Synthesis of tunicaminyluracil derivatives.

Ichikawa, Satoshi; Matsuda, Akira

Nucleosides, nucleotides & nucleic acids, 23(1-2): 239-253

2004

http://hdl.handle.net/2115/46948

330NucNucNucAcid.pdf

Hokkaido University Collection of Scholarly and Academic Papers: HUSCAP
SYNTHESIS OF TUNICAMINYLURACIL DERIVATIVES†

Satoshi Ichikawa and Akira Matsuda*

Graduate School of Pharmaceutical Sciences, Hokkaido University,
Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan

Running title: tunicamycins, tunicaminyluracil, antibiotics, samarium diiodide, aldol reaction, Pummerer reaction

† In honor and celebration of the 70th birthday of Professor Leroy B. Townsend

*Author to whom reprint requests should be addressed.

Phone: +81-11-706-3228. Fax: +81-11-706-4980.

E-mail: matuda@pharm.hokudai.ac.jp

Phone: +81-11-706-3230. Fax: +81-11-706-4980.

E-mail: ichikawa@pharm.hokudai.ac.jp

Abstract: A tunicaminyuracil derivative, which is a key component of the tunicamycin nucleoside antibiotics, was synthesized using a samarium diiodide (SmI₂) mediated aldol reaction and intramolecular Pummerer reaction as the key steps. The α-phenylthio ketone 11, the precursor of the samarium enolate, was prepared from D-galactose. Treatment of 11 with SmI₂ at −40 °C resulted in complete conversion to the corresponding samarium enolate, and subsequent addition of uridine 5′-
aldehyde 12 afforded the desired aldol products 13a,b. Compound 13a was converted to the sulfoxide 15 by a sequential diastereoselective reduction of the ketone and an oxidation with mCPBA. Activation of 15 with Tf₂O provided the desired cyclized compound 17. In this reaction, the aldol product 13a was also obtained as a consequence of a competitive intramolecular version of DMSO-oxidation via a 7-membered ring intermediate. Compound 18 or 19 are ready for use as a glycosyl donor in glycosylations to provide a range of analogues as potential glycosyltransferase inhibitors as well as related natural products.

Introduction.

Tunicamycins¹–³ (1, Figure 1), isolated from the fermentation broths of *Streptomces lysosuperficus* in 1971, are nucleoside antibiotics composed of uridine, N-acetylglucosamine (GlcNAc), an aminoundecose which is a unique higher carbon sugar called tunicamine, and an amide-linked fatty acyl side chain.² They exhibit a variety of biological properties including antibacterial, antiviral, antifungal, and antitumor activities.⁴,⁵ Treatment of eukaryotic cells with tunicamycins results in the complete truncation of the oligosaccharides from N-linked glycopeptides. Therefore, tunicamycins are also utilized as a biological tool to reveal functions of the oligosaccharides in the N-linked glycopeptides. Tunicamycins strongly and reversibly inhibits UDP-GlcNAc:polyprenol phosphate GlcNAc-1-P translocase, the enzyme which is responsible for the first N-acetylglucosamination of the N-linked glycopeptide in endothelial reticulum (ER). It is suggested that the structure of tunicamycins closely resemble the transition state of the transfer reaction of UDP-GlcNAc onto a dolichol monophosphate in the ER membrane catalyzed by the translocase (Figure 1). In particular, the C7’–C11’ moiety of the tunicamycin structure forming a galactopyranoside can be considered as a mimic of the structure of a divalent metal chelated diphosphate. This structural mimicry has been utilized to design inhibitors of glycosyltransferases, which are responsible for oligosaccharide biosynthesis.⁶ Thus,
tunicamyluracil (2), which lacks the GlcNAc moiety and the fatty acyl chain of the tunicamycins, would be expected to be a versatile synthetic intermediate for the synthesis of various glycosyltransferase inhibitors.7

Their structural complexity also renders them worthy targets in organic synthesis. The total synthesis of tunicamycins has been accomplished by the groups of Suami’s8 and Myers9, and other synthetic studies of related compounds have also been reported.10

Previously, we applied the samarium diiodide (SmI\textsubscript{2}) mediated C-C bond formation reaction to nucleoside chemistry11 and developed a novel aldol reaction via the samarium enolate (B) generated by two electron reductions of the α-phenylthio ketone (A) (Scheme 1).12 The neutral and mild reaction conditions and the reactivity of the regioselectively generated samarium enolate (B) are suitable for the carbon-chain elongation to a base-labile nucleoside 5’-aldehyde derivative. This reaction was successfully applied to the total synthesis of the nucleoside antibiotic, herbicidin B.13 This SmI\textsubscript{2}-mediated aldol reaction could also be applied to the synthesis of tunicamyluracil (2), the structure of which is a 5’-carbon-branched uridine derivative. Here we describe the synthesis of tunicamyluracil (2) as an extension of our SmI\textsubscript{2}-mediated aldol reaction.

Figure 1. Structure of tunicamycins (1) and UDP-NAcGlc

I: R = (CH\textsubscript{3})\textsubscript{2}CH(CH\textsubscript{2})\textsubscript{7}
II: R = (CH\textsubscript{3})\textsubscript{2}CH(CH\textsubscript{2})\textsubscript{8}
III: R = CH\textsubscript{3}(CH\textsubscript{2})\textsubscript{10}
IV: R = C\textsubscript{12}H\textsubscript{25}
V: R = (CH\textsubscript{3})\textsubscript{2}CH(CH\textsubscript{2})\textsubscript{9}
VI: R = (CH\textsubscript{3})\textsubscript{2}CH(CH\textsubscript{2})\textsubscript{11}
VII: R = (CH\textsubscript{3})\textsubscript{2}CH(CH\textsubscript{2})\textsubscript{10}
VIII: R = CH\textsubscript{3}(CH\textsubscript{2})\textsubscript{12}

3
Our strategy includes the regioselective generation of a samarium enolate from the \(\alpha \)-phenylthio ketone (G), aldol reaction with the uridine 5'-aldehyde (F) to assemble the undecose system (E). After stereoselective reduction of the 7'-keto group in E, cyclization of the resulting 7'-hydroxyl group in D to the carbon atom at the 11'-position by an intramolecular Pummerer reaction can be expected to give 2. If such a cyclization occurs effectively, further introduction of certain carbohydrates using the resulting phenylthio pyranoside 2 as a versatile intermediate could be realized. Therefore, this approach would provide a ready access to a range of sugar analogues for the development of glycosyltransferase inhibitors.

