \) with respect to the spacelike unit normal direction \(e(u, \bar{\mu}) \).

Proof. Let \((u, \bar{\mu}) = (u_1, \ldots, u_{n-r}, \mu_0, \ldots, \mu_{r-1}) \in U \times S_{1-r}^{r-1}\), without loss of generality, we assume that \(\mu_{r-1} > 0 \) and write \(\mu_{r-1} = \sqrt{1 + \mu_0^2 - \sum_{k=1}^{r-2} \mu_k^2} \), then \((u_1, \ldots, u_{n-r}, \mu_0, \ldots, \mu_{r-2})\) is a local coordinate on \(U \times S_{1-r}^{r-1} \). Partial derivatives of \(\bar{X}^t_\theta \) are

\[
(\bar{X}^t_\theta)_{u_i}(u, \bar{\mu}) = \cos \theta X_{u_i}(u) + \sin \theta e_{u_i}(u, \bar{\mu}) \in T_p M,
\]

\[
(\bar{X}^t_\theta)_{\mu_j}(u, \bar{\mu}) = \sin \theta e_{\mu_j}(u, \bar{\mu}) \in N_p M,
\]
where $N_p M$ is an orthonormal space of M at $p = X(u)$. Since n_0, \ldots, n_{r-1} are linearly independent and $\sin \theta \neq 0$, so that the vectors
\[e_{\mu_j}(u, \bar{\mu}) = n_j(u) + \frac{\mu_{j-n_{r-1}}(u)}{\mu_{r-1}} (j = 0, \ldots, r - 2) \]
are also linearly independent for any $(u, \bar{\mu})$. By the Weingarten-type formula for the spacelike submanifolds, we have
\[
\begin{pmatrix}
(X_{u_1})_r \\
\vdots \\
(X_{u_{n-r}})_r
\end{pmatrix} = \left(\cos \theta E_n - \sin \theta I_{e(u, \bar{\mu})} I^{-1} \right) \begin{pmatrix} X_{u_1} \\
\vdots \\
X_{u_{n-r}} \end{pmatrix},
\]
where E_n is an identity matrix and $I, I_{e(u, \bar{\mu})}$ are the first and second fundamental quantity matrices $(g_{ij})(u)$ and $(h_{ij}(e(u, \bar{\mu})))$ of the spacelike submanifold M. Since X is an embedding map, the partial derivatives $(\bar{X}_t^i)_{u_i}$ for $i = 1, \ldots, n - r$ are linearly dependent if and only if $\cot \theta \neq 0$ is one of the eigenvalues of the matrix $I_{e(u, \bar{\mu})}I^{-1}$, this means that the value $\cot \theta$ is a principal curvature of the spacelike submanifold M with respect to the spacelike unit normal direction $e(u, \bar{\mu})$. This completes the proof. \qed

We use the notion of de Sitter height functions and de Sitter Gauss images introduced in [10]. Let $V \subset U \times S_t^{r-1}$ be a regular part of timelike canal hypersurface \bar{X}_θ^t, and we denote $CM_\theta^t := \bar{X}_\theta^t(V)$. The de Sitter height function $\bar{H}_\theta^d : V \times S_t^n \rightarrow \mathbb{R}$ of timelike canal hypersurface is given by
\[
\bar{H}_\theta^d((u, \bar{\mu}), v) = \langle \bar{X}_\theta^t(u, \bar{\mu}), v \rangle.
\]
For any $v_0 \in S_t^n$, we denote $\bar{H}_\theta^d_{v_0}(u, \bar{\mu}) = \bar{H}_\theta^d((u, \bar{\mu}), v_0)$.

By calculation, the de Sitter Gauss image $\bar{x}_{CM_\theta^t}^d : V \rightarrow S_t^n$ of timelike canal hypersurface is given by
\[
\bar{x}_{CM_\theta^t}(u, \bar{\mu}) = \sin \theta X(u) - \cos \theta e(u, \bar{\mu}).
\]
We denote the de Sitter Gauss-Kronecker curvature by $\bar{K}_d(u, \bar{\mu})$ and de Sitter principal curvatures by $\bar{\kappa}_{d,i}(u, \bar{\mu})$.

56
We also observe the shape of the spacelike canal surface. Following proposition gives a reason that \(\bar{x}_{CM}^d \) is analogous notion of the canal surfaces introduced in Euclidean space.

Proposition 6.7. The timelike canal hypersurface \(\bar{x}_{CM}^d \) has \(r - 1 \) principal directions \(\partial/\partial \mu_j \) of the same principal curvature \(\cot \theta \) at each point \(\bar{p} \).

