<table>
<thead>
<tr>
<th>Instructions for use</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Note on the double centralizers in an H-separable extension</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Nitta, Kazuo</td>
</tr>
<tr>
<td>Citation</td>
<td>Hokkaido University Preprint Series in Mathematics, 11: 1-6</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1987-09</td>
</tr>
<tr>
<td>DOI</td>
<td>10.14943/49131</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://eprints3.math.sci.hokudai.ac.jp/907; http://hdl.handle.net/2115/45529</td>
</tr>
<tr>
<td>Type</td>
<td>bulletin (article)</td>
</tr>
<tr>
<td>File Information</td>
<td>pre11.pdf</td>
</tr>
</tbody>
</table>

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP
Note on the double centralizers in an H-separable extension

Kazuo Nitta

Series #11. September 1987
<table>
<thead>
<tr>
<th>#</th>
<th>Author</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Y. Okabe</td>
<td>On the theory of discrete KMO-Langevin equations with reflection positivity (I)</td>
</tr>
<tr>
<td>2.</td>
<td>Y. Giga and T. Kambe</td>
<td>Large time behavior of the vorticity of two-dimensional flow and its application to vortex formation</td>
</tr>
<tr>
<td>3.</td>
<td>A. Arai</td>
<td>Path Integral Representation of the Index of Kahler-Dirac Operators on an Infinite Dimensional Manifold</td>
</tr>
<tr>
<td>4.</td>
<td>I. Nakamura</td>
<td>Threefolds Homeomorphic to a Hyperquadric in P^4</td>
</tr>
<tr>
<td>5.</td>
<td>T. Nakazi</td>
<td>Notes on Interpolation by Bounded Analytic Functions</td>
</tr>
<tr>
<td>6.</td>
<td>T. Nakazi</td>
<td>A Spectral Dilation of Some Non-Dirichlet Algebra</td>
</tr>
<tr>
<td>7.</td>
<td>H. Hida</td>
<td>A p-adic measure attached to the zeta functions associated with two elliptic modular forms II</td>
</tr>
<tr>
<td>8.</td>
<td>T. Suwa</td>
<td>A factorization theorem for unfoldings of analytic functions</td>
</tr>
<tr>
<td>9.</td>
<td>T. Nakazi</td>
<td>Weighted norm inequalities and uniform algebras</td>
</tr>
<tr>
<td>10.</td>
<td>T. Miyake</td>
<td>On the spaces of Eisenstein series of Hilbert modular groups</td>
</tr>
</tbody>
</table>
NOTE ON THE DOUBLE CENTRALIZERS
IN AN H-SEPARABLE EXTENSION

By Kazuo Niita

Throughout this note, \(A \) denotes an associative ring with an identity \(1 \) and \(B \) a subring of \(A \) with the common identity. And we let \(E = \{ x \in A : x \otimes 1 = 1 \otimes x \in A \otimes_B A \} \), \(V_A(S) = \{ x \in A : xy = yx \) for all \(y \in A \} \) where \(S \) is any subset of \(A \). These \(E \) and \(V_A(S) \) are both subrings of \(A \) and it is easily shown that the inclusions \(B \subseteq E \subseteq V_A(V_A(B)) \) always hold.

The aim of this paper is to give necessary and sufficient conditions for any ring extension \(A \) of \(B \) to hold the equality \(B = E \), that is, the equivalence of the followings (Theorem 1.);

(a) \(B = E \)

(b) The canonical map \(A/B \to A \otimes_B (A/B) \) is a monomorphism.

(c) For every \(f \in \text{Hom}_{B-M, B}(A/B) \) where \(M \) is a left \(B \)-module,

\[0 = 1 \otimes f : A \otimes_B M \to A \otimes_B (A/B) \] implies \(f = 0 \).

In case \(A \) is a ring extension of \(B \) satisfying \(E = V_A(V_A(B)) \), these conditions are also equivalent to that \(B = V_A(V_A(B)) \). And this result can be applied especially to \(H \)-separable extensions (Proposition and Theorem 2.)

\(A \) is to be called an \(H \)-separable extension of \(B \) if \(A \otimes_B A \) is isomorphic to a direct summand of a finite direct sum of copies of \(A \) as \((A,A) \)-bimodules. This special type of separable ring extensions was first introduced by K. Hirata in [1] to be a
generalization of central separable algebras, and studied extensively by him and K. Sugano. In this case, as Y. Kurata and S. Morimoto showed recently in [3], the equality \(E = \text{VA}(V_A(B)) \) holds. For some other fundamental properties of this extension, see [2], [5] and [6].

Before proceeding to the subject, here is another remark on notations. For any subring \(B' \) of \(A \), we denote by \(A/B' \) a factor module of \(A \) modulo \(B' \) as an additive \((B',B')\)-bimodule. Furthermore, for an element \(x \in A \), \(\overline{x} \) denotes a coset element of \(A/B' \) which contains \(x \).

Lemma Let \(B' \) be a subring of \(A \) such that \(B \subseteq B' \subseteq E \). Then

\[\mathcal{E}_{B'} : A \otimes_B (A/B') \rightarrow A \otimes_B A \]

defined by \(\mathcal{E}_{B'}(x \otimes y) = xy \otimes 1 - x \otimes y \cdot (x,y \in A) \) is a split monomorphism of \((A,B')\)-bimodules.

