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Abstract

We define and study the asymptotic, characteristic and principal direction
fields associated to a self-adjoint operator on a smooth surface M endowed with
a metric g which is singular along a smooth curve on M .

1 Introduction

Let M be a smooth and orientable surface in the Euclidean space R3 and N : M → S2

be its Gauss map. The shape operator Sp = −(dN)p : TpM → TpM , p ∈M , is a self-
adjoint operator and provides information about the local shape of M in R3. It also
determines on M three pairs of foliations which are defined as follows. As TpM inherits
the Euclidean scalar product “.”, the shape operator Sp has real eigenvalues at any
point p on M . These are called the principal curvatures and points where they coincide
are labelled umbilic points. Umbilic points are also points where Sp is a multiple of
the identity map. The eigenvectors of Sp are called the principal directions and their
integral curves are called the lines of principal curvature (they are the solutions of a
binary/quadratic differential equation). The lines of principal curvature form a pair
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Key Words and Phrases. Asymptotic curves, characteristic curves, lines of principal curvature,

self-ajoint operators, singular metrics.
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Figure 1: Generic configurations of the lines of principal curvature at umbilic points.

of orthogonal foliations on M away from umbilic points. Their generic configurations
at an umbilic point were first drawn by Darboux and a rigorous proof was given in
[3, 14]. See Figure 1.

Two tangent directions u,v ∈ TpM are said to be conjugate if Sp(u).v = 0. A
direction u ∈ TpM is said to be asymptotic if it is self-conjugate, i.e., if Sp(u).u =
0. There are two asymptotic directions at each hyperbolic point (these are points
where the Gaussian curvature K = det(Sp) is negative) and their integral curves are
called the asymptotic curves. At an elliptic point (where K > 0) there is a unique
pair of conjugate directions for which the included angle is extremal ([11]). These
directions are called the characteristic directions and their integral curves are called the
characteristic curves. The pairs of foliations determined by the principal, asymptotic
and characteristic directions are related (see [5] and §3.3).

A key observation here is that the concepts of principal, asymptotic and character-
istic foliations on a surface M in R3 are derived from the fact that Sp is a self-adjoint
operator with respect to the Riemannian metric on M . This means, and it is the aim
of this paper, that one can associate these concepts to a self-adjoint operator on a two
dimensional manifold endowed with a metric g which could have varying signature.

We consider in this paper a smooth two dimensional manifold (i.e., a surface) M
with a countable basis. We suppose that M is endowed with a metric g, which is
possibly singular on a smooth curve on M . Suppose given on (M, g) a self-adjoint
operator A, that is, a smooth map TM → TM with the property that its restriction
Ap : TpM → TpM is a linear map satisfying g(Ap(u),v) = g(u, Ap(v)) at any p ∈ M
and for any u,v ∈ TpM . When Ap has real eigenvalues, we call them the A-principal
curvatures and their associated eigenvectors the A-principal directions. The integral
curves of the A-principal directions are labelled the lines of A-principal curvature.

When the metric g is Riemannian, the lines of A-principal curvature have the same
local behaviour as that of the lines of principal curvature of a surface in R3. (This
follows from [22] and is true for the other two pairs of foliations in this paper.) For
instance, their generic local configurations at spacelike umbilic points, which are points
where Ap is a multiple of the identity, are as in Figure 1. However, when the metric g is
Lorentzian, i.e., when g has signature 1 (§3), Ap does not always have real eigenvalues.
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Figure 2: Generic topological configurations of the lines of A-principal curvature at
timelike umbilic points.

The lines of A-principal curvature present interesting behaviour in this case (§3.1).
For instance (Theorem 3.4), at timelike umbilic points, which are points where Ap is
a multiple of the identity map, the lines of A-principal curvature have generically one
of the five configurations in Figure 2.

We can also define the concepts of A-asymptotic and A-characteristic directions on
a Lorentzian surface (§3.2, §3.3). We study in §3 the local behaviour of these foliations
when g is Lorentzian and apply the results to surfaces in the de-Sitter space S3

1 (§3.4).
We show in §4 how to extend the A-foliations (asymptotic, characteristic, principal)
to the singular locus of the metric. We apply the results to closed surfaces in the
Minkowski space R3

1 (§4.4).
The pairs of foliations in this paper are the solution curves of certain binary differ-

ential equations (BDEs). We give a brief review on BDEs in §2. An important aspect
of BDEs which is not included here is the global behaviour of their pairs of foliations
(the study of their structural stability which includes the study of their behaviour
near a periodic orbit). This study is initiated in the pioneering work of Sotomayor
and Gutierrez [20] for the lines of principal curvature on a surface in R3. The global
behaviour of the asymptotic and characteristic curves on a surface in R3 is studied in
[12, 13]. (Similar work on special surfaces in R3 and on surfaces in R4 is also carried
out by Garcia, Gutierrez, Mello, Sotomayor.)

It is worth pointing out that our approach of considering general self-adjoint op-
erators lead in [22] to a new definition of lines of principal curvature on a smooth
surface in R4. In [19] are defined lines of µ-principal curvature. These are the lines of
Sµ-principal curvature, where Sµ is the shape operator along a smooth normal vector
field µ on M . These pairs of foliations depend of course on the choice of µ. The
asymptotic curves are well defined on surfaces in R4. One can recover a self-adjoint
operator A on M from the equation of the asymptotic curves. The lines of A-principal
curvature are then called the lines of curvature of M . It turns out that there exists a
unique normal vector field µ0 on M such that the lines of A-principal curvature are
the lines of Sµ0-principal curvature ([22]). It is shown in [2] that µ0 is in fact the mean
curvature vector of M .
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2 Preliminaries

We review in this section results on Binary Differential Equations that are needed in
the paper and set some notation about surfaces endowed with a self-adjoint operator.

2.1 Binary Differential Equations (of order 2)

The pairs of foliations that we study in this paper are given by Binary Differential
Equations (BDEs). These are equations of the form

a(u, v)dv2 + 2b(u, v)dvdu+ c(u, v)du2 = 0, (1)

where the coefficients a, b, c are smooth functions on some open set U ⊂ R2 (here
smooth means C∞). BDEs determine a pair of transverse foliations away from the
discriminant curve, which is the set of points where the function δ = b2− ac vanishes.
The pair of foliations together with the discriminant curve are called the configuration
of the solutions of the BDE. In all the figures in this paper, we draw one foliation in
continuous line and the other in dashed line. The discriminant curve is drawn in thick
black.

We consider here topological equivalence among BDEs and say that two BDEs
are topologically equivalent if there is a local homeomorphism in the plane taking the
configuration of one equation to the configuration of the other. We describe below
some singularities of BDEs that are of interest in this paper (see [21] for a survey
article and references). We suppose the point of interest to be the origin. There are
two cases to consider depending on whether all the coefficients of the BDE vanish or
not at the origin.

