

Instructions for use

Title A Method for Describing Structure of System Security Based on Trust and Authentication

Author(s) Maeda, Tsukasa; Kurihara, Masahito

Citation 2010 IEEE/ACIS 9th International Conference on Computer and Information Science (ICIS), 83-90
https://doi.org/10.1109/ICIS.2010.69

Issue Date 2010-08-18

Doc URL http://hdl.handle.net/2115/46857

Rights

© 2010 IEEE. Reprinted, with permission, from Maeda, T., Kurihara, M., A Method for Describing Structure of System
Security Based on Trust and Authentication, 2010 IEEE/ACIS 9th International Conference on Computer and
Information Science (ICIS), Aug. 2010. This material is posted here with permission of the IEEE. Such permission of
the IEEE does not in any way imply IEEE endorsement of any of Hokkaido University products or services. Internal or
personal use of this material is permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE
by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the
copyright laws protecting it.

Type proceedings (author version)

File Information CIS_83-90.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp

A Method for Describing Structure of System Security Based on Trust and
Authentication

TSUKASA MAEDA and MASAHITO KURIHARA
Graduate School of Information Science & Technology

Hokkaido University
Sapporo, Japan

tsukasa.maeda@rsa.com, kurihara@ist.hokudai.ac.jp

Abstract—In this paper, we propose a method by which
frontline engineers in system development fields can readily
describe the structure of the security of systems. This method,
based on the assumption of the use of standard encryption
technologies and existing cryptographic protocols, reveals
hidden security threats and vulnerabilities of systems. It
extracts only security elements that constitute the trust
relationship of system components, describing the relation
between the elements, and analyzing the relation. This method
provides a valuable assistance tool to build secure systems,
because it works as an efficient communication paradigm
between stakeholders of a system to help them in
understanding the security of the system and confirming that
their security requirements are fulfilled.

Keywords-system description; system security; authentication

I. INTRODUCTION

As distributed computing is becoming a general
architecture of information systems, security becomes a
mandatory requirement of such systems. As the concern
about security increases, re-evaluation of security is currently
underway in many existing information systems. And it
becomes a common practice to put security properties into
the requirements of systems and validate their adequacy
during the system development process. Responding to this
trend, many security technologies and products providing
them have been developed and become available. Also,
many research activities and standardization efforts on the
formal specification and evaluation of security properties for
system development are going on now [1][2][3].

However, despite these efforts, the number of security
incidents in information systems has been increasing rapidly.
While new attacks like phishing and malware have been
developed and damage caused by them has spread
extensively, the development of countermeasures against
such attacks has fallen behind, and field engineers are hard-
pressed to keep pace by applying ad hoc, daily-basis
measures to their systems.

The reason for the difficulty in developing secure
systems is twofold. Firstly, it is difficult to discover threats
and vulnerabilities hidden behind the complex structure of a
system. This means not only that it is difficult to explore the
weakness of the security of a system consisting of many
components, but also that the aggregation of individual

security measures does not necessarily make the entire
system more secure. Furthermore, though vulnerabilities
envisioned from past experiences and incidents can be
addressed relatively easily, it is very difficult to detect
unknown new weaknesses or prescribe measures against
them. Secondly, there is the difficulty of communications
between stakeholders of a system. Because there is no
universally established precise and easy way of describing
the security of the system as provided by the security
measures designed, it is very hard for stakeholders of a
system to understand the security of the system, confirm that
their requirements have been satisfied, and agree on the
security specification of the system.

In this paper, we provide the framework of an expressive
general-purpose method of describing the structure of the
security of systems to solve these difficulties. With this
method, frontline engineers in system development fields
can easily verify that the design of the system will satisfy the
security requirements. It assists the engineers in checking if
any hidden defects in the security exist in the system. It also
may be used as a communication tool between stakeholders
of a system by providing them with clear and accurate
information about the security structure of the system for
both development and security assessment.

The security properties studied in this paper are
“confidentiality”, “integrity”, and “authenticity” - security
properties as defined in ISO27002 [4]. These properties are
capable of being delivered through the use of cryptographic
technologies. Storing information safely and exchanging it
securely with only trusted parties are fundamentals of the
confidentiality, integrity, and authenticity properties of
systems.

To accomplish the purposes addressed above, the
description method we introduce has the following features.
For resolving the difficulty of identifying the weakness(es)
of a system, the method does not describe the security of the
system by identifying individual threats and vulnerabilities
against it, as is the more typical method of the security
description, but represents these threats and vulnerabilities as
the defects of structure of the system’s security. For
providing a clear and easy-to-understand description, the
method extracts the security elements constituting the trust
relationship between the components of a system, and only
uses them to describe the structure of the security of the
system. By doing so, vulnerabilities existing in the system

appear automatically without being hidden behind the
complexity of the implementation of the system. Also for the
purpose, the method avoids using detailed security primitives
related to encryption technologies. Rather, it uses abstract
security service features realized by existing cryptographic
protocols such as SSL/TLS [5] and Kerberos [6] to describe
the security of systems.

