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Confined and interface acoustic phonon modes in a cylindrical quantum wire embedded in another
material are analytically investigated based on the elastic continuum model by means of the poten-
tial theory. Confined acoustic phonon modes are coupled modes of bulk-longitudinal and transverse
acoustic waves, classified into torsional, dilatational, and flexural modes due to the rotational sym-
metry of the modes. Dispersions of the confined modes have subband structures with finite cutoff
frequencies owing to quantization of wave vectors in the lateral direction. The density of confined
phonon states becomes, as a result, a staircaselike structure. As for the interface modes, regions of
material parameters for the possible existence of interface modes are investigated. We found that
the existence of interface modes in a quantum wire-surrounding system becomes more sensitive to
the combinations of materials than that for a plane interface.

I. INTRODUCTION

Since high electron mobility in a quasi-one-dimensional
(Q1D) quantum wire system was predicted by Sakaki,®
electron transport properties in Q1D systems have at-
tracted considerable attention and have been extensively
studied experimentally? and theoretically.* ° The high
electron mobility of the systems stems from the reduced
dimensionality of electron systems owing to lateral con-
finement of electrons in the quantum wires. Though
early studies of electron scattering with phonons as-
sumed the three-dimensional (3D) bulk character of
phonons, optical phonons are experimentally?°~22 and
theoretically?® 2® known to be confined to a quan-
tum wire embedded within another material (e.g., the
GaAs/AlAs systems) because the optical phonon disper-
sions of the quantum wire and surrounding materials do
not overlap in frequency. The optical phonons of the
surrounding medium are, as a result, excluded from the
quantum wire. In addition to the confined modes, optical
interface modes exist at the quantum wire surface?3:24:26
and contribute to electron scattering as do the optical
confined phonons.!323725 The contribution of interface
modes to electron scattering is comparable to that of the
confined modes and dominates for very thin quantum
wires,13:23-25

In contrast to optical phonons, acoustic phonons have
been assumed to have a bulk 3D character in most studies
of electron energy relaxation, although acoustic phonons
are also expected to be confined to a quantum wire em-
bedded in another material.2” Suppose a GaAs quantum
wire surrounded by AlAs. Because the sound velocities
of GaAs are smaller than those of AlAs, acoustic waves
in the quantum wire impinging on the wire surface at an
angle larger than the critical angle given by Snell’s law
are totally reflected at the interface. Consequently such
waves are confined to the quantum wire, in a manner sim-
ilar to light waves confined in optical fibers. Dispersions
of the confined acoustic phonons should have subband
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structures due to the confinement of phonons in the lat-
eral direction as well as confined optical phonons, lead-
ing to electronic conductance fluctuation with the electric
field, as is observed in metallic quantum wires deposited
on an insulating substrate.> Waves impinging on the in-
terface at angles smaller than the critical angle can be
transmitted through the interface, resulting in extended
modes.

Another possible acoustic phonon mode bound to a
quantum wire is an interface mode referred to as the
Stoneley mode. However, the existence of the interface
modes is not evident even for a plane interface because
the interface modes occur only for certain combinations
of material parameters of the two bulk media. Scholte?®
studied the region of material parameters and found that
Stoneley modes exist at a plane interface when the sound
velocities of the two bulk media are almost the same.
Wendler and Grigoryan?” studied acoustic confined and
interface modes in a Ga;_;Al,As/GaAs/Ga,__Al As
double heterostructure and showed that interface modes
do not occur in this system. The absence of inter-
face modes at a plane interface does not immediately
mean the absence of interface modes at a quantum wire—
surrounding interface of the same materials as in the case
of the plane interface because the region of material pa-
rameters for the possible existence of interface modes
might be modified by the quantum wire structures.

