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SUMMARY  The aim of this study was to clarify the morphological characteristics of 

cranio-maxillary deviations in BALB/c-bm/bm mice with a spontaneous malocclusion (incisal 

transverse crossbite) using three-dimensional (3D) morphological measurements.  

Sixty female mice aged 13 and 25 weeks were divided into the following groups: control 

(BALB/c-+/+ mice, n = 20), Norm (BALB/c-bm/bm mice with a normal occlusion, n = 20), 

and Mal (BALB/c-bm/bm mice with a malocclusion, n = 20). Various points in the skull were 

selected and the distances between two points were measured using images of 3D 

micro-computed tomography (CT).  

At both ages, the lengths of almost all measurements in the Norm and Mal groups were 

significantly shorter than those in the control group. Comparison between the shifted and 

non-shifted sides in the Mal group showed that significant lateral deviation at the maxilla and 

nasal bone had occurred. Statistically significant differences in measurement values among 

the three groups were evaluated by one-way analysis of variance (ANOVA) with a probability 

level of P <0.05 considered statistically significant. 

Using 3D micro-CT images, the results of this study quantitatively showed that the 

cranio-maxillary complex of BALB/c-bm/bm mice is significantly smaller than that of 

BALB/c-+/+ mice and that BALB/c-bm/bm mice have a spontaneous transverse crossbite due 

to lateral deviation of the maxilla and nasal bone. 

 



5 

Inroduction 

Brachymorphic (bm) (O’Brien et al., 1994; Rusiniak et al., 1996) mice were discovered in an 

inbred mahogany stock (Lane and Dickie, 1968). BALB/c-bm/bm mice (Hirabayashi et al., 

2003) are generated by crossing BALB/c mice and C57BL-bm/bm mice (Kurima et al., 1998). 

BALB/c-bm/bm mice show specific characteristics: a dome-shaped skull, a short thick tail, 

and shortened but not widened limbs (Tsukamoto et al., 2006, 2008). Malocclusion (incisal 

transverse crossbite) (Tsukamoto et al., 2006) spontaneously occurs in about 10 per cent of 

BALB/c-bm/bm mice, though malocclusion does not spontaneously occur in mice with the 

same bm mutation as that in C57BL-bm/bm mice and in non-brachymorphic mice such as 

BALB/c-+/+ mice and BALB/c-bm/+ (bm heterozygotes) mice. 

 It is not clear why a transverse crossbite spontaneously occurs in some BALB/c-bm/bm 

mice. Some experimental studies have been carried out to understand the cause of 

malocclusion. Tsukamoto et al. (2008) reported that columns of chondrocytes of 

BALB/c-bm/bm mice were histologically irregular in arrangement and that undersulphated 

glycosaminoglycans might cause a disturbance of endochondral growth at the cranial base 

with spheno-occipital synchondrosis and intersphenoid synchondrosis. Kajii et al. (2006) 

found no significant differences in the concentrations of sulphated glycosaminoglycans on 

condyles between the mandibular shifted and non-shifted sides in BALB/c-bm/bm mice with a 

spontaneous malocclusion. In a preliminary experiment (Kajii et al., 2004) using 
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two-dimensional (2D) headfilms, maxillary transverse deviation was found to be larger than 

mandibular deviation in BALB/c-bm/bm mice with malocclusions.  

To-date, morphological measurements for animals with malocclusion have been carried out 

using radiographs and/or photographs (Kajii et al., 2004; Gebhardt and Pancherz, 2003; Yagi 

et al., 2003). For evaluating rotated morphology, which it is difficult to identify with 2D 

headfilms, computed tomography (CT) allows the use of three-dimensional (3D) morphology 

(Papadopoulos et al., 2005; Pelo et al., 2006; Muramatsu et al., 2008) (Figure 1). 

The objective of this study was to determine the morphological characteristics of 

cranio-maxillary deviations in BALB/c-bm/bm mice using 3D morphological measurements. 