The rest of this paper is organized as follows. In Section
II, we define the components being used to describe the
security of a system. In Section III, we describe the steps
involved in describing the security of a system. In Section IV,
we examine the expressive power of the description method.
Finally in Section V, we review the rationale of the
description method and discuss the relationship of the
description method to other research studies on the security
analysis of systems.

II. THE DESCRIPTION METHOD

A. Building Blocks

1) Entity
A system is a set of entities. That is,

system = {e1, e2, ..., ek} where each ei is an entity.
An entity e is a 6-tuple (Fig. 1) containing an IDENTITY,

a SECRET, a CREDENTIAL, an EXECUTION, an ADJ,
and a TRUST as defined below.

IDENTITY is a piece of information that uniquely
identifies an entity within the system. It could be the unique
name given to the entity or the address or any other
information that can be used to recognize the entity uniquely.
Hereafter, IDENTITY is used to specify an entity.

SECRET is a set of confidential items s being used to
authenticate an entity. SECRET may have two or more
elements. An entity is said to be authenticated when its
possession of SECRET elements is verified. Private keys,
symmetric keys, passwords, and PIN numbers are typical
examples of SECRET elements. A SECRET element has a
strength attribute. The strength of the SECRET element
correlates to the amount of work needed to break the
algorithm using the SECRET element as the key or to
determine the value of the SECRET element, and is
expressed in terms of the length of the comparable
symmetric key that requires the same amount of work to
break the key. Let be a SECRET element with 0 strength.
An entity having only may use its IDENTITY to be
authenticated. However, because IDENTITY is public
information, using IDENTITY for authentication does not
provide any significant security to the system.

The CREDENTIAL of an entity is a set of pieces of
information that are requested for presentation by other
entities to authenticate the entity. Elements of the
CREDENTIAL are outputs of processes () that take
SECRET elements as inputs and generate outputs used for
authentication. The form of the outputs varies according to
the inputs. For example, the output could be a message with
a digital signature if a private key is input, encrypted data if
the input is a symmetric key, and the same password or more
likely its hash value if a password is input.

Figure 1. Entity

EXECUTION defines the operational behavior of the
entity. For example, it may be a set of traces or actual
program code.1

ADJ is a set of IDENTITYs of entities that are directly
adjacent to the entity. 2

The TRUST of an entity i is a set of pairs, each
consisting of the IDENTITY of a trusted entity e the trusting
entity i has decided to trust and a verification process
e(te,…). The verification process receives one of the
CREDENTIAL elements of the entity being trusted, say, e
and evaluates the correctness of that CREDENTIAL element.
te is a piece of information that the trusting entity i uses to
verify e’s possession of the SECRET element s. If s is a
symmetric key for example, t is the same key. If s is a private
key, t would be the public key pairing with s.

An entity trusts other entities if the entity believes that
the trusted entities operate as specified. In this description
method especially, it means that the trusted entity protects
information that it stores, maintains the confidentiality and
integrity of the information, and has appropriate access
control, so that it can communicate with only authenticated
entities.

2) Type of entity
An entity is an abstract object being defined by extracting

the trust attributes mentioned in Section II.A.1 from an
actual component of a system. Entities are classified into two
types: execution and link (Fig. 2). An execution entity is an
object that performs information processing while interacting
with other execution entities. Computer programs, services
and users are typical examples of execution entities. A link
entity is a virtual entity that models a communication
channel established by a cryptographic protocol such as
SSL/TLS and Kerberos between two interacting execution
entities. We may consider a link entity as a First-In First-Out
two-way buffering process.

3) Link entity
As its components, a link entity presents typical security

services that general cryptographic protocols provide to a
system: authentication of interacting entities, session key
exchange, and message encryption. Components of a link
entity are configured as follows (Fig. 3).

1 In this paper, we usually omit this from diagrams for simplicity.
2 We often omit ADJ from diagrams if its elements are obvious.

IDENTITY: i

EXECUTION

SECRET: mbsb ,,1,

CREDENTIAL: mbsbb ,,1,,

ADJ: pee ,,1

TRUST: lcte cecec ,,1,,

Figure 2. System

IDENTITY could be any piece of information that can
specify the link entity uniquely. For instance, the session ID,
or simply the name given to the entity could constitute its
IDENTITY.

