A factorization theorem for unfoldings of analytic functions

Tatsuo Suwa

Series #8. July 1987
<table>
<thead>
<tr>
<th>#</th>
<th>Author</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Y. Okabe</td>
<td>On the theory of discrete KMO-Langevin equations with reflection positivity (I)</td>
</tr>
<tr>
<td>2</td>
<td>Y. Giga and T. Kambe</td>
<td>Large time behavior of the vorticity of two-dimensional flow and its application to vortex formation</td>
</tr>
<tr>
<td>3</td>
<td>A. Arai</td>
<td>Path Integral Representation of the Index of Kahler-Dirac Operators on an Infinite Dimensional Manifold</td>
</tr>
<tr>
<td>4</td>
<td>I. Nakamura</td>
<td>Threefolds Homeomorphic to a Hyperquadric in \mathbb{P}^4</td>
</tr>
<tr>
<td>5</td>
<td>T. Nakazi</td>
<td>Notes on Interpolation by Bounded Analytic Functions</td>
</tr>
<tr>
<td>6</td>
<td>T. Nakazi</td>
<td>A Spectral Dilation of Some Non-Dirichlet Algebra</td>
</tr>
<tr>
<td>7</td>
<td>H. Hida</td>
<td>A p-adic measure attached to the zeta functions associated with two elliptic modular forms II</td>
</tr>
</tbody>
</table>
A factorization theorem for unfoldings of analytic functions

Tatsuo Suwa

Abstract

Let \(\tilde{f} \) and \(g \) be holomorphic function germs at 0 in \(\mathbb{C}^n \times \mathbb{C}^q \). If \(d_x g \wedge d_x \tilde{f} = 0 \) and if \(f(x) = \tilde{f}(x,0) \) is not a power or a unit, then there exists a germ \(\lambda \) at 0 in \(\mathbb{C} \times \mathbb{C}^q \) such that \(g(x,s) = \lambda(\tilde{f}(x,s),s) \). The result has the implication that the notion of an RL-morphism in the unfolding theory of foliation germs generalizes that of a right-left morphism in the function germ case.

The notion of an RL-morphism in the unfolding theory of foliation singularities was introduced in [5] to describe the determinacy results and in [6] the versality theorem for these morphisms is proved. This note, which should be considered as an appendix to [5] or [6], contains a factorization theorem implying that an RL-morphism is a generalization of a right-left morphism in the unfolding theory of function germs. It depends on the Mattei-Moussu factorization theorem ([1]) and is a generalization of a result of Moussu [2].

