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A simplified model of a hydrogen-bonding network is proposed in order to clarify the microscopic structure
of the cooperative rearranging region (CRR) in Adam-Gibbs theory [G. Adam and J. H. Gibbs, J. Chem. Phys.
43, 139 (1965)]. Our model can be solved analytically, and it successfully explains the reported systematic
features of the glass transition of polyhydric alcohols. In this model, hydrogen bonding is formulated based
on binding free energy. Assuming a cluster of molecules connected by double hydrogen bonds is a CRR
and approximating the hydrogen-bonding network as a Bethe lattice in percolation theory, the temperature
dependence of the structural relaxation time can be obtained analytically. Reported data on relaxation times are
well described by the obtained equation. By taking the lower limit of the binding free energy with this equation,
the Vogel-Fulcher-Tammann equation can be derived. Consequently, the fragility index and glass transition
temperature can be expressed as functions of the number of OH groups in a molecule, and this relation agrees
well with the reported experimental data.
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I. INTRODUCTION

Some hydrogen-bonding liquids are well-known glass-
forming liquids. Despite their simple molecular structure,
hydrogen-bonding liquids (especially polyhydric alcohols)
often maintain a supercooled state without crystallization, and
consequently, a variety of materials is available for studies
on glass transition. For this reason, hydrogen-bonding liquids
can sometimes enable systematic study based on differences
in molecular structure; actually, they have long been used
in studies on glass transition [1–9]. Interesting systematic
features of the glass transition of polyhydric alcohols have been
revealed through recent experimental studies [3–9], the results
of which should inspire theoretical approaches to studying the
glass transition of hydrogen-bonding liquids.

Sugar alcohols are one type of polyhydric alcohol and
generally consist of a linear carbon backbone with an equal
number of OH groups and C atoms (NOH = NC), for example,
glycerol (NOH = NC = 3), threitol (NOH = NC = 4), xylitol
(NOH = NC = 5), and sorbitol (NOH = NC = 6). By using
this series of materials, Döß et al. [3,4], Ngai et al. [5],
and Minoguchi et al. [6,7] have found systematic features
in the glass transition of these materials. In particular, the
temperature dependence of the structural α-relaxation time
(or frequency) changes systematically against NOH or NC or
both. Consequently, the fragility index (m) [10] and the glass
transition temperature (Tg) show a systematic dependence on
these parameters [3–7]. In these previous studies, however,
no distinction was made between parameters NOH and NC.
To reveal which parameter more strongly affects the glass
transition, in our previous papers, we experimentally inves-
tigated a series of trihydric alcohols (NC �= NOH = 3) [8,9].
We found that NOH is more dominant than NC and that the
probability of hydrogen-bond formation is similar among a
variety of polyhydric alcohols regardless of the differences in
their molecular structures (position of OH, branching of the
carbon chain, etc.).

Generally, systematic features imply a simple physical
mechanism. From the above experimental results, the glass

transition behavior of polyhydric alcohols can be explained
by a model that is much simpler than the actual molecules,
which are composed of many atoms and are far more complex
than spherical particles. From the systematic features in
relation to NOH, it can be inferred that the network structure
of a hydrogen-bonding network, especially its topology, is
essential for the glass transition. Therefore, molecules can
be represented by network elements. From the similar prob-
ability of hydrogen-bond formation, it is suggested that the
connectivity between network elements is essentially identical
for all polyhydric alcohols. Consequently, polyhydric alcohol
can be regarded as a simple network system with a certain
number of connective bonds per network element. According
to this idea, we will present a simple model that explains
the temperature dependence of the structural relaxation time
in the glass transition of polyhydric alcohols. Our purpose
is to develop a coarse-grained model, which provides a link
between cooperative dynamics in supercooled liquids and mi-
croscopic structure. Although only hydrogen-bonding liquids
are considered in the present paper, our approach presented
here should be extended to other glass-forming systems.

II. OVERVIEW OF MODEL

On the basis of the above-mentioned experimental results,
we focus on a hydrogen-bonding network to construct a model
of the cooperative rearranging region (CRR) [11,12]. In this
model, a molecule is simplified as a node of the network
and has a certain number of bonds that are connected or are
disconnected. A simplified molecule is referred to as a node,
and a connecting bond represents a hydrogen bond between
adjacent molecules. One OH group can form two hydrogen
bonds because it can both donate a hydrogen atom to, and
accept a hydrogen atom from, other OH groups. Therefore, the
maximum number of hydrogen bonds per molecule is twice
the number of OH groups in a molecule.

