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A Relationship Between Generalization Error and Training Samples
in Kernel Regressors

Akira Tanaka, Hideyuki Imai, Mineichi Kudo, and Masaaki Miyakoshi
Division of Computer Science
Hokkaido University
Sapporo, Japan
e-mail: {takira,imai,mine,miyakosi} @main.ist.hokudai.ac.jp

Abstract—A relationship between generalization error and
training samples in kernel regressors is discussed in this
paper. The generalization error can be decomposed into two
components. One is a distance between an unknown true
function and an adopted model space. The other is a distance
between an estimated function and the orthogonal projection
of the unknown true function onto the model space. In our
previous work, we gave a framework to evaluate the first
component. In this paper, we theoretically analyze the second
one and show that a larger set of training samples usually
causes a larger generalization error.

Keywords-kernel regressor; reproducing kernel Hilbert
space; generalization error; sample points;

I. INTRODUCTION

Learning based on kernel machines[1], represented by the
support vector machine[2] and the kernel ridge regression[2],
is widely known as a powerful tool for various fields of
information science such as pattern recognition, regression
estimation, and density estimation. In general, an appropriate
model selection is required in order to obtain a small
generalization error in kernel machines. Although many
methods for the model selection, such as the leave-one-out
cross-validation, are proposed, it is important to analyze the
generalization error theoretically since it may be useful to
improve the performance of the model selection methods.
In kernel machines, a model space is specified by a linear
space spanned by kernel functions corresponding to points in
training data set. Theoretical analyses of the generalization
error with respect to a kernel or its parameters is usually
difficult since the metrics of the corresponding reproducing
kernel Hilbert spaces may differ. Thus, we focus on theo-
retical analyses of the generalization error with respect to
a training data set. There are two kinds of generalization
error. One is a distance between an unknown true function
and an adopted model space. The other is a distance between
an estimated function and the orthogonal projection of the
unknown true function onto the model space. In our previous
work[3], we discussed the first generalization error and gave
an upper bound of the absolute difference between the
unknown true function and its orthogonal projection onto
the model space at each point. According to the results,

it immediately follows that the first generalization error
decreases when the number of training samples increases. In
this paper, we theoretically analyze the second generalization
error and show that a larger set of training samples usually
causes a larger generalization error. Numerical examples are
also given to confirm our theoretical results.

II. MATHEMATICAL PRELIMINARIES FOR THE THEORY
OF REPRODUCING KERNEL HILBERT SPACES

In this section, we prepare some mathematical tools
concerned with the theory of reproducing kernel Hilbert
spaces[4].

Definition 1: [4] Let R" be an n-dimensional real vector
space and let H be a class of functions defined on D C
R", forming a Hilbert space of real-valued functions. The
function K (x, ), (z,& € D) is called a reproducing kernel
of H, if

1) For every & € D, K(-,&) is a function belonging to

H.

2) For every & € D and every f € H,
where (-, -)7; denotes the inner product of the Hilbert
space H.

The Hilbert space H that has a reproducing kernel is
called a reproducing kernel Hilbert space (RKHS). The
reproducing property Eq.(1) enables us to treat a value of a
function at a point in D. Note that reproducing kernels are
positve definite (p.d.) [4]:

N
Z cich(wi,a:j) 2 0, (2)
i,5=1

for any N, ¢p,...,ecxy € R, and z4,...,zxy € D.
In addition, K(x,&) = K(&,x) for any =,z € D is
followed[4]. If a reproducing kernel K (x,Z) exists, it is
unique[4]. Conversely, every p.d. function K (x, ) has the
unique corresponding RKHS [4].

Next, we introduce the Schatten product [5] that is a
convenient tool to reveal the reproducing property of kernels.



Definition 2: [5] Let Hy and H, be Hilbert spaces. The
Schatten product of g € Hs and h € H; is defined by

(g ® h)f = <f7 h>7‘(197

Note that (¢g®h) is a linear operator from H; onto Ha. It
is easy to show that the following relations hold for h,v €

Hi, g,u € Ha.

[ €H. 3

(h®g)* (g®h), (€]
(h®g)(u®v) = (u,g)n,(h®v), ®)

where the superscript * denotes the adjoint operator.

III. PROBLEM FORMULATION OF LEARNING AND
KERNEL REGRESSORS

Let {(yi,z;) | ¢ € {1,...,¢}} be a given training data
set with y; € R, x; € D C R", satisfying

yi = f(x) +ni, (6)

where f denotes the unknown function and n; denotes a
zero-mean additive noise. The aim of machine learning is to
estimate the unknown function f by using the given training
data set and statistical properties of the noise.