1980 Mathematics Subject Classification (1985 Revision).
Primary 32A10, 32G11 ; Secondary 58C27, 58F14.
A codim 1 foliation germ at 0 in \mathbb{C}^n is a module $F = (\omega)$ over the ring of holomorphic function germs generated by a germ of an integrable 1-form ω (see Section 2). An unfolding of F with parameter space $\mathbb{C}^m = \{t\}$ is a codim 1 foliation germ $\tilde{F} = (\tilde{\omega})$ at 0 in $\mathbb{C}^n \times \mathbb{C}^m$ with a generator $\tilde{\omega}$ whose restriction to $\mathbb{C}^n \times \{0\}$ is ω. We let F_t be the foliation germ generated by the restriction ω_t of $\tilde{\omega}$ to $\mathbb{C}^n \times \{t\}$. Let F' be another unfolding of F with parameter space $\mathbb{C}^q = \{s\}$. A morphism from F' to \tilde{F} is a holomorphic map germ $\phi: (\mathbb{C}^n \times \mathbb{C}^q, 0) \to (\mathbb{C}^n \times \mathbb{C}^m, 0)$ such that (a) $\phi(x, s) = (\phi(x, s), \psi(s))$ for some holomorphic map germs $\phi: (\mathbb{C}^n \times \mathbb{C}^q, 0) \to (\mathbb{C}^q, 0)$ and $\psi: (\mathbb{C}^q, 0) \to (\mathbb{C}^m, 0)$, (b) $\phi(x, 0) = x$ and (c) the pull back $\phi^*\tilde{\omega}$ of $\tilde{\omega}$ by ϕ generates F'. Thus, if we set $\phi_s(x) = \phi(x, s)$, we may think of (ϕ_s) as a family of local coordinate changes of $(\mathbb{C}^n, 0)$. For an RL-morphism, in place of (c), we only require that $\phi_s^*\omega_s \psi(s)$ generates F'_s for each s (see (2.1) Definition). Our previous result shows that if F has a generator of the form df for some holomorphic function germ f (strong first integral for F), then every unfolding of F admits a generator of the form $\tilde{\omega}$ with $\tilde{\omega}$ an unfolding of f. In the unfolding theory of function germs, there are notions of a right morphism and a right-left morphism. The former involves coordinate changes in the source space $(\mathbb{C}^n, 0)$, whereas the latter involves coordinate changes in the target space \mathbb{C} as well. It is not difficult to see that our morphism generalizes a right morphism in the sense that when F admits a strong first integral f, then it becomes a (strict) right morphism in the unfolding theory of f. For a foliation
without first integrals, it may not seem relevant to talk about right-left morphisms. However, as stated above, our factorization theorem shows that an RL-morphism is a natural generalization of a right-left morphism, since when $F = (df)$, an RL-morphism is exactly a right-left morphism in the unfolding theory of f. We also note that RL-morphisms are closely related to integrating factors of the foliation ((2.2) Remark 2).
1. The factorization theorem.

We denote by O_n the ring of germs of holomorphic functions at the origin 0 in $\mathbb{C}^n = \{(x_1, \cdots, x_n)\}$. A germ f in O_n is said to be a power if $f = f_0^m$ for some positive integer m and a non-unit f_0 in O_n. If we denote the critical set of f by $C(f)$, then $\text{codim} \ C(f) \geq 2$ implies that f is not a power. We quote the following factorization theorem of Mattei and Moussu.

(1.1) Theorem ([1]). Let f be a germ in O_n which is not a power or a unit. If g is a germ in O_n with $dg \wedge df = 0$, then there exists a germ λ in O_1 such that $g = \lambda \cdot f$.

The theorem is proved using the reduction theory of singularities of holomorphic 1-forms due to Seidenberg and Van den Essen. The proof is rather simple if we assume $\text{codim} \ C(f) \geq 2$ (see Moussu-Tougeron[3]). If \tilde{f} is a germ in $O_{n+\mathbb{A}^1}$, we may think of \tilde{f} as an unfolding of $f(x) = \tilde{f}(x,0)$ with parameter space $\mathbb{C}^\mathbb{A} = \{(s_1, \cdots, s_{\mathbb{A}})\}$. We denote by $d_x f$ the exterior derivation with respect to x; $d_x \tilde{f} = \sum_{i=1}^{\mathbb{A}} \frac{\partial f}{\partial x_i}(x,s)dx_i$.

(1.2) Theorem. Let \tilde{f} be a germ in $O_{n+\mathbb{A}^1}$ such that $f(x) = \tilde{f}(x,0)$ is not a power or a unit in O_n. If g is a germ in $O_{n+\mathbb{A}^1}$ with $d_x g \wedge d_x \tilde{f} = 0$, then there exists a germ λ in $O_{1+\mathbb{A}^1}$ such that $g(x,s) = \lambda(\tilde{f}(x,s),s)$.