Experimental results suggest that the probability of
hydrogen-bond formation is insensitive to minor differences
in the molecular structures of polyhydric alcohols, such as the
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position and number of OH groups and the branching of the
carbon chain [8,9]. Therefore, we assume that the probability
of forming a hydrogen bond follows a Boltzmann distribution
with a certain value of binding free energy. Based on this free
energy, the connectivity can be expressed as a function of
temperature.

In our model, the CRR is regarded as a cluster in which
molecules are connected through double hydrogen bonds. This
assumption is based on the locally favored structures [13–15]
inferred from the local hydrogen-bonding structure in the
crystalline state [16–21]. As we have already defined the
probability of hydrogen-bond formation according to binding
free energy, such clusters connected through double hydrogen
bonds can be treated mathematically.

To calculate the size of the cluster, we assume a Bethe lattice
[22,23] for the structure of the hydrogen-bonding network,
where each node has a number of connective bonds z. In this
lattice, there is no pathway from one node back to itself (i.e., no
loop structures). The connective probability p is equal to the
probability of double hydrogen-bond formation and, therefore,
is given by the square of the probability of hydrogen-bond
formation pb. One might question the validity of this Bethe
lattice assumption, since it appears to be physically unrealistic.
However, it is known that, when the cluster is sufficiently
small, a Bethe lattice provides a good approximation of an
actual lattice because the cluster is too small to include a
loop structure. Furthermore, the Bethe lattice allows an exact
solution to be found.

Thus, the estimated cluster of double hydrogen bonds in
the Bethe lattice is identified as a CRR in reference to Adam-
Gibbs theory [11]. From the size of the CRR, the relaxation
time (τ ) or frequency (f = 1/2πτ ) can be obtained. Because
the cluster size depends on the connective probability, which
is a function of temperature, the obtained relaxation time is
dependent on temperature. With decreasing temperature, the
connective probability is increased, cluster size is increased,
and consequently, relaxation time is sharply increased.

III. HYDROGEN-BOND FORMATION

Experimental results have suggested that hydrogen-bond
formation is similar among a variety of polyhydric alcohols,
regardless of minor differences in their molecular structures
[8,9]. Accordingly, we assume that hydrogen-bond formation
can simply be described by the binding free energy of hydrogen
bonding.

Let the free energy of the bonded state and that of the
nonbonded state be Fb and Fn, respectively. Then, Fb =
Eb − T Sb and Fn = En − T Sn, where Eb is the energy of
the bonded state, Sb is the entropy of the bonded state, En

is the energy of the nonbonded state, and Sn is the entropy
of the nonbonded state. Assuming a Boltzmann distribution,
the probability of bonded and nonbonded states is propor-
tional to exp(−βFb) and exp(−βFn), respectively, where
β = 1/kBT and kB is the Boltzmann constant. The normalized
probability of hydrogen-bond formation is given by pb =
exp(−βFb)/[exp(−βFb) + exp(−βFn)]. Furthermore, pb can
be expressed as the difference in free energy between the
bonded and the nonbonded states,

pb = 1/
[
1 + exp (−β�F )

]
, (1)

FIG. 1. Distribution function of coordination number against
temperature. Symbols represent MD simulation data [16,17], and
solid curves show the result of least-squares fitting using Eq. (1)
substituted into Eq. (2).

where �F = Fn − Fb = �E − T �S, �E = En − Eb, and
�S = Sn − Sb.

To obtain these parameters, the coordination number is
analyzed. Supposing that hydrogen bonds form independently
from one another, the distribution function of coordination
number f (i) can be expressed by a binomial distribution
function,

f (i) =N Cip
i
b (1 − pb)N−i , (2)

where N is the maximum number of hydrogen bonds, N =
2NOH, and i is the coordination number. Since pb is a function
of temperature, we have the coordination number distribution
as a function of temperature with the parameter�F .

To confirm the validity of our assumption and to estimate
the parameter �F (�E and �S), Eq. (1) is substituted into
Eq. (2), and the result is compared with the coordination
number reported by Chelli and co-workers from a molecular
dynamics (MD) simulation on glycerol [16,17]. In Fig. 1,
the coordination number from their MD simulation is plotted
against temperature. Solid curves in the figure show regression
curves obtained by least-squares fitting using Eq. (2), where
we have two free parameters (�E and �S) for all series of
f (0)–f (6). For low-temperature data, it was reported that the
MD system did not reach equilibrium within the simulated
time scale. Therefore, only the data above 270 K (at 394.9,
366.3, 319.4, and 278.1 K) were used in the fitting.

