<table>
<thead>
<tr>
<th>タイトル</th>
<th>2011年度 カオス・フラクタル 講義ノート</th>
</tr>
</thead>
<tbody>
<tr>
<td>著者</td>
<td>井上 純一</td>
</tr>
<tr>
<td>インデックス</td>
<td></td>
</tr>
<tr>
<td>キーワード</td>
<td></td>
</tr>
<tr>
<td>カテゴリー</td>
<td></td>
</tr>
<tr>
<td>拡張情報</td>
<td>言語のあるか: 日、英、その他の</td>
</tr>
</tbody>
</table>
カオス・フラクタル 講義ノート #8

担当: 井上 純一 (情報科学研究科棟 8-13)
URL: http://chaosweb.complex.eng.hokudai.ac.jp/~j_inoue/index.html

平成 23 年 6 月 21 日

目次

11 非線形力学系とカオス
 11.1 レン＝ラ方程式とその振る舞い 70
 11.2 ポアンカレ断面 ... 71

課題 6 の解答例

\[\frac{dv}{dt} = \epsilon (1 - x^2) v - x \] \hspace{1cm} (167)
\[\frac{dx}{dt} = v \] \hspace{1cm} (168)

の振る舞いを数値的に調べてみる。まず、パラメータ \(\epsilon \) がゼロの場合は、方程式は単振動 (調和振動子) を表す。横軸を \(x \), 縦軸を \(v \) とした場合の (位相空間内の) 軌道は (167) 式の両辺に \(v = dx/dt \) をかければエネルギーの時間変化についての関係式ができるので、実行すると

\[v \frac{dv}{dt} = -x \frac{dx}{dt} \] \hspace{1cm} (169)

すなわち

\[\frac{d}{dt} \left(\frac{v^2}{2} + \frac{x^2}{2} \right) = 0 \] \hspace{1cm} (170)

となり、\(E \) を初期条件から決まる一定値とすると

\[v^2 + x^2 = (\sqrt{2E})^2 \] \hspace{1cm} (171)

となり、半径が \(\sqrt{2E} = \sqrt{v_0^2 + x_0^2} \) の円となる \((x_0, v_0) \) は \(t = 0 \) のときの位置と速度)。実際に \(\epsilon = 0 \) の場合に (167)(168) 式をそれぞれルンゲ・クッタ法で数値的に解き、軌道 \((x, v) \) をプロットすると図 39 のようになる。これを計算するためのソースコードを次に載せる。

#include <stdio.h>
#include <math.h>
#include <stdlib.h>
define h 0.01

68
図 39: $\epsilon=0$ の場合の軌道。半径を $r = \sqrt{v^2 + x^2} = \sqrt{y^2 + z^2} = \sqrt{16} = 3.16$ とした円になる。gnuplot によってプロットした図は縦軸と横軸のスケールが適していることに注意。

```c
#define epsilon 0.0
double func1(x,y)
  double x;
  double y;
  {return (y);}  

double func2(x,y)
  double x;
  double y;
  {return (epsilon*(1.0-x*x)*y-x);}  

main()
{
  FILE *fpr;
  int i,imax=50000;
  double x,k1x,k2x,k3x,k4x,kx,y,k1y,k2y,k3y,k4y,ky,z,k1z,k2z,k3z,k4z,kz;
  if((fpr = fopen("test0.dat", "wt")) !=NULL){
      for(i = 0,x=1.01,y=3.01; i <= imax; i++){
        k1x = h*func1(x,y);
        k1y = h*func2(x,y);
        k2x = h*func1(x+0.5*k1x,y+0.5*k1y);
        k2y = h*func2(x+0.5*k1x,y+0.5*k1y);
        k3x = h*func1(x+0.5*k2x,y+0.5*k2y);
        k3y = h*func2(x+0.5*k2x,y+0.5*k2y);
        k4x = h*func1(x+k3x,y+k3y);
        k4y = h*func2(x+k3x,y+k3y);
        kx = (k1x+2.0*k2x+2.0*k3x+k4x)/6.0;
```
ky = (k1y+2.0*k2y+2.0*k3y+k4y)/6.0;
x = x + kx;
y = y + ky;
fprintf(fpr,"%lf %lf %lf\n",i*h,x,y);
}
}
fclose(fpr);