Though acoustic phonon modes bound to a free stand-
ing wire structure have already been studied and sev-
eral kinds of guided and surface modes have been
established,?® the confined and interface phonon modes
in a quantum wire-surrounding system have not yet been
examined. The purpose of this paper is to analytically
study two kinds of acoustic phonon modes, confined and
interface modes, bound to a quantum wire surrounded by
another material based on the elastic continuum model
by means of the potential theory. The plan of this paper
is as follows. In Sec. IT acoustic confined modes are inves-
tigated. We give a model for a quantum wire surrounded
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by another material and formalism based on the poten-
tial theory. Numerically solving the characteristic equa-
tion, we obtain the dispersions of the confined modes and
derive the corresponding displacements, considering the
GaAs/AlAs systems. In Sec. III we investigate the region
of combinations of material parameters for the existence
of interface modes in the same model given in Sec. II.
The dependence of the region on longitudinal wave vec-
tors and on the rotational symmetry order of the modes is
discussed. The displacements and dispersions of interface
modes are obtained for the W /Al systems by numerically
solving the characteristic equation. A summary and dis-
cussion are presented in Sec. IV.

II. CONFINED MODES
A. Model and formalism

We choose a single cylindrical quantum' wire with ra-
dius R embedded in another material as the model. This
is the simplest theoretical case in order to understand
acoustic phonon modes in a quantum wire-surrounding
system. We take the wire axis as the z direction and
change to cylindrical coordinates (r, ¢, z), considering the
cylindrical wire structure. Figure 1 shows the geome-
try of the quantum wire. Assuming isotropic elasticity
for the wire and surrounding materials, the displacement
vector u is given in terms of the scalar potential ¢¢ and
the two vector potentials ¥; and ¥, by

Uy = Voo + VX P, +V XVXxT,,, (1)
where the vector potentials ¥, and ¥, are given by
Vo; = ¢a,je: (2)

for j = 1 and 2. The subscript a denotes the quantum
wire (A) and the surrounding medium (B) and e, is the
unit vector in the z direction. Substitution of Egs. (1)
and (2) into a wave equation for the isotropic materi-
als yields the following wave equation for the potential
functions ¢ ;:

62¢a,j

Pa 912 =[5j,0 (Ca,u -

ch,44) + Ca,44] V2¢a,ja (3)

where p, and C,;; denote the mass densities and stiff-
ness constants of the quantum wire and the surrounding
materials, respectively.

4 5

r

FIG. 1. Geometry of the quantum wire.
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Because the stiffness matrix has the same form in cylin-
drical coordinates as that in Cartesian coordinates, the
matrix elements are converted to abbreviated subscript
notations by the relations 1 = rr, 2 = ¢¢, 3 = 22, 4 =
z¢, 5 = rz, and 6 = r¢. Considering the cylindrical sym-
metry about the wire axis, we may express the potential
functions as

Ga,i(r,t) = foi (.,.)ei(n¢+qz—wt)’ (4)

where 7 is an integer denoting the n-fold rotational sym-
metry of the function, ¢ the wave number in the z direc-
tion, and w an angular frequency. Inserting Eq. (4) into
(3), we obtain the equation for the function f, ;(r) as

32
ozt

where v, ; denotes the sound velocities of the bulk-
longitudinal (LA) and transverse acoustic (TA) waves
given by

2 2
1 9 n 2 wZ—) fa,j(r) = O’ (5)

a,j

C
Va,0 = Ua,LA = Zoll (6)
P

C
Va,1 = Va,2 = Va,TA = —0,44~ (7)
\ ra

In this section, we consider a GaAs quantum wire
buried in AlAs and treat the materials as isotropic me-
dia, redefining the stiffness constants C,3’s as C;3 =
C11 — 2C44. Here the stiffness constants and mass den-
sity for GaAs are C;; = 11.88 x 10! dyncm™2, Cyy =
5.94 x 10! dyncm~2, and p = 5.36 gcm 3 and for AlAs
Cy; =12.02x10 dyncm ™2, Cyy = 5.89%x 10! dyncm—2,
and p = 3.76 g cm™3. The sound velocities of LA and
TA waves are

and

UB,LA > VA4,LA > UB,TA > UA,TA (8)

according to the material parameters.