One approach for investigating BDEs with coefficients not all vanishing at the origin
consists of lifting the bi-valued direction field defined in the plane to a single-valued
direction field ξ on the surface N = F−1(0) ⊂ R3, where

F (u, v, p) = a(u, v)p2 + 2b(u, v)p+ c(u, v), p =
dv

du

(we assume here, without loss of generality, that a(0, 0) 6= 0, that is, the direction
du = 0 is not locally a solution of the BDE). If ξ is regular, then the BDE is locally
smoothly equivalent to dy2 − xdx2 = 0 ([1, 10]), i.e., it can be transformed to the
model BDE by a smooth local change of coordinates in the plane and multiplication
by a non-zero function. In this case, the solution curves of the equation form a family
of cusps, with the cusps tracing the discriminant curve.

If ξ has a non-degenerate singularity (saddle/node/focus), then the corresponding
point in the plane is called a folded (non-degenerate elementary) singularity of the
BDE. At folded singularities, and when ξ has non-resonant eigenvalues, the equation
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Figure 3: Folded singularities: saddle (left), node (centre), focus (right).

is locally smoothly equivalent to ([10])

dy2 + (−y + λx2)dx2 = 0, λ 6= 0,
1

16
.

There are three stable topological models at folded singularities: a folded saddle,
a folded node and a folded focus; Figure 3 (see [10] for references). These can be
modelled by taking a fixed value of λ in the above BDE, with λ < 0 for the folded
saddle, 0 < λ < 1

16
for the folded node and 1

16
< λ for the folded focus. The index of

a folded saddle is defined to be −1
2

and that of a folded node or focus to be +1
2
.

The folded singularities are completely determined by the 2-jet of F at the origin.
(The k-jet of a smooth map f at a point p is the Taylor polynomial of degree k of f
at p and is denoted by jkf(p), or simply by jkf .) Following Lemma 2.1 in [6], if we
write

j2F = a0p
2 + 2(b1x+ b2y)p+ (c1x+ c2y + c3x

2 + c4xy + c5y
2),

then the origin is a folded singularity if and only if

c1 = 0, c2 6= 0, λ =
1

4c22
(4a0c3 − b21 − b1c2) 6= 0,

1

16
.

The BDE is then topologically equivalent to dy2 +(−y+λx2)dx2 = 0, with λ as above.
We also require in this paper models for non-stable singularities. Those of interest

here occur when the discriminant function δ has a Morse singularity A±1 . (We say that
a function f has a Morse singularity at the origin if it is R-equivalent to ±(u2 ± v2).
That is, there exists a local diffeomorphism h of the source such that f ◦ h−1(u, v) =
±(u2 + v2) and the singularity is labelled A+

1 , or f ◦ h−1(u, v) = ±(u2 − v2) and
the singularity is labelled A−1 . At an A+

1 -singularity, the set f−1(0) is locally a point
and at an A−1 -singularity it is a node, i.e., a union of two smooth curves intersecting

5



Figure 4: Topological configurations of Morse Type 1 BDEs in the following order
from left to right: A−1 saddle type, A−1 focus type, A+

1 saddle type, A+
1 focus type.

transversally at the origin.) BDEs with discriminant having a Morse singularity are
generically topologically equivalent to

dy2 + (±x2 ± y2)dx2 = 0,

and are labelled Morse Type 1 BDEs ([4]; see Figure 4). The Morse Type 1 singularities
are distinguished by the type of the singularity of the discriminant, A+

1 (isolated point)
or A−1 (node), and by the type of the folded singularities that appear in a generic
deformation (two folded saddles or foci), see [4].

When the coefficients of the BDE all vanish at the origin, the bi-valued field in the
plane is lifted to a single-valued direction field ξ on a surface

N = {(x, y, [α : β]) ∈ R2, 0× RP 1 : aβ2 + 2bαβ + cα2 = 0}.

If we consider the affine chart p = β/α (we also need to consider the chart q = α/β)
and set F (u, v, p) = a(u, v)p2 + 2b(u, v)p + c(u, v), then the lifted direction field is
parallel to the vector field ξ = Fp∂/∂u + pFp∂/∂v − (Fu + pFv)∂/∂p. The whole
exceptional fibre (0, 0)×RP 1 is an integral curve of ξ. The surface N is regular along
the exceptional fibre if and only if the discriminant function δ of the BDE has a Morse
singularity ([7]). If j1(a, b, c) = (a1x+ a2y, b1x+ b2y, c1x+ c2y), then the singularities
of ξ on the exceptional fibre are given by the roots of the cubic

φ(p) = (Fu + pFv)(0, 0, p) = a2p
3 + (2b2 + a1)p

2 + (2b1 + c2)p+ c1.

The eigenvalues of the linear part of ξ at a singularity are −φ′(p) and α1(p) (see [7]
for details), where

α1(p) = 2(a2p
2 + (b2 + a1)p+ b1).

These are non zero if φ has distinct roots and these are distinct from those of α1. If
this is the case, the topological models of the BDE are completely determined by the
singularity type of the discriminant (A+

1 or A−1 ), the number (1 or 3) and the type
(saddle or node) of the singularities of ξ (see [7] for the analytic case and Remark 2 in
[23] for the smooth case). We label such BDEs Morse Type 2 BDEs (MT2). There are
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three generic models of an MT2 BDE when the discriminant has a Morse singularity
of type A+

1 . These are as in Figure 1 where the labels there indicate the number and
type of the singularities of ξ (S for saddle and N for node). There are five generic
models of an MT2 BDE when the discriminant has a Morse singularity of type A−1 .
These are as in Figure 2.

2.2 Surfaces

Let M be a smooth surface endowed with a metric g. We say that a vector v ∈ TpM
is spacelike if g(v,v) > 0, lightlike if g(v,v) = 0 and timelike if g(v,v) < 0. The norm
of a vector v ∈ TpM is defined by ‖v‖ =

√
|g(v,v)|.

Let x : U →M be a local parametrisation of M , where U is an open subset of R2.
The first fundamental form of M at a point p is the quadratic form Ip : TpM → R given
by Ip(v) = g(v,v). If p ∈ x(U) and v = axu + bxv, then Ip(u) = Ea2 + 2Fab + Gb2,
where

E = g(xu,xu), F = g(xu,xv), G = g(xv,xv)

are the coefficients of Ip with respect to the parametrisation x.
Given a self-adjoint operator A : TM → TM , we denote by Ap the restriction of

A to TpM . If v = axu + bxv, then 〈Ap(v),v〉 = la2 + 2mab+ nb2, where

l = g(Ap(xu),xu), m = g(Ap(xu),xv) = g(Ap(xv),xu), n = g(Ap(xv),xv)

are referred to as the coefficients of Ap.