いくつかの有限の\(\epsilon \)に対する位相空間内の軌道を求めてみると図のようになる。図 40 (上)、および

図 40: 有限の\(\epsilon \)の場合のアトラクタの様子と\(\epsilon = 0.5 \)の場合の時間変化 (右)。

左下) は\(\epsilon = 0.01 \)、および\(\epsilon = 0.5, 1.5 \)の場合の軌道をそれぞれプロットした。また、右下は\(\epsilon = 0.5 \)
の場合の位置\(x \)、速度\(v \)の時間変化である。これらの図より、時間の経過とともに、軌道はある閉曲
線に収束することがわかる。このような軌道の収束する点、もしくは曲線をアトラクタと呼ぶ。

11 非線形力学系とカオス

今回の講義では、前回の講義で学んだレスター方程式の振る舞いを方程式の形から定性的に説明
するとともに、アトラクタを可視化するためのポアンカレ断面について詳しくみていく。
11.1 レスラー方程式とその振る舞い

前回見たように、レスラー方程式:

\[
\begin{align*}
\frac{dx}{dt} &= -y - z \\
\frac{dy}{dt} &= x + ay \\
\frac{dz}{dt} &= b + z(x - c)
\end{align*}
\] (172)

をルンゲ・クッタ法を用いて数値的に解き、その軌道を3次元で描画すると図41のようになる。ここでは、\(a=0.398, b=2, c=4\)に選んだ。

図41: レスラー方程式の数値解から得られる軌道の様子。パラメータは \(a = 0.398, b = 2, c = 4\) に選んでいる。

方程式の初期値は原点近傍 \((x, y, z) = (0.01, 0.01, 0.01)\) に選んでいる。この図をみてからに複雑なアトラクタであることがわかる。この振る舞いを方程式の形からある程度説明することができる。

まず、この図41から、軌道がスタートしてからしばらくは \(x-y\) 平面内に停滞していることがわかる。そこで、方程式 (172)(173)(174) において、\(x-y\) 平面内近傍での初期の振舞いがどうであるかを調べるために、\(z \approx 0\) とおいてみると、(172)(173)式から

\[
\begin{align*}
\frac{dx}{dt} &= -y \\
\frac{dy}{dt} &= x + ay
\end{align*}
\] (175)

ここは 71 ページ目
か得られる。式 (175) の両辺を時間で微分し、それに式 (176) を代入すると、次の方程式に関する 2 階の線形方程式が得られる。

\[
\frac{d^2 x}{dt^2} - a \frac{dx}{dt} + x = 0
\] \hspace{1cm} (177)

そこで、これに \(x = e^{pt}\) を代入すると、特性方程式は \(p^2 - ap + 1 = 0\) となるので、この 2 次方程式の解は

\[
p = \frac{a \pm \sqrt{a^2 - 4}}{2}
\] \hspace{1cm} (178)

であり、\(0 < a < 2\) のときに \(\sqrt{4 - a^2}/2 \equiv \omega\) とおけば、この微分方程式 (177) の解は

\[
x = e^{at/2} \left\{ a e^{i\omega t} + \beta e^{-i\omega t} \right\} = e^{at/2} \left\{ A \cos \omega t + B \sin \omega t \right\}
\] \hspace{1cm} (179)

となる。従って、\(y\) は式 (176) から

\[
y = - \frac{dx}{dt} = -e^{at/2} \left\{ \left(\frac{aA}{2} + B \omega \right) \cos \omega t + \left(\frac{aB}{2} - A \omega \right) \sin \omega t \right\}
\] \hspace{1cm} (180)

である \((A, B\) は初期条件により決まる定数\()\)。従って、\(x\)\(-y\) 平面内での軌道はその「半径」が時間とともに \(e^{at/2}\) で大きく行って行くような円運動（らせん運動）を行う。