A session key becomes the element of SECRET. Only
the session key can distinguish messages in the session from
other sessions.

Messages encrypted with the session key Ks can be used
as the elements of CREDENTIAL because execution entities
on both sides can confirm that they are using a proper
communication channel by encrypting and successfully
decrypting messages.

EXECUTION consists of session establishment
(authentication and key exchange) and encrypted message
exchanges.

TRUST borrows elements from the TRUSTs of the
execution entities on both sides of the session. These
elements that were used for authentication upon
establishment of the session are copied to the TRUST. If it is
a session created by mutual authentication, the IDENTITY
and TRUST element (e, e(te,…)) from both sides are copied.
In the case of unilateral authentication, (e, e(te,…)) from the
authenticating entity and (e,) from the authenticated side
are copied.

The IDENTITYs of the two communicating execution
entities that generated the session are set as the ADJ
elements.

Since a link entity is created as the result of the
authentication by the execution entities on both sides of the
link, the elements of the TRUSTs of the execution entities
used for the authentication are copied, and used to express
the trust relation between the link entity and the execution
entities.

While the link entity is configured as mentioned above,
the evaluation process verifying the element of the
CREDENTIAL of the link entity by checking if E(m)Ks is
encrypted/decrypted correctly, is added to the TRUSTs of
the execution entities of both sides. For the execution entities,
a trustworthy link entity is a communication channel which
assures secure message exchange with an authenticated
entity on the other side.

Figure 3. link entity

B. Description Method Rule (Entity Combination Rule)

Provided that they are authenticated mutually with
SECRET elements with comparable strength, two entities
that are directly adjacent to (and trusted by) each other can
combine to form a single entity thus concealing the
communication between them. The communication process
is deemed an internal processing in this situation. Within the
combination, some elements of SECRET, CREDENTIAL
and TRUST may be shared if certain conditions are satisfied.

The adequacy and comparability of the strength of the
SECRET elements varies application by application and has
to be judged in accordance with the overall system
requirements.

Entity A authenticates entity B by validating the element
of B’s CREDENTIAL that it presents, using the validation
process defined in A’s TRUST. To avoid replay attacks,
validation must include a test of the freshness or currency of
the CREDENTIAL element presented, meaning that it
cannot be an imitation of an older element.

Sharing of various elements becomes possible only when
such sharing could actually happen in application processes.
For example, to share a CREDENTIAL element of one
entity, the element actually has to be forwarded to another
(combining partner) entity and become available for
presentation to other outside entities. To make a TRUST
element shared, either transferring the validation process or
delegation of such a function must actually be possible.

Conditions indicating the processes that must occur for
successful sharing of elements, if any, must be noted in the
Sharing Conditions of the description diagram to avoid
deviation between the actual security structure and the one
described.

III. THE PROCESS OF SYSTEM DESCRIPTION

A. Steps and Interpretations of the Description

The structure of the security of a system is described in
the following order.

 Identifying execution entities in the system and
diagramming them in a chart.

 Determining the SECRET, CREDENTIAL and
TRUST elements of the execution entities

 Specifying the link entities
 Configuring the link entities
 Applying the combination rule;

while (there are two entities that can be combined) do
{combine the entities; share elements if possible}

We show an example of the steps describing the structure
of the security of a Web application system using SSL/TLS
server side authentication in the following.

1) Identifying execution entities in the system
We specify components of the system such as users and

programs/processes that have the capability of satisfying the
entity security requirements as mentioned in Section II.A.1.
We then derive execution entities corresponding to each of
these components. If there are communication links between
these components, we identify them here.

Link EntityLink Entity
Execution

Entity
Execution

Entity
Execution

Entity

IDENTITY: ｎ

We omit EXECUTION and ADJ here for simplicity

SECRET: Session Key Ks

TRUST: From B),(, aaa te ,

From A),(, bbb te

CREDENTIAL: KsmEmKs ,

We show the browser (B) in the Web application, the
Web server (C) and the user (A) as entities in Fig. 4. The
horizontal line expresses the SSL/TLS channel. The
EXECUTION and ADJ of the entities are omitted. The
CREDENTIAL is presented when necessary.

