Note on the double centralizers in an H- separable extension

Author(s)
Nitta, Kazuo

Citation
Hokkaido University Preprint Series in Mathematics, 11, 1-6

Issue Date
1987-09

DOI
10.14943/49131

Doc URL
http://eprints3.math.sci.hokudai.ac.jp/907/; http://hdl.handle.net/2115/45529

Type
bulletin (article)

File Information
pre11.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP
Note on the double centralizers in an H-separable extension

Kazuo Nitta

Series #11. September 1987
2. Y. Giga and T. Kambe, Large time behavior of the vorticity of two-dimensional flow and its application to vortex formation
3. A. Arai, Path Integral Representation of the Index of Kahler-Dirac Operators on an Infinite Dimensional Manifold
4. I. Nakamura, Threefolds Homeomorphic to a Hyperquadric in P^4
5. T. Nakazi, Notes on Interpolation by Bounded Analytic Functions
6. T. Nakazi, A Spectral Dilation of Some Non-Dirichlet Algebra
7. H. Hida, A p-adic measure attached to the zeta functions associated with two elliptic modular forms II
8. T. Suwa, A factorization theorem for unfoldings of analytic functions
9. T. Nakazi, Weighted norm inequalities and uniform algebras
10. T. Miyake, On the spaces of Eisenstein series of Hilbert modular groups
NOTE ON THE DOUBLE CENTRALIZERS
IN AN H-SEPARABLE EXTENSION

By Kazuo Niita

Throughout this note, A denotes an associative ring with an identity 1 and B a subring of A with the common identity. And we let $E = \{ x \in A : x \otimes 1 = 1 \otimes x \in A \otimes_B A \}$, $V_A(S) = \{ x \in A : xy = yx \text{ for all } y \in A \}$ where S is any subset of A. These E and $V_A(S)$ are both subrings of A and it is easily shown that the inclusions $B \subseteq E \subseteq V_A(V_A(B))$ always hold.

The aim of this paper is to give necessary and sufficient conditions for any ring extension A of B to hold the equality $B = E$, that is, the equivalence of the followings (Theorem 1.);

(a) $B = E$

(b) The canonical map $A/B \rightarrow A \otimes_B (A/B)$ is a monomorphism.

(c) For every $f \in \text{Hom}(B^M, B^{A/B})$ where M is a left B-module,

$$0 = 1 \otimes f : A \otimes_B M \rightarrow A \otimes_B (A/B)$$

implies $f = 0$.

In case A is a ring extension of B satisfying $E = V_A(V_A(B))$, these conditions are also equivalent to that $B = V_A(V_A(B))$. And this result can be applied especially to H-separable extensions (Proposition and Theorem 2.)

A is to be called an H-separable extension of B if $A \otimes_B A$ is isomorphic to a direct summand of a finite direct sum of copies of A as (A,A)-bimodules. This special type of separable ring extensions was first introduced by K. Hirata in [1] to be a
generalization of central separable algebras, and studied extensively by him and K. Sugano. In this case, as Y. Kurata and S. Morimoto showed recently in [3], the equality \(E = V_A(V_A(B)) \) holds.

For some other fundamental properties of this extension, see [2], [5] and [6].

Before proceeding to the subject, here is another remark on notations. For any subring \(B' \) of \(A \), we denote by \(A/B' \) a factor module of \(A \) modulo \(B' \) as an additive \((B',B')\)-bimodule. Furthermore, for an element \(x \in A \), \(\overline{x} \) denotes a coset element of \(A/B' \) which contains \(x \).

Lemma. Let \(B' \) be a subring of \(A \) such that \(B \subseteq B' \subseteq E \). Then

\[
E_{B'} : A \otimes_B (A/B') \rightarrow A \otimes_B A
\]

defined by \(E_{B'}(x \otimes y) = xy \otimes 1 - x \otimes y \cdot (x,y \in A) \) is a split monomorphism of \((A,B')\)-bimodules.

Proof. Define \(\delta : A \rightarrow A \otimes_B A \) by \(\delta(x) = x \otimes 1 - 1 \otimes x \cdot (x \in A) \). Clearly \(\delta \) is a homomorphism of \((E,E)\)-bimodules and \(\text{Ker} \delta = E \). Then, since \(B' \subseteq E \), \(\delta \) induces

\[
A/B' \rightarrow A \otimes_B A, \quad \overline{x} \mapsto x \otimes 1 - 1 \otimes x \quad (x \in A),
\]

and this leads us to a homomorphism of \((A,B')\)-bimodules

\[
A \otimes_B (A/B') \rightarrow A \otimes_B A \otimes_B A, \quad x \otimes y \mapsto x \otimes y \otimes 1 - x \otimes 1 \otimes y \quad (x,y \in A).
\]

Now the requested map \(E_{B'} \) is given by composing this homomorphism and the multiplication of the first and second tensorial factors of \(A \otimes_B A \otimes_B A \). It is easily shown that this is a split monomor-
phism by taking a map \(A \otimes_B A \rightarrow A \otimes_B (A/B') \) which is yielded by a natural epimorphism \(A \rightarrow A/B' \), since \(0 = x \otimes 1 \in A \otimes_B (A/B') \) for any \(x \in A \).