Proof. First we show the existence of λ as a formal power series in s. Thus we express λ as
\[\lambda(y,s) = \sum_{|\nu| \geq 0} \lambda^{(\nu)}(y) s^\nu, \quad \lambda^{(\nu)} \in O_1, \]

where \(\nu \) denote an \(n \)-tuple \((\nu_1, \ldots, \nu_n) \) of non-negative integers, \(|\nu| = \nu_1 + \cdots + \nu_n \) and \(s^\nu = s_1^{\nu_1} \cdots s_n^{\nu_n} \). In general, if \(\sigma = \sum_{|\nu| \geq 0} \sigma^{(\nu)} s^\nu \) is a series in \(s \) with \(\sigma^{(\nu)} \in O_n^r \) for some \(r \), we set

\[
[\sigma]_p = \sum_{|\nu| = p} \sigma^{(\nu)} s^\nu \quad \text{and} \quad \sigma|_p = \sum_{|\nu| = 0} \sigma^{(\nu)} s^\nu
\]

for a non-negative integer \(p \).

We look for \(\lambda \) satisfying the congruence

\[(1.3)_p \quad g(x,s) = \lambda|_p(f(x),s),s) \]

for \(p \geq 0 \), where \(= \) denotes the equality mod \(s^\nu \), \(|\nu| = p + 1 \).

First, \((1.3)_0 \) is equivalent to

\[g(x,0) = \lambda^{(0)}(f(x)) \, . \]

From the condition of the theorem, we have \(d(g(x,0)) \wedge df = 0 \).

Hence by (1.1), there exists a germ \(\lambda^{(0)} \) in \(O_1 \) satisfying the above. Now we suppose that we have \(\lambda|_p \) satisfying \((1.3)_p \) and look for \([\lambda]_{p+1} \). The congruence \((1.3)_{p+1} \) reads

\[g(x,s) = \sum_{|\nu| = p+1} \lambda^{(\nu)}(f(x)) s^\nu + \lambda|_p(f(x),s),s) \, . \]

-5-
Hence, for our purpose, it suffices to show that

\[(1.4) \quad d_x [g(x,s) - \lambda \|p(f(x,s),s)]_{p+1} \wedge df = 0 .\]

By \((1.3)_p\), we have \((1.4)\) if we show that

\[d_x (g(x,s) - \lambda \|p(f(x,s),s)) \wedge d_x f = 0 .\]

But this follows from the condition of the theorem and

\[d_x (g(x,s) - \lambda \|p(f(x,s),s)) \wedge d_x f = 0 .\]

Thus we have a formal power series

\[\lambda(y,s) = \sum_{|\nu| \geq 0} \lambda^{(\nu)}(y)s^\nu , \quad \lambda^{(\nu)} \in O_1\]

in \(s\) such that \(g(x,s) = \lambda(\tilde{f}(x,s),s)\) as power series in \((x,s)\).

Since \(\tilde{f}\) and \(g\) are both convergent, \(\lambda\) must be also convergent.

\((1.5)\) Remarks.

1. The germ \(\lambda\) is determined uniquely by \(g\) (and \(\tilde{f}\)). If we assume that \(g(x,0) = f(x)\), then \(\lambda(y,0) = y\).

2. The above theorem generalizes Corollaire 1 in [2] Ch.II,1 in the case \(X = H\).
2. Some types of morphisms in the unfolding theory of foliation germs.

We denote by \mathcal{Q}_n the \mathcal{Q}_n-modules of germs of holomorphic 1-forms at 0 in \mathbb{C}^n. We recall (Cf. [4], [5]) that a codim 1 foliation germ at 0 in \mathbb{C}^n is a rank 1 free sub-\mathcal{Q}_n-module $F = (\omega)$ of \mathcal{Q}_n with a generator satisfying the integrability condition $d\omega \wedge \omega = 0$. The singular set $\mathcal{S}(F)$ of F is defined to be the singular set $\{x \mid \omega(x) = 0\}$ of ω. We always assume that codim $S(F) \geq 2$. An unfolding of $F = (\omega)$ is a codim 1 foliation germ $\mathcal{F} = (\tilde{\omega})$ at 0 in $\mathbb{C}^n \times \mathbb{C}^m = \{(x, t)\}$, for some m, with a generator $\tilde{\omega}$ satisfying $\iota^* \tilde{\omega} = \omega$, where ι denotes the embedding of \mathbb{C}^n into $\mathbb{C}^n \times \mathbb{C}^m$ given by $\iota(x) = (x, 0)$. We call \mathbb{C}^m the parameter space of \mathcal{F}. We recall the following definition ([5](2.1), [6](1.1)).