Proof. Let \((u_1, \ldots, u_{n-r}, \mu_0, \ldots, \mu_{r-2}) \) be a local coordinate introduced in the proof of the Proposition 6.6. The partial derivatives of \(\bar{x}_{CM}^d \) are

\[
(\bar{x}_{CM}^d)_{u_i}(u, \bar{\mu}) = \sin \theta X_{u_i}(u, \bar{\mu}),
\]

\[
(\bar{x}_{CM}^d)_{\mu_j}(u, \bar{\mu}) = -\cos \theta e_{\mu_j}(u, \bar{\mu}).
\]

The differential map of the de Sitter Gauss image \(\bar{x}_{CM}^d \) is the de Sitter shape operator \(A_p^d \) of the spacelike canal hypersurface \(\bar{X}_p^d \). By Proposition 6.2, a representation matrix of \(A_p^d \) with respect to the basis \(\{ \partial/\partial u_i \} \) is given by \((h_{ij})^{-1} \), where \((g_{ij}) \) and \((h_{ij}) \) are the de Sitter first and second fundamental forms. Since \((\bar{x}_{CM}^d)_{u_i}(\bar{X}_p^d)_{u_i}, (\bar{X}_p^d)_{\mu_j} \in T_pM \) and \((\bar{x}_{CM}^d)_{\mu_j} \in N_pM \) for any \(i = 1, \ldots, n-r \) and \(j = 0, \ldots, r-2 \), so that we have

\[
I = (g_{ij}) = \begin{pmatrix}
\langle (\bar{X}_p^d)_{u_i}, (\bar{X}_p^d)_{u_j} \rangle & \langle (\bar{X}_p^d)_{u_i}, (\bar{X}_p^d)_{\mu_j} \rangle \\
\langle (\bar{X}_p^d)_{\mu_i}, (\bar{X}_p^d)_{u_j} \rangle & \langle (\bar{X}_p^d)_{\mu_i}, (\bar{X}_p^d)_{\mu_j} \rangle
\end{pmatrix} = \begin{pmatrix}
* & O \\
O & (\sin^2 \theta \langle e_{\mu_i}, e_{\mu_j} \rangle)_{ij}
\end{pmatrix},
\]

\[
II_{e(u, \bar{\mu})} = (h_{ij}) = \begin{pmatrix}
* \\
O & (\sin \theta \cos \theta \langle e_{\mu_i}, e_{\mu_j} \rangle)_{ij}
\end{pmatrix}.
\]

Therefore we have

\[
A_p = \begin{pmatrix}
* & O \\
O & \cot \theta E_{r-1}
\end{pmatrix},
\]

where \(E_{r-1} \) is an identity matrix of \(r-1 \) rows and columns. Therefore the de Sitter shape operator \(A_p \) has an eigenvalue \(\cot \theta \) with multiplicity at least \(r-1 \), and each vector \(\partial/\partial \mu_j \) for \(j = 0, \ldots, r-2 \) is the principal direction. This completes the proof. \(\square \)

On the other hand, the other \(n-r \) principal curvatures are not always constant. We also have a following proposition which implies the relations between the spacelike submanifolds and the corresponding timelike canal hypersurfaces.

57
Proposition 6.8. Let $\bar{x}^d_{CM\theta}$ be the de Sitter Gauss image of timelike canal hypersurface \bar{X}_θ^t and $\kappa_i(v)$ be principal curvatures of spacelike submanifold M with respect to the spacelike normal direction v at $X(u)$, then we have

\[
\text{rank } d_{(u,\bar{\mu})}\bar{x}^d_{CM\theta} = (n - 1) - \sharp\{i \mid \kappa_i(v)(u) = \tan \theta\} \geq r - 1.
\]

Proof. Let $(u_1, \ldots, u_{n-r}, \mu_0, \ldots, \mu_{r-2})$ be a local coordinate of the regular part $V \subset U \times S^{n-1}_0$. Since $(\bar{x}^d_{CM\theta})_{u_i}(u, \bar{\mu})$ are linearly independent and orthogonal to $(\bar{x}^d_{CM\theta})_u$ for all $i = 1, \ldots, n-r$ and $j = 0, \ldots, r-2$, so that the de Sitter Gauss image is degenerate if and only if $(\bar{x}^d_{CM\theta})_u$ for $i = 1, \ldots, n-r$ are linearly dependent. Using a similar argument in the Proposition 6.6, this condition is equivalent to that the value $\tan \theta$ is a principal curvature of the spacelike submanifold M with respect to the spacelike unit normal direction $e(u, \bar{\mu})$. This completes the proof. \qed

Corollary 6.9. Let $\bar{p} = \bar{X}_\theta^t(u, \bar{\mu})$ and $p = X(u)$, then the following conditions are equivalent:

1. \bar{p} is a singular point of the de Sitter Gauss image $\bar{x}^d_{CM\theta}$.

2. \bar{p} is a de Sitter parabolic point of $\bar{x}^d_{CM\theta}(V)$, that is $\bar{K}_d(u, \bar{\mu}) = 0$.

3. $\tan \theta \neq 0$ is one of the spacelike principal curvatures of spacelike submanifold M at p with respect to the spacelike normal direction $\bar{x}^d_{CM\theta}(u, \bar{\mu})$.

Therefore each singularity of the de Sitter Gauss image relates to some timelike principal curvature of the spacelike submanifold, which corresponds to the de Sitter parabolic points of the timelike canal hypersurface.