Results and Discussion.
The synthesis of the key α-phenylthio ketone 11 is summarized in Scheme 3. Protection of 2-azido-2-deoxy-3,4,6-tri-O-acetylgalactose 314 with a TBDPS group gave only the β-galactoside 4, and successive removal of the acetyl groups followed by protection of the resulting secondary alcohols with an isopropylidene group under thermodynamic conditions provided 5. Introduction of a phenylthio group at the 6-position, which would become a leaving group when the samarium enolate is generated, was conducted by activation of the hydroxyl group as its triflate, followed by displacement with thiophenol to afford 6 in 93% yield in 2 steps. After deprotection of the TBDPS group of 6 with tetrabutylammonium fluoride (TBAF), followed by reductive ring opening of the resulting pyranose by NaBH₄, the desired diol 7 was obtained in 86% yield. Subsequent protecting group manipulations afforded the mono-benzoate 8 (83% yield for 3 steps) at the 5 position, and the remaining primary alcohol at position 1 was further converted to a phenylthio group in 90% yield as in the procedure for the preparation of 6. It should be noted that selective activation of the primary alcohol of 7 with Tf₂O followed by substitution with thiophenol was unsuccessful and gave a tetrahydropyran derivative as a

\textbf{Scheme 3'}. Preparation of α-phenylthio ketone

a. TBDPSCI, imidazole, DMF, 73%. b. i) NaOMe, MeOH. ii) 2,2':dimethoxypropane, p-TsOH, acetone, 69% for 2 steps. c. i) Tf₂O, pyridine, CH₂Cl₂. ii) PhSH, Et₃N, CH₂Cl₂ 93% for 2 steps. d. i) TBAF, THF. ii) NaBH₄, MeOH, 86% for 2 steps. e. i) TBSCI, imidazole, DMF. ii) BzCl, pyridine. iii) TBAF, THF, 83% for 3 steps. f. i) Tf₂O, pyridine, CH₂Cl₂. ii) PhSH, Et₃N, CH₂Cl₂ 90% for 2 steps. g. NaOMe, MeOH, 90%. h. Dess-Martin periodinane, CH₂Cl₂, 99%.
result of ring closure of the triflate intermediate. Deprotection of the benzoyl group followed by Dess-Martin periodinane oxidation afforded the α-phenylthio ketone 11 without oxidizing either of the phenylthio groups in quantitative yield.

The key SmI$_2$-mediated aldol reaction was conducted (Scheme 4) and the results are summarized in Table 1. Our previous study revealed that the two-electron reduction by SmI$_2$ to generate a samarium enolate from a 1-phenylthio-2-ulose derivative occurred at −78 °C. However, the treatment of α-phenylthio ketone 11 with 2.2 equiv of SmI$_2$ followed by addition of 1.0 equiv of the aldehyde 12 at −78 °C gave the desired aldol products 13a,b in 13% yield (Table 1, entry 1, 5'R/5'S = 64/36). The low yield of the products and the large amount of the unreacted 11 observed in the reaction mixture indicated that the α-phenylthio ketone 11 without a hetero atom adjacent to the phenylthio group is less reactive to the two-electron reduction than that with an oxygen atom. After several attempts to optimize the reaction temperature, the reaction at −40 °C gave complete consumption of 11. Addition of the aldehyde 12 at −78 °C after generation of the samarium enolate provided 13a,b in 71% (entry 3, 5'R/5'S = 66/34), although the addition at 0 °C resulted in inverted selectivity (entry 2, 5'R/5'S = 28/72). It is known that SmI$_2$ can reduce an azido group to the corresponding amino group. However, no such reduction of the azido group in 13 was detected, and therefore the two-electron reduction was

![Scheme 4. SmI$_2$-mediated aldol reaction](image)

<table>
<thead>
<tr>
<th>Table 1</th>
<th>temp. (°C)*</th>
<th>yield (%)</th>
<th>ratio (13a/13b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>entry</td>
<td>A</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>−78</td>
<td>−78</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>−40</td>
<td>0</td>
<td>62</td>
</tr>
<tr>
<td>3</td>
<td>−40</td>
<td>−78</td>
<td>71</td>
</tr>
</tbody>
</table>

*A: temperature at the addition of 11
B: temperature at the addition of 12
chemoselectively accomplished.

Stereoselective reduction of the ketone 13a was required in the next step. Intramolecular hydride delivery from NaBH(OAc)$_3$ via a 6-membered transition state selectively afforded the desired 1,3-anti-diol 14 in quantitative yield. If the resulting hydroxyl group at the 7' position cyclized with the carbon atom at the 11 position to form a hexopyranose via an intramolecular Pummerer reaction, the desired tunicaminy luracil derivative 17 could be obtained. There are several methods available to promote the Pummerer reaction including the direct activation of a sulfide or of the corresponding sulfoxide.17

Scheme 5: Synthesis of tunicaminy luracil derivative

Reagents and conditions: a. NaBH$_4$, AcOH–CH$_2$Cl$_2$, 92%. b. mCPBA, CH$_2$Cl$_2$, 96%. c. with 14. NIS, TIOH, CH$_2$Cl$_2$. d. i) Tf$_2$O, pyridine, CH$_2$Cl$_2$. ii) NaBH$_4$, AcOH–CH$_2$Cl$_2$, 53% for 17, 36% for 14. e. Ac$_2$O, DMAP, CH$_2$Cl$_2$, 96%. f. i) PhSeH, Et$_3$N. ii) phthaloyl dichloride, DBU, toluene, 92% for 2 steps.
Direct activation of the sulfide 14 by treatment with NIS in the presence of a catalytic amount of TfOH resulted in the iodo-etherification product 16 between the 5’-hydroxyl group and the 5,6-double bond within the uracil base, and the desired cyclization failed to occur. Next, the activation of the corresponding sulfoxide 15 was examined. Oxidation of 14 with mCPBA provided the corresponding sulfoxide 15 as a mixture of diastereomers. An initial effort to activate 15 with (CF₃CO)₂O resulted in extensive trifluoroacetylation of the alcohols and only a trace amount of the desired product 17 was obtained. However, treatment of the sulfoxide 15 with Tf₂O in the presence of pyridine at –20 °C provided the desired product 17 along with 13a as an inseparable mixture in a ratio of 62:38. After the mixture was treated with NaBH(OAc)₃, compound 17 could be separated from the corresponding reduced product 14 by the usual silica gel column chromatography. The phenylthio glycoside 17 was a single β-anomer. The stereochemistry of 17 was determined by an NOE (3.6%) between H7’ and H11’.