2) Determining the SECRET, CREDENTIAL and
TRUST of the execution entities

For every execution entity identified in Section III.A.1,
we identify and specify the SECRET, CREDENTIAL and
TRUST of the entity. Firstly, we specify the SECRET
elements that are used to authenticate the entities. Secondly,
the CREDENTIAL elements of the entities are specified.
They are outputs of processes, and are intended to be given
to other entities for authentication. In the example, however,
because the relationship between the SECRET elements and
the CREDENTIAL elements are obvious, the description of
the CREDENTIAL is omitted. Finally, pairs of IDENTITYs
of entities that the entity trusts, and the validation processes
that validate their CREDENTIAL elements, are copied into
the TRUST of the entity. The validation processes may not
be simple functions that merely input CREDENTIAL
elements and return the result of validation. They might be
more complex interacting processes. For example, validation
processes may include a series of challenge-response actions:
(1) the validation side generates a random nonce and sends it
to the entity being authenticated, (2) the sent nonce is
converted with a SECRET element and sent back for
validation. In the case of the SSL/TLS protocol, the client
generates a random number during its session key generation
process, encrypts it with the server’s public key and sends it
to the server. The client can authenticate the server when the
session key is successfully generated and agreed.

We show the elements of these sets for the Web
application example in Fig. 5. For simplicity, an element of
TRUST (Y, Y(tY,…)) of entity X with entity Y is denoted by
TX,Y(tY,…). The elements shown in the diagram mean;

 PW: the user's password
 Ks, Kp: server's private key and public key pair
 TA.B(): the user authenticates the browser because it

is there (exists)
 TA.C (): the user authenticates the server with its

name (i.e. URL)
 TB.A (): the browser only receives an input from the

user.
 TB.C (Kp, r): the browser authenticates the server

with the server’s public key. r means that a random
number r is also involved in the validation.

 TC.A (PW): the server authenticates the user with the
user’s password.

 TC.B (): the server identifies the browser with the IP
address of the user’s computer and the browser’s
process ID.

Figure 4. Specifying execution entities

Figure 5. Determining SECRET, CREDENTIAL and TRUST of the
execution entities

3) Specifying link entities
If communication channels exist between system

components corresponding to execution entities, link entities
are inserted there and named with an arbitrary IDENTITY
used to identify the entity uniquely. The link entity
corresponding to the SSL/TLS channel in the above example
is named D in Fig. 6.

4) Configuring the link entities
Components of the link entity are configured as follows.

The session key Kd generated during the session negotiation
of the cryptographic protocol is set as the SECRET element
of the entity. Both the element TB.C(Kp,r) in the TRUST of
entity B and the element TC.B() in the TRUST of entity C,
used to authenticate C and B respectively and establish link
D, are copied into the TRUST of link entity D. To the
TRUSTs of B and C, TB.D(Kd) and TC.D(Kd) are added
respectively as elements by which D’s possession of Kd may
be verified. Fig. 7 shows the result of the configuration.

 Kd: the SSL/TLS session key
 TB.D(Kd): Browser verification of decryption of a

message with the session key Kd
 TC.D(Kd): Server verification of decryption of a

message with the session key Kd
5) Applying the combination rule

If two entities directly adjacent to each other have a
relation of mutual authentication, they are combined. In the
example, C has the SECRET element Ks which is verifiable
by D with the public key Kp. And D has Kd which is
verifiable by C with the symmetric key Kd. A random
number r is used in the verification process by D to check the
freshness of C’s CREDENTIAL element being given to D.
Kd is a short-live session key. So, C and D can authenticate
each other without risk of replay of the CREDENTIAL
elements. Fig. 8 shows the relationship of mutual
authentication between C and D, and elements that may be
deleted after the combination.

Figure 6. Specifying link entities

Figure 7. Configuration of the link entity

PW ⊥
TA.B(⊥)

TA.C(⊥)

TB.A(⊥)
TB.C(Kp,r)

TB.D(Kd)

TC.A(PW)

TC.B(⊥)
TC.D(Kd)

TD.C(Kp,r)
TD.B(⊥)

Ks
CA

Kd
DB

A B C
PW ⊥ Ks

TB.A(⊥)
TB.C(Kp,r)

TC.A(PW)
TC.B(⊥)

D

TA.B(⊥)

TA.C(⊥)

A B C
PW ⊥ Ks

TA.B(⊥)

TA.C(⊥)

TB.A(⊥)
TB.C(Kp,r)

TC.A(PW)
TC.B(⊥)

TRUST

IDENTITY
SECRET

B CA

Figure 8. Applying the combination rule

As a result of the combination, TC.D(Kd) and TD.C(Kp)
that were used for the mutual authentication may be removed
(obscured) from the structure of the security of the system
without weakening it. As D is just a communication channel,
we may consider that C comes closer to B through this
combination. We name the combined entity E.

Because it was D that had a direct interface with B
before the combination, all elements of C that are supposed
to be used as elements of E after the combination to express
the trust relationship with B, must actually be available for D.
In the example, because D is just a communication channel
and C is taking care of all operations regarding the trust
relation, i.e. giving the CREDENTIAL element to B and
verifying B’s CREDENTIAL element, all of these elements
can be shared and become elements of E automatically. We
do not have to specify any sharing conditions on this
combination (Fig. 9).