(2.1) Definition. Let \mathcal{F} and \mathcal{F}' be two unfoldings of F with parameter spaces \mathbb{C}^m and $\mathbb{C}^\alpha = ((s_1, \cdots, s_\alpha))$, respectively.

(I) An RL-morphism from \mathcal{F}' to \mathcal{F} is a pair (Φ, Ψ) satisfying the following conditions:

(a) Φ and Ψ are holomorphic map germs making the diagram

$$
\begin{array}{ccc}
(C^n \times C^\alpha, 0) & \xrightarrow{\Phi} & (C^n \times C^m, 0) \\
\downarrow & & \downarrow \\
(C^\alpha, 0) & \xrightarrow{\Psi} & (C^m, 0)
\end{array}
$$

commutative, where the vertical maps are the projections.
(b) \(\Phi(x,0) = (x,0) \).

(c) For any generator \(\tilde{\omega} \) of \(\tilde{\mathcal{F}} \), there is a germ \(\alpha = (\alpha_1, \ldots, \alpha_\lambda) \) in \(O_{n+\lambda}^\mathbb{Q} \) such that the germ

\[
\Phi^*\tilde{\omega} + \sum_{k=1}^\lambda \alpha_k ds_k
\]

generates \(\tilde{\mathcal{F}}' \).

(II) A morphism from \(\mathcal{F}' \) to \(\mathcal{F} \) is an RL-morphism such that for any generator \(\tilde{\omega} \) of \(\tilde{\mathcal{F}} \), we may choose \(\alpha = 0 \) in (c).

(2.2) Remarks.

1. In the both cases, we may replace "any" by "some".

2. From the integrability condition we see that, for \(\alpha \) in (c), each \(\alpha_k(x,0) \) is an integrating factor of \(\omega = \tilde{\omega}^* \), i.e.,

\[
\alpha_k(x,0)d\omega = d(\alpha_k(x,0)) \wedge \omega.
\]

3. We have a "versality theorem" for each type of morphisms ([4],[6]).

If a germ \(\tilde{f} \) in \(O_{n+m}^\mathbb{Q} \) is an unfolding of \(f \), i.e., if \(\tilde{f} = f \), then \(\tilde{\mathcal{F}} = (df) \) is an unfolding of \(\mathcal{F} = (df) \) with parameter space \(\mathbb{C}^m \) and conversely, any unfolding of \(\mathcal{F} = (df) \) has a generator of the form \(df \) with \(\tilde{f} \) an unfolding of \(f \) ([4] p.47).

We recall the following definition (cf.[7] Definition 3.2).

(2.4) Definition. Let \(\tilde{f} \) and \(g \) be two unfoldings of \(f \) with parameter spaces \(\mathbb{C}^m \) and \(\mathbb{C}^\mathbb{Q} = ((s_1, \ldots, s_\lambda)) \), respectively.

(I) A right-left morphism from \(g \) to \(\tilde{f} \) is a pair \((\Phi, \Psi) \) satisfying (I)(a) and (b) in (2.1) Definition and
(c) $g(x,s) = \lambda(\Phi^* f(x,s), s)$

for some λ in $O_{1+\varnothing}$ with $\lambda(y,0) = y$.

(II) A strict right morphism from g to \tilde{f} is a right-left morphism such that $\lambda(y,s) = y$ in (c).

The following is a direct consequence of (1.2) Theorem.

(2.4) Proposition. Let \tilde{f} and g be unfoldings of f. A pair (Φ, ψ) is, respectively, a right-left morphism or a strict right morphism from g to \tilde{f} if and only if it is an RL-morphism or a morphism from $\tilde{F}' = (dg)$ to $\tilde{F} = (df)$.
References