Despite having too many series of data [f (0)–f (6)], good
agreement is found among all the regression curves and MD
data by using only two adjustable parameters [�E = 55.2 meV
(5.33 kJ/mol) and �S = 0.122 meV/K (0.0118kJ mol−1

K−1)]. This result supports the validity of our simplified
treatment of hydrogen-bonding connectivity.

Furthermore, from the same MD simulation reported by
Chelli and co-workers, the activation energy of hydrogen-bond
breaking was estimated to be 65 meV (6.3 kJ/mol) in the
temperature range of 278–400 K (1000/T = 2.5–3.6 K−1)
[16,17]. This activation energy should correspond to the
hydrogen-bonding energy �E. The values of �E from the
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FIG. 2. Schematic of the Bethe lattice. Solid circles represent
nodes. Solid and dotted lines stand for connected and disconnected
bonds, respectively. This figure is an example of z = 3.

coordination number distribution and that from the activation
energy for hydrogen-bond breaking agree within an error
of 20%. These good agreements support the validity of our
simplified treatment of hydrogen bonding.

IV. CLUSTER SIZE IN THE BETHE LATTICE

In Sec. V, the CRR will be treated as a cluster of double
hydrogen bonds in a Bethe lattice. In this section, we will
briefly describe the Bethe lattice.

The schematic of a Bethe lattice is shown in Fig. 2. Each site
(solid circle) has a number of bonds z. In the bond-percolation
process, these bonds are connected with probabilityp and are
disconnected with probability 1 − p. Since no loop structures
appear in a Bethe lattice, exact solutions for several quantities
can easily be obtained.

For the bond-percolation process, a cluster is defined as
a set of sites that is connected by bonds. The mean cluster
size S of a Bethe lattice is given exactly by the following
equation [22,23]:

S = (1 + p)/[1 − p(z − 1)]. (3)

In a Bethe lattice, each branch is bifurcated infinitely, and
the lattice extends infinitely. One might point out that such a
lattice cannot exist within a realistic space. However, a Bethe
lattice is still worth using for the following two reasons: First,
the Bethe lattice is one of the few such models that allows
an exact solution to be obtained; second, the Bethe lattice
gives a good approximation of an actual lattice when the mean
cluster size is sufficiently small. This is because the effect
of loop structures is modest when the cluster size is small.
Of course, for the systems of polyhydric alcohols considered

in the present paper, the Bethe lattice should no longer be valid
around the critical point, where the size of the cluster becomes
infinite. As explained below, the critical point corresponds to
the ideal glass transition point. Because this ideal point is
experimentally inaccessible, the behavior around the critical
point is beyond the scope of the proposed model.

V. DOUBLE HYDROGEN-BONDED CLUSTER

On the basis of Adam-Gibbs theory [11,12], the structural
relaxation is described as a cooperative thermally activated
process. Consequently, the relaxation time is given by

f = f0 exp [−βn(T )�μ] , (4)

where n(T ) is the number of molecules incorporated into the
CRR, �μ is the activation energy for an independent process,
f0 is the relaxation frequency at the high-temperature limit,
and f = 1/2πτ .

We assume that the CRR is a cluster composed of molecules
linked by double hydrogen bonds. Recently, Tanaka and
co-workers [13–15] pointed out that the density of locally
favored structures formed between adjacent particles played
a key role in the glass transition [19–21]. Based on that
finding, it is natural to consider the local structure found in
the crystalline state. In the crystalline states of polyhydric
alcohols, some adjacent molecules are connected by two or
more hydrogen bonds [16–21]. If two molecules are connected
by only one hydrogen bond, then each molecule can rotate
about its torsional axis, and, thus, each molecule can undergo
rearrangement (reorientation) independently. On the other
hand, if they are connected by two hydrogen bonds, then
the molecules cannot undergo rearrangement independently.
Therefore, two or more hydrogen bonds are required for a rigid
connection. In the disordered liquid phase, it is inferred that a
hydrogen bond is formed according to a certain probability.
If the hydrogen bonds are formed independently of one
another, the probability of double hydrogen-bond formation
is the square of the probability of single hydrogen-bond
formation, the probability of triple hydrogen-bond formation is
the cube of the probability of single hydrogen-bond formation,
and so on. However, the probability of forming three or
more hydrogen bonds is much less than that of forming two
hydrogen bonds. Hence, we ignore the effects of three or
more hydrogen bonds. Hence, if two molecules are connected
by two hydrogen bonds, then they are included in the double
hydrogen-bonded cluster, and this cluster is associated with
the CRR.