IV. POWER OF THE DESCRIPTION METHOD

A. Description of System Threats and Vulnerabilities

One of the distinguishing features of our description
method is its capability of representing threats (attacks) and
vulnerabilities (weaknesses) of a system as structures of trust
relationship between the system components.

Since our description only specifies the trust relationship
between “legitimate” entities, no entities are explicitly
introduced for representing “attackers”. Threats that
attackers would bring to the system, emerge as attempts by
attackers to replace legitimate entities with fake entities
controlled by them. Attackers attempt to get access to data
protected by valid entities, by attacking the defects in trust
relationships between the entities. If such replacement is
made undetected by other entities, attacks can succeed, and
security is broken. Vulnerabilities of a system translate to
replaceable entities.

The replacement of entities can succeed if either internal
behaviors of entities are mimicked or their appearance is
copied. Internal behaviors can be mimicked if elements of
either SECRETs or CREDENTIALs are broken, meaning
SECRET elements do not have sufficient strength, or there
are defects in the processes generating CREDENTIAL
elements.

Figure 9. Structure of the security of the Web application

In the following, we show how some known security
threats can be manifested in terms of replacement of entities.

 Eavesdropping and data forgery: attacks on the
network can be instantiated as replacement of link
entities.

 Phishing: phishing is an attack being carried out
outside the system. It is hard to distinguish a
legitimate password from a stolen one after it has
been stolen. It is important to consider measures to
prevent password theft.

 Pharming: replacement of a server-side entity
 MITM (Man in the Middle): replacement of an

intermediate entity that corresponds with the
browser, for example.

 Guessing attack: replacement of execution entities
because of inadequate strength of SECRET elements
in the password type.

 Hijack: replacement of a link entity because of
inadequate strength of a SECRET element (i.e. the
session key)

 Replay: replacement of an entity by imitating the
appearance of the entity with pre-recorded behaviors.

B. Example of Description of Systems

We confirm the expressive power of the description
method through several authentication technologies.

1) Kerberos
Kerberos is an authentication protocol for user

authentication in UNIX and Windows systems when users
try to access system resources on the network. Kerberos is a
cryptographic protocol that is not a subject to be analyzed in
this paper, but is rather an existing authentication method to
form an illustrative link entity. However, because Kerberos
can be regarded as a system consisting of a client and several
servers providing security services, it can also be a good
example of a system providing a security service. It consists
of several entities interacting with each other via
cryptographic protocols.

Kerberos consists of the client terminal (C) through
which the user accesses network resources, the
authentication server that verifies the user's password (AS),
the ticket granting server that issues a ticket to allow the user
to access network resources after authentication (TGS) and
the actual application server that the user wants to access (S).

In the Kerberos specification, trust relationships between
the components were established with symmetric keys
previously as follows; Kc between C and AS, Ktgs between
AS and TGS and Ks between TGS and S. These keys
become the SECRET elements of the components and
therefore, inputs of the elements of the CREDENTIALs.

Fig.10 shows the formation of the components of
Kerberos. The circles specify the components that become
the execution entities. Lines are communication paths that
become link entities.

In the specification of Kerberos, Kc is not a SECRET
element for C, but the encryption key derived from the user’s
password PW in C. AS authenticates the user with Kc. C
does not have its own SECRET element, and has no trust

CA B
PW ⊥ Ks

TA.B(⊥)

TA.C(⊥)

TB.A(⊥)
TB.C(Kp,r)

TB.D(Kd)

TC.A(PW)
TC.B(⊥)

TC.D (Kd)

D

Kd
TD.C(Kp,r)
TD.B(⊥)

A B
PW ⊥

TA.B(⊥)

TA.E(⊥)

TB.A(⊥)
TB.E(Kp,r)
TB.E(Kd)

E
Ks,Kd

No

TE.A(PW)

TE.B(⊥)

Sharing Condition
No

relationship with other components at all. That is to say, C is
a replaceable entity because no other entities authenticate C.
Also, the user is not a part of the specification for Kerberos.
If we want to use Kerberos for the user authentication service
of a system, it is important to consider implementing a
secure PW input method and a valid authentication scheme
for the client terminal. This is not a problem solely for
Kerberos, but a common issue of standard authentication
technologies available today. A major cause of security
threats brought by malware is this vulnerability. Also, it must
be reiterated that the strength of Kc is no more than the
strength of PW because Kc is derived from the PW. It should
usually be viewed as being weak.

For simplicity, hereafter we assume that a certain secure
trust relationship between the user and C has already been
established. We analyze the security structure of Kerberos
within the scope of its specification.