Note that we could also show, similarly to this lemma, that a map \((A/B') \otimes_B A \rightarrow A \otimes_B A \) defined by \(x \otimes y \mapsto x \otimes y' - l \otimes xy \) is a split monomorphism of \((B', A)\)-bimodules. And this "the other side version" of tensor products is valid for the following corollaries, too.

Corollary 1. The map \(A \otimes_B (A/B) \rightarrow A \otimes_B (A/E) \) given by \(x \otimes \overline{y} \mapsto x \otimes \overline{y} \) \((x, y \in A)\) is an isomorphism of \((A, B)\)-bimodules.

Proof. Since \(A/B \rightarrow A/E \) is an epimorphism, it is sufficient to show that the given map is injective. But this is an easy consequence by the commutativity of the following diagram where \(\varepsilon_B \) and \(\varepsilon_E \) are monomorphisms defined in the last lemma.

\[
\begin{array}{ccc}
A \otimes_B (A/B) & \rightarrow & A \otimes_B (A/E) \\
\varepsilon_B & & \varepsilon_E \\
A \otimes_B A & \rightleftharpoons & A \otimes_B A
\end{array}
\]

Corollary 2. The sequence of \((A, B)\)-bimodules

\[0 \rightarrow A \otimes_B (A/B) \xrightarrow{\varepsilon_B} A \otimes_B A \xrightarrow{\mu} A \rightarrow 0\]

where \(\mu \) is the multiplication, is split exact.

Proof. This is immediate by the lemma and the well-known fact that \(\text{Ker} \mu = \sum \{x(y \otimes 1 - 1 \otimes y) : x, y \in A\} \).
Theorem 1. The followings are equivalent for any ring extension A of B.

(a) $B = E$

(b) $0 = 1 \otimes x \in A \otimes_B (A/B)$ implies $x \in B$.

(b') $0 = x \otimes 1 \in (A/B) \otimes_B A$ implies $x \in B$.

(c) For every $f \in \text{Hom}(E, A)$ where M is a left B-module,

$$0 = 1 \otimes f : A \otimes_B M \rightarrow A \otimes_B (A/B)$$

implies $f = 0$.

(c') For every $f \in \text{Hom}(M, A)$ where M is a right B-module,

$$0 = f \otimes 1 : M \otimes_B A \rightarrow (A/B) \otimes_B M$$

implies $f = 0$.

Proof. We will only show the equivalence of (a), (b) and (c).

(a)\Rightarrow(b) If $0 = l \otimes x \in A \otimes_B (A/B)$, then, by the lemma, $0 = \varepsilon_B(l \otimes x) = x \otimes 1 - 1 \otimes x \in A \otimes_B A$, that is, $x \otimes 1 = 1 \otimes x$. Thus, assuming (a), we have $x \in E = B$.

(b)\Rightarrow(c) This is clear.

(c)\Rightarrow(a) Let $f : E \rightarrow A/B$ and $g : E \rightarrow A/E$ be the restrictions to E of natural epimorphisms $A \rightarrow A/B$ and $A \rightarrow A/E$ respectively. Clearly, g is a zero map. Consider the following commutative diagram where the vertical map is an isomorphism of Corollary 1.

\[
\begin{array}{ccc}
A & \otimes_B (A/B) & \\
\downarrow & & \\
A \otimes_B (A/E) & \end{array}
\]

Since $1 \otimes g = 0$, it follows easily that $1 \otimes f = 0$. Then, by the assumption, we have $f = 0$, that is, $E \subseteq B$. This implies (a).
In the case A is an H-separable extension of B, we know that $E = V_A(V_A(B))$. So, by this theorem, we have the next proposition.

Proposition Let A be an H-separable extension of B. Then the followings are equivalent.

(a) $B = V_A(V_A(B))$

(b) $A/B \rightarrow A \otimes_B (A/B)$ given by $x \mapsto 1 \otimes x$ is a monomorphism.

(c) $A/B \rightarrow (A/B) \otimes_B A$ given by $x \mapsto x \otimes 1$ is a monomorphism.

It should be noted here that this proposition is essentially to be contained in the work of Kurata and Morimoto (See Theorem 3.12. of [3].).

We are now led to the following theorem.

Theorem 2. If A is an H-separable extension of B such that A/B is flat as a left or right B-module, then $B = V_A(V_A(B))$.

If B is a regular ring, every B-module is flat. Thus the next corollary, which has shown by Sugano in [7], is immediate by this theorem.

Corollary 3. If A is an H-separable extension of a regular ring B, then $B = V_A(V_A(B))$.

REFERENCES

Hokkaido University