Sulfonylation of the sulfoxide with Tf₂O promotes β-elimination to give a thiocarbenium intermediate. Intramolecular nucleophilic attack of the 7’-hydroxyl group on the 11’-carbon atom affords the cyclized product 17 (Scheme 6, path a). We suppose that the aldol product 13a is produced through the nucleophilic attack of the 7’-hydroxyl group on the activated thionium cation with the formation of a 7-membered ring followed by hydrogen abstraction and elimination resulting in the oxidation of the alcohol, an intramolecular version of the DMSO-oxidation (Scheme 6, path b). The fact that the 5’-keto derivative or the sulfoxide of 13a, which is also possible a product if this reaction proceeds in an intermolecular fashion, was not detected in the reaction mixture indicates that the mechanism of the oxidation involves the intramolecular pathway b. Following acetylation of the 5’-hydroxyl group of 17, the 10’-azido group of the corresponding acetate 18 was reduced with PhSeH in the presence of Et₃N. The liberated amine was then protected with a phthaloyl group to afford 19, a fully protected tunicaminyluracil.
In conclusion, the tumicaminy luracil derivative 19 has been synthesized by an aldol reaction via the samarium enolate generated from the α-phenylthio ketone 11 and the intramolecular Pummerer reaction as the key steps. The SmI$_2$-mediated aldol reaction was successfully applied to the carbon-chain elongation of the uridine 5′-aldehyde derivative 12. Compound 18 or 19 would then be ready for use as glycosyl donor in glycosylations to provide a range of sugar analogues as well as related natural products.

Experimental Section:

General Methods. Physical data were measured as follows: 1H and 13C NMR spectra were recorded at 500 MHz and 125 MHz instruments in CDCl$_3$ as the solvent with tetramethylsilane as an internal standard. Chemical shifts are reported in parts per million (δ), and signals are expressed as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), or br (broad). All exchangeable protons were detected by addition of D$_2$O. Assignment of 1H signals was based on two-dimensional NMR and NOE experiments. Mass spectra were measured on JEOL JMS-D300 spectrometer. TLC was done on Merck Kieselgel F254 precoated plates. Silica gel used for column chromatography was Merck silica gel 5715.

tert-Butyldiphenylsilyl 2-Azido-3,4,6-tri-O-acetyl-2-deoxy-β-D-galactopyranoside (4). A mixture
of 3 (2.50 g, 7.50 mmol), TBDPSCI (2.34 mL, 9.00 mmol), and imidazole (1.23 g, 18.0 mmol) in DMF (40 mL) was stirred for 3 h at 50 °C. After MeOH (5 mL) was added, the mixture was partitioned between AcOEt (200 mL) and H₂O (200 mL), and the organic layer was washed with H₂O (200 mL), brine (100 mL), dried (Na₂SO₄), and evaporated under reduced pressure. The residue was purified by column chromatography (SiO₂, 25% AcOEt/hexane) to give 4 (3.10 g, 73% as a colorless syrup): [α]₀⁻ nin 9.29° (c 0.96, CHCl₃); ¹H NMR (CDCl₃, 500 MHz) δ 7.73–7.36 (m, 10H), 5.23 (d, 1H, J = 3.0 Hz), 3.68 (dd, 1H, J = 3.3, 10.8 Hz), 4.46 (d, 1H, J = 7.7 Hz), 3.96 (dd, 1H, J = 6.6, 11.2 Hz), 3.89 (dd, 1H, J = 6.6, 11.2 Hz), 3.72 (dd, 1H, J = 7.6, 10.7 Hz), 3.53 (t, 1H, J = 6.6 Hz), 2.17 (s, 3H), 2.03 (s, 3H), 1.91 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 170.5, 170.3, 170.0, 136.1, 136.0, 133.1, 132.6, 130.3, 130.1, 127.9, 127.7, 97.2, 71.5, 70.8, 66.7, 63.7, 61.4, 27.0, 20.9, 20.8, 20.7, 19.4; MS (FAB) m/z 568 (MH⁺); Exact MS (FAB) Calcd for C₂₈H₂₉N₃O₈Si: 570.2271, found: 570.2291.

 tert-Butyldiphenylsilyl 2-Azido-2-deoxy-3,4-O-isopropylidene-β-D-galactopyranoside (5). A mixture of 4 (2.84 g, 5.00 mmol) in MeOH (50 mL) containing NaOMe in MeOH (28%, 100 µL) was stirred for 2 h at room temperature. After neutralized by adding Dowex 50 (H⁺), the resin was removed by filtration, and the filtrate was evaporated under reduced pressure. The residue was coevaporated with toluene (3 x 10 mL). The residue and anhydrous p-TsOH (85 mg, 0.5 mmol) in acetone (50 mL) was stirred for 5 h at room temperature. The mixture was neutralized with saturated aqueous NaHCO₃, and the mixture was concentrated under reduced pressure. The residue was partitioned between AcOEt (200 mL) and H₂O (200 mL), and the organic layer was washed with H₂O (200 mL), brine (100 mL), dried (Na₂SO₄), and evaporated under reduced pressure. The residue was purified by flush column chromatography (SiO₂, 25% AcOEt/hexane) to give 5 (3.10 g, 73% as a colorless syrup): [α]₀⁻ nin 52.8° (c 1.01, CHCl₃); ¹H NMR (CDCl₃, 500 MHz) δ 7.75–7.38 (m, 10H), 4.43 (d, 1H, J = 8.3 Hz), 3.91 (dd, 1H, J = 1.7, 5.2 Hz), 3.85 (dd, 1H, J = 5.4, 8.1 Hz), 3.66 (dd, 1H, J = 8.1, 11.9 Hz), 3.48 (dd, 1H, J = 5.6, 11.9 Hz), 3.43 (t, 1H, J = 8.1 Hz), 3.38 (dd, 1H, J = 1.7, 5.6, 8.1 Hz), 1.56 (s, 3H), 1.30 (s, 3H);
13C NMR (CDCl$_3$, 125 MHz) δ 137.4, 137.3, 135.2, 134.1, 131.7, 131.6, 129.4, 129.1, 112.3, 98.1, 79.2, 75.4, 74.5, 69.6, 63.7, 29.9, 28.4, 27.8, 20.6; MS (FAB) m/z 484 (MH$^+$); Exact MS (FAB) Calcd for C$_{25}$H$_{34}$N$_3$O$_5$Si: 484.2267, found: 484.2251. Anal. Calcd for C$_{25}$H$_{33}$N$_3$O$_5$Si: C, 62.09; H, 6.88; N, 8.69. Found: C, 62.05; H, 6.89; N, 8.73.