ここで、\(z\) の寄与が何も無ければ、らせん運動の半径は時間の経過とともに指数関数的な速さで無限大に達するはずであるが、図 41 からわかるように、そうはなっていない。従って、時間の経過とともに \(z\) からの寄与が効いているはずなので、それを調べるため、式 (174) を見てみる。この式より、\(x\) の値が 0 以下であれば、\(dz/dt = 0\) となる点 \(z = b/(x - c) > 0\) へ収束する。しかし、既にみたように、\(x\) の絶対値は時間とともに大きくなるのであるから、らせん軌道上で \(x > c\) となる点で \(dz/dt = b + z(x - c) > 0\) となり \((b > 0\) と選んでいるので (ちなみに図 41 では \(b = 2\)))、\(z\) はこの点で急激な增加に転じる (この増加の「急激さ」は \(b\) が大きいほど大きい)。実際に図 42 を見ると、確かに \(x\) の大きさがある値を超えた瞬間に \(z\) 方向への軌道の急激な増加が見られる。

しかし、同時にこの図 42 より、この \(z\) の方向の増加は長続きせず、軌道は \(x\)-\(y\) 平面に引き戻されている。これは方程式からも見て取れる。つまり、\(z\) が大きくなると式 (172) から \(dz/dt\) の符号が負に傾き始め、従って、\(x\) が減少し始めると、すると、\(z\) が増加するための条件であった \(x > c\) が崩れ始め、やって \(x < c\) となり、\(dz/dt = b + z(x - c) < 0\) へと転じることから \(z\) が減少しはじめ、やって、\(x\)-\(y\) 平面に引きつけることになる。記号の一部の条件を繰り返すことにより、その構造を視覚的に観察することが重要である。例えば、gnuplot では

```
gnuplot> set view 60,15
```

ここは 72 ページ目
図42:図41の軌道のうち、ルンゲ・クッタ法でのステップを途中で打ち切ってzが急激に増加する部分だけを抜き出したものの、$x > c$となる時点でz方向への急激な増加が始まる。

で見る角度を指定することができる（60,15などの数値を適時に変える。これは後の演習の時間に詳しく説明する）。

しかし、ここでは、軌道をある平面で切った切り口を考えてみる。3次元軌道を平面上で切った断面なので、得られるものは2次元像である。そこで、x-y面内におけるx軸からのなす角度θを用いて$y \cos \theta - x \sin \theta = 0$とし、この平面と$z$軸で囲まれた「半平面」でこの軌道を切ってみる。その結果を図43に載せよう。この図43（図41と同じ図）に示した軌道を$y \cos \theta - x \sin \theta = 0$と$z$軸で囲まれた半平面で切った断面が右図である。この図より、角度θを$\theta = 0$から$\theta = 300^\circ$へ増やすにつれて、軌道の断面を表す「線分」が「折りたたまれ」、次いで「引き伸ばされる」様子が見て取れる。

このように、奇妙なアトラクタをある半平面で切り取った断面を「ポアンカレ断面」と呼ぶ。後の演習の時間で実際に求めてもらうが、このポアンカレ断面を通過する点列(x_t, x_{t+1})としてプロットすることで、この力学系を表す実質的な「写像」を取り出すことができる。1

さて、上に述べた奇妙なアトラクタを示す力学系（微分方程式）はレラーオ方程式だけではない。例えば、次のようなローレンツ方程式：

\[
\begin{align*}
\frac{dx}{dt} &= -ax + ay \\
\frac{dy}{dt} &= cx - y - xz \\
\frac{dz}{dt} &= -bz + xy
\end{align*}
\]

もパラメータa, b, cの選び方によっては奇妙なアトラクタを持つ。その結果の一例を図44に載せる。講義ではこのローレンツアトラクタの動画デモを見せる予定である。

1 「リターンマップ」と呼ばれる。
図 43: 左図の軌道を $y \cos \theta - x \sin \theta = 0$ と z 軸で囲まれた半平面で切った断面が右図。

レポート課題 8

ローレンツ方程式を $a = 10, b = 8/3, c = 30$ に対して数値的に解き, 平面 $z = 20, 30, 40$ で切り取ったボアンカレ断面を求めるプログラムを作成し, 描画ソフトが使えるものはそれをプロットせよ (その手のソフトが使えない者は後の演習の時間に説明するので, 現段階ではソースコードのみで良い)。
図 44: ローレンツ方程式 (181)(182)(183) から得られる奇妙なアトラクタ。$a = 10, b = 8/3, c = 28$ に選んである。