Let

(
a c
b d

)
be the matrix of Ap (which we will still denote by Ap) with respect

to the basis {xu,xv}. Calculating g(Ap(xu),xu), g(Ap(xu),xv) and g(Ap(xv),xv) we
get the following systems of linear equations in a, b and c, d

aE + bF = l cE + dF = m
aF + bG = m cF + dG = n.

(2)

We require some genericity concept in this paper. (We shall impose some genericity
conditions on g when it is singular, see Proposition 4.1.) We denote by S the set of
self adjoint operators on (M, g), which is a subset of smooth maps TM → TM . The
set S is given the induced Whitney C∞-topology. We say that a self-adjoint operator
A is generic if it belongs to a residual subset of S.

3 Pairs of foliations on Lorentzian surfaces

We suppose in this section that the metric g is Lorentzian on M (this includes the case
of a region of a surface where the metric is Lorentzian). Given a local parametrisation
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x of M , we have EG− F 2 6= 0, so we can solve the linear systems (2) to get

Ap =
1

EG− F 2

(
G −F
−F E

)(
l m
m n

)
. (3)

We call

K(p) = det(Ap) =
ln−m2

EG− F 2

the A-Gaussian curvature of M at p. The set of points where this curvature vanishes
is labelled the A-parabolic set.

Because g is Lorentzian, there are two lightlike directions in TpM at any point
p ∈ x(U). These are the solutions of Ip(v) = 0 and yield a pair of smooth direction
fields on x(U). One can show the following (the proof is identical to the Euclidean
case; see for example [8] page 216).

Theorem 3.1 Let (M, g) be a Lorentzian surface. At any point p ∈M , there is a local
parametrisation of a neighbourhood V of p, such that for any p′ ∈ V , the coordinate
curves through p′ are tangent to the lightlike directions. Equivalently, there exist a local
parametrisation x : U → V ⊂M with E = G = 0 in U .

We consider now the three pairs of foliations associated to A.

3.1 Lines of A-principal curvature

The self-adjoint operator Ap does not always have real eigenvalues. When it does,
we denote them by κi, i = 1, 2 and call them the A-principal curvatures. Then,
K(p) = κ1(p)κ2(p). The eigenvectors of Ap are called the A-principal directions and
the integral curves of their associated line fields are called the lines of A-principal
curvature. The equation of the lines of A-principal curvature is analogous to that of a
surface in R3, and is given by

dv2 −dvdu du2

E F G
l m n

= 0,

equivalently, by

(Gm− Fn)dv2 + (Gl − En)dvdu+ (Fl − Em)du2 = 0. (4)

The discriminant function of this equation is

δ(u, v) =
(
(Gl − En)2 − 4(Gm− Fn)(Fl − Em)

)
(u, v).

We label the locus of points where δ(u, v) = 0 the A-Lightlike Principal Locus (LPL).
We have the following, which is a generalisation of a result in [16] for Lorentzian
surfaces in the de Sitter space S3

1 .
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Proposition 3.2 (1) For a generic self-adjoint operator A on a Lorentzian surface
(M, g), the LPL is a curve on M . It can be characterised as the set of points on M
where the two A-principal directions coincide and become a lightlike direction.

(2) The LPL divides the surface into two regions. In one of them there are no
principal directions and in the other there are two distinct principal directions at each
point. In the latter case, the principal directions are orthogonal and one is spacelike
while the other is timelike.

We have an extra information about the LPL.

Proposition 3.3 For a generic self-adjoint operator A on a Lorentzian surface (M, g),
the LPL is a smooth curve except possibly at isolated points where it has Morse sin-
gularities of type A−1

1 (node). The singular points are where Ap is a multiple of the
identity. For this reason, we label them A-timelike umbilic points.

Proof. We take a local parametrisation as in Theorem 3.1. Then, the equation of the
lines of A-principal curvature becomes

ndv2 − ldu2 = 0.

The discriminant function of this equation is δ(u, v) = (ln)(u, v) and its zero set is the
LPL. It is clear that this is a curve when A is a generic self-adjoint operator. Generi-
cally, this curve is smooth unless l(q) = n(q) = 0 at some point q ∈ U . (The curve can
also be singular if l(q) = lu(q) = lv(q), n(q) 6= 0 or n(q) = nu(q) = nv(q), l(q) 6= 0, but
this is not generic as we have three equations with two unknowns.) The singularities
of the LPL are in general isolated points on this set. At such points the LPL has
generically a Morse singularity of type A−1 .

The matrix of Ap, with p = x(q), with respect to the above parametrisation is

− 1

F 2

(
0 −F
−F 0

)(
l m
m n

)
.

It is a multiple of the identity at q if and only if l(q) = n(q) = 0. 2

We seek the local topological configurations of the lines of A-principal curvature.
Away from the LPL, we either have locally a pair of transverse foliations or no lines
of A-principal curvature. We analyse the configurations at points on the LPL of a
generic A. (See §2.1 for terminology on BDEs.)

Theorem 3.4 (1) At regular points of the LPL, the lines of A-principal curvature
form a family of cusps with the cusps tracing the LPL, except maybe at some isolated
points on this curve. At such points, the equation of the lines of A-principal curvature
has generically a folded singularity of type saddle, node or focus (Figure 3).

(2) At a timelike umbilic point, the BDE of the lines of A-principal curvature has
generically a Morse Type 2 singularity of type A−1 . All the five generic cases of such
singularities can occur (Figure 2).
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Proof. We take a local parametrisation as in Theorem 3.1, so that the BDE of the
lines of A-principal curvature is given by ndv2 − ldu2 = 0.

(1) At a regular point p0 = x(q0) of the LPL, we have either l(q0) or n(q0) non
zero. Assume that n(q0) 6= 0 and write the equation at q0 in the form

dv2 − l

n
du2 = 0.

We can now use the criteria for recognition of the singularities of a BDE (see
§2.1). The equation is locally smoothly equivalent to dv2 − udu2 = 0 if and only if
l(q0) = 0 and ∂l

∂u
(q0) 6= 0. In this case the configuration is a family of cusps. When

l(q0) = ∂l
∂u

(q0) = 0, the BDE has a folded saddle/node/focus singularity if and only if

∂l

∂v
(q0) 6= 0 and λ =

n(q0)
∂2l
∂u2 (q0)

2 ∂l
∂v

(q0)
6= 0,

1

16
.