tert-Butyldiphenylsilyl 2-Azido-2-deoxy-3,4-O-isopropylidene-6-S-phenyl-6-thio-β-D-galactopyranoside (6). A mixture of 5 (370 mg, 0.76 mmol) and Tf$_2$O (258 µL, 1.56 mmol) in CH$_2$Cl$_2$ (8 mL) containing pyridine (129 µL, 1.72 mmol) was stirred for 5 min at –20 °C. The mixture was diluted with CH$_2$Cl$_2$ (20 mL), washed with H$_2$O (50 mL), saturated aqueous NaHCO$_3$ (30 mL), and brine (100 mL), dried (Na$_2$SO$_4$), and evaporated under reduced pressure. A solution of PhSH (117 µL, 1.17 mmol) and Et$_3$N (214 µL, 1.56 mmol) in CH$_2$Cl$_2$ (8 mL) was added to the above residue in CH$_2$Cl$_2$ (5 mL). The mixture was stirred for 1 h at room temperature, diluted with CH$_2$Cl$_2$ (20 mL), and washed with H$_2$O (50 mL). The organic layer was evaporated under reduced pressure. The residue was purified by column chromatography (SiO$_2$, 4% AcOEt/hexane) to give 6 (406 mg, 93% as a colorless syrup): $[\alpha]_{D}^{21.0^\circ}$ (c 1.11, CHCl$_3$); 1H NMR (CDCl$_3$, 500 MHz) δ 7.73–7.16 (m, 15H), 4.27 (d, 1H, $J = 8.2$ Hz), 4.10 (dd, 1H, $J = 2.1, 5.2$ Hz), 3.78 (dd, 1H, $J = 5.3, 8.1$ Hz), 3.42 (t, 1H, $J = 8.2$ Hz), 3.34 (ddd, 1H, $J = 2.1, 5.3, 8.8$ Hz), 1.54 (s, 3H), 1.26 (s, 3H); 13C NMR (CDCl$_3$, 125 MHz) δ 136.0, 135.9, 135.6, 133.1, 132.6, 130.8, 129.9, 129.8, 129.1, 129.0, 127.6, 127.4, 127.1, 126.2, 110.2, 96.4, 72.7, 71.8, 67.9, 33.2, 28.3, 26.8, 26.1, 19.1; MS (FAB) m/z 576 (MH$^+$); Exact MS (FAB) Calcd for C$_{31}$H$_{38}$N$_3$O$_4$SSi: 576.2352, found: 576.2330.

(2S,3R,4S,5R)-2-Azido-3,4-(dimethylmethylenedioxy)-6-phenylthio-1,5-hexanediol (7). A mixture of 6 (3.60 g, 6.26 mmol) and TBAF (1 M, 6.89 mL, 6.89 mmol) in THF (60 mL) was stirred for 30 min at –20 °C and evaporated under reduced pressure. Sodium borohydride (950 mg, 25.0 mmol) was added to the above residue in MeOH (60 mL) at –20 °C, and the mixture was stirred for 30 min. The mixture was evaporated under reduced pressure, and then the residue was coevaporated with MeOH (3
x 10 mL). The residue was partitioned between AcOEt (200 mL) and H₂O (200 mL), and the organic layer was washed with H₂O (200 mL) and brine (100 mL), dried (Na₂SO₄), and evaporated under reduced pressure. The residue was purified by column chromatography (SiO₂, 33% AcOEt/hexane) to give 7 (1.83 g, 86% as a colorless syrup): [α]D −29.8° (c 0.99, CHCl₃); ¹H NMR (CDCl₃, 500 MHz) δ 7.38 (d, 2H, J = 7.7 Hz), 7.29 (t, 2H, J = 7.5 Hz), 7.21 (t, 1H, J = 7.4 Hz), 4.31 (dd, 1H, J = 1.8, 6.8 Hz), 4.27 (t, 1H, J = 6.5 Hz), 3.80 (m, 2H), 3.65 (m, 2H), 3.17 (dd, 1H, J = 6.5, 13.7 Hz), 3.06 (dd, 1H, J = 6.8, 13.7 Hz), 2.83 (d, 1H, J = 6.7 Hz, exchanged with D₂O), 2.27 (t, 1H, J = 5.7 Hz, exchanged with D₂O), 1.56 (s, 3H), 1.36 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 135.2, 129.8, 129.3, 129.2, 128.6, 126.7, 126.5, 126.1, 108.9, 68.0, 63.0, 61.7, 38.2, 26.5; MS (FAB) m/z 340 (MH⁺); Exact MS (FAB) Calcd for C₁₅H₂₂N₃O₄S: 340.1331, found: 340.1339.

(2S,3R,4S,5R)-2-Azido-5-benzoyloxy-3,4-(dimethylmethyleneoxy)-6-phenylthio-1-hexanol (8).

A mixture of 7 (500 mg, 1.47 mmol), TBSCl (243 mg, 1.67 mmol), and imidazole (220 mg, 3.23 mmol) in DMF (20 mL) was stirred for 1 h at 0 °C. After MeOH (5 mL) was added, the mixture was partitioned between AcOEt (100 mL) and H₂O (100 mL), and the organic layer was washed with H₂O (100 mL) and brine (50 mL), dried (Na₂SO₄), and evaporated under reduced pressure. BzCl (256 µL, 2.21 mmol) was added to the residue in pyridine (20 mL), and the mixture was stirred for 12 h at room temperature. After MeOH (1 mL) was added, the mixture was evaporated under reduced pressure. The residue was partitioned between AcOEt (100 mL) and H₂O (100 mL), and the organic layer was washed with H₂O (100 mL) and brine (50 mL), dried (Na₂SO₄), and evaporated under reduced pressure. A mixture of the residue and TBAF (1 M, 1.67 mL, 1.67 mmol) in THF (20 mL) was stirred for 2 h at 0 °C. The mixture was evaporated under reduced pressure, and the residue was purified by column chromatography (SiO₂, 10% AcOEt/hexane) to give 8 (534 mg, 83% as a colorless syrup): [α]D −52.7° (c 1.04, CHCl₃); ¹H NMR (CDCl₃, 500 MHz) δ 8.12–7.18 (m, 10H), 5.22 (ddd, 1H, J = 1.6, 5.2, 8.8 Hz), 4.70 (dd, 1H, J = 1.6, 6.4 Hz), 4.39 (m, 1H), 3.53 (m, 2H), 3.47 (dd, 1H, J = 5.2, 13.7 Hz), 3.26
(dd, 1H, J = 8.8, 13.7 Hz), 1.96 (t, 1H, J = 5.2 Hz, exchanged with D2O), 1.67 (s, 3H), 1.44 (s, 3H); 13C NMR (CDCl3, 125 MHz) δ 166.7, 135.2, 133.7, 130.1, 130.0, 129.6, 129.3, 128.8, 126.7, 109.5, 75.1, 72.1, 62.9, 61.6, 33.8, 26.8, 25.6; MS (FAB) m/z 444 (MH+); Exact MS (FAB) Calcd for C22H26N3O5S: 444.1593, found: 444.1580.