Independence of each hydrogen-bond formation probabil-
ity is just an approximation to enable us to obtain an analytical
solution. In an actual system, the effects of steric hindrance
and the position of an OH group might appear. However,
experimental results have clearly shown that Tg and fragility
are insensitive to minor differences in molecular structures
[8,9]. Furthermore, analysis on the orientational correlation
factor regarding OH groups suggests that hydrogen-bond
formation and its temperature dependence are also insensitive
to the molecular structure of polyhydric alcohols [8,9]. These
experimental results support the validity of our approximation
on independent hydrogen-bond formation. In addition, in
Sec. III, we have presented the analysis on a coordination
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number based on the independent hydrogen-bond formation.
This analysis successfully reproduces the complicated data re-
ported from the MD simulation. Therefore, this approximation
is applicable, at least, as a primary step for developing a model
of the CRR.

To evaluate the size of the double hydrogen-bonded cluster,
we consider the bond-percolation process in the Bethe lattice.
Here, molecules are represented as nodes on the Bethe lattice,
and double hydrogen bonds are represented by a connected
bond. Since each OH group is capable of forming two
hydrogen bonds as both a hydrogen donor and a hydrogen
acceptor, the maximum number of single hydrogen bonds for
each molecule is twice the number of OH groups per molecule
(NOH). Since the maximum number of double hydrogen bonds
is half that of single hydrogen bonds, the maximum number
of double hydrogen bonds is NOH. Therefore, the number of

bonds z in our Bethe lattice should be equal to NOH (z =
NOH). The connection probability p in our Bethe lattice is
equal to the probability of a double hydrogen-bond formation
(p = p2

b). Thus, recalling Eqs. (3) and (1), we can express the
size of the double hydrogen-bonded clusteras

S = (
1 + p2

b

) / [
1 − p2

b (NOH − 1)
]

= [1 + exp (−β�F )]2 + 1

[1 + exp (−β�F )]2 − (NOH − 1)

= [1 + exp (�S/kB − �E/kBT )]2 + 1

[1 + exp (�S/kB − �E/kBT )]2 − (NOH − 1)
. (5)

Then, this cluster is associated with the CRR [n(T ) = S],
and substituting Eq. (5) into Eq. (4), we have the relaxation
frequency,

f = f0 exp

[
�μ

kBT

[1 + exp (�S/kB − �E/kBT )]2 + 1

[1 + exp (�S/kB − �E/kBT )]2 − (NOH − 1)

]
. (6)

Thus, the relaxation frequency f is a function of tempera-
ture. Here, the size of the CRR, and consequently, the relax-
ation frequency, exhibit divergence at a certain temperature
due to the critical property of the Bethe lattice. Around the
critical point, the size of the CRR increases sharply, and then
the hydrogen-bonding network can no longer be regarded as
a Bethe lattice. However, we are not interested in this critical
point because it is experimentally inaccessible due to the very
long relaxation time.

VI. COMPARISON BETWEEN THEORETICAL AND
EXPERIMENTAL RESULTS

To evaluate the validity of our model, experimentally
obtained relaxation frequencies of several polyhydric alcohols
[6–9] are fitted using Eq. (6), where the free parameters
are �E, �S, �μ, and f0 (the hydrogen-bonding energy, the
hydrogen-bonding entropy, the independent activation energy,
and the high-temperature limit of the relaxation frequency).
The results of the fitting are shown in Fig. 3. Clearly,
all the experimental data are reproduced well by Eq. (6)
with reasonable values of the parameters �E, �S, �μ, and
f0. Although Eq. (6) has more free parameters than the
conventionally used Vogel-Fulcher-Tammann (VFT) equation
[24–26], the qualities of each fit are practically the same.
However, now the physical picture of each parameter of Eq. (6)
is clear, whereas, essentially, no physical picture has been
presented for the parameters of the VFT equation. In addition,
the VFT equation can be derived from it as shown in the next
section.