It is clear that the three types can occur.
(2) If p0 is a timelike umbilic point, l(q0) = n(q0) = 0. Then, the coefficients of the

BDE vanish at q0. We proceed following §2.1. As the LPL has a Morse singularity of
type A−1 , the equation has generically a Morse Type 2 singularity of type A−1 (§2.1). We
assume that q0 is the origin. If we write j1l = l1u+ l2v and j1n = n1u+ n2v, then the
singularities of the lifted field ξ are at the roots of the cubic φ = n2p

3 +n1p
2− l2p− l1.

We need φ to have simple roots. The eigenvalues of the linear part of ξ at the roots of
φ are −φ′(p) and α1(p), where α1(p) = 2p(n2p+n1) (see §2.1). We also need α1 not to
vanish at the roots of φ. The above conditions are satisfied at timelike umbilic points
of generic self-adjoint operators, so ξ has either saddle or node singularities at the
roots of φ. It is clear that we can have all the five possible generic cases in Figure 2.

2

3.2 A-Asymptotic curves

We shall say that a direction v ∈ TpM is A-asymptotic if g(Ap(v),v) = 0. It follows
that the A-asymptotic curves (whose tangent at all points are A-asymptotic directions)
are solutions of the BDE

ndv2 + 2mdudv + ldu2 = 0. (5)

The discriminant curve of equation (5) is the set of points where m2−nl vanishes,
which is the A-parabolic set. As EG − F 2 < 0, there are two distinct A-asymptotic
directions in the region K > 0 and no A-asymptotic directions in the region K < 0
(the opposite happens if g is Riemannian). On the A-parabolic set there is a unique
double A-asymptotic direction. The A-parabolic set of a generic A, when not empty,
is a smooth curve. We consider now generic self-adjoint operators.

10



Proposition 3.5 (1) An A-asymptotic direction at a point p on a Lorentzian surface
(M, g) is also an A-principal direction at p if and only if p is an A-parabolic point or
a point on the LPL. On the LPL, the A-asymptotic direction is lightlike.

(2) The A-parabolic set and the LPL are tangential at their points of intersection.
On one side of such points the unique A-asymptotic direction on the A-parabolic set is
spacelike and on the other side it is timelike.

Proof. We take a local parametrisation as in Theorem 3.1. Then, the LPL is given
by nl = 0 and the A-parabolic set by m2 − nl = 0.

(1) The BDE of the lines of A-principal curvature is given by ndv2 − ldu2 = 0.
Subtracting this from equation (5) yields du(ldu + mdv) = 0. The lightlike direction
du = 0 is both A-asymptotic and A-principal if and only if n(q) = 0, if and only if
p = x(q) is on the LPL. The direction ldu + mdv = 0 is both A-asymptotic and
A-principal if and only if (m2 − nl)(q) = 0, if and only if p is an A-parabolic point.

(2) The singular points of the LPL are generically not on the A-parabolic curve
(otherwise n = l = m = 0). Suppose, without loss of generality, that n(q) = 0 and
l(q) 6= 0 at the point in consideration. Then, the LPL is given locally by n = 0. The
point p = x(q) is also an A-parabolic point if and only if m(q) = 0. The gradient of
m2 − nl at q is (−nul,−nvl)(q) and is parallel to the gradient of n at q. Therefore,
the two curves are tangential at their intersection point. Near p on the A-parabolic
set, the A-asymptotic direction is along (m,−n) in the parameter space and along
mxu − nxv on the surface. We have g(mxu − nxv,mxu − nxv) = −2nmF , and this
changes sign at q for a generic A. 2

Theorem 3.6 On the A-parabolic curve, the A-asymptotic curves form a family of
cusps with the cusps tracing the A-parabolic curve, except may be at some isolated
points on this curve. At such points, the equation of the A-asymptotic curves has
generically a folded singularity of type saddle, node or focus (Figure 3).

The proof is similar to that of Theorem 3.4(1) and is omitted.

Remark 3.7 The point of tangency of the A-parabolic curve with the LPL is not, in
general, a folded singularity of the A-asymptotic curves BDE.

3.3 A-Characteristic curves

We use the results in [5] to define an A-characteristic direction. A BDE (1) can
be viewed as a quadratic form and represented at each point in U by the point
(a(u, v) : 2b(u, v) : c(u, v)) in the projective plane. Let Γ denote the conic of de-
generate quadratic forms. To a point in the projective plane is associated a unique
polar line with respect to Γ, and vice-versa. A triple of points is called a self-polar
triangle if the polar line of any point of the triple contains the remaining two points.

11



We first observe that the A-principal curves BDE belongs to the polar line of the
A-asymptotic curves BDE. In fact, it is the only BDE on this polar line whose solu-
tions, when they exist, are orthogonal (this follows in the same way as the proof of
Theorem 2.2 in [22]). We call the intersection of the polar lines of the A-principal
and the A-asymptotic curves BDEs the A-characteristic curves BDE (so, the three
equations represent at each point on M a self-polar triangle in the projective plane).
The A-characteristic curves BDE is given as the jacobian of the A-asymptotic and
A-principal curves BDE and has the following expression

(2m(mG−nF )−n(lG−nE))dv2 +2(m(lG+nE)−2lnF )dvdu+(l(lG−nE)−2m(lF −mE))du2 = 0.

If we take a parametrisation of the surface as in Theorem 3.1, then the above BDE
becomes

mndv2 + 2lndvdu+mldu2 = 0. (6)

The discriminant curve of this equation is ln(ln − m2) = 0, which is the union
of the A-parabolic set and the LPL. We analyse now the configurations of the A-
characteristic curves of a generic self-adjoint operator A.

Theorem 3.8 (1) On the A-parabolic curve and away from its points of tangency with
the LPL, the A-characteristic curves form a family of cusps with the cusps tracing the
A-parabolic curve, except maybe at some isolated points on this curve. At such points,
the BDE of the A-characteristic curves has generically a folded singularity of type
saddle, node or focus (Figure 3). The folded singularities of the A-characteristic and
A-asymptotic BDEs coincide and have opposite indices.

(2) At a point of tangency of the A-parabolic curve and the LPL, the A-characteristic
BDE is topologically equivalent to

vdv2 + 2udvdu+ v3du2 = 0 Figure 5 C, or to
vdv2 − 2udvdu+ v3du2 = 0 Figure 5 D.

(3) At a A-timelike umbilic point, the characteristic BDE has generically a Morse Type
2 singularity of type A−1 . All the generic five topological models of such singularities
can occur (Figure 2).