 

Materials and methods 

The procedures were reviewed and approved by the animal care and use committees of 

Nagoya Bunri University and Hokkaido University, and this study was performed according 

to the Guidelines for Animal Experiments of Hokkaido University. 

Female mice aged 13 (adolescent, n = 30) and 25 (adult, n = 30) weeks were used in this 

study. The mice were divided into the following three groups for each age: (1) BALB/c-+/+ 

mice (control group, n = 10), (2) BALB/c-bm/bm mice with normal occlusion (Norm group, n 

= 10), (3) and BALB/c-bm/bm mice with incisal transverse crossbite (Mal group, n = 10). 

BALB/c-+/+ mice were obtained from Nippon Clea (Tokyo, Japan). By outbreeding between 
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bm mice of the C57BL strain and normal mice of the BALB/c strain, the bm gene was 

successfully transferred to BALB/c strain mice (BALB/c-bm/+ mice). BALB/c-bm/bm mice 

were generated by crossbreeding between BALB/c-bm/+ mice. 

The body weights of the mice in the three groups were determined at 13 and 25 weeks of 

age. In the Mal group, five upper incisors were shifted to the right at 13 weeks of age and six 

at 25 weeks of age, and five upper incisors were shifted to the left at 13 weeks of age and four 

at 25 weeks of age.  

Dry skulls of each group were prepared using a standard protease method (Hachiya and 

Ohtaishi, 1994). Images of the dry skulls using 3D micro-CT (Arai et al., 2007) (R_mCT, 

Rigaku, Tokyo, Japan) were obtained under the following conditions: tube voltage, 90 kV; 

tube current, 120 µA; slice width, 0.4 mm. The obtained CT images were morphologically 

reconstructed using image reconstruction software (i-VIEW-R, Morita, Kyoto, Japan). 

Six points were selected (Figure 2A-C). The 3D distances of Oc-Tb, Oc-S2, Oc-S1, Oc-Pr, 

Oc-A, Tb-S2, Tb-S1, Tb-Pr, Tb-A, S2-S1, S2-Pr, S2-A, S1-Pr and S1-A were measured on 

both sides using iVIEW-R. The distances were compared among the three groups. 

Furthermore, the distances in the Mal group were compared between the shifted and 

non-shifted sides in the same regions.  

 

Statistical analysis 
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To determine measurement error, the same distance was measured on two occasions with a 

time interval of two weeks by the same investigator (F.S.). The correlation coefficient 

between the first and second measurements of 60 mice showed a significant correlation for all 

distances (P <0.001). 

 Statistically significant differences in measurement values among the three groups were 

evaluated using the Statistical Package for Social Science version 13.0 (SPSS Inc., Chicago, 

Illinois, USA) by one-way analysis of variance (ANOVA), with a probability level of P <0.05 

considered statistically significant. 

Pearson’s correlation coefficient between deviations of Pr and A was also calculated using 

the SPSS software. 

 

Results 

Body weight 

The mean body weights at the age of 13 weeks were 25.4 ±2.3 g, 16.2 ±1.4 g and 15.1 ±1.7 g 

in the control, Norm and Mal groups, respectively and at 25 weeks 28.4 ±2.8 g, 18.1 ±2.0 g 

and 18.3 ±1.3 g in the control, Norm and Mal groups, respectively. At both 13 and 25 weeks 

of age, one-way ANOVA showed that there were significant differences in body weight 

among the three groups (P <0.001). The body weight of the bm mice (Norm and Mal groups) 

was significantly less than that of the control group (P <0.001). No significant difference in 
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body weight was found between the Norm and Mal groups at either 13 and 25 weeks of age. 

 

Thirteen weeks of age 

For almost all measurements, there were significant differences among the control, Norm, and 

shifted and non-shifted sides of the Mal group (P <0.001). Inter-group comparison showed 

that almost all measured lengths in the Norm and Mal groups (both shifted and non-shifted 

sides) were significantly shorter than those in the control group (P <0.05) (Tables 1 and 2). 