(2S,3R,4S,5R)-2-Azido-5-benzoyloxy-3,4-(dimethylmethylenedioxy)-1,6-di(phenylthio)hexane (9). A mixture of 8 (570 mg, 1.28 mmol) and Tf2O (261 µL, 1.53 mmol) in CH2Cl2 (15 mL) containing pyridine (129 µL, 1.72 mmol) was stirred for 5 min at −20 °C, and diluted with CH2Cl2 (20 mL). The mixture was washed with H2O (50 mL), saturated aqueous NaHCO3 (30 mL), and brine (100 mL), dried (Na2SO4), and evaporated under reduced pressure. A mixture of the residue in CH2Cl2 (15 mL), PhSH (394 µL, 3.84 mmol), and Et3N (720 µL, 5.12 mmol) was stirred for 1 h at room temperature, diluted with CH2Cl2 (20 mL), and washed with H2O (50 mL). The organic layer was evaporated under reduced pressure. The residue was purified by column chromatography (SiO2, 4% AcOEt/hexane) to give 9 (614 mg, 90% as a colorless syrup): [α]D23.9° (c 1.02, CHCl3); 1H NMR (CDCl3, 500 MHz) δ 8.03–7.12 (m, 15H), 5.07 (ddd, 1H, J = 3.0, 4.8, 8.3 Hz), 4.62 (dd, 1H, J = 3.0, 6.5 Hz), 4.41 (t, 1H, J = 6.8 Hz), 3.45 (dd, 1H, J = 6.8, 12.3 Hz), 3.41 (dd, 1H, J = 4.9, 13.8 Hz), 3.17 (dd, 1H, J = 8.4, 13.8 Hz), 2.97 (dd, 1H, J = 5.3, 13.8 Hz), 2.92 (dd, 1H, J = 7.0, 13.7 Hz), 1.61 (s, 3H), 1.39 (s, 3H); 13C NMR (CDCl3, 125 MHz) δ 166.2, 135.0, 134.5, 133.5, 131.2, 130.1, 129.9, 129.8, 129.5, 129.4, 128.7, 127.6, 126.9, 109.7, 78.3, 75.1, 71.7, 59.5, 36.9, 33.8, 25.7, 25.4; MS (FAB) m/z 536 (MH+); Exact MS (FAB) Calcd for C28H30N3O4S2: 536.1677, found: 536.1670.

(2S,3R,4S,5R)-2-Azido-3,4-(dimethylmethylenedioxy)-1,6-di(phenylthio)hexane (10). A mixture of 9 (4.70 g, 8.74 mmol) in MeOH (90 mL) containing NaOMe in MeOH (28%, 0.8 mL) was stirred for 1 h at room temperature. After neutralized by adding Dowex 50 (H+), the resin was removed by filtration, and the filtrate was evaporated under reduced pressure. The residue was purified by column chromatography (SiO2, 4% AcOEt/hexane) to give 10 (3.40 g, 90% as a colorless syrup): [α]D−14.5°
(c 1.11, CHCl₃); ¹H NMR (CDCl₃, 500 MHz) δ 7.37–7.20 (m, 15H), 4.32 (dd, 1H, J = 4.8, 6.9 Hz), 4.26 (dd, 1H, J = 2.8, 6.9 Hz), 3.68 (ddd, 1H, J = 2.9, 6.4, 9.1 Hz), 3.57 (dd, 1H, J = 6.4, 11.5 Hz), 3.06 (m, 3H), 2.98 (dd, 1H, J = 6.5, 13.7 Hz), 1.51 (d, 1H, J = 5.8 Hz, exchanged with D₂O), 1.54 (s, 3H), 1.33 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 135.3, 134.7, 131.2, 130.1, 129.5, 129.4, 127.6, 127.0, 126.3, 109.3, 68.1, 60.6, 59.6, 38.5, 36.9, 26.6, 25.0, 21.3; MS (FAB) m/z 432 (MH⁺); Exact MS (FAB) Calcd for C₂₁H₂₆N₃O₃S₂: 432.1415, found: 432.1422.

(3R,4R,5S)-5-Azido-3,4-(dimethylmethyleneedioxy)-1,6-di(phenylthio)-2-hexanone (11). A mixture of 10 (1.20 g, 2.79 mmol) and Dess-Martin periodinane (1.79 g, 4.19 mmol) in CH₂Cl₂ (30 mL) was stirred for 30 min at room temperature. After a mixture of saturated aqueous NaHCO₃ and saturated aqueous Na₂S₂O₃ (5:1, 50 mL) was added, the mixture was vigorously stirred until the organic layer turned to be clear. The organic layer was washed with H₂O (50 mL) and brine (50 mL), dried (Na₂SO₄), and evaporated under reduced pressure. The residue was purified by column chromatography (SiO₂, 8% hexane/AcOEt) to give 11 (1.20 g, 99% as a colorless syrup): [α]D₂3.9° (c 1.17, CHCl₃); ¹H NMR (CDCl₃, 500 MHz) δ 7.40–7.19 (m, 15H), 4.69 (dd, 1H, J = 1.1, 8.7 Hz), 4.62 (d, 1H, J = 8.7 Hz), 4.19 (d, 1H, J = 15.7 Hz), 3.93 (d, 1H, J = 15.7 Hz), 3.34 (t, 1H, J = 6.6 Hz), 3.27 (s, 2H), 1.60 (s, 3H), 1.32 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 204.4, 135.0, 134.4, 130.5, 130.2, 129.3, 129.0, 127.2, 126.9, 110.5, 79.7, 78.7, 57.7, 42.1, 34.8, 25.9, 23.8; MS (FAB) m/z 430 (MH⁺); Exact MS (FAB) Calcd for C₂₁H₂₄N₃O₃S₂: 430.1259, found: 430.1254.