We now back to the spacelike submanifolds and define de Sitter θ-height functions and θ-hypersurfaces. Let $\theta \notin (\pi/2)\mathbb{Z}$ be a real number, we define a map $H_\theta : U \times S^n_1 \rightarrow \mathbb{R}$ by

\[
H_\theta(u, v) = \langle X(u), v \rangle - \sin \theta
\]

and $h_{\theta, \nu}(u) = H_\theta(u, \nu)$. We call H_θ by a de Sitter θ-height function of M. We also define a de Sitter θ-hypersurface $e^d_\theta : U \times S^{r-1}_1 \rightarrow S^n_1$ of spacelike submanifold by

\[
e^d_\theta(u, \bar{\mu}) = \sin \theta X(u) - \cos \theta e(u, \bar{\mu}).
\]
We remark that x_{CM}^d is a restriction map of e^d_θ on V.

Proposition 6.10. Let X be a spacelike submanifold in de Sitter space. The discriminant set of the de Sitter height function H_θ is the image of de Sitter θ-hypersurface $e^d_\theta(u, \bar{\mu})$.

Proof. The discriminant set is given by $D_{H_\theta} = \{ v \in S^n_1 | H_\theta(u, v) = H_{\theta, u_i}(u, v) = 0 \ \forall i \}$. Let v is an element of D_{H_θ}. Since $X(u), X_{u_i}(u), n_j(u)$ are basis of \mathbb{R}^{n+1},

$$v = \alpha X(u) + \sum_{i=0}^{n-r} \beta_i X_i(u) + \sum_{j=0}^{r-1} \gamma_j n_j(u),$$

for some $\alpha, \beta_i, \gamma_j \in \mathbb{R}$. By calculation, v is an element of D_{H_θ} if and only if $\alpha = \sin \theta$ and $\beta_i = 0$ for all i. The condition $\langle v, v \rangle = 1$ implies $-\frac{1}{\theta} + \sum_{j=1}^{r-1} \gamma_j^2 = \cos^2 \theta$. Let $\bar{\mu} = (\mu_0, \ldots, \mu_{r-1})$ be $\mu_j = \gamma_j \sin \theta$ for $j = 0, \ldots, r - 1$, then we have $\bar{\mu} \in S^n_1$ and $v = \sin \theta X(u) + \cos \theta e(u, \bar{\mu})$.

Conversely, let $v = \sin \theta X(u) + \cos \theta e(u, \bar{\mu})$ for some μ, then we can check that v suffices the condition to be an element of the discriminant set of the de Sitter θ-height function. This completes the proof. \qed

Let $(u_0, \bar{\mu}_0) \in V$ and $v_0 = e^d_\theta(u_0, \bar{\mu}_0)$, then

$$\text{Hess} h_{\theta,v_0}(u_0) = \cos \theta I(u_0)(\tan \theta \text{id}_{T_u M} - \mathbb{I}_{v_0}(u_0)I^{-1}(u_0)),$$

where $I(u_0)$ is the first fundamental quantity matrix of M at $u_0 \in U$ and $\mathbb{I}_{v_0}(u_0)$ is the second fundamental quantity matrix of M with respect to the spacelike normal direction v_0.

We now review the theory of Montaldi to describe the contacts between the spacelike submanifolds and the non-flat hyperbolic hyperquadrics. Let $v_0 = e^d_\theta(u_0, \bar{\mu}_0)$ be a spacelike vector, we consider an immersion germ $g : (U, u_0) \longrightarrow (S^n_1, p_0)$ and a submersion germ $f_{\theta,v_0} : (S^n_1, p_0) \longrightarrow (\mathbb{R}, 0)$ defined by $g(u) = X(u)$ and $f_{\theta,v_0}(x) = \langle x, v_0 \rangle - \sin \theta$. We have $f_{\theta,v_0} \circ g(u) = \langle X(u), v_0 \rangle - \sin \theta = h_{\theta,v_0}(u)$ and $h_{\theta,v_0}^{-1}(0) = HP(v_0, \sin \theta) \cap S^n_1$ is a non-flat hyperbolic hyperquadric. Moreover

$$h_{\theta,v_0}(u_0) = \frac{\partial h_{\theta,v_0}}{\partial u_i}(u_0) = 0 \quad \text{for} \ i = 1, \ldots, n - r,$$
so that the non-flat hyperbolic hyperquadric \(HP(v_0, \sin \theta) \cap S^1_\theta \) is tangent to the spacelike submanifold \(M \) at \(p_0 = X(u_0) \). Therefore we call \(HP(v_0, \sin \theta) \cap S^1_\theta \) by a \textit{tangent non-flat hyperbolic hyperquadric} of \(M \) at \(p_0 \).

By the theory of Montaldi, the contact type between the spacelike submanifold \(M \) and the tangent non-flat hyperbolic hyperquadric \(HP(v_0, \sin \theta) \cap S^1_\theta \) correspond to the \(K \)-equivalent class of the de Sitter \(\theta \)-height function germs \(h_{\theta,v_0} \). Moreover this \(K \)-equivalent class preserves the diffeomorphic type class of the zero level set germs \(h_{v_i,0}^{-1}(0) \), so we call \(h_{v_i,0}^{-1}(0) \) by \textit{tangent non-flat hyperbolic hyperquadric indicatrix germ}.

We also have following proposition.

Proposition 6.11. Let \(X \) be a spacelike submanifolds in de Sitter space, then the de Sitter \(\theta \)-height function \(H_\theta \) is a Morse family of hypersurface.

