<table>
<thead>
<tr>
<th>Title</th>
<th>A factorization theorem for unfoldings of analytic functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Suwa, Tatsuo</td>
</tr>
<tr>
<td>Citation</td>
<td>Hokkaido University Preprint Series in Mathematics, 8, 2-10</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1987-07</td>
</tr>
<tr>
<td>DOI</td>
<td>10.14943/49128</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://eprints3.math.sci.hokudai.ac.jp/904; http://hdl.handle.net/2115/45526</td>
</tr>
<tr>
<td>Type</td>
<td>bulletin (article)</td>
</tr>
<tr>
<td>File Information</td>
<td>pre8.pdf</td>
</tr>
</tbody>
</table>

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP
A factorization theorem for unfoldings
of analytic functions

Tatsuo Suwa

Series #8. July 1987
<table>
<thead>
<tr>
<th>#</th>
<th>Author</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Y. Okabe</td>
<td>On the theory of discrete KMO-Langevin equations with reflection positivity (I)</td>
</tr>
<tr>
<td>2.</td>
<td>Y. Giga and T. Kambe</td>
<td>Large time behavior of the vorticity of two-dimensional flow and its application to vortex formation</td>
</tr>
<tr>
<td>3.</td>
<td>A. Arai</td>
<td>Path Integral Representation of the Index of Kahler-Dirac Operators on an Infinite Dimensional Manifold</td>
</tr>
<tr>
<td>4.</td>
<td>I. Nakamura</td>
<td>Threefolds Homeomorphic to a Hyperquadric in \mathbb{P}^4</td>
</tr>
<tr>
<td>5.</td>
<td>T. Nakazi</td>
<td>Notes on Interpolation by Bounded Analytic Functions</td>
</tr>
<tr>
<td>6.</td>
<td>T. Nakazi</td>
<td>A Spectral Dilation of Some Non-Dirichlet Algebra</td>
</tr>
<tr>
<td>7.</td>
<td>H. Hida</td>
<td>A p-adic measure attached to the zeta functions associated with two elliptic modular forms II</td>
</tr>
</tbody>
</table>
A factorization theorem for unfoldings of analytic functions

Tatsuo Suwa

Abstract

Let \(\tilde{f} \) and \(g \) be holomorphic function germs at 0 in \(\mathbb{C}^n \times \mathbb{C}^q = \{(x,s)\} \). If \(d_x g \wedge d_x \tilde{f} = 0 \) and if \(f(x) = \tilde{f}(x,0) \) is not a power or a unit, then there exists a germ \(\lambda \) at 0 in \(\mathbb{C} \times \mathbb{C}^q \) such that \(g(x,s) = \lambda(f(x,s),s) \). The result has the implication that the notion of an RL-morphism in the unfolding theory of foliation germs generalizes that of a right-left morphism in the function germ case.

The notion of an RL-morphism in the unfolding theory of foliation singularities was introduced in [5] to describe the determinacy results and in [6] the versality theorem for these morphisms is proved. This note, which should be considered as an appendix to [5] or [6], contains a factorization theorem implying that an RL-morphism is a generalization of a right-left morphism in the unfolding theory of function germs. It depends on the Mattei-Moussu factorization theorem ([1]) and is a generalization of a result of Moussu [2].