Between AS and C, a message m encrypted with Kc is
sent from AS to C only once in one direction. C can confirm
that AS has Kc because C can decrypt the encrypted m sent
from AS with Kc. Also because m contains a timestamp, C
can verify that m is not a replayed message output from AS
previously. By contrast, by encrypting m with Kc, AS can
assure itself that m is only available to C, because only C can
decrypt m. Since C does not send a message back, we do not
have to worry that C is being mimicked.

Kc is set as the SECRET element of the link entity,
named L1, between AS and C. The TRUST elements of C
and AS used on each other are copied to TRUST for L1. As
a result of this L1 configuration, C, L1 and AS can be
combined. We name the combined entity D. Fig. 11 shows
the trust relationships of these entities. CREDENTIALs are
omitted from this example. Here, TX.Y (Kc, m, t) means that
m contains a timestamp t.

The message m from AS to C contains a session key Kt
that was generated by AS for communication between C and
TGS, and an encrypted Kt using Ktgs as well. The combined
entity D contains Kt and is able to send the encrypted Kt to
the TGS. This means that a part of the CREDENTIAL
generation processes for AS is shared in D through the
combination that created D.

Between D and TGS, the encrypted Kt, is sent from D to
TGS. TGS decrypts the encrypted Kt using Ktgs that is
shared with AS, and sends a necessary message back to D
securely using Kt as the session key. We can regard this
message exchange as a protocol with which D and TGS can
mutually authenticate with the shared Ktgs and generate the
session key Kt. D uses E(Kt)Ktgs, that D borrowed from AS
through the combination, as its element of CREDENTIAL
and TRUST with TGS. The trust relationship among D, TGS
and the link entity L2 are illustrated in Fig. 12.

We can confirm the freshness of D via a timestamp
contained in the message sent from D to TGS. Because Kt is
a (short-live) session key, we can also confirm that TGS is
not mimicked if D can decrypt the message successfully.
With this mutual authentication, D, L2 and TGS may be
combined.

Figure 10. Kerberos configuration

Figure 11. Kerberos: Combination of C, L1 and AS

Figure 12. Kerberos: Combination of E, L2 and TGS

Throughout the Kerberos specification, this combined
entity establishes a secure communication to the ultimate
application server S. At the end of the protocol, we can
combine D, AS, TGS and S into a single entity. As a result,
with one combined entity containing all components of
Kerberos, we can conclude that we have a secure
communication channel between the user and S using
Kerberos.

2) SSL / TLS server authentication
We investigate the SSL/TLS example presented in

Section III.A in more detail. As mentioned in Section IV.A,
the possibility of replacing entities of a system, that is, the
vulnerabilities of the system, is due to either inadequate
strength of the SECRET elements, defects in the trust
relationships between entities, or the possibility of imitation
of instances of entities. It is possible for us to check if a
vulnerability exists in a system through the use of trust
relationship diagrams in this description method by
following the steps below:

a) Inadequate strength of SECRET elements:

Check the existence of SECRET elements. Calculate the
strength of SECRET elements using, for example, the NIST
SP800-57 [7] guideline if any. The minimum value of these
strengths becomes the overall authentication strength of the
entity

b) Defects in trust relationships:

Confirm that CREDENTIAL elements for every entity
are referred to, and verified, in the TRUST of any other
trusting entity. If not, the entity is replaceable. If it is a case,
check if the IDENTITY of the verifying entity is in ADJ of
the verified entity. If it is not the case at all, the verified

C

Kc

TC.AS(Kc,m,t)
TC.L1(Kc,m)

Kc

TL1.AS(Kc,m,t)
TL1.C(Kc,m)

AS

Kc,Ktgs

TAS.L1(Kc,m)
TAS.C(Kc,m)

L1

User

C

S

AS TGS

PW Kc

Ktgs
Ks

Ks

Kc
Ktgs

D L2 TGS

Ktgs Kt Ktgs

TD.TGS(Ktgs,m)
TD.L2(Kt,m)

TL2.TGS(Ktgs,m)
TL2.D (Ktgs,m,t)

TTGS.L2(Kt,m)
TTGS.D(Ktgs,m,t)

Sharing Condition:
Kt & (Kt)Ktgs are
moved from AS to C

entity is replaceable unless there is a secure way of
transferring CREDENTIAL elements of the verified entity to
the verifying entities.

c) Possibility of imitation of instances:

Check if for every entity CREDENTIAL elements
contain any input that varies over time (for example, a
timestamp, an expiration date, a random nonce, or an
aggregated count), and are verified by other entities. If no
CREDENTIAL elements have such input, the entity is
replaceable.

By applying these steps to the Web application diagram
presented in Fig. 9, we can see that the system has several
vulnerabilities (replaceable entities) as follows.