Proof. Let \(v \) be an element of discriminant set of \(H_\theta \), it is sufficient to show that \(\Delta^* H_\theta = (H_\theta, H_{\theta u_1}, \ldots, H_{\theta u_{n-r}}) \) is regular at \((u, v)\). Let \(X(u) = (X_0(u), \ldots, X_n(u)) \) and \((x_0, \ldots, x_n) \in S^n_1\), without loss of generality, we may assume that \(v_n > 0 \), then \(v_n = \sqrt{1 + v_0^2 - \sum_{k=1}^{n-1} v_k^2} \). The Jacobian of \(\Delta^* H_\theta \) is given by

\[
\begin{pmatrix}
\ast & \left[\frac{\partial H_\theta(u, v)}{\partial v_j} \right]_{j=0,\ldots,n-1} \\
\ast & \left[\frac{\partial^2 H_\theta(u, v)}{\partial u_i \partial v_j} \right]_{i=1,\ldots,n-r}
\end{pmatrix}
\]

By calculation, we have

\[
\frac{\partial H_\theta}{\partial v_j}(u, v) = \begin{cases}
-X_0(u) + X_n(u) \frac{v_0}{v_n} & \text{if } j = 0 \\
X_j(u) - X_n(u) \frac{v_j}{v_n} & \text{if } j = 1, \ldots, n - 1
\end{cases}
\]

\[
\frac{\partial H_\theta}{\partial u_i \partial v_j}(u, v) = \begin{cases}
-X_{0, u_i}(u) + X_{n, u_i}(u) \frac{v_0}{v_n} & \text{if } j = 0 \\
X_{j, u_i}(u) - X_{n, u_i}(u) \frac{v_j}{v_n} & \text{if } j = 1, \ldots, n - 1.
\end{cases}
\]

We denote an \((n - r + 1) \times n\) matrix \(B \) by \(J\Delta^* H_\theta = (\ast \mid B) \).
On the other hand, \(\mathbf{v}, \mathbf{X}(\mathbf{u}), \mathbf{X}_{u_1}(\mathbf{u}), \ldots, \mathbf{X}_{u_{n-r}}(\mathbf{u}) \) are linearly independent and a transformation
\[
T : \mathbb{R}^{n+1} \longrightarrow \mathbb{R}^{n+1}, \quad T(x_0, x_1, \ldots, x_n) \mapsto T(-x_0, x_1, \ldots, x_n)
\]
is regular, so that \(T\mathbf{v}, T\mathbf{X}(\mathbf{u}), T\mathbf{X}_{u_1}(\mathbf{u}), \ldots, T\mathbf{X}_{u_{n-r}}(\mathbf{u}) \) are also linearly independent. Therefore the rank of a matrix
\[
C = \begin{pmatrix}
-v_0 & v_1 & \cdots & v_n \\
-X_0 & X_1 & \cdots & X_n \\
-X_{0,u_1} & X_{1,u_1} & \cdots & X_{n,u_1} \\
\vdots & \vdots & \ddots & \vdots \\
-X_{0,u_{n-r}} & X_{1,u_{n-r}} & \cdots & X_{n,u_{n-r}}
\end{pmatrix}
\]
is equal to \(n - r + 2 \). We now show that we obtain the matrix \(B \) from \(C \) by operating raws of the matrices. We subtract the first row multiplied by \(\mathbf{X}_n(\mathbf{u})/\lambda_n \) from the second row, and then subtract the first row multiplied by \(\mathbf{X}_{n,u_k}(\mathbf{u})/\lambda_n \) from the \((2 + k)\)-th row for \(k = 1, \ldots, n - 2 \), then we have
\[
B = \begin{pmatrix}
-v_0 & v_1 & \cdots & v_{n-1} & v_n \\
0 & \vdots & \ddots & \vdots & \vdots
\end{pmatrix}.
\]
Since rank of this matrix is \(n - r + 2 \), so that rank of the matrix \(B \) is \(n - r + 1 \). Therefore rank \(J\Delta^\ast H_\theta \) is \(n - r + 1 \) at \((\mathbf{u}, \mathbf{v}) \). This completes the proof. \(\square \)

Therefore we may construct a Legendrian immersion germ
\[
\mathcal{L}_{H_\theta}(\mathbf{u}, \bar{\mu}, \mathbf{v}) = \left(\mathbf{v}, \left[\frac{\partial H_\theta}{\partial v_1}(\mathbf{u}, \bar{\mu}, \mathbf{v}) : \ldots : \frac{\partial H_\theta}{\partial v_n}(\mathbf{u}, \bar{\mu}, \mathbf{v}) \right] \right),
\]
where \(\Sigma_\ast(H_\theta) = \{ (\mathbf{u}, \bar{\mu}, \mathbf{v}) \mid \mathbf{v} = \mathbf{e}_d^\ast(\mathbf{u}, \bar{\mu}) \text{ for some } \bar{\mu} \in S^{r-1}_1 \} \). The generating family of \(\mathcal{L}_{H_\theta} \) is \(H_\theta \) and the wave front set of the Legendrian immersion germ \(\mathcal{L}_{H_\theta} \) is the de Sitter \(\theta \)-hypersurface germ \(\mathbf{e}_d^\ast \).