In this paper, we assume that the unknown function f
belongs to the RKHS H x corresponding to a certain kernel
function K. If f € H, then Eq.(6) is rewritten as

Yi = <f()’K(7

on the basis of the reproducing property of kernels. Let
Yy =[y1,.-.,ye) and n = [nq,...,n,] with the superscript
" denoting the transposition operator, then applying the
Schatten product to Eq.(7) yields

£
Y= (Z[ VOK(@
k=1
(¢

where e, ) denotes the k-th vector of the canonical basis of
RY. For a convenience of description, we write

¢
Ag x = (Z[e,(f) ® K(,wk)]) )

k=1

T)) 1 + i, (N

)]) fC)+m, ®

since A x is specified by the kernel K and the set of input
vectors X = {x; € D | i€ {l,...,{}}. Ak x is a linear
operator that maps an element of Hy onto RY and Eq.(8)
can be written by

y=Agxf(-)+n, (10

which represents the relation between the unknown true
function f and an output vector y. Therefore, a machine
learning problem can be interpreted as an inversion problem
of the linear equation Eq.(10)[6].

The minimum norm least squares solution for Eq.(10) is
given by

f() = AJf( xy =4k XGI+<,Xy
Zy Gl xel K(a), (11)

where Gk x denotes the Gramian matrix of K with X and
the superscript * denotes the Moore-Penrose generalized
inverse. Note that A} k. x Ak, x 1s the orthogonal projector
onto R(A% y) (the range space of A y, that is, the linear
subspace spanned by {K(-,z;) | i € {1,...,£}}) and its
closed form is given by
¢
PK,X = Z(G;rgx)i,jK('vwi)®K("$j) (12)
ij=1

as shown in [7].

In practical problems, a solution by the kernel ridge
regressor, which is a regularized version of Eq.(11) and is
defined as

¢
)= Y (Grx+pl) e K(,x)  (13)
k=1

with 4 > 0 denoting a regularization parameter, is used
instead of Eq.(11). However, theoretical analyses of a solu-
tion based on Eq.(11) can be an important basis of all other
kernel machines including Eq.(13). Thus, we theoretically
analyze the generalization error of the solution Eq.(11) in
the following contents.

IV. GENERALIZATION ERROR OF A MODEL SPACE

In [3], we gave a framework to evaluate the generalization
error of a model space, that is, R(A} ). In this section,
we review results of [3] related to this paper.

Let f € Hx be an unknown true function, then for any
x <€D,

|f(x) — Pk x f(x)|
= [(fO), KC ) — (Prx f(), K( @)
= [(f() K(x)) e — (f(), Prox K (@) 7|
I[(f(), K(x) — Prx K (-, @) |
< Nl B (=),
holds, where
Ex x(z)=||K(,z) —PKXK(' o) [3,
= ZK(L‘:EZ i K(z,z;) |,

4,j=1
which implies that the absolute difference between f and
P x f at a point & € D is proportional to ||f]||#, and
E1/2( )[3]. Let

JI((I)X = sup (EK7)((SC)/K(ZL'7£L'))1/27 (14)
TeD



then 0 < Jl((l)X <1 holds; and if J (1 )X is sufficiently close
to zero, the model space R(A% x) has a sufficient ability to
represent any f € Hy. Note that it is trivial that when Xc
X, J[(<)X < Jp (1)~ holds. Thus, it is concluded that a larger
set of training samples implies a smaller generalization error
of an adopted model space with a fixed kernel.

V. GENERALIZATION ERROR IN A MODEL SPACE

The minimum norm least squares solution for Eq.(10)
given in Section III can be decomposed as

FO) = Af xy=Af xAxxf() + Afxn. (19

The first term is the orthogonal projection of f onto
R(A% x) and its generalization error was analyzed in the
previous section. The second term is the generalization error
in R(A% x), coming from the additive noise, whose closed
form is given as

_ a1+
—AKXn

( K(,a;)® e} )G}Xn
k=1
I
> WG el K@), (16)
k=1
and its squared norm is given as
9 . PN
ik = Wl = (s Jud i
= nGKXGKXG Xn—nGKXn
Lemma 1: Let
_ A B (n+m)x (n+m)
G—[B, C}ER a7
be a p.d. matrix with A € R"*", C € R™*™, and B €
Rnxvn, then

(18)

7 — G—l _ [ Ail On,m :|

Om,n Om,m

is non-negative definite (n.n.d.), where O,, , denotes the
zero matrix in R™*"™,

Proof: As shown in [8], G~! can be represented as
a-1_ A+ FE-'F' —FE-!
B —E~'F’ E- |
where £ = C — B’A7'B and F = A~!'B. Thus, Eq.(18)

is reduced to

-1 _ -1
Z{FE F' —FE ] (19)

—~E-LF E-!