In Fig. 4, these obtained parameters, except forf0, are
plotted against NOH and are listed in Table I. As can be seen
in this figure, the obtained values of �E, �S, and �μ are
approximately the same for all polyhydric alcohols examined
here. The mean values of �E, �S, and �μ are 35.1 meV,
0.169 meV/K, and 208 meV (3.39 kJ/mol, 0.0163 kJ/mol K,

and 20.1 kJ/mol), respectively; and the standard deviations
are 4.2 meV, 0.016 meV/K, and 13 meV, respectively
(12%, 9.6%, and 6.1% of each mean value). From this
analysis, it can be concluded that the obtained values for these
parameters are highly similar among a variety of polyhydric
alcohols.

The similarity in the obtained values of �E and �S can
be attributed to the similarity in the formation of hydrogen
bonds. In previous works on polyhydric alcohols based on the
analysis of the orientational correlation factor via the dielectric
constant, it has been suggested that the formation of hydrogen
bonds is similar among all polyhydric alcohols, irrespective
of the differences in their molecular structures [8,9]. On the
basis of this finding, we have constructed the present model.
Therefore, the similarity found in the values of �E and �S

FIG. 3. Arrhenius diagram of the relaxation frequency for poly-
hydric alcohols. Symbols show previously reported data [6–9]. Solid
curves show fitting using Eq. (6).
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FIG. 4. Parameters in Eq. (6): (a) binding energy, (b) entropy, and (c) independent activation energy. Solid circles are obtained from the
fitting shown in Fig. 2. Open triangles show binding energy and entropy from Fig. 1. Open diamonds show the reported energy barrier of
the gauche-trans (g-t) conformational change of glycerol [16,17]. Open squares show the energy barrier of the g-t conformational change of
ethane [24].

supports the validity of our model. Furthermore, the values of
�E and �S are the same magnitude as the values calculated
from the coordination number distribution from the MD data in
Sec. III. These values are plotted as open triangles in Figs. 4(a)
and 4(b). Although these values show slight differences, the
magnitude is on the same order. Since our model is schematic
and includes some approximation, this degree of agreement
is remarkable. Since we completely neglect the effects of
molecular structure, such as steric requirement of hydrogen
bonding and intramolecule hydrogen bonding, this deviation
can be attributed to these effects. It is expected that this
deviation can be compensated by taking the actual probability
of intermolecular hydrogen bonding into account.

Although we did not specify a physical description of
independent motion, nonetheless, the obtained value of �μ

is found to be physically plausible. The values of �μ in
our model are comparable with the activation energy of a
configurational change, specifically, the energy barrier of a
g-t conformational change. For example, it has been reported
from MD simulations on glycerol that the mean g-t activation
energy is 209 meV (20.2 kJ/mol) [16,17]. In addition, the

barrier height of the g-t conformational change of ethane
is known to be 120 meV (12 kJ/mol) from calorimetric
measurement [27]. These two values are plotted in Fig. 4(c) as
open diamonds and squares, respectively. From this result, it is
inferred that a type of g-t conformational change is responsible
for the fundamental process of structural relaxation. These
agreements of the obtained value of �μ with g-t activation
energy, further support the validity of our model.

The size of the CRR, defined as the number of nodes
incorporated in the cluster, is calculated next using Eq. (5) with
the obtained parameters. The temperature dependence of the
size of the CRR is plotted against the reciprocal temperature in
Fig. 5. As shown in this figure, the size of the CRR increases
with decreasing temperature. These results show that two
to five molecules are incorporated into the CRR at Tg , and
these values are consistent with other reports. For several
glass-forming materials, Takahara et al. [28] and Yamamuro
et al. [29] used configurational entropy, obtained from the
specific heat in liquid and crystalline phases, to estimate the
size of the CRR. The reported CRR size is in the range of 3–8
at Tg , and the magnitude of these values is comparable with

TABLE I. List of the obtained parameters for Eq. (6) and the temperature range where low free energy approximation is applicable. This
approximation is applicable under the condition Tlwb � T � Tupb, where Tlwb = (�E/kB )/(�S/kB + 1),Tupb = (�E/kB )/(�S/kB − 1).