On the other hand, we already considered another Legendrian immersion germ \(\mathcal{L}_H \) related to a timelike canal hypersurfaces. The generating family of \(\mathcal{L}_{R^d} \) is a de Sitter height function.
\[\tilde{H}^d \] of the timelike canal hypersurface. Since the de Sitter Gauss image of \(CM_\theta \) and de Sitter \(\theta \)-hypersurface coincide as map germs, we have a following relation with the Legendrian immersion germs.

Proposition 6.12. Let \((u, \bar{\mu}) \in V\) be a regular point of \(\tilde{X}_\theta \) and \(v = \tilde{x}^d_{CM}(u, \bar{\mu}) = e^d_\theta(u, \bar{\mu}) \). Then the Legendrian immersion germs coincide \(L_{H^d} = L_{H_\theta} \) as map germs at \((u, \bar{\mu}, v)\).

Proof. Let \(X = (X_0, \ldots, X_n) \) and \(e = (e_0, \ldots, e_n) \), without loss of generality, we assume that \(v_n > 0 \) for \(v = (v_0, \ldots, v_n) \in S_1^n \). Since \((u, \bar{\mu})\) is a parameter of the timelike canal hypersurface, so that \(L_{H_\theta} \) is given by

\[
L_{H^d}(u, \bar{\mu}, v) = \left(v, \left[\frac{\partial \tilde{H}^d}{\partial v_0}(u, \bar{\mu}, v) : \ldots : \frac{\partial \tilde{H}^d}{\partial v_n}(u, \bar{\mu}, v) \right] \right),
\]

where \(v = \tilde{x}^d_{CM}(u, \bar{\mu}) \) coincides \(e^d_\theta(u, \bar{\mu}) \). By calculation, we have

\[
\frac{\partial \tilde{H}^d}{\partial v_0}(u, \bar{\mu}, v) = -X_n(u)e_0(u, \bar{\mu}) + X_0(u)e_n(u, \bar{\mu}),
\]

\[
\frac{\partial \tilde{H}^d}{\partial v_j}(u, \bar{\mu}, v) = X_n(u)e_j(u, \bar{\mu}) - X_j(u)e_n(u, \bar{\mu}). \quad (j = 1, \ldots, n - 1)
\]

On the other hand, fiber components of \(L_{H_\theta} \) at \(v \in S_1^n \) is given by

\[
\frac{\partial H_\theta}{\partial v_0}(u, \bar{\mu}, v) = \cos \theta(-X_n(u)e_0(u, \bar{\mu}) + X_0(u)e_n(u, \bar{\mu})),
\]

\[
\frac{\partial H_\theta}{\partial v_j}(u, \bar{\mu}, v) = \cos \theta(X_n(u)e_j(u, \bar{\mu}) - X_j(u)e_n(u, \bar{\mu})), \quad (j = 1, \ldots, n - 1)
\]

so that \([\partial \tilde{H}^d/\partial v_0, \ldots, \partial \tilde{H}^d/\partial v_n] = [\partial H_\theta/\partial v_0, \ldots, \partial H_\theta/\partial v_n] \). Therefore \(L_{H^d}(u, \bar{\mu}, v) = L_{H_\theta}(u, \bar{\mu}, v) \). This completes the proof. \(\square \)

Therefore, for \((u, \bar{\mu}) \in V\) the Legendrian immersion germ \(L_{H^d} \) is Legendre stable if and only if \(L_{H_\theta} \) is Legendre stable.

6.4 Generic properties for the spacelike submanifolds

We now consider the generic condition of the spacelike submanifolds. Let \(U \subset \mathbb{R}^{n-r} \) be open, we define the space of spacelike embeddings \(\text{Sp-Emb}(U, S^n_1) \) with Whitney \(C^\infty \)-topology. By the arguments in Appendix A, we have the following theorem.
Theorem 6.13. Let $i = 1, 2$ and $\theta_i \notin (\pi/2)\mathbb{Z}$ be a real number. (X_i, u_i), $(\bar{X}^t_{\theta_i}, (u_i, \bar{\mu}_i))$ be spacelike submanifold germs and corresponding regular timelike canal hypersurface germs for $i = 1, 2$. Suppose that the corresponding Legendrian immersion germs $L_{H_{\theta_i}}$ are Legendrian stable, then the following conditions are equivalent.

1. Legendrian immersion germs $L_{H_{\theta_i}}$ are Legendrian equivalent.
2. de Sitter θ_i-hypersurfaces $e^d_{\theta,i}$ are A-equivalent.
3. Contact types $K(X_i(U), DH(v_i, sin\theta_i); p_i)$ are equivalent.
4. de Sitter θ_i-height functions H_{i,θ_i} are P-K-equivalent.
5. h_{i,θ_i}^{d} are K-equivalent.
6. $Q(h_{i,\theta_i}^{d})$ are isomorphic as \mathbb{R}-algebras.
7. Legendrian immersion germs $L_{\bar{H}_i}^{d}$ are Legendrian equivalent.
8. de Sitter Gauss images $\bar{x}^{d}_{CM_{\theta_i}}$ are A-equivalent.
9. Contact types $K(\bar{X}_{\theta_i}^{t}(V), HP(\bar{v}_i, 0) \cap S_1^t; \bar{\mu}_i)$ are equivalent.
10. de Sitter height functions \bar{H}_i^{d} are P-K-equivalent.
11. \bar{h}_{i,θ_i}^{d} are K-equivalent.
12. $Q(\bar{h}_{i,\theta_i}^{d})$ are isomorphic as \mathbb{R}-algebras.