Proof. (1) We follow the same setting as in the proof of Theorem 3.6 and consider
equation (6) of the A-characteristic curves. We take q0 to be the origin and suppose
that l(q0)n(q0) 6= 0 and (m2 − ln)(q0) = 0. We make the change of variable v →
v − m0/n0u in order to transform the 2-jet of the BDE to the form given in §2.1.
We can then read the conditions for the equation to a have a folded singularity. We
do the same for the equation of the A-asymptotic curves BDE. We find that, at the
folded singularity, the A-characteristic BDE is topologically equivalent to dy2 + (−y+
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λx2)dx2 = 0 and the A-asymptotic BDE to dy2 +(−y−λx2)dx2 = 0, where λ depends
on the 2-jets of l,m, n. It is clear that the two BDEs have opposite indices at their
folded singularities.

(2) The point q0 is on both the LPL and the A-parabolic set if and only if l(q0) =
m(q0) = 0 or m(q0) = n(q0) = 0. We can assume that l(q0) = m(q0) = 0 and n(q0) 6= 0,
otherwise the point p0 is a timelike umbilic point. Then, the discriminant of the BDE
of the A-characteristic BDE has generically an A−3 -singularity (i.e., it is R-equivalent
to ±(u2−v4)) . Let (a, b, c) = (mn, nl,ml) denote the coefficients of the BDE (6). We
can make a change of coordinates in the source and multiply by non-zero constant so
that j1a = αu+ v, j1b = ±u and j1c = 0, for some α depending on the coefficients of
the 1-jets of l,m, n. The result follows by applying Theorem 3.9 below.

(3) If p0 = x(q0) is a timelike umbilic point, l(q0) = n(q0) = 0, and generically
m(q0) 6= 0. Then, the coefficients of the BDE (6) vanish at q0. As the LPL, which
is locally the discriminant of the equation, has a Morse singularity of type A−1 , the
equation has generically a Morse Type 2 singularity of type A−1 . We assume again
that q0 is the origin. The 1-jet of the BDE is equivalent to j1ndv2 + j1ldu2. Following
the notation in §2.1, the singularities of the lifted field ξ are the roots of the cubic
φ = n2p

3 +n1p
2 + l2p+ l1. The eigenvalues of the linear part of ξ at the roots of φ are

−φ′(p) and α1(p), where α1(p) = 2p(n2p + n1). We need φ to have simple roots and
α1 not to vanish at these roots, which is the case at timelike umbilic points of generic
self-adjoint operators. It is clear that we can have all the five possible generic cases in
Figure 2. 2

In the proof of Theorem 3.8, we require the topological models of BDEs with 1-
jet (αu + v,±u, 0). The following result provide these models. The proof uses the
blowing-up technique in [14, 20, 23, 24] and is omitted.

Theorem 3.9 A BDE with 1-jet equivalent to (αu+v,±u, 0) and with a discriminant
with an A±3 -singularity is generically topologically equivalent to one of the following
cases.

(i) Discriminant has an A−3 -singularity:

vdv2 + 2udvdu+ v3du2 = 0 Figure 5 A, or to
vdv2 − 2udvdu+ v3du2 = 0 Figure 5 B.

(ii) Discriminant has an A+
3 -singularity

vdv2 + 2udvdu− v3du2 = 0 Figure 5 C, or to
vdv2 − 2udvdu− v3du2 = 0 Figure 5 D.
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A B C D

Figure 5: Topological models of BDEs with 1-jets equivalent to (αu+v, εu, 0), ε = ±1,
and with discriminant with an A3-singularity.

3.4 Surfaces in the de Sitter space S3
1

The Minkowski space (Rn+1
1 , 〈, 〉) is the vector space Rn+1 endowed with the metric

g = 〈, 〉 of signature 1, given by 〈x,y〉 = −x0y0 +
∑n

i=1 xiyi, where x = (x0, . . . , xn)
and y = (y0, . . . , yn) in Rn+1

1 . (We will restrict to the case n = 3 in this subsection
and consider the case n = 2 in §4.4.)

Given a vector v ∈ Rn+1
1 and a real number c, the hyperplane with pseudo normal

v is defined by
HP (v, c) = {x ∈ Rn+1

1 | 〈x,v〉 = c}.

We say that HP (v, c) is a spacelike, timelike or lightlike hyperplane if v is timelike,
spacelike or lightlike respectively. We also say that a two dimensional vector space
is spacelike if all its vectors are spacelike, timelike if it has a spacelike and a timelike
vector and lightlike otherwise.

The de Sitter space is the pseudo-sphere Sn1 = {x ∈ Rn+1
1 | 〈x,x〉 = 1}.

We consider timelike embedded surfaces M in S3
1 (so we take n = 3 above).

These are embeddings with the property that the restriction of the metric 〈, 〉 to M is
Lorentzian. Let x : U ⊂ R2 → S3

1 be a local parametrisation of M . Since 〈x,x〉 ≡ 1,
we have 〈xu,x〉 ≡ 0 and 〈xv,x〉 ≡ 0. We define the spacelike unit normal vector e(q)
to M at p = x(q) by

e(q) =
x(q) ∧ xu(q) ∧ xv(q)

‖x(q) ∧ xu(q) ∧ xv(q)‖
,

where ∧ denotes the wedge product in R4
1. The de Sitter Gauss map of M (of x(U)

to be precise) is the map
E : U → S3

1

q 7→ e(q)

(see [15]). For any p = x(q) ∈ M and v ∈ TpM, one can show that DvE(q) ∈ TpM,
where Dv denotes the covariant derivative with respect to the tangent vector v. One
can also show that Ap(v) = −DvE(q) is a self-adjoint operator, called the de Sitter
shape operator. We shall refer to the foliations associated to Ap as the de Sitter
foliations.
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To apply the results in this section to the de Sitter shape operator, we require a
modification of the notion of genericity. We consider the space of timelike embeddings
of a surface M into S3

1 , endowed with the Whitney C∞-topology. We say that a prop-
erty is generic if it holds for a residual set of timelike embeddings of the surface. We
can now apply the results in §3.1, 3.2, 3.3 to define and to obtain the local configura-
tions of the de Sitter lines of principal curvature, asymptotic and characteristic curves
(substituting in the statements “generic self-adjoint operator” with “generic timelike
embedding”).

Remark 3.10 Let C(M,S3
1) denote the space of timelike embeddings of an orientable

smooth surface M in the de Sitter space, endowed with the Whitney C∞-topology. It
follows by Thom’s transversality theorem that the set of embeddings with the proper-
ties (a)-(f) below form a residual subset of C(M,S3

1).
(a) The de Sitter parabolic set, when not empty, is a smooth curve.
(b) The LPL, when not empty, is a smooth curve except maybe at isolated points

points where it has Morse singularities of type A−1 .
(c) The de Sitter parabolic set and the LPL have ordinary tangency at their points

of intersection.
(d) The local singularities of the BDE of the lines of de Sitter principal curvature

are those described in Theorem 3.4.
(e) The local singularities of the BDE of the de Sitter asymptotic curves are those

described in Theorem 3.6.
(f) The local singularities of the BDE of the de Sitter characteristic curves are

those described in Theorem 3.8.