It is trivial that E~! is p.d. since G, G~!, and all their
principal minors are p.d. Let v; € R™ and vo € R™ be

arbitrary vectors and let v = [v] wv}], then
v'Zv
., [ FET'F' —FE 77 v
= [v] v _E-1pr g1 vy
= V\FE'F'vy —v,FE v,
— VL E7 o + v E oy
= (F/’Ul — Ug)/E_l(F/’Ul — ’02) > 0

holds, which concludes the proof. [ ]

Note that the non-singularity of G in this lemma is crucial.
In fact, the singular matrix

11
o= 1]
counter example
1[1 0] is not n.n.d.

gives a simple since Gt -

[1o]'([1 0]G[1 0]")~

Theorem 1: Let X = {x; | i € {1,...,(}} be a set of
training input vectors and let X C X be a subset of X with
|X|=m < . Let n € R’ be the noise vector for X and
let 2 € R™ be the noise vector for X defined by 72 = Pin
where P] € R™** denotes the full row-rank matrix, such
that all components are zero except for one component being
unity in each row, that extracts components corresponding
to X from those of X. Then, if Gk x is non-singular,

Ty = I >0 (20)
holds.

Proof: Let Py € R“=™)*% be a full row-rank matrix,
such that all components are zero except for one components
being unity in each row, satisfying P{Py = O, ¢—p,. It is
obvious that [P; P] is a permutation matrix, which implies
that it is also an orthogonal matrix. Then,

Tk —J2s
= n'G;(’an — fL'G;Xﬁ
= n/[P B[P PGy [Py P[Py Po]'n
—n'P(P/Gk xP) ' Pln
= /[P B[P P) Gk x[P1 P])”
—n'P(P{Gg xP) ' Pln
PlGk.xPi PGk xP, ]‘1
PGk xP. PGk xP

1 [Pl PQ],TL

= n/[P Py [

X[Pl PQ]/TL
(P{Gg xPr)™"

Om —m
_n/[Pl P2] |: OZ— ,Z }

OZ—m,Z—m
X[Pl PQ]/’I'L > 0

holds from Lemma 1. |
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Figure 1. The unknown true function, the training samples, and the learning
results by X and X.

According to Theorem 1, given a realization of an additive
noise vector n for X, the norm of the noise component in
a learning result is larger than that based on 7 for X. It
trivially holds that

EnJPx — Epdys =0 1)

when components of n and 72 are i.i.d. with the variance o2

since EnJﬁf)X = En(n'Gi xn) = Uztr(G;{}X)'

VI. NUMERICAL EXAMPLE

In this section, we verify the behavior of the norm of the
noise component in the solution Eq.(11) with an artificial
data. We adopt the Gaussian kernel given by

K(,y) = exp (J”“"IG@/)Q) 22)

as a kernel.

Figure 1 shows the unknown true function in the corre-
sponding RKHS, training data set with ¢ = 0.1 where X =
{0,2,4,6,8,10,12,14} denoted by *x” and X = X U X,
where X, = {7} denoted by ’®’, and the learning results
based on X and X. Jl((l)j( = 0.139 and Jg)X = 0.116,
which implies that the model space R(Aj ) is slightly

* @ _
better than R(AK,X)‘ On the other hand, ‘]K,f( = 0.408 and

J}?)X = 58.227, which agrees with the theoretical analyses
given in the previous section.
Figure 2 shows the normalized histogram of
dley) =log (1+ TP = T2 ) 23)
over 1,000 trials with X, = {z,} in which z, is randomly

selected from [0, 15]. According to Fig. 2, it is confirmed
that J}?)X is larger than J 1({2)5( in all cases.
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Figure 2. Normalized histogram of d(z).

VII. CONCLUSION

In this paper, we investigated the relationship between
the generalization error and training samples in kernel re-
gressors and showed that a larger set of training samples
causes a larger generalization error corresponding to noise
components. Extending our result for other practical kernel
machines is one of future works that should be resolved.
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