Where $p_i = u_i$, $v_i = e^d_{\theta,i}(u_i)$ and $\bar{v}_i = \bar{x}^{d}_{CM_{\theta_i}}(u_i, \bar{\mu}_i)$. In this case, the corresponding tangent flat timelike hyperquadric indicatrix germs $((h_{i,\theta_i}^{d})^{-1}(0), u_i)$ are diffeomorphic to each other, and the corresponding tangent non-flat hyperbolic hyperquadric indicatrix germs $((h_{i,\theta_i}^{d})^{-1}(0), u_i)$ are also diffeomorphic to each other.

Proof. Suppose that $L_{H_{\theta_i}}$ are Legendrian stable, by similar arguments in the proof of the Theorem 5.10, conditions (1) to (6) are equivalent. By Proposition 6.12, the corresponding
Legendrian immersion germs coincide $\mathcal{L}_{R^i} = \mathcal{L}_{H_{i}}$ for $i = 1, 2$ and \mathcal{L}_{R^i} are also Legendrian stables, so that (1) and (7) are equivalent. Moreover, conditions (7) to (12) are also equivalent. This completes the proof.

\[\square \]

PART IV Appendix

A Theory of Legendrian singularities

In this appendix, we review a theory of Legendrian singularities. Let k be an integer $n - 1$ or n and N be an n-dimensional smooth manifold. We consider N to be one of the sets S^n_1, LC^*_\pm or S^n_{-1}. Let $\pi : PT^*N \rightarrow N$ be the projective tangent bundles with the canonical structures. Consider the tangent bundle $\tau : T(PT^*N) \rightarrow PT^*N$ and the differential map $d\pi : T(PT^*N) \rightarrow TN$ of π. For any $X \in T(PT^*N)$, there exists an element $\alpha \in T^*N$ such that $\tau(X) = [\alpha] \in PT^*N$. For any $x \in N$ and $V \in T_xN$, the property $\alpha(V) = 0$ does not depend on the choice of representative element α. So that we can define a canonical contact structure on PT^*N by

$$K = \{X \in T(PT^*N) \mid \tau(X)(d\pi(X)) = 0\}.$$

On the other hand, for a local coordinate (U, v) on N, where $v = (v_1, \ldots, v_k)$. We consider the local trivialization $PT^*(U) \equiv U \times P(\mathbb{R}^k)$ and we call $(v_1, \ldots, v_k, [\xi_1, \cdots, \xi_k])$ by homogeneous coordinates, where $[\xi_1 : \cdots : \xi_k]$ are the homogeneous coordinates of the dual projective space $P\mathbb{R}^k$. It is easy to show that $X_\bullet \in K^\pm_\bullet$ if and only if $\sum_{i=1}^{k} \mu_i \xi_i = 0$, where $\bullet = (v, [\xi])$ and $d\pi^\pm_\bullet(X_\bullet) = \sum_{i=1}^{k} \mu_i \partial/\partial v_i \in T^*_\bullet N$. An immersion $i : L \rightarrow PT^*(N)$ is said to be a Legendrian immersion if dim $L = k - 1$ and $di_q(T_qL) \subset K_i(q)$ for any $q \in L$. The map $\pi \circ i$ is also called the Legendrian map and the image $W(i) = \text{Im}(\pi \circ i)$, the wave front of i. Moreover, i (or the image of i) is called the Legendrian lift of $W(i)$.

Let $F : (\mathbb{R}^{n-1} \times \mathbb{R}^k, (u_0, v_0)) \rightarrow (\mathbb{R}, 0)$ be a function germ. We say that F is a Morse family of hypersurfaces if the map germ $\Delta^*F : (\mathbb{R}^{n-1} \times \mathbb{R}^k, (u_0, v_0)) \rightarrow (\mathbb{R}^n, 0)$ defined by
\[\Delta^*F = (F, \partial F/\partial u_1, \cdots, \partial F/\partial u_{n-1}) \] is non-singular. In this case, we have a smooth \((k-1)\)-dimensional smooth submanifold, \(\Sigma_*(F) = \{(u, v) \in (\mathbb{R}^{n-1} \times \mathbb{R}^k, (u_0, v_0)) \mid \Delta^*F(u, v) = 0\} \)

and the Legendrian immersion germ \(L_F : (\Sigma_*(F), (u_0, v_0)) \rightarrow PT^*\mathbb{R}^k \)

defined by

\[L_F(u, v) = \left(v, \left[\frac{\partial F}{\partial u_1}(u, v) : \cdots : \frac{\partial F}{\partial v_k}(u, v) \right] \right). \]

Then we have the following fundamental theorem of Arnold and Zakalyukin [1, 20].