For A:
 The strength of the PW may be weak. It is common

understanding in the industry that the entropy of a
password is at most 60 bits [8]. It raises the risk of
spoofing. The password can be stolen through a
dictionary attack.

 Since TE.A (PW), which is the only TRUST element
that verifies PW, does not have any input that varies
over time, an attacker can mimic the behavior of A
by merely presenting the PW that was previously
stolen by the attacker pretending to be B. A could
become a good target for a phishing attack.

 Because the entity E that is the only entity trying to
authenticate A with PW, is not adjacent to A directly,
and B is replaceable, a MITM attack is possible.

For B:
 B does not have any SECRET elements, and all

other entities that have TRUST elements with B use
 to verify B. Therefore, B is a replaceable entity.
All information passing through B can be stolen.
MITM is easily carried out.

For E:
 Though E is authenticated by B, because B is a

replaceable entity, B and E are replaceable together
from A’s perspective. Farming is a possible attack.

These analyses explain vulnerabilities of Web
applications we are experiencing today.

For a further investigation of the security of the Web
application, let’s change the user authentication method from
simple PW to use of a onetime password. As the
CREDENTIAL element of A given to E, we use a composite
onetime password generation process (PW, t) inputting PW
and the time t instead of a static PW. The diagram of the trust
relationship becomes Fig. 13.

Figure 13. The Trust relationship with onetime password

Through this modification, the weakness of A coming
from the inadequate strength of the SECTRET element, and
the possibility of imitation are eliminated. Only one problem
remains.

 Because the entity E that is the only entity trying to
authenticate A with PW, is not adjacent to A directly,
and B is replaceable, a MITM attack is possible.

Because the vulnerabilities of B and E will not change,
we can easily understand that the combination of a onetime
password scheme and SSL/TLS server-side authentication
can improve the security strength of authenticating A;
however this does not solve the problem of a MITM attack
implemented by hijacking the browser or misdirecting the
user to a faulty site. This clearly shows the limitation of the
onetime password scheme that is sometimes difficult to
recognize.

V. DISCUSSION

A. Trust Elements - Configuration of the entity

1) SECRET
In developing systems with mobile equipment and/or

embedded devices, it has been general practice to include a
device identification and authentication scheme into the
device’s system design. When designing internal systems,
however, that consist of computing equipment continuously
interconnected via a corporate network, it is often the case
that no authentication means is considered; devices are
trusted when they join the network. The increase in attacks
by insiders and incidents of malware indicate that such a
trusting assumption is no longer good practice. In addition,
as devices with no innate consideration for being
authenticated, such as PCs, become major components of a
system, it becomes difficult, if not impossible, to maintain
the security of the system without exchanging
CREDENTIAL elements among system components to
verify trust relationships. Based on this understanding, we
stipulate the possession of SECRET elements as the basis of
the security of systems, and build upon this foundation.

2) Link entity
This description method provides a means to analyze the

security of systems on the premise of standard, proven
encryption technologies and existing well-designed
cryptographic protocols that enable security services for
mutual authentication, key exchange and message encryption.
When we design secure systems, it is common to use
existing cryptographic protocols such as SSL/TLS, Kerberos
and IPSec as tools to implement needed security services, or
sometimes to use custom protocols specifically designed by
a security expert. The premise above is well suited to this
situation. Traditional development engineers are trained to
use security protocols, not to design them. They may make
use of this description method to analyze the security of the
systems they deploy and communicate with stakeholders of
the system to agree on the system design.

It is important, however, for engineers to design systems
so that cryptographic protocols used in the systems can be
replaced easily when vulnerabilities are found in the
protocols. Even a well-studied cryptographic protocol could

(PW,t) ⊥
TA.B(⊥)

TA.E(⊥)

TB.A(⊥)
TB.E(Kp,r)
TB.E(Kd)

NoSharing Condition

TE.A(PW)

TE.B(⊥)

OmittedCREDENTIAL

Ks,KdPW ⊥

EBA

have vulnerabilities. For example, Kerberos was revised to
V5 when some weaknesses were recognized in V4 [9].