1980 Mathematics Subject Classification (1985 Revision).
Primary 32A10, 32G11 ; Secondary 58C27, 58F14.
A codim 1 foliation germ at 0 in \mathbb{C}^n is a module $F = (\omega)$ over the ring of holomorphic function germs generated by a germ of an integrable 1-form ω (see Section 2). An unfolding of F with parameter space $\mathbb{C}^m = \{t\}$ is a codim 1 foliation germ $\widetilde{F} = (\tilde{\omega})$ at 0 in $\mathbb{C}^n \times \mathbb{C}^m$ with a generator $\tilde{\omega}$ whose restriction to $\mathbb{C}^n \times \{0\}$ is ω. We let F_t be the foliation germ generated by the restriction ω_t of $\tilde{\omega}$ to $\mathbb{C}^n \times \{t\}$. Let F' be another unfolding of F with parameter space $\mathbb{C}^q = \{s\}$. A morphism from F' to \tilde{F} is a holomorphic map germ $\phi : (\mathbb{C}^n \times \mathbb{C}^q, 0) \to (\mathbb{C}^n \times \mathbb{C}^m, 0)$ such that (a) $\phi(x,s) = (\phi(x,s), \psi(s))$ for some holomorphic map germs $\phi : (\mathbb{C}^n \times \mathbb{C}^q, 0) \to (\mathbb{C}^n, 0)$ and $\psi : (\mathbb{C}^q, 0) \to (\mathbb{C}^m, 0)$, (b) $\phi(x,0) = x$ and (c) the pull back $\phi^* \tilde{\omega}$ of $\tilde{\omega}$ by ϕ generates F'. Thus, if we set $\phi_s(x) = \phi(x,s)$, we may think of (ϕ_s) as a family of local coordinate changes of $(\mathbb{C}^n, 0)$. For an RL-morphism, in place of (c), we only require that $\phi_s^* \omega$ generates F'_s for each s (see (2.1) Definition). Our previous result shows that if F has a generator of the form df for some holomorphic function germ f (strong first integral for F), then every unfolding of F admits a generator of the form \tilde{f} with \tilde{f} an unfolding of f. In the unfolding theory of function germs, there are notions of a right morphism and a right-left morphism. The former involves coordinate changes in the source space $(\mathbb{C}^n, 0)$, whereas the latter involves coordinate changes in the target space \mathbb{C} as well. It is not difficult to see that our morphism generalizes a right morphism in the sense that when F admits a strong first integral f, then it becomes a (strict) right morphism in the unfolding theory of f. For a foliation
without first integrals, it may not seem relevant to talk about right-left morphisms. However, as stated above, our factorization theorem shows that an RL-morphism is a natural generalization of a right-left morphism, since when $F = (df)$, an RL-morphism is exactly a right-left morphism in the unfolding theory of f. We also note that RL-morphisms are closely related to integrating factors of the foliation ((2.2) Remark 2).
1. The factorization theorem.

We denote by \(O_n \) the ring of germs of holomorphic functions at the origin 0 in \(\mathbb{C}^n = \{(x_1, \ldots, x_n)\} \). A germ \(f \) in \(O_n \) is said to be a power if \(f = f_0^m \) for some positive integer \(m \) and a non-unit \(f_0 \) in \(O_n \). If we denote the critical set of \(f \) by \(C(f) \), then \(\text{codim} \ C(f) \geq 2 \) implies that \(f \) is not a power. We quote the following factorization theorem of Mattei and Moussu.

(1.1) Theorem ([1]). Let \(f \) be a germ in \(O_n \) which is not a power or a unit. If \(g \) is a germ in \(O_n \) with \(dg \wedge df = 0 \), then there exists a germ \(\lambda \) in \(O_1 \) such that \(g = \lambda \cdot f \).

The theorem is proved using the reduction theory of singularities of holomorphic 1-forms due to Seidenberg and Van den Essen. The proof is rather simple if we assume \(\text{codim} \ C(f) \geq 2 \) (see Moussu-Tougeron[3]). If \(\tilde{f} \) is a germ in \(O_{n+\lambda} \), we may think of \(\tilde{f} \) as an unfolding of \(f(x) = \tilde{f}(x,0) \) with parameter space \(\mathbb{C}^\lambda = \{(s_1, \ldots, s_\lambda)\} \). We denote by \(d_x \) the exterior derivation with respect to \(x \); \(d_x = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(x,s)dx_i \).

(1.2) Theorem. Let \(\tilde{f} \) be a germ in \(O_{n+\lambda} \) such that \(f(x) = \tilde{f}(x,0) \) is not a power or a unit in \(O_n \). If \(g \) is a germ in \(O_{n+\lambda} \) with \(d_x g \wedge d_x \tilde{f} = 0 \), then there exists a germ \(\lambda \) in \(O_1+\lambda \) such that \(g(x,s) = \lambda(\tilde{f}(x,s),s) \).