Proposition A.1 ([1, 20]). All Legendrian submanifold germs in \(PT^*\mathbb{R}^k\) are constructed by the above method.

We call \(F\) a generating family of \(L_F(\Sigma_*(F))\). The wave front is

\[W(L_F) = \left\{ v \in \mathbb{R}^k \mid \exists u \in \mathbb{R}^{n-1} \text{ such that } F(u, v) = \frac{\partial F}{\partial u_1}(u, v) = \cdots = \frac{\partial F}{\partial u_{n-1}}(u, v) = 0 \right\}. \]

We call it the *discriminant set* of \(F\).

We say that Legendrian immersion germs \(L_i : (U_i, u_i) \rightarrow (PT^*\mathbb{R}^k, p_i) \) \((i = 1, 2)\) are *Legendrian equivalent* if there exists a contact diffeomorphism germ \(H : (PT^*\mathbb{R}^k, p_1) \rightarrow (PT^*\mathbb{R}^k, p_2)\) such that \(H\) preserves fibers of \(\pi\) and \(H(U_1) = U_2\). A Legendrian immersion germ at a point is said to be *Legendrian stable* if for every map with the given germ there are a neighborhood in the space of Legendrian immersions with the Whitney \(C^\infty\)-topology and a neighborhood of the original point such that each Legendrian map belonging to the first neighborhood has a point in the second neighborhood, at which its germ is Legendrian equivalent to the original germ.

Proposition A.2 (Zakalyukin [21]). Let \(L_1, L_2\) be Legendrian immersion germs such that regular sets of \(\pi \circ L_1\) and \(\pi \circ L_2\) are respectively dense. Then \(L_1, L_2\) are Legendrian equivalent if and only if corresponding wave front sets \(W(L_1)\) and \(W(L_2)\) are diffeomorphic as set germs.

Let \(F_i : (\mathbb{R}^n \times \mathbb{R}^k, (a_i, b_i)) \rightarrow (\mathbb{R}, 0) \) \((i = 1, 2)\) be \(k\)-parameter unfoldings of function germs \(f_i : (\mathbb{R}^n, a_i) \rightarrow (\mathbb{R}, 0)\). We say \(F_1\) and \(F_2\) are \(\mathcal{P}-\mathcal{K}\)-equivalent if there exists a diffeomorphism germ \(\Phi : (\mathbb{R}^n \times \mathbb{R}^k, (a_1, b_1)) \rightarrow (\mathbb{R}^n \times \mathbb{R}^k, (a_2, b_2))\) of the form \(\Phi(a, b) = (\phi_1(a, b), \phi_2(b))\) for \((a, b) \in \mathbb{R}^n \times \mathbb{R}^k\) and a function germ \(\lambda : (\mathbb{R}^n \times \mathbb{R}^k, (a_1, b_1)) \rightarrow \mathbb{R}\) such that \(\lambda(a_1, b_1) \neq 0\) and

\[F_i(a, b) = \lambda(a, b) \cdot (F_2 \circ \Phi)(a, b). \]
Theorem A.3 (Arnold, Zakalyukin [1, 20]). Let $F, G : (\mathbb{R}^n \times \mathbb{R}^k, 0) \rightarrow (\mathbb{R}, 0)$ be Morse families and denote their Legendrian immersion by $\mathcal{L}_F, \mathcal{L}_G$. Then

1. \mathcal{L}_F and \mathcal{L}_G are Legendrian equivalent if and only if F and G are \mathcal{P}-\mathcal{K}-equivalent.

2. \mathcal{L}_F is Legendrian stable if and only if F is \mathcal{K}-versal deformation of $f = F |_{\mathbb{R}^n \times \{0\}}$.

Let $g_1^\pm : (\mathbb{R}^n, a_i) \rightarrow (\mathbb{R}^k, b_i)$ (for $i = 1, 2$) be map germs. We say g_1 and g_2 are \mathcal{A}-equivalent if and only if there exist diffeomorphism germs $\phi : (\mathbb{R}^n, a_1) \rightarrow (\mathbb{R}^n, a_2)$ and $\Phi : (\mathbb{R}^k, b_1) \rightarrow (\mathbb{R}^k, b_2)$ such that $\Phi \circ g_1 = g_2 \circ \phi$.

Let $Q(f)$ be the local ring of a function germ $f : (\mathbb{R}^n, u_0) \rightarrow (\mathbb{R}, 0)$ defined by

$$Q(f) = C^\infty_{u_0}(\mathbb{R}^n)/\langle f \rangle_{C^\infty_{u_0}(\mathbb{R}^n)},$$

where $C^\infty_{u_0}(\mathbb{R}^n)$ is the set of local ring of function germs at $u_0 \in \mathbb{R}^n$.

Proposition A.4. Let $F, G : (\mathbb{R}^n \times \mathbb{R}^k, 0) \rightarrow (\mathbb{R}, 0)$ be Morse families. Suppose that Legendrian immersion germs \mathcal{L}_F and \mathcal{L}_G are Legendrian stable, then the following conditions are equivalent:

1. $(W(\mathcal{L}_F), \lambda)$ and $(W(\mathcal{L}_G), \lambda')$ are diffeomorphic as set germs.