Sample NOH �E (meV) �S (meV/K) �μ (meV) n (Tg) m T0 (K) Tlwb (K) Tg (K) Tupb (K)

Sorbitol 6 32.7 0.163 198 4.3 102.2 229 131 268 427
Xylitol 5 31.0 0.155 213 3.7 78.3 198 129 248 450
Threitol 4 32.7 0.160 225 3.2 68.4 175 133 226 442
Glycerol 3 29.7 0.151 229 2.7 50.0 129 125 192 460
Butanetriol 3 37.1 0.172 196 3.0 60.7 153 143 201 430
3MPTa 3 36.0 0.164 207 3.0 57.0 152 144 206 464
Hexanetriol 3 40.2 0.188 196 3.0 67.6 161 147 202 395
Heptanetriol 3 41.2 0.197 206 2.8 68.2 161 145 200 371

a3-Methyl-1,3,5-pentanetriol.
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FIG. 5. Temperature dependence of the CRR size, calculated
using Eq. (5). Solid curves show the CRR size for materials shown in
Fig. 3. Symbols on each curve show the values of the CRR size at Tg ,
and each symbol matches that used in Fig. 3. The values of the size
of the CRR at Tg are also listed in Table I.

our result. Since the Bethe lattice approximation is valid when
the size of the cluster is sufficiently small (roughly within the
number of adjacent nodes), our Bethe lattice approximation is
supported by the calculated cluster size.

VII. LOWER-BOUND FREE ENERGY APPROXIMATION

By taking the lower limit of free energy, our model yields
the VFT equation. The validity of this approximation is to be
presented after derivation of the VFT equation.

Assuming |βF | � 1, the approximate probability of
hydrogen-bond formation is

pb = 1

1 + exp(−�F/kBT )
∼= 1

2

(
1 − 1

2
�F/kBT

)−1

.

(7)

Squaring each side of this equation and again taking the
lower limit of free energy, we have the probability of double
hydrogen-bond formation,

p2
b = 1

4

(
1 − 1

2
�F/kBT

)−2
∼= 1

4
(1 + �F/kBT ) . (8)

Substituting Eq. (8) into Eq. (5), the size of the CRR is
expressed as follows:

S ∼= 5T (1 + �F/5kBT )

(5 − �S/kB) + (�S/kB − 1) NOH

1

T − T0
, (9)

where T0 = (NOH−1)(�E/kB)/[(5−�S/kB )+(�S/kB

−1)NOH]. Here, again invoking |F/kBT | � 1,

S ∼= 5T

(5 − �S/kB) + (�S/kB − 1) NOH

1

T − T0
. (10)

Similar to the derivation of Eq. (6), when Eq. (10) is
substituted into Eq. (4), it follows that

f =f0 exp

[
− �μ

kBT

5T

(5 − �S/kB) + (�S/kB − 1) NOH

× 1

T − T0

]
= f0 exp

(
− B

T − T0

)
, (11)

where B = 5(�μ/kB)/[(5 − �S/kB) + (�S/kB − 1)NOH].
Thus, the VFT equation has been derived under the lower-
bound free energy approximation.

Invoking the definitions of the fragility index and glass
transition temperature, these quantities are expressed as
functions of NOH,

m = − dlog10f

d(Tg/T )

∣∣∣∣
T =Tg

= T0

B

(log10f0/fg)2

log10e
+ log10f0/fg

= (NOH − 1) �E

5�μ

(log10f0/fg)2

log10e
+ log10f0/fg, (12)

and

Tg = T0+ Blog10e

log10f0/fg

= 1

(5 − �S/kB) + (�S/kB − 1) NOH

×
[

(NOH − 1) �E/kB + 5�μlog10e

kB log10f0/fg

]
. (13)

Here, fg is defined as the frequency at the glass transition
temperature (here, fg = 10−2 Hz).

To confirm the applicability of our lower-bound free energy
approximation, this condition should be analyzed in detail. The
lower-bound free energy condition −1 � �F/kBT � 1 can
be rewritten as

(�E/kB) / (�S/kB + 1) � T � (�E/kB) / (�S/kB − 1) .

(14)

Therefore, the approximation result, Eq. (11), should
be employed only within this temperature range.
To confirm this, Tlwb = (�E/kB)/(�S/kB + 1), Tupb =
(�E/kB)/(�S/kB + 1), and Tg , for all examined materials,
are listed in Table I. Clearly, the values of Tg are within
the range from Tlwb to Tupb. Therefore, this approximation is
applicable around Tg . Moreover, the experimental temperature
range for the reported data, 193–363 K, is entirely within this
applicable temperature range.