The distances Oc-A, Tb-A, S2-Pr, S1-Pr and S1-A on the shifted side in the Mal group were 

significantly shorter than those in the Norm group (P <0.05). The distances S2-S1 and S2-A 

on both the shifted and non-shifted sides in the Mal group were significantly shorter than 

those in the Norm group (P <0.05). Most of the other distances in the anterior region on the 

non-shifted side in the Mal group were also shorter than those in the Norm group, although 

the differences were not statistically significant. 

Intra-group comparison showed that the distances S1-Pr and S1-A on the shifted side were 

significantly shorter than those on the non-shifted side in the Mal group (P <0.05) (Tables 1 

and 2). No significant differences were found in the other distances between the shifted and 

non-shifted sides, although almost all distances on the shifted side were shorter than those on 

the non-shifted side. 
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Twenty-five weeks of age 

For all measurements, there were significant differences among the control and Norm groups, 

and shifted and non-shifted sides of the Mal group (P <0.001). Inter-group comparison 

showed that all measured lengths in the Norm and Mal groups (both shifted and non-shifted 

sides) were significantly shorter than those in the control group (P <0.05) (Tables 3 and 4). 

The distances S2-S1, S2-Pr, S2-A, S1-Pr and S1-A on the shifted side in the Mal group were 

significantly shorter than those in the Norm group (P <0.05). Most of the other distances in 

the anterior region on the non-shifted side in the Mal group were also shorter than those in the 

Norm group, although the differences were not statistically significant. 

Intra-group comparison showed that the distances S2-Pr, S1-Pr and S1-A on the shifted side 

in the Mal group were significantly shorter than those on the non-shifted side in the Mal 

group (P <0.05) (Tables 3 and 4). No significant differences were found for any other 

distances between the shifted and non-shifted sides, although almost all distances on the 

shifted side were shorter than those on the non-shifted side. 

 

Correlation coefficient between deviations of maxillary alveolar bone and nasal bone  

In the Mal group, Pearson’s correlation coefficients between the deviation of Pr (distance of 

S1-Pr on the shifted side subtracted from that on the non-shifted side) and A (distance of S1-A 

on the shifted side subtracted from that on the non-shifted side) were 0.885 and 0.942 at the 
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ages of 13 and 25 weeks, respectively (Figure 3A, B). A scatter diagram between deviations 

of Pr and A showed significant positive correlations at both ages (P <0.01). Regression slopes 

obtained from the scatter diagrams were 0.956 and 0.697 at the ages of 13 and 25 weeks, 

respectively (Figure 3A, B). 

 

Discussion 

Inter-group comparisons at both ages showed that the skulls of bm mice (Norm and Mal 

groups) were significantly shorter than those of control mice. The body weights of bm mice 

were also smaller than those of control mice. Therefore, it was quantitatively shown that bm 

homozygotes caused not only inferior body growth but also inferior cranio-maxillary growth. 

In BALB/c-bm/bm mice with a malocclusion (transverse crossbite), there was no 

significant difference between the shifted and non-shifted sides in the posterior region of the 

cranium at both ages. Therefore, there was no notable deformity of the posterior 

neurocranium. On the other hand, S1-Pr (maxillary alveolar bone) and S1-A (nasal bone) on 

the maxillary shifted side were significantly shorter than those on the non-shifted side at both 

13 and 25 weeks of age. It was shown three-dimensionally that the maxillary alveolus and 

nose were significantly bent in BALB/c-bm/bm mice with spontaneous malocclusions. The 

correlation coefficient between the deviation of the maxillary alveolus and that of the nose 

was investigated. The deviation of the nose was significantly related to the deviation of the 
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maxillary alveolus at both 13 and 25 weeks of age (P <0.01). The regression slopes were 

0.956 and 0.697 at the ages of 13 weeks and 25 weeks, respectively. At 13 weeks of age, the 

alveolar process and nasal bone were almost similarly deviated. However, at 25 weeks of age, 

the alveolar process was more deviated than the nasal bone. Thus, the degree of torsion 

between the maxillary alveolar process and nasal bone was larger in older BALB/c-bm/bm 

mice with malocclusions. 