Proof. Define \(\delta : A \rightarrow A \otimes_B A \) by \(\delta(x) = x \otimes 1 - l \otimes x \ (x \in A) \). Clearly \(\delta \) is a homomorphism of \((E,E)\)-bimodules and \(\text{Ker} \delta = E \). Then, since \(B' \subseteq E \), \(\delta \) induces

\[A/B' \rightarrow A \otimes_B A, \overline{x} \mapsto x \otimes 1 - l \otimes x \ (x \in A), \]

and this leads us to a homomorphism of \((A,B')\)-bimodules

\[A \otimes_B (A/B') \rightarrow A \otimes_B A \otimes_B A, \ x \otimes y \mapsto x \otimes y \otimes 1 - x \otimes l \otimes y \]

\((x,y \in A) \).

Now the requested map \(\mathcal{E}_{B'} \), is given by composing this homomorphism and the multiplication of the first and second tensorial factors of \(A \otimes_B A \otimes_B A \). It is easily shown that this is a split monomor-
phism by taking a map $A \otimes B A \to A \otimes_B (A/B')$ which is yielded by a natural epimorphism $A \to A/B'$, since $0 = x \otimes 1 \in A \otimes_B (A/B')$ for any $x \in A$.

Note that we could also show, similarly to this lemma, that a map $(A/B') \otimes_B A \to A \otimes_B (A/B)$ defined by $x \otimes y \mapsto x \otimes y' - 1 \otimes xy$ is a split monomorphism of (B',A)-bimodules. And this "the other side version" of tensor products is valid for the following corollaries, too.

Corollary 1. The map $A \otimes_B (A/B) \to A \otimes_B (A/E)$ given by $x \otimes \bar{y} \mapsto x \otimes y$ $(x,y \in A)$ is an isomorphism of (A,B)-bimodules.

Proof. Since $A/B \to A/E$ is an epimorphism, it is sufficient to show that the given map is injective. But this is an easy consequence by the commutativity of the following diagram where ξ_B and ξ_E are monomorphisms defined in the last lemma.

$$
\begin{array}{c}
A \otimes_B (A/B) \to A \otimes_B (A/E) \\
\downarrow \xi_B \\
A \otimes_B A
\end{array}
$$

Corollary 2. The sequence of (A,B)-bimodules

$\begin{array}{c}
0 \to A \otimes_B (A/B) \xrightarrow{\xi_B} A \otimes_B A \xrightarrow{\mu} A \to 0
\end{array}$

where μ is the multiplication, is split exact.

Proof. This is immediate by the lemma and the well-known fact that $\text{Ker } \mu = \sum \{x(y \otimes 1 - 1 \otimes y) : x,y \in A\}$.

- 3 -
Theorem 1. The followings are equivalent for any ring extension A of B.

(a) $B = E$

(b) $0 = 1 \otimes \bar{x} \in A \otimes_B(A/B)$ implies $x \in B$.

(b') $0 = \bar{x} \otimes 1 \in (A/B) \otimes_A A$ implies $x \in B$.

(c) For every $f \in \text{Hom}(BM, BA/B)$ where M is a left B-module,

$$0 = 1 \otimes f : A \otimes_B M \rightarrow A \otimes_B (A/B)$$

implies $f = 0$.

(c') For every $f \in \text{Hom}(M_B, A/B_B)$ where M is a right B-module,

$$0 = f \otimes 1 : M \otimes_A A \rightarrow (A/B) \otimes_A M$$

implies $f = 0$.

Proof. We will only show the equivalence of (a), (b) and (c).

(a)\Rightarrow(b) If $0 = 1 \otimes \bar{x} \in A \otimes_B(A/B)$, then, by the lemma,

$$0 = \mathcal{E}_B(1 \otimes \bar{x}) = x \otimes 1 - 1 \otimes x \in A \otimes_B A,$$

that is, $x \otimes 1 = 1 \otimes x$. Thus, assuming (a), we have $x \in E = B$.

(b)\Rightarrow(c) This is clear.

(c)\Rightarrow(a) Let $f : E \rightarrow A/B$ and $g : E \rightarrow A/E$ be the restrictions to E of natural epimorphisms $A \rightarrow A/B$ and $A \rightarrow A/E$ respectively. Clearly, g is a zero map. Consider the following commutative diagram where the vertical map is an isomorphism of Corollary 1.

$$\begin{array}{ccc}
A \otimes_B(A/B) & \rightarrow & (A/B) \otimes_B A \\
\downarrow & & \downarrow \\
A \otimes_B(A/E) & \rightarrow & E
\end{array}$$

Since $1 \otimes g = 0$, it follows easily that $1 \otimes f = 0$. Then, by the assumption, we have $f = 0$, that is, $E \subseteq B$. This implies (a).
In the case A is an H-separable extension of B, we know that $E = V_A(V_A(B))$. So, by this theorem, we have the next proposition.

Proposition Let A be an H-separable extension of B. Then the followings are equivalent.

(a) $B = V_A(V_A(B))$

(b) $A/B \to A \otimes_B (A/B)$ given by $\bar{x} \mapsto 1 \otimes \bar{x}$ is a monomorphism.

(c) $A/B \to (A/B) \otimes_B A$ given by $\bar{x} \mapsto \bar{x} \otimes 1$ is a monomorphism.

It should be noted here that this proposition is essentially to be contained in the work of Kurata and Morimoto (See Theorem 3.12. of [3]).

We are now led to the following theorem.

Theorem 2. If A is an H-separable extension of B such that A/B is flat as a left or right B-module, then $B = V_A(V_A(B))$.

If B is a regular ring, every B-module is flat. Thus the next corollary, which has shown by Sugano in [7], is immediate by this theorem.

Corollary 3. If A is an H-separable extension of a regular ring B, then $B = V_A(V_A(B))$.

- 5 -
REFERENCES

Hokkaido University