Proof. First we show the existence of \(\lambda \) as a formal power series in \(s \). Thus we express \(\lambda \) as
\[\lambda(y,s) = \sum_{|\nu| \geq 0} \lambda^{(\nu)}(y)s^\nu, \quad \lambda^{(\nu)} \in \mathcal{O}_1, \]

where \(\nu \) denote an \(\mathbb{Q} \)-tuple \((\nu_1, \ldots, \nu_\mathbb{Q})\) of non-negative integers, \(|\nu| = \nu_1 + \cdots + \nu_\mathbb{Q} \) and \(s^\nu = s_1^{\nu_1} \cdots s_\mathbb{Q}^{\nu_\mathbb{Q}} \). In general, if \(\sigma = \sum_{|\nu| \geq 0} \sigma^{(\nu)} s^\nu \) is a series in \(s \) with \(\sigma^{(\nu)} \in \mathcal{O}_n^r \) for some \(r \), we set

\[[\sigma]_p = \sum_{|\nu| = p} \sigma^{(\nu)} s^\nu \quad \text{and} \quad [\sigma|_p = \sum_{|\nu| = 0}^{p} \sigma^{(\nu)} s^\nu \]

for a non-negative integer \(p \).

We look for \(\lambda \) satisfying the congruence

\[(1.3)_p \quad g(x,s) = \lambda|_p (f(x,s),s) \]

for \(p \geq 0 \), where \(= \) denotes the equality mod \(s^\nu \), \(|\nu| = p + 1 \).

First, \((1.3)_0\) is equivalent to

\[g(x,0) = \lambda^{(0)}(f(x)) \, . \]

From the condition of the theorem, we have \(d(g(x,0)) \wedge df = 0 \). Hence by \((1.1)\), there exists a germ \(\lambda^{(0)} \) in \(\mathcal{O}_1 \) satisfying the above. Now we suppose that we have \(\lambda|_p \) satisfying \((1.3)_p\) and look for \([\lambda]|_{p+1} \). The congruence \((1.3)_{p+1}\) reads

\[g(x,s) = \sum_{|\nu| = p+1} \lambda^{(\nu)}(f(x))s^\nu + \lambda|_p (f(x,s),s) \, . \]
Hence, for our purpose, it suffices to show that

\[(1.4) \quad d_x [g(x,s) - \lambda |p(f(x,s),s)] p+1 \wedge df = 0.\]

By (1.3)p, we have (1.4) if we show that

\[d_x (g(x,s) - \lambda |p(f(x,s),s)) \wedge d_x f = 0.\]

But this follows from the condition of the theorem and

\[d_x \lambda |p(f(x,s),s) = \frac{\partial \lambda |p(f(x,s),s)}{\partial y} d_x f.\]

Thus we have a formal power series

\[\lambda(y,s) = \sum_{|\nu| \geq 0} \lambda^{(\nu)}(y)s^\nu, \quad \lambda^{(\nu)} \in O_1\]

in s such that \(g(x,s) = \lambda(\tilde{f}(x,s),s)\) as power series in \((x,s)\).

Since \(\tilde{f}\) and \(g\) are both convergent, \(\lambda\) must be also convergent.

\((1.5)\) Remarks.

1. The germ \(\lambda\) is determined uniquely by \(g\) (and \(\tilde{f}\)). If we assume that \(g(x,0) = f(x)\), then \(\lambda(y,0) = y\).
2. The above theorem generalizes Corollaire 1 in [2] Ch.II,1 in the case \(X = H\).
2. Some types of morphisms in the unfolding theory of foliation germs.