One can always construct a patch of a timelike surface in S1
3 with one of the pairs

of foliations described in this paper having one of its possible stable local singularities.
In the following example, we find explicit expressions for the above foliations on a
special surface. Consider the timelike surface M given by x : R2 → S3

1 with

x(u, v) =
1√
2

(sinh(u), cosh(u), cos(v), sin(v)).

We have xu = 1√
2
(cosh(u), sinh(u), 0, 0) and xv = 1√

2
(0, 0,− sin(v), cos(v)), so the

coefficients of the first fundamental form are given by

E = −1

2
, F = 0, G =

1

2
.

The de Sitter Gauss map is given by

e(u, v) =
1√
2

(sinh(u), cosh(u),− cos(v),− sin(v)).
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Therefore the coefficients of the second fundamental form are given by

l =
1

2
, m = 0, n =

1

2
.

It follows that the BDEs for the pairs of foliations described in this paper are as follows.

The lines of de Sitter principal curvature: dvdu = 0,
The de Sitter asymptotic curves: dv2 + du2 = 0,
The de Sitter characteristic curves: dv2 − du2 = 0.

Therefore the lines of de Sitter principal curvature are given u = constant and v =
constant; there are no de Sitter asymptotic curves, and the de Sitter characteristic
curves are given by v ± u = constant.

Remark 3.11 The de Sitter principal directions can be detected via singularity the-
ory. It is shown in [16] that, away from the LPL, the folding map of the surface with
respect to a hyperplane has a degenerate singularity if and only if the normal to the
hyperplane is parallel to a de Sitter principal direction. The LPL and the folded
singularities of the lines of de Sitter principal curvature can also be detected via the
singularities of projections along lightlike geodesics [17].

For the de Sitter asymptotic directions, it is shown in [17] that a projection along
parallel geodesics to an orthogonal quadric has a singularity of type cusp or worse at p
if and only if the tangent direction to the geodesic at p is along a de Sitter asymptotic
direction.

4 Surfaces with degenerate metrics

Let (M, g) be a smooth surface endowed with a singular metric. (For example, the
restriction of the metric g in the Minkowski space R3

1 to any closed smooth surface is
degenerate at some points on the surface.) We assume that the Locus of Degeneracy
(LD) of the metric is a smooth curve and splits the surface locally into regions where
the metric is Riemannian on one side of the LD and Lorentzian on the other side.

The lightlike directions, whose integral curves we call here the lightlike curves, are
given by

Gdv2 + 2Fdvdu+ Edu2 = 0.

The discriminant curve of the above BDE is the LD. The unique lightlike direction on
the LD is in general transverse to the LD but can be tangent to it at isolated points.
We apply the results in §2.1 to obtain the following information.

Proposition 4.1 For a residual set of singular metrics on M , the lightlike curves
form a family of cusps along the LD, except maybe at some isolated points on this
curve where they have a folded singularity of type saddle, node or focus (Figure 3).

16



We suppose from now on that the singular metric is generic, i.e., the LD is a smooth
curve and the lightlike curves have isolated folded saddle, node or focus singularities.
The following result follows using standard techniques, so the proof is omitted.

Theorem 4.2 There is a local parametrisation of M at p ∈ LD, such that the set of
lightlike directions in TpM is given by R.xu, i.e., E = F = 0 on the LD.

Let A be a self-adjoint operator on M and denote by l,m, n its coefficients with
respect to a local parametrisation x (see §2.2).

Theorem 4.3 For a parametrisation as in Theorem 4.2, l = 0 and m = 0 on the LD.
Consequently, the unique lightlike direction at p on the LD is an eigenvector at p of
any self-adjoint operator on M .

Proof. We take a local parametrisation as in Theorem 4.2. Then, g(xu,v) = 0 at
any point p on the LD and for any v ∈ TpM . In particular, l = g(xu, Ap(xu)) = 0
and m = g(xu, Ap(xv)) = g(Ap(xu),xv) = 0. Consequently, g(v, Ap(xu)) = 0, for any
v ∈ TpM . Therefore, Ap(xu) is a lightlike direction. As the set of lightlike directions
in TpM is 1-dimensional when p ∈ LD, we have Ap(xu) = λxu, for some scalar λ. 2

We show below how to extend the lines of A-principal curvature, the A-asymptotic
and A-characteristic curves across the LD and study the local behaviour of the resulting
foliations in a neighbourhood of a point on the LD.

4.1 Lines of A-principal curvature

On the LD, we have EG−F 2 = 0, so we cannot solve the systems (2). It follows from
Theorem 4.3 that b = 0 and d = n

G
. However, we cannot express a, c in terms of the

coefficients E,F,G, l,m, n. We proceed as follows, and take a local parametrisation
as in Theorem 4.2. On the LD, which we assume to be a smooth curve, we have
E = F = l = m = 0. Therefore, there exists a smooth function λ such that E = λẼ,
F = λF̃ , l = λl̃ and m = λm̃, with λ = 0 on the LD. As the LD, which is now given
by λ(λF̃ 2 − ẼG) = 0, is assumed to be a smooth curve, ẼG does not vanish on it.
Then, we can rewrite the systems of equations (2) as follows

aẼ + bF̃ = l̃ cẼ + dF̃ = m̃

aλF̃ + bG = λm̃ cλF̃ + dG = n.
(7)

This yield the following matrix of Ap, with respect to the chosen parametrisation,

Ap =
1

ẼG− λF̃ 2

(
G −F̃
−λF̃ Ẽ

)(
l̃ m̃
λm̃ n

)
.
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The equation of the eigenvectors of the above matrix (A-lines of curvature) becomes

λ
(

(Gm̃− F̃ n)dv2 + (Gl̃ − Ẽn)dvdu+ λ(F̃ l̃ − Ẽm̃)du2
)

= 0.

This means that the BDE has the LD as a line of singularities. Dividing by λ we get

(Gm̃− F̃ n)dv2 + (Gl̃ − Ẽn)dvdu+ λ(F̃ l̃ − Ẽm̃)du2 = 0. (8)

Observe that equation (8) can also be obtained by direct substitutions in (4). The
discriminant curve of (8) is (Gl̃ − Ẽn)2 − 4λ(F̃ l̃ − Ẽm̃)(Gm̃− F̃ n) = 0, which is the
LPL. When λ = 0 and Gl̃ − Ẽn 6= 0 the equation determines two directions on the
LD, one of which is the unique lightlike direction. When λ = Gl̃ − Ẽn = 0, the LPL
intersects the LD. The two curves have (generically) ordinary tangency at their points
of intersection. At such points the unique direction determined by (8) is lightlike and is
tangent to the LD. Therefore, these points are the folded singularities of the lightlike
curves.