Growth is generally divided into three types: sutural, cartilaginous and periosteal. Some 

studies have shown that the cartilage of the nasal septum plays an important role as a 

maxillary pacemaker in total growth (Latham, 1970; Sarnat and Wexler, 1986; Scott, 1954, 

1959; Sicher, 1949). Tsukamoto et al. (2008) histologically reported that undersulphated 

glycosaminoglycans might cause a disturbance of endochondral growth at the cranial base by 

disparity synchondrodial joints in BALB/c-bm/bm mice. It was suggested that the greater the 

undersulphated cartilage, the smaller endochondral growth. The results of the present and a 

previous study (Tsukamoto et al., 2008) suggest that the skull of the cranio-maxillary complex 

of the BALB/c-bm/bm mouse was similarly smaller due to undersulphated 

glycosaminoglycans than that of the BALB/c-+/+ mouse. 

Kajii et al. (2006) reported that the concentration of sulphated glycosaminoglycans in the 

cartilage of the condyle of BALB/c-bm/bm mice with a malocclusion was significantly less 

than that in BALB/c-bm/bm mice without a malocclusion. Moreover, it was shown in the 
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present study that the skull of the cranio-maxillary complex of the BALB/c-bm/bm mouse 

with a malocclusion was also smaller than that of the BALB/c-bm/bm mouse without a 

malocclusion. Although the concentration of sulphated glycosaminoglycans in the 

cranio-maxillary region of the BALB/c-bm/bm mouse was not measured, it was speculated 

that a genetic factor such as more undersulphation of glycosaminoglycans of BALB/c-bm/bm 

mice might induce more hypo-growth of cranio-maxillary region and malocclusion such as a 

transverse crossbite. 

On the other hand, Kajii et al. (2004) reported that the degree of lateral deviation of 

incisors in BALB/c-bm/bm mice with a malocclusion was less if the incisors were shortened 

after the occurrence of the malocclusion. It was speculated that a genetic factor may be one 

cause of deformation and/or displacement of the maxilla and nasal bone in the 

BALB/c-bm/bm mice with malocclusion and that mechanical loads such as lateral functional 

occlusal force may enhance the deformity. 

Although there have been some reports on malocclusion artificially induced using oral 

appliances (Fuentes et al., 2003; Katsaros et al., 2006; Ishii and Yamaguchi, 2008; Nakano et 

al., 2003; Liu et al., 2007), there has been no research on animals with spontaneously induced 

malocclusions, except for a cleft palate (Nagata et al., 1997). The BALB/c-bm/bm mouse is 

therefore useful as a malocclusion model with maxillofacial deformity induced without oral 

appliances.  
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In this study, cross-sectional samples at the ages of 13 and 25 weeks represented 

adolescents and adults, respectively. However, it might be more obvious if living mice with a 

malocclusion were examined using longitudinal samples to determine when maxillofacial 

deviation started and how deviation occurred. 

 

Conclusions 

The following conclusions were obtained from results of quantitative measurements using 3D 

micro-CT images. 

1. The skull of the BALB/c-bm/bm mouse was significantly smaller than that of the 

BALB/c-+/+ mouse. 

2. The BALB/c-bm/bm mouse had a spontaneous malocclusion (transverse crossbite) due to 

lateral deviation of the maxilla and nasal bone. 