We denote by Q_n the O_n-modules of germs of holomorphic 1-forms at 0 in C^n. We recall (Cf. [4], [5]) that a codim 1 foliation germ at 0 in C^n is a rank 1 free sub-O_n-module $F = (\omega)$ of Q_n with a generator satisfying the integrability condition $d\omega \wedge \omega = 0$. The singular set $S(F)$ of F is defined to be the singular set \{x|\omega(x) = 0\} of ω. We always assume that codim $S(F) \geq 2$. An unfolding of $F = (\omega)$ is a codim 1 foliation germ $\tilde{F} = (\tilde{\omega})$ at 0 in $C^n \times C^m = ((x,t))$, for some m, with a generator $\tilde{\omega}$ satisfying $i^*\tilde{\omega} = \omega$, where i denotes the embedding of C^n into $C^n \times C^m$ given by $i(x) = (x,0)$. We call C^m the parameter space of \tilde{F}. We recall the following definition ([5](2.1), [6](1.1))

(2.1) Definition. Let \tilde{T} and \tilde{T}' be two unfoldings of F with parameter spaces C^m and $C^\alpha = ((s_1, \ldots, s_\alpha))$, respectively. (I) An RL-morphism from \tilde{T}' to \tilde{T} is a pair (Φ, Ψ) satisfying the following conditions:
(a) Φ and Ψ are holomorphic map germs making the diagram

\[
\begin{array}{ccc}
(C^n \times C^\alpha, 0) & \xrightarrow{\Phi} & (C^n \times C^m, 0) \\
\downarrow & & \downarrow \\
(C^\alpha, 0) & \xrightarrow{\Psi} & (C^m, 0)
\end{array}
\]

commutative, where the vertical maps are the projections.
(b) $\Phi(x,0) = (x,0)$.

(c) For any generator $\tilde{\omega}$ of \mathcal{F}, there is a germ $\alpha = (\alpha_1, \ldots, \alpha_q)$ in O_n^q such that the germ

$$\Phi^*\tilde{\omega} + \sum_{k=1}^q \alpha_k d s_k$$

generates \mathcal{F}'.

(II) A morphism from \mathcal{F}' to \mathcal{F} is an RL-morphism such that for any generator $\tilde{\omega}$ of \mathcal{F}, we may choose $\alpha = 0$ in (c).

(2.2) Remarks.

1. In the both cases, we may replace "any" by "some".

2. From the integrability condition we see that, for α in (c), each $\alpha_k(x,0)$ is an integrating factor of $\omega = \tilde{\omega}$, i.e.,

$$\alpha_k(x,0) d\omega = d(\alpha_k(x,0)) \wedge \omega.$$

3. We have a "versality theorem" for each type of morphisms ([4],[6]).

If a germ \tilde{f} in O_n^m is an unfolding of f, i.e., $\tilde{f} = f$, then $\mathcal{F} = (df)$ is an unfolding of $F = (df)$ with parameter space C^m and conversely, any unfolding of $F = (df)$ has a generator of the form df with \tilde{f} an unfolding of f([4] p.47). We recall the following definition (cf.[7] Definition 3.2).

(2.4) Definition. Let \tilde{f} and g be two unfoldings of f with parameter spaces C^m and $C^q = (s_1, \ldots, s_q)$, respectively.

(I) A right-left morphism from g to \tilde{f} is a pair (Φ, Ψ) satisfying (I)(a) and (b) in (2.1) Definition and
(c) \(g(x,s) = \lambda(\Phi^* f(x,s),s) \)

for some \(\lambda \) in \(O_{1+Q} \) with \(\lambda(y,0) = y \).

(II) A strict right morphism from \(g \) to \(\bar{f} \) is a right-left morphism such that \(\lambda(y,s) = y \) in (c).

The following is a direct consequence of (1.2) Theorem.

(2.4) Proposition. Let \(\bar{f} \) and \(g \) be unfoldings of \(f \). A pair \((\Phi,\psi)\) is, respectively, a right-left morphism or a strict right morphism from \(g \) to \(\bar{f} \) if and only if it is an RL-morphism or a morphism from \(\bar{f}' = (dg) \) to \(\bar{f} = (df) \).
References