1-[10-Azido-2,3-di-O-(tert-butyldimethylsilyl)-6,10,11-trideoxy-8,9-O-isopropylidene-11-S-phenyl-11-thio-L-lyxo-D-allo-undeculofuranosyl-(1,4)]uracil (13a) and 1-[10-Azido-2,3-di-O-(tert-butyldimethylsilyl)-6,10,11-trideoxy-8,9-O-isopropylidene-11-S-phenyl-11-thio-L-lyxo-L-talo-undeculofuranosyl-(1,4)]uracil (13b). Compound 11 (85 mg, 0.2 mmol) in THF (2 mL) was added dropwise to a THF solution of SmI₂ (0.1 M, 4.4 mL, 0.44 mmol) at –40 °C. After the TLC analysis indicated the disappearance of 11, oxygen gas was passed through the mixture. Then, 12 (94 mg, 0.2
mmol) in THF (2 mL) was added dropwise, and the mixture was stirred for 15 min at –40 °C. After the mixture was allowed to warm to room temperature, saturated aqueous NH$_4$Cl was added. The mixture was filtrated through a Celite pad, and the filtrate was partitioned between AcOEt (50 mL) and H$_2$O (50 mL), and the organic layer was washed with saturated aqueous NaHCO$_3$ (20 mL) and brine (20 mL), dried (Na$_2$SO$_4$), and evaporated under reduced pressure. The residue was purified by flush column chromatography (SiO$_2$, 33% AcOEt/hexane) to give 13a (74 mg, 47% as a white foam, fast moving) and 13b (38 mg, 24% as a white foam, slow moving).

For 13a: 1H NMR (CDCl$_3$, 500 MHz) δ 8.95 (br s, 1H, exchanged with D$_2$O), 8.04 (d, 1H, $J = 8.2$ Hz), 7.43 (d, 2H, $J = 7.7$ Hz), 7.53 (t, 2H, $J = 7.8$ Hz), 7.26 (d, 1H, $J = 7.7$ Hz), 5.83 (d, 1H, $J = 4.6$ Hz), 5.69 (dd, 1H, $J = 1.8$, 8.1 Hz), 4.72 (d, 1H, $J = 8.8$ Hz), 4.48 (d, 1H, $J = 8.8$ Hz), 4.31 (t, 1H, $J = 4.5$ Hz), 4.26 (d, 1H, $J = 10.2$ Hz), 3.93 (d, 1H, $J = 4.2$ Hz), 3.43 (d, 1H, $J = 2.1$ Hz), 3.33 (m, 3H), 3.29 (dd, 1H, $J = 10.1$, 19.3 Hz), 2.88 (dd, 1H, $J = 1.9$, 19.3 Hz), 1.62 (s, 3H), 1.31 (s, 3H), 0.92 (s, 9H), 0.90 (s, 9H), 0.11 (s, 6H), 0.07 (s, 6H); 13C NMR (CDCl$_3$, 125 MHz) δ 212.4, 163.6, 150.7, 141.4, 134.6, 130.7, 129.5, 127.5, 110.8, 102.3, 90.0, 87.1, 80.6, 79.2, 75.4, 72.4, 65.5, 57.9, 44.4, 35.2, 26.2, 26.1, 26.0, 24.0, 18.3, 18.2, –4.2, –4.4, –4.5, –4.6; MS (FAB) m/z 792 (MH$^+$); Exact MS (FAB) Calcd for C$_{36}$H$_{58}$N$_5$O$_9$Si$_2$: 792.3493, found: 792.3521.

For 13b: 1H NMR (CDCl$_3$, 500 MHz) δ 8.87 (br s, 1H, exchanged with D$_2$O), 7.75 (d, 1H, $J = 8.1$ Hz), 7.41 (d, 2H, $J = 7.6$ Hz), 7.32 (t, 2H, $J = 7.4$ Hz), 7.26 (d, 1H, $J = 7.4$ Hz), 5.85 (d, 1H, $J = 6.6$ Hz), 5.73 (dd, 1H, $J = 1.7$, 8.1 Hz), 4.71 (d, 1H, $J = 8.8$ Hz), 4.47 (d, 1H, $J = 8.8$ Hz), 4.36 (dd, 1H, $J = 4.5$, 6.5 Hz), 4.29 (d, 1H, $J = 11.1$ Hz), 4.19 (dd, 1H, $J = 1.4$, 4.2 Hz), 3.86 (br s, 1H), 3.65 (d, 1H, $J = 2.0$ Hz), 3.29 (br s, 3H), 3.07 (d, 1H, $J = 7.7$ Hz), 2.76 (dd, 1H, $J = 10.6$, 18.7 Hz), 1.59 (s, 3H), 1.31 (s, 3H), 0.93 (s, 9H), 0.86 (s, 9H), 0.12 (s, 3H), 0.11 (s, 3H), 0.03 (s, 3H), –0.02 (s, 3H); 13C NMR (CDCl$_3$, 125 MHz) δ 212.1, 163.4, 150.6, 141.8, 134.6, 130.8, 130.7, 129.5, 127.5, 110.8, 102.7, 89.6, 88.4, 80.5, 79.2, 74.8, 71.8, 67.8, 57.7, 43.7, 35.1, 26.1, 26.0, 24.0, 23.9, 18.3, 18.2, –4.1, –4.2, –4.4, –4.6;
MS (FAB) m/z 792 (MH\(^+\)); Exact MS (FAB) Calcd for C\(_{36}\)H\(_{58}\)N\(_{5}\)O\(_9\)SSi\(_2\): 792.3493, found: 792.3486.