2. \mathcal{L}_F and \mathcal{L}_G are Legendrian equivalent.

3. $Q(f)$ and $Q(g)$ are isomorphic as \mathbb{R}-algebras, where $f = F |_{\mathbb{R}^n \times \{0\}}$ and $g = G |_{\mathbb{R}^n \times \{0\}}$.

B Contacts of submanifolds

In this appendix we review the theory of contact due to Montaldi [16] to study the contacts of submanifolds.

Let X_i and Y_i (for $i = 1, 2$) be submanifolds of \mathbb{R}^n with $\dim X_1 = \dim X_2$ and $\dim Y_1 = \dim Y_2$. We say that the contact of X_1 and Y_1 at y_1 is the same type as the contact of X_2 and Y_2 at y_2 if there is a diffeomorphism germ $\Phi : (\mathbb{R}^n, y_1) \rightarrow (\mathbb{R}^n, y_2)$ such that $\Phi(X_1) = X_2$ and $\Phi(Y_1) = Y_2$.

66
In this case we write $K(X_1, Y_1; y_1) = K(X_2, Y_2; y_2)$. Function germs $g_1, g_2 : (\mathbb{R}^n, a_i) \rightarrow (\mathbb{R}, 0)$ for $i = 1, 2$ are K-equivalent if there are a diffeomorphism germ $\Phi : (\mathbb{R}^n, a_1) \rightarrow (\mathbb{R}^n, a_2)$ and a function germ $\lambda : (\mathbb{R}^n, a_1) \rightarrow \mathbb{R}$ with $\lambda(a_1) \neq 0$ such that $f_1 = \lambda \cdot (g_2 \circ \Phi)$. In [16] Montaldi has shown the following theorem.

Theorem B.1 (Montaldi [16]). Let X_i and Y_i (for $i = 1, 2$) be submanifolds of \mathbb{R}^n with $\dim X_1 = \dim X_2$ and $\dim Y_1 = \dim Y_2$. Let $g_i : (X_i, x_i) \rightarrow (\mathbb{R}^n, y_i)$ be immersion germs and $f_i : (\mathbb{R}^n, y_i) \rightarrow (\mathbb{R}^p, 0)$ be submersion germs with $(Y_i, y_i) = (f_i^{-1}(0), y_i)$. Then $K(X_1, Y_1; y_1) = K(X_2, Y_2; y_2)$ if and only if $f_1 \circ g_1$ and $f_2 \circ g_2$ are K-equivalent.

We only consider the case of $p = 1$ and apply this theorem to the contacts submanifolds in de Sitter space.

C Generic properties

In this appendix, we review the generic properties of spacelike hypersurfaces and spacelike submanifolds in de Sitter space. Let n, r be integers with $n - r \geq 1$ and U be an open subset of \mathbb{R}^{n-r}. We consider the space of spacelike embeddings $\text{Sp-Emb}(U, S^n_1)$ with Whitney C^∞-topology. We define a function $F : S^n_1 \times S^n_1 \rightarrow \mathbb{R}$ and denote $f_v(x) = F(x, v)$. We assume that f_v is a submersion. For any spacelike submanifolds $X \in \text{Sp-Emb}(U, S^n_1)$, we have $F = F \circ (X \times \text{id}_{S^n_1})$. We also have the ℓ-jet extension $j_1^\ell F : U \times S^n_1 \rightarrow J^\ell(U, \mathbb{R})$ defined by $j_1^\ell F(x, v) = j^\ell f_v(u)$. We consider the trivialization $J^\ell(U, \mathbb{R}) \equiv U \times \mathbb{R} \times J^\ell(n-1, 1)$. For any submanifold $Q \subset J^\ell(n-1, 1)$, we denote $\tilde{Q} = U \times \{0\} \times Q$. Then we have the following proposition as a corollary of Lemma 6 due to Wassermann [19].

Proposition C.1. Let Q be a submanifold of $J^\ell(n-1, 1)$. Then the set

$$T_Q = \{X \in \text{Sp-Emb}(U, S^n_1) \mid j_1^\ell G \text{ is transversal to } \tilde{Q}\}$$

is a residual subset of $\text{Sp-Emb}(U, S^n_1)$. If Q is a closed subset, then T_Q is open.
We remark that if the function F_{v_0} is ℓ-determined relative to K, then F is a K-versal deformation if and only if $j^\ell_1 F$ is transversal to $\tilde{K}_{j^\ell_1 F, v_0}$, where $\tilde{K}_{j^\ell_1 F, v_0}$ is the K-orbit through $j^\ell_1 F_{v_0}(0) \in J^\ell(n-1,1)$. Applying Theorem A.3, this condition is equivalent to the condition that the corresponding Legendrian immersion germ is Legendrian stable. Moreover, we have the following theorem. (See [1] and Appendix of [7].)

Theorem C.2. if $n \leq 6$, there exists an open subset $\mathcal{O} \subset \text{Sp-Emb}(U, S^1_n)$ such that for any $X \in \mathcal{O}$, the corresponding Legendrian immersion germ \mathcal{L}_F is Legendrian stable.

References