Theorem 4.4 Let g be a generic singular metric on M and A a self-adjoint operator
on (M, g). The lines of A-principal curvature can be extended to the LD where the
tangent to one of the foliation is lightlike. For a generic A, the extended pair of
foliation have folded saddle, node or focus singularities on the LD, and these occur at
exactly the folded singularities of the lightlike curves.

4.2 A-Asymptotic curves

We take a parametrisation as in Theorem 4.2, so that l = m = 0 on the LD (Theorem
4.3). With notation as in §4.1, the equation of the A-asymptotic curves becomes

ndv2 + 2λm̃dudv + λl̃du2 = 0, (9)

and its discriminant curve, which is the A-parabolic set, is given by λ(m̃2 − l̃n) = 0.

Theorem 4.5 Let g be a generic singular metric on M and A a self-adjoint operator
on (M, g).

(1) The LD is a component of the A-parabolic set. For a generic A and at regular
points on the A-parabolic set, the A-asymptotic curves form a family of cusps except at
the folded singularities of the lightlike curves where they have the folded singularities
in Figure 3.

(2) At the singular points of the A-parabolic set on the LD, the BDE (9) has
generically either a Morse Type 1 A−1 -singularity or a Morse Type 2 A−1 - singularity.
The first two (resp. all five) configurations in Figure 4 (resp. Figure 2) can occur.
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Proof. (1) The discriminant curve of (9) is λ(l̃n− λm̃2) = 0. On the LD (λ = 0), the
unique A-asymptotic direction is lightlike. We then apply the results in §2.1.

(2) For a generic A, the A-parabolic set is singular when (i) λ = l̃ = 0 or (ii)
λ = n = 0. We assume the singular point to be the origin and write j1λ = λ1u+ λ2v,
j1m = m0j

1λ, j1n = n0 + n1u+ n2v and j1l̃ = l̃0 + l̃1u+ l̃2v.
In case (i) the 2-jet of (9) is equivalent to dv2−(λ1

n2
0
(m2

0λ1− l̃1n0)u
2+Auv+Bv2)du2,

where A andB depend on the coefficients of the of the 1-jets of λ, l̃, n andm0. The BDE
has a Morse Type 1 (A−1 ) singularity and the type (saddle, resp. focus) is determined
by the sign of the coefficient of u2du2 (negative, resp. positive); see [4] and the first
two figures in Figure 4.

In case (ii) all the coefficients of (9) vanish at the origin. The 1-jet of the coefficients
of (9) is (n1u + n2v,m0(λ1u + λ2v), l0(λ1u + λ2v)), so the singularity is in general a
Morse Type 2 (A−1 ), and all the five cases in Figure 2 can occur (see 2.1). 2

4.3 A-Characteristic curves

We proceed as for the A-asymptotic BDE at points on the LD. With notation as in
§4.1, the BDE of the A-characteristic curves becomes

(2λm̃(m̃G− nF̃ )− n(l̃G− nẼ))dv2 +

2λ(m̃(l̃G+ nẼ)− 2nl̃F̃ )dvdu+ λ(l̃(l̃G− nẼ)− 2λm̃(l̃F̃ − m̃Ẽ))du2 = 0 (10)

Theorem 4.6 Let g be a generic singular metric on M and A a self-adjoint operator
on (M, g).

(1) The LD is a component of the discriminant curve of the A-characteristic curves
BDE. For a generic A, on the LD and away from the singular points of the discrimi-
nant curve, the A-characteristic curves form a family of cusps.

(2) At the singular points of the A-parabolic set, the BDE of the A-characteristic
curves of a generic A have either a Morse Type 1 (A−1 ) or Morse Type 2 (A−1 )- sin-
gularity. The possible two (resp. five) configurations in Figure 4 (resp. Figure 2) can
occur.

(3) At the folded singularities of the lightlike curves the discriminant of the A-
characteristic curves BDE of a generic A has an A−3 -singularity (formed by the tan-
gential curves LPL and the LD). The configurations there are topologically equivalent
to the Morse Type 2 (A−1 ) singularities in Figure 2.

Proof. For (1) and (2) we proceed as for Theorem 4.5. For (3), the coefficients of the
BDE (10) do not all vanish at the folded singularities of the lightlike curves. The 2-jet
of the BDE (10) is equivalent, by smooth changes of coordinates in the parameter space
and multiplication by non-zero functions, to dv2±u2du2. One can show, following the
methods highlighted in [21], that the BDE (10) is generically topologically equivalent
to dv2 + (±u2 + v4)du2 = 0. The solution curves of these BDEs are topologically
equivalent to those of the Morse Type 1 (A−1 )-singularities in Figure 2. 2
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4.4 Surfaces in R3
1

We consider smooth surfaces M in the Minkowski 3-space space (R3
1, 〈, 〉) (see §3.4).

Let x : U ⊂ R2 → R3
1 be a local parametrisation of M . Pei [18] defined an RP 2-valued

Gauss map on M . In x(U), this is the map PN : x(U) → RP 2 which associates
to p the projectivisation of the vector xu × xv. (As xu × xv is lightlike on the LD,
the usual Gauss map xu × xv/||xu × xv|| is not defined on the LD.) Away from
the LD, the RP 2-valued Gauss map can be identified with the de Sitter Gauss map
x(U)→ S2

1 on the Riemannian part of the surface and with the hyperbolic Gauss map
x(U)→ H2

+(−1) on its Lorentzian part. Both maps are given by xu×xv/||xu×xv||.
Away from the LD, the map Ap(v) = −Dv(PN)(q) is a self-adjoint operator on

x(U) \ LD. However, this map does not extend to a self-adjoint operator on M (see
Remark 4.7). Therefore, we cannot use the results in §4.1, §4.2 and §4.3 to extend
to the LD the pairs of foliations associated to this self-adjoint-operator. (We denote
such pairs by PN -pairs.) We proceed as follows.

We consider the de Sitter and hyperbolic Gauss maps N = xu × xv/||xu × xv||
on x(U) \ LD and denote as before l = −〈Nu,xu〉 = 〈N,xuu〉, m = −〈Nu,xv〉 =
〈N,xuv〉, n = −〈Nv,xv〉 = 〈N,xvv〉. As the equations of the PN -asymptotic, PN -
characteristic and PN -principal curves are homogeneous in l,m, n, we can multiply
these coefficients by ||xu × xv|| and substitute them by

l̄ = 〈xu × xv,xuu〉, m̄ = 〈xu × xv,xuv〉, n̄ = 〈xu × xv,xvv〉.