3. The degree of torsion between the alveolar process and nasal bone was greater in older 

BALB/c-bm/bm mice with a malocclusion. 
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Figure legends 

Figure 1 Three-dimensional micro-computed tomography (R_mCT) images. Left, 

BALB/c-+/+ mouse; centre, BALB/c-bm/bm mouse without a malocclusion; right, 

BALB/c-bm/bm mouse with a malocclusion. Upper, dorsal view; lower, frontal view. 

 

Figure 2 Dorsal (A) and ventral (B) views. Reference points: Oc, inner point of the occipital 

bone; Tb, posterior apex of the tempanic bulla; S2, transitional point between the squamous 

part and the zygomatic process in the temporal bone; S1, frontal point in the inner margin of 

the zygomatic arch; Pr, frontal apex of the alveolar process in the incisive; A, frontal apex of 

the nasal bone. Lateral view (C) is shown to clarify the difference between points A and Pr. 

 

Figure 3 Scattergrams at the ages of 13 (A) and 25 (B) weeks between deviations of A and Pr 

in the malocclusion (Mal) group. Deviation of Pr was calculated by subtracting the distance of 

S1-Pr on the shifted side from that on the non-shifted side. Deviation of A was similarly  

calculated by subtracting the distance of S1-A on the shifted side from that on the non-shifted 

side. 
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Table 1 Mean and standard deviation (SD) for each distance measured at 13 weeks of age in 

the three groups. 

 Mean SD Mean SD Mean SD Mean SD

Oc-Tb 3.27 0.37 3.04 0.31 3.08 0.31 2.89 0.17
Oc-S2 7.41 0.59 6.06 0.45 6.25 0.26 6.23 0.30
Oc-S1 14.61 0.36 11.84 0.46 11.57 0.52 11.39 0.46
Oc-Pr 21.56 0.34 17.45 0.43 17.06 0.69 16.81 0.69
Oc-A 22.42 0.38 18.05 0.53 17.38 0.86 17.15 0.83
Tb-S2 5.31 0.56 4.66 0.19 4.69 0.23 4.71 0.14
Tb-S1 12.22 0.33 9.89 0.33 9.70 0.51 9.60 0.28
Tb-Pr 19.24 0.37 15.48 0.36 15.29 0.65 14.97 0.52
Tb-A 20.33 0.37 16.37 0.43 15.92 0.78 15.64 0.61
S2-S1 8.06 0.67 7.31 0.54 6.67 0.42 6.40 0.33
S2-Pr 15.94 0.63 14.12 0.66 13.50 0.52 12.82 0.56
S2-A 16.47 0.69 14.28 0.64 13.46 0.64 12.88 0.62
S1-Pr 8.15 0.08 7.13 0.30 7.19 0.26 6.65 0.38
S1-A 8.62 0.11 7.14 0.26 7.07 0.36 6.63 0.50

control Norm Mal (non-shifted) Mal (shifted)
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Table 2 P values of one-way ANOVA among control, Norm and Mal (shifted and non-shifted 

sides) groups at the age of 13 weeks: 1, 2, 3 and 4 indicate control, Norm, Mal (shifted side) 

and Mal (non-shifted side) groups, respectively. 

1 vs 2 1 vs 3 1 vs 4 2 vs 3 2 vs 4 3 vs 4

Oc-Tb 0.332 0.507 0.036* 0.989 0.678 0.486
Oc-S2 0.000** 0.000** 0.000** 0.770 0.801 1.000
Oc-S1 0.000** 0.000** 0.000** 0.534 0.135 0.819
Oc-Pr 0.000** 0.000** 0.000** 0.421 0.065 0.734
Oc-A 0.000** 0.000** 0.000** 0.143 0.027* 0.878
Tb-S2 0.000** 0.001** 0.001** 0.996 0.980 0.998
Tb-S1 0.000** 0.000** 0.000** 0.672 0.301 0.917
Tb-Pr 0.000** 0.000** 0.000** 0.831 0.112 0.464
Tb-A 0.000** 0.000** 0.000** 0.298 0.032* 0.692
S2-S1 0.011* 0.000** 0.000** 0.035* 0.002** 0.654
S2-Pr 0.000** 0.000** 0.000** 0.105 0.000** 0.067
S2-A 0.000** 0.000** 0.000** 0.037* 0.000** 0.207
S1-Pr 0.000** 0.000** 0.000** 0.967 0.002** 0.001**