In order to compare the approximation with experi-
mental results, the parameters Tg , T0, and m are plotted
against NOH in Figs. 6 and 7, respectively. For the theo-
retical curves, log10f0 = 14.05, �E = 31.6 meV, �S =
0.157 meV/K, and �μ = 216 meV (�E = 3.05 kJ/mol,
�S = 0.0152 kJmol−1K−1, and �μ = 20.9 kJ/mol) were
employed, where these values were averaged for a set of sugar
alcohols. From Figs. 6 and 7, it can be seen that the values
of Tg , T0, and m agree well between theory and experiment.
In particular, the agreement for sugar alcohols is excellent.
Since these quantities are often used to characterize the slow
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FIG. 6. Glass transition temperature Tg and Vogel temperature T0

against NOH. Solid curves show theoretical values from our model
presented in Sec. VII. Solid symbols show experimental values from
Refs. [6–9]. Open symbols show the values for ethylene glycol (EG)-
water mixtures (60, 70, and 80 wt%) [30]. Values of Tg and T0 are
also listed in Table I.

dynamics around Tg , our model successfully describes the slow
dynamics. It should be noted that experimental values of Tg , T0,
and m slightly depend on NC and the molecular structure. Such
slight molecular structure dependence is not taken into account
in our model. Therefore, this may cause a slight discrepancy
between the experimental and the theoretical values, as seen
in the values for NOH = 3 in Figs. 6 and 7.

To make a comparison between theory and experiment at
lower NOH, the VFT parameters of EG (a sugar alcohol with
NOH = 2) are discussed. However, pure EG in a supercooled
state has a high tendency to crystallize. Therefore, precise
VFT parameters are not available. For this reason, the data

FIG. 7. Fragility index m against NOH. The solid curve shows the
theoretical value from our model presented in Sec. VII. Solid symbols
show experimental value from Refs. [6–9]. Open symbols show the
values for EG-water mixtures (60, 70, and 80 wt %) [30]. Values of
Tg and T0 are also listed in Table I.

on mixtures of EG and water are employed here. A water
molecule has two hydrogen atoms and, therefore, has two
hydrogen donors. Accordingly, it is presumed that a water
molecule (H-O-H) consists of two OH groups, although the
oxygen atoms in both OH groups are identical. Thus, the NOH

of water is 2. Since the NOH of both EG and water is 2, the
NOH of the mixture is also regarded as 2, independent of the
mixing ratio. The data on EG and water mixtures, as measured
by dielectric spectroscopy [30], are plotted in Figs. 6 and 7
as open symbols. From these figures, it can be seen that the
experimental values of Tg , T0, and m are in good agreement
with the theoretical values until NOH = 2.

Despite the simplicity of our model, it can sufficiently
explain the experimentally obtained characteristic of slow
dynamics. The agreement for the data on sugar alcohols is
especially surprising. From these results, the validity of our
model is strongly supported.

In the present paper, only hydrogen-bonding liquids are
considered, but a similar approach should be applicable to
other networks of glass-forming materials, such as covalent
glass. For such an extension of the model, the present
double hydrogen-bonded cluster should be replaced by system-
specific clusters. For covalent glasses, the characteristic local
structure of short-range motifs, so-called medium-range order
[31], may correspond to the double hydrogen bonds considered
here. For example, Wilson and Salmon [32] have conducted
a computer simulation on SiO2-based glasses and found that
differences in the connectivity of SiO2 tetrahedral motifs are
linked to fragility. In fact, similar systematic features in Tg and
fragility have also been reported for such inorganic glasses
[33–36]. Although the alternative structure for the double
hydrogen bond is still unclear for other systems, shedding
light on this type of structure should give a different physical
picture of the CRR based on more general perspectives.

VIII. CONCLUSION

We have developed a model that explains the glass transition
of polyhydric alcohols on the basis of the percolation process
of a network of double hydrogen bonds. The temperature
dependence of the relaxation time for reported polyhydric
alcohols (sugar alcohols and trihydric alcohols) were repro-
duced well by our model. In addition, the calculated values
of parameters agree with microscopic quantities obtained by
simulation and experiment. By considering the lower-bound
approximation of binding free energy in the present theory, the
VFT equation was derived. Thus, we obtained an analytical
expression for the glass transition temperature, fragility, and
VFT parameters as a function of the number of OH groups in
a molecule (NOH). These quantities were found to depend on
NOH, in good agreement with reported experimental results for
polyhydric alcohols including water-sugar alcohol mixtures.
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