B. Related Work

In the 1970’s, the foundational results of years of
cryptographic research emerged, and established
cryptographic standards in the Internet age. Since the late
1970’s through the 1990’s, research into the analysis of
system security became active and flourished based on these
results. In particular, the application of formal methods to
cryptographic protocols has been a mainstay of the research
activities. The first significant work in the area was done by
Dolev and Yao[10]. Though the research did not go further
for several reasons, it included a powerful intruder model
upon which many later works in this area are based. After
Dolev and Yao, perhaps the most influential paper in this
field was published by Burrows, Abadi and Needham[11].
Their logic, called BAN logic, starts with an initial set of
beliefs on security properties of entities based on the premise
of correctness of encryption schemes. It then builds on this
premise with statements about messages exchanged
throughout the course of a protocol between the entities, and
concludes by verifying the correctness of the protocol. The
description method introduced in this paper starts with trust
relationships among entities that can be assumed by the
security properties derived from the correct use of encryption
technologies and cryptographic protocols that have been
studied in the prior art. It builds upon these assumptions with
a description of the structure of the security of a system.
Other approaches to formal cryptographic protocol analysis
include the application of a general purpose modeling
language such as CSP to the system security field [12][13],
and the use of a graph-theoretic interpretation, called the
strand spaces, for protocol verification [14][15].

Trust management is another fundamental area as well as
examination of cryptographic protocols to focus on when we
study system security in general. Yahalom, Klein and Beth
developed a formalism to analyze trust relationships between
entities communicating with each other with cryptographic
protocols [16]. Because our description method adopts a
static trust model to present the structure of the security of
systems, trust management is beyond the scope of this paper
except considering transferring trust-related elements
between entities when entities combine. Adding richer trust
management rules to our method is our next challenge to
make our method applicable to wider application areas
requiring dynamic establishment of trust relationships
between entities.

VI. CONCLUSION

We have developed a description method that diagrams
the structure of the security of a system simply and clearly
by representing the trust relationship among entities as an
abstract object modeled from system components. It includes
not only information processing components such as
computing devices and users but also communication
protocols, with a simple structure consisting of trust elements.
The structure of the entity is designed, so that we can express
various vulnerabilities of a system uniformly with the

possibility of replacing entities without necessarily
envisioning any concrete threats against the system. We rely
upon properties of security services of cryptographic
protocols proven by prior research. We believe this
description method can serve as an efficient tool for
engineers to design and analyze a system, and a useful
communication vehicle among stakeholders of the system as
it can describe the security properties of systems clearly.
With this method, stakeholders can readily confirm that their
security requirements on the system are fulfilled.

REFERENCES

[1] J¨urjens J. : Towards development of secure systems using
UMLsec. Fundamental Approaches to Software Engineering
(FASE/ETAPS 2001), LNCS 2029:187–200, 2001.

[2] Mead, N. R., Hough, E. and Stehney, T. : Security Quality
Requirements Engineering (SQUARE) Methodology
(CMU/SEI-2005-TR009). 2005.

[3] Dahl, E., Hogganvik, I. and Stolen, K. : Structured semantics
for the CORAS security risk modelling language. Technical
Report. A970, SINTEF ICT, 2007.

[4] ISO/IEC 27002 Information technology. Security techniques.
Code of practice for information security management .

[5] IETF, RFC2246, The TLS Protocol, Version 1.0, 1999.

[6] IETF, RFC4120, The Kerberos Network Authentication
Service (V5), 2005.

[7] NIST SP800-57, Recommendation for Key Management -
Part I: General, 2006.

[8] NIST SP800-63-1, Electronic Authentication Guideline, 2008

[9] Yu, T., Hartman, S. and Raeburn, K. : The perils of
unauthenticated encryption: Kerberos Version 4. Proceedings
of the Network and Distributed Systems Security Symposium.
The Internet Society, 2004.

[10] Dolev, D. and Yao, A. : On the security of public key
protocols. IEEE Transactions on Information Theory,
29(2):198-208, 1983.

[11] Burrows, M., Abadi, M. and Needham, R.M. : A Logic of
authentication. Proceedings of the Royal Society, Series A,
426(1871):233-271, 1989.

[12] Schneider, S. : Verifying authentication protocols with CSP.
Proceedings of the 10th IEEE Computer Security Foundations
Workshop, 1997.

[13] Ryan, P. : Mathematical models of computer security.
Foundations of Security Analysis and Design, LNCS 2171:1-
62, 2001.

[14] Thayer, F. J., Herzog, J. C. and Guttman, J. D. : Strand
spaces: Proving security protocol correct. Journal of
Computer Security, 7(2/3):191-230, 1999.

[15] Guttman, J. D., Thayer, F. J., Carlson, J. A., Herzog, J. C.,
Ramsdell, J. D. and Brian, T. S. : Trust management in Strand
Spaces: A Rely-Guarantee method. Proceedings of the
European Symposium on Programming (ESOP ’04), LNCS
2986:325-339, 2004.

[16] Yohalom, R., Klein, B. and Beth, T. : Trust relationships in
secure systems – A distributed authentication perspective.
Proceedings of the 1993 IEEE Symposium on Research in
Security and Privacy:150-164, 1993.