1-[10-Azido-2,3-di-O-(tert-butyldimethylsilyl)-6,10,11-trideoxy-8,9-O-isopropylidene-11-S-phenyl-11-thio-L-galacto-D-allo-undecofuranosyl-1(4)]uracil (14). Sodium borohydride (7.1 mg, 189 \(\mu\)mol) was added to a mixture of AcOH and CH\(_2\)Cl\(_2\) (1:2, 1 mL) at \(-20^\circ\)C, and then a solution of 13a (50 mg, 63 \(\mu\)mol) in CH\(_2\)Cl\(_2\) (0.5 mL) was added dropwise to the mixture. After being stirred for 30 min at \(-20^\circ\)C, the mixture was evaporated under reduced pressure, and the residue was coevaporated with MeOH (3 x 1 mL). The residue was partitioned between AcOEt (30 mL) and H\(_2\)O (20 mL), and the organic layer was washed with saturated aqueous NaHCO\(_3\) (20 mL) and brine (100 mL), dried (Na\(_2\)SO\(_4\)), and evaporated under reduced pressure. The residue was purified by column chromatography (SiO\(_2\), 33% AcOEt/hexane) to give 14 (55 mg, quant. as a white foam): \(^1\)H NMR (CDCl\(_3\), 500 MHz) \(\delta\) 9.49 (br s, 1H, exchanged with D\(_2\)O), 7.61 (d, 1H, \(J = 8.0\) Hz), 7.42 (d, 2H, \(J = 7.8\) Hz), 7.29 (t, 2H, \(J = 7.8\) Hz), 7.21 (d, 1H, \(J = 7.7\) Hz), 5.69 (d, 1H, \(J = 8.0\) Hz), 5.69 (d, 1H, \(J = 5.7\) Hz), 4.60 (t, 1H, \(J = 5.1\) Hz), 4.46 (dd, 1H, \(J = 2.2, 6.4\) Hz), 4.24 (ddd, 1H, \(J = 6.3, 9.6, 12.6\) Hz), 4.13 (d, 2H), 4.08 (dd, 1H, \(J = 6.7, 9.4\) Hz), 3.91 (d, 1H, \(J = 2.4\) Hz), 3.68 (dd, 1H, \(J = 6.3, 9.6, 12.6\) Hz), 3.43 (d, 1H, \(J = 6.2\) Hz), 3.33 (dd, 1H, \(J = 7.1, 13.6\) Hz), 3.27 (dd, 1H, \(J = 4.3, 13.6\) Hz), 2.09 (ddd, 1H, \(J = 3.3, 3.8, 13.8\) Hz), 1.70 (ddd, 1H, \(J = 1.8, 6.5, 13.8\) Hz), 1.49 (s, 3H), 1.31 (s, 3H), 0.90 (s, 9H), 0.87 (s, 9H), 0.09 (s, 3H), 0.08 (s, 3H), 0.07 (s, 3H), 0.01 (s, 3H); \(^{13}\)C NMR (CDCl\(_3\), 125 MHz) \(\delta\) 163.7, 150.8, 143.9, 135.2, 130.7, 129.3, 127.1, 109.3, 102.4, 94.8, 89.1, 78.7, 77.9, 73.2, 73.0, 67.7, 67.6, 58.6, 38.1, 36.5, 27.0, 26.1, 26.0, 25.1, 18.3, 18.2, -4.2, -4.4, -4.5, -4.7; MS (FAB) m/z 794 (MH\(^+\)); Exact MS (FAB) Calcd for C\(_{36}\)H\(_{58}\)N\(_{5}\)O\(_9\)SSi\(_2\): 794.3650, found: 794.3666.

1-[10-Azido-2,3-di-O-(tert-butyldimethylsilyl)-6,10,11-trideoxy-8,9-O-isopropylidene-11-phenylsulfanyl-L-galacto-D-allo-undecofuranosyl]uracil (15). A mixture of 14 (30 mg, 26 \(\mu\)mol) and mCPBA (4.6 mg, 26 \(\mu\)mol) in CH\(_2\)Cl\(_2\) (5 mL) was stirred for 30 min at 0 \(^\circ\)C. After a mixture of saturated aqueous NaHCO\(_3\) and saturated aqous Na\(_2\)S\(_2\)O\(_3\) (4:1, 5 mL) was added, the organic layer was
washed with brine (5 mL), dried (Na$_2$SO$_4$), and evaporated under reduced pressure. The residue was purified by column chromatography (SiO$_2$, 66% AcOEt/hexane) to give a diastereomeric mixture of 15 (32 mg, quant. as a white foam): MS (FAB) m/z 810 (MH$^+$); Exact MS (FAB) Calcd for C$_{36}$H$_{60}$N$_5$O$_{10}$SSi$_2$: 810.3599, found: 810.3598.

Thioglycoside 17. A mixture of 15 (7.0 mg, 8.7 µmol) and Tf$_2$O (10.7 µL, 52 µmol) in CH$_2$Cl$_2$ (100 µL) containing pyridine (6.6 µL, 104 µmol) was stirred for 5 min at –20 °C, and diluted with CH$_2$Cl$_2$ (5 mL). The mixture was washed with H$_2$O (3 mL), saturated aqueous NaHCO$_3$ (3 mL), and brine (3 mL), dried (Na$_2$SO$_4$), and evaporated under reduced pressure. The residue was purified by column chromatography (SiO$_2$, 33% AcOEt/hexane) to give an inseparable mixture of 17 and 13a (5.7 mg, 89% as a glass, the ratio of 17 and 13a was 62:38 by 1H NMR). To isolate pure 17, the next experiment was performed. NaBH$_4$ (9.4 mg, 189 µmol) was added to a mixture of AcOH and CH$_2$Cl$_2$ (1:2, 2 mL) at –20 °C, and then the mixture of 17 and 13a (50 mg, 63 µmol, the ratio of 17 and 13a was 57:43) in CH$_2$Cl$_2$ (1 mL) was added dropwise to the above mixture. After being stirred for 30 min, the mixture was evaporated under reduced pressure, and the residue was coevaporated with MeOH (3 x 2 mL). The residue was partitioned between AcOEt (30 mL) and H$_2$O (20 mL), and the organic layer was washed with saturated aqueous NaHCO$_3$ (20 mL) and brine (10 mL), dried (Na$_2$SO$_4$), and evaporated under reduced pressure. The residue was purified by flash column chromatography (SiO$_2$, 33% AcOEt/hexane) to give 17 (26 mg, 51.6% as a white foam, fast moving) and 14 (23 mg, 46% as a white foam, slow moving).