S1-A 0.000** 0.000** 0.000** 0.962 0.009** 0.030*

          1…control, 2…Norm, 3…Mal (non-shifted side), 4…Mal (shifted side)

P value

*P <0.05  **P <0.01
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Table 3 Mean and standard deviation (SD) for each distance measured at 25 weeks of age in 

the three groups. 

distances Mean SD Mean SD Mean SD Mean SD

Oc-Tb 3.44 0.17 3.14 0.30 3.04 0.26 3.04 0.20
Oc-S2 7.58 0.22 6.18 0.32 6.42 0.16 6.29 0.25
Oc-S1 15.31 0.19 12.11 0.46 12.08 0.28 11.96 0.26
Oc-Pr 22.64 0.33 18.05 0.51 17.78 0.32 17.60 0.32
Oc-A 23.43 0.35 18.65 0.61 18.27 0.50 18.11 0.55
Tb-S2 5.31 0.15 4.77 0.36 4.87 0.19 4.85 0.19
Tb-S1 12.78 0.23 10.13 0.44 10.25 0.30 10.08 0.27
Tb-Pr 20.18 0.29 16.06 0.49 16.05 0.36 15.65 0.30
Tb-A 21.23 0.32 16.99 0.60 16.86 0.54 16.51 0.52
S2-S1 8.63 0.33 7.39 0.44 7.04 0.40 6.90 0.30
S2-Pr 16.90 0.32 14.54 0.48 14.18 0.46 13.66 0.41
S2-A 17.36 0.35 14.70 0.51 14.25 0.63 13.75 0.53
S1-Pr 8.56 0.24 7.46 0.19 7.58 0.25 7.06 0.24
S1-A 8.97 0.19 7.53 0.24 7.51 0.31 7.03 0.32

control Norm Mal (non-shifted) Mal (shifted)
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Table 4 P values of one-way ANOVA among control, Norm and Mal (shifted and non-shifted 

sides) groups at the age of 25 weeks: 1, 2, 3 and 4 indicate control, Norm, Mal (shifted side) 

and Mal (non-shifted side) groups, respectively. 

1 vs 2 1 vs 3 1 vs 4 2 vs 3 2 vs 4 3 vs 4

Oc-Tb 0.030* 0.002** 0.003** 0.772 0.790 1.000
Oc-S2 0.000** 0.000** 0.000** 0.143 0.721 0.664
Oc-S1 0.000** 0.000** 0.000** 0.994 0.686 0.831
Oc-Pr 0.000** 0.000** 0.000** 0.416 0.058 0.711
Oc-A 0.000** 0.000** 0.000** 0.363 0.099 0.885
Tb-S2 0.000** 0.001** 0.001** 0.752 0.844 0.998
Tb-S1 0.000** 0.000** 0.000** 0.830 0.982 0.618
Tb-Pr 0.000** 0.000** 0.000** 1.000 0.076 0.093
Tb-A 0.000** 0.000** 0.000** 0.950 0.173 0.412
S2-S1 0.000** 0.000** 0.000** 0.161 0.027* 0.845
S2-Pr 0.000** 0.000** 0.000** 0.223 0.000** 0.044*

S2-A 0.000** 0.000** 0.000** 0.234 0.001** 0.143
S1-Pr 0.000** 0.000** 0.000** 0.664 0.002** 0.000**

S1-A 0.000** 0.000** 0.000** 0.999 0.001** 0.002**

          1…control, 2…Norm, 3…Mal (non-shifted side), 4…Mal (shifted side)

P value

*P <0.05  **P <0.01
 