This substitution does not alter the PN -pairs of foliations on x(U) \ LD. The new
equations are defined on the LD and define the same pairs of foliations associated to
the de Sitter (resp. hyperbolic) Gauss map on the Riemannian (resp. Lorentzian) part
of x(U). The extended PN -principal curves are given by

(Gm̄− Fn̄)dv2 + (Gl̄ − En̄)dudv + (F l̄ − Em̄)du2 = 0.

The coefficient of du2 vanishes on the LD if we take a local parametrisation as in
Theorem 4.2. Therefore, one of the PN -principal directions on the LD is the double
lightlike direction. The LPL meets tangentially the LD at points where l̄ = 0. On the
LD, we have xu × xv = µxu for some smooth nowhere vanishing function µ. Then,
l̄ = 0 implies 〈xu,xuu〉 = 0, that is Eu = 0. This means that the points of tangency of
the LPL with the LD are exactly the folded singular points of the lightlike curves on
M (compare with Theorem 4.4). At such points, the lines of PN -principal curvature
have generically folded singularities of type saddle, node or focus.

The PN -asymptotic and PN -characteristic curves also extend to the LD using the
new coefficients l̄, m̄, n̄.

Remark 4.7 The parabolic set m̄2− l̄n̄ = 0 is not, in general, part of the LD (compare
Theorem 4.5). This shows that the extended PN-pairs of foliations on M do not, in
general, come from a self-adjoint operator on M .
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Suppose that extended PN -pairs come from a self-adjoint operator A on M with
matrix [Ap] with respect to the basis {xu,xv}. Then, [Ap] is, up to multiplication by

a non-zero function, in the form 1
EG−F 2

(
G −F
−F E

)(
l̄ m̄
m̄ n̄

)
. Suppose that the

degenerate lightlike direction on the LD is xu, so the LD is given by E = F = 0. If
we write E = λẼ and F = λF̃ , where λ = 0 gives the LD, then the coefficients of the
matrix [Ap] extend smoothly to the LD if and only if l̄ = m̄ = 0 on the LD, that is,

if and only if l̄ = λ̄l̄ and m̄ = λ ¯̄m for some smooth functions ¯̄l and ¯̄m.
On the LD, xu × xv = µxu, for some smooth nowhere vanishing function µ, so

l̄ = 1
2
µEu and m̄ = 1

2
µEv on the LD. It follows that Eu = Ev = 0 on the LD, so

E = λ2 ˜̃E for some smooth function ˜̃E. Then, the discriminant curve (LD) of the

lightlike curves is given by λ2( ˜̃EG − F̃ 2) = 0. If ˜̃EG − F̃ 2 6= 0, x(U) \ LD is either
Riemannian or Lorentzian so we do not have a mixed metric structure on x(U) \LD.

We consider now the following example. Let S2 = {(x0, x1, x2) ∈ R3
1|x2

0 + x2
1 +

x2
2 = 1} be the “Euclidean sphere” in R3

1. A normal vector to S2 at (x0, x1, x2) is
η = (−x0, x1, x2). This is lightlike if and only if x2

0 = 1
2

and x2
1 + x2

2 = 1
2
. Therefore,

the LD is the union of two circles. The tangent spaces at (±1, 0, 0) are spacelike and
the tangent space at (0, 1, 0) is timelike, so the LD separates the sphere into three
regions, the “middle”is Lorentzian and the top and bottom parts are Riemannian
(think of the x0-axis as the vertical axis in R3

1). We seek the extended PN -pairs of
foliations on S2. Consider the parametrisation x : U = (0, 2π)× (0, π)→ S2 given by

x(u, v) = (cos v, cosu sin v, sinu sin v),

which covers the sphere minus a semi-circle. Then, E = sin2 v, F = 0, G = cos2 v −
sin2 v. The coefficients l̄, m̄, n̄ are given, up to a multiple of− sin v, by l̄ = − sin2 v, m̄ =
0, n̄ = −1. It follows that the PN -lines of curvature are given by dudv = 0, i.e., they
are the meridians and parallels in x(U). Both components of the LD (circles) are
lines of PN -principal curvature and the lightlike PN -principal direction is transverse
to them. We analyse the configuration at the poles (±1, 0, 0) using the parametrisation

y(u, v) = (sinu sin v, cos v, cosu sin v),

with (u, v) ∈ (0, 2π)×(0, π). We get E = sin2 v(− cos2 u+sin2 u), F = −1
2

sin 2u sin 2v,
G = cos2 v(cos2 u− sin2 u) + sin2 v. The coefficients l̄, m̄, n̄ are given, up to a multiple
of − sin v by, l̄ = − sin2 v, m̄ = 0, n̄ = −1. The discriminant curve of the lines of
PN -principal curvature consists of the poles (±1, 0, 0), which are spacelike umbilic
points. Thus, S2 has two spacelike umbilic points.

There are no PN -asymptotic curves on the sphere.
The equation for the PN -characteristic curves with respect to the parametrisation

x is given by dv2−sin2 vdu2 = 0, which factorises into two ODEs with smooth solutions
in U . The PN -characteristic curves are singular at the poles (±1, 0, 0).
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The following result follows by applying the Poincaré-Hopf Theorem to one of the
extended PN -principal direction field on M .

Theorem 4.8 Let M be a smooth closed surface in R3
1 homeomorphic to the Euclidean

sphere S2. Suppose that the LD is a disjoint union of simple closed curves and that
the lightlike direction is transverse to it. Then, M has at least two spacelike umbilic
points (of the RP 2-valued Gauss map).

References

[1] V. I. Arnold, Geometrical methods in the theory of ordinary differential equations.
Springer, Berlin, 1983.

[2] P. Bayard and F. Sanchez-Bringas, Geometric invariants and principal configura-
tions on spacelike surfaces immersed in R3

1. Preprint, 2009.

[3] J. W. Bruce and D. Fidal, On binary differential equations and umbilics. Proc.
Royal Soc. Edinburgh, 111A (1989), 147–168.

[4] J. W. Bruce, G. J. Fletcher and F. Tari, Bifurcations of implicit differential equa-
tions. Proc. Royal Soc. Edinburgh 130A (2000), 485–506.

[5] J. W. Bruce and F. Tari, Dupin indicatrices and families of curve congruences.
Trans. Amer. Math. Soc. 357 (2005), 267–285.

[6] J. W. Bruce and F. Tari, Duality and implicit differential equations. Nonlinearity
13 (2000), 791–812.

[7] J. W. Bruce and F. Tari, On binary differential equations. Nonlinearity 8 (1995),
255–271.

[8] M. do Carmo, Geometria diferential de curvas e superf́ıcies. Textos Universitários,
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