For 17: 1H NMR (CDCl$_3$, 500 MHz) δ 8.68 (br s, 1H, exchanged with D$_2$O), 7.79 (d, 1H, J = 8.1 Hz), 7.51–7.30 (m, 5H), 5.70 (d, 1H, J = 8.1 Hz), 5.57 (d, 1H, J = 5.1 Hz), 5.16 (d, 1H, J = 7.5 Hz), 4.43 (t, 1H, J = 4.7 Hz), 4.17 (m, 3H), 4.07 (t, 1H, J = 4.2 Hz), 3.90 (m, 1H), 3.85 (m, 1H), 3.69 (t, 1H, J = 7.1 Hz), 3.22 (d, 1H, J = 6.5 Hz, exchanged with D$_2$O), 2.13 (m, 1H), 1.68 (m, 1H), 1.60 (s, 3H), 1.39 (s, 3H), 0.92 (s, 9H), 0.91 (s, 9H), 0.07 (s, 3H), 0.06 (s, 3H), 0.05 (s, 3H), 0.04 (s, 3H); 13C NMR (CDCl$_3$,
125 MHz) δ 163.2, 150.4, 142.6, 134.4, 131.4, 129.4, 127.9, 111.5, 102.3, 92.4, 88.2, 86.7, 76.2, 74.3, 72.6, 69.2, 64.0, 38.4, 27.8, 26.1, 26.0, 25.7, 18.3, 18.2, –4.2, –4.4, –4.5, –4.6; MS (FAB) m/z 792 (MH⁺); Exact MS (FAB) Calcd for C₃₆H₅₈N₅O₉SSi₂: 792.3493, found: 792.3496.

The physical data for 14 was in accordance with the compound obtained by reduction of 13a.

Acetate 18. A mixture of 17 (20 mg, 25 μmol), Ac₂O (2.8 μL, 30 μmol), Et₃N (4.2 μL, 30 μmol), and DMAP (1 mg, 7.5 μmol) in CH₃CN (1 mL) was stirred for 12 h at room temperature. After MeOH (1 mL) was added to the mixture, the mixture was evaporated under reduced pressure. The residue was partitioned between AcOEt (30 mL) and H₂O (20 mL), and the organic layer was washed with saturated aqueous NaHCO₃ (20 mL) and brine (10 mL), dried (Na₂SO₄), and evaporated under reduced pressure. The residue was purified by flash column chromatography (SiO₂, 33% AcOEt/hexane) to give 18 (21 mg, quant. as a white foam): ¹H NMR (CDCl₃, 500 MHz) δ 8.49 (br s, 1H, exchanged with D₂O), 7.78 (d, 1H, J = 8.1 Hz), 7.54–7.27 (m, 5H), 5.88 (d, 1H, J = 4.2 Hz), 5.74 (dd, 1H, J = 1.1, 8.1 Hz), 5.27 (ddd, 1H, J = 3.0, 5.8, 8.2 Hz), 5.07 (d, 1H, J = 7.4 Hz), 4.18 (dd, 1H, J = 3.2, 4.7 Hz), 4.07 (d, 1H, J = 7.4 Hz), 4.03 (t, 1H, J = 4.3 Hz), 3.90 (t, 1H, J = 4.5 Hz), 3.67 (t, 1H, J = 6.9 Hz), 2.17 (ddd, 1H, J = 5.1, 8.3, 14.3 Hz), 2.10 (s, 3H), 2.04 (ddd, 1H, J = 3.3, 8.2, 14.3 Hz), 1.55 (s, 3H), 1.37 (s, 3H), 0.88 (s, 9H), 0.87 (s, 9H), 0.09 (s, 3H), 0.06 (s, 3H), 0.05 (s, 3H), 0.02 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 181.3, 169.6, 169.3, 163.0, 139.7, 134.6, 132.0, 129.3, 128.1, 111.4, 102.4, 101.7, 100.1, 88.6, 87.2, 84.9, 76.4, 76.2, 75.9, 71.9, 69.5, 68.4, 63.8, 36.0, 30.3, 27.9, 26.0, 21.4, 20.9, –4.0, –4.2, –4.5, –4.8; MS (FAB) m/z 883 (MH⁺); Exact MS (FAB) Calcd for C₃₈H₆₀N₁₀O₁₀SSi₂: 834.3599, found: 834.3578.

Protected tunicaminylluracil 19. A mixture of 18 (29 mg, 34 μmol) and PhSeH (10 μL, 101 μmol) in Et₃N (200 μL) was heated for 1 h at 60 °C. Additional PhSeH (21 μL, 202 μmol) was added to the mixture, and the mixture was further stirred for 1 h to complete the reaction. The mixture was evaporated under reduced pressure. A mixture of the residue, phthalic chloride (15 μL, 101 μmol), and
DBU (32 µL, 217 µmol) in toluene (1 mL) was heated for 3 h at 100 °C. The mixture was allowed to cool to room temperature and evaporated under reduced pressure. The residue was partitioned between AcOEt (20 mL) and H₂O (10 mL), and the organic layer was washed with brine (10 mL), dried (Na₂SO₄), and evaporated under reduced pressure. The residue was purified by column chromatography (SiO₂, 33% AcOEt/hexane) to give 19 (31 mg, 98% as a pale yellow foam): ¹H NMR (CDCl₃, 500 MHz) δ 8.04 (br s, 1H, exchanged with D₂O), 7.87–7.17 (m, 10H), 5.92 (d, 1H, J = 4.8 Hz), 5.87 (d, 1H, J = 10.3 Hz), 5.76 (d, 1H, J = 8.2 Hz), 5.27 (ddd, 1H, J = 3.2, 5.4, 8.2 Hz), 4.95 (dd, 1H, J = 6.9, 10.3 Hz), 4.41 (t, 1H, J = 10.4 Hz), 4.33 (t, 1H, J = 7.3 Hz), 4.17 (t, 1H, J = 3.8 Hz), 4.14 (dd, 1H, J = 4.5, 8.1 Hz), 3.98 (t, 1H, J = 4.6 Hz), 3.93 (t, 1H, J = 4.1 Hz), 2.22 (ddd, 1H, J = 4.4, 8.0, 14.1 Hz), 2.15 (s, 3H), 2.11 (ddd, 1H, J = 5.5, 8.9, 14.1 Hz), 1.50 (s, 3H), 1.32 (s, 3H), 0.89 (s, 9H), 0.88 (s, 9H), 0.07 (s, 3H), 0.06 (s, 3H), 0.05 (s, 3H), 0.03 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 169.5, 167.8, 162.6, 150.0, 139.5, 134.3, 131.7, 131.1, 128.9, 127.3, 132.6, 111.6, 102.4, 88.0, 85.2, 83.8, 75.7, 72.8, 72.0, 69.4, 68.8, 53.3, 36.0, 27.5, 25.8, 25.7, 21.2, 18.0, 17.9, −4.3, −4.5, −4.7, −4.9; MS (FAB) m/z 938 (MH⁺); Exact MS (FAB) Calcd for C₄₆H₆₄N₅O₁₂Si₂: 938.3749, found: 938.3724.

References

(15) The uridine 5’-aldehyde derivative 12 was prepared by Dess-Martin periodinane oxidation of 2’,3’-di-O-TBS uridine.