The wave number g in the longitudinal direction must
be smaller than w/v4 Ta for the existence of real waves
in the quantum wire. Since confined acoustic phonons
should be evanescent waves in the surrounding, the lon-
gitudinal wave number g must be larger than w/vp ta to
fulfill this condition, due to Snell’s law. Thus the longi-
tudinal wave number ¢ must be in the region

w/vB,TA <g< w/vA,TA 9)

for the existence of the confined acoustic phonon modes.

From these considerations, Eq. (5) is rearranged into
a modified Bessel equation for j = 0 within the quantum
wire (r < R) as

32
65*
where k4,0 is the wave number in the radial direction
given by

;a‘ﬁ—ﬁﬁhﬂﬂ=m (10)
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2
Ka,0 = 4/q> —( d ) (11)

VA LA

and the finite solution of Eq. (10) in a quantum wire
is given by an associated modified Bessel function of the
first kind of the order n, I,,(k.4,07). The functions f4 ;(r)
for j = 1 and 2 in the quantum wire obey the following
Bessel equation:

92 1 0 n?
(g4 7 3~ +4s) Fast0 =0

and each finite solution in the quantum wire is given by
a Bessel function of the first kind J,(k4,;7), where the
radial wave number k4 ; is given by

2
kAj = i - q2 (13)
' VA, TA

for j =1 and 2.

In the surrounding medium (r > R), the func-
tions fp j(r) obey the same modified Bessel equation as
Eq. (10), where k4,9 is replaced by kg ;, defined by

v ) (14)

UB,LA

KB,0 = q? — (

and

%In(n,‘u} T)
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for j = 1 and 2, given by an associated Bessel function of
the second kind K, (kp,jr). Thus we obtain the potential
functions for a quantum wire

da,0(r,t) = xa0ln(ka,0 r)el(nétaz—wt) (16a)
ba1(r,t) = xa1Jn(ka, r)etnerez—wt) (16b)
daa(r,t) = XA2 (ka2 r)ei(""qu_“’t) (16¢)
, kaz ,
and for the surrounding medium
¢B,0(r,t) = xB,0Kn(kp,0 T)e "FIZ 1), (17a)
¢B,1(r,t) = XB,1Kn(kp, r)e'oTIz—wt) (17b)
¢B2(r,t) = XB2 K,.(kB2 r)el(nétaz—wt) (17¢)

)

where the x4,;'s are coefficients. The coefficients x,; and
lateral wave vectors k4, ; are determined by the boundary
conditions for the displacement and stress fields below.
Substituting the potential functions (16) and (17) into
Eq. (1), the displacement vector u is given in vectorial
notation (u,, ug, u;)T by

[ua(r,t)]; = Z [Ua(r)]ij (xa)j ei(n¢+qz—wt)v (18)
where

Xa,0
Xa = Xa,1 (19)
Xa,2

and U, is the matrix given by

kAl 7‘) ‘L g %Jn(kAJ T‘)

, Faz
Ua(r) = | i 2L (kao 1) —2Jn(kaT) 5l Jalkaz ) (20)
i gl (kaoT) ka2 Jn(kaz2T)
for r < R and by
%KH(KB,O r) i *Knp(kB1T) lli_:_z %Kn(m;,z T)
Ug(r) = 7 %Kn(/iB,o T) —%Kn(m;,l ) —%KH(KBQ T) (21)

1 qK,(kB,o T)

for r > R.

—kB2 Kn(kp2 T)

The relevant stress vector field o (= (0a,rr)Ta,ré, Ua,rz)T] is explicitly given, by using the displacement vector, as

8 1 18 i)
Oorr Can1 57 +Can2 & 12 7 35 Caa2 3; Ua,r
— 1 8 3 1
Ta,re = Ca,a4 r 3¢ Ca,a4 (m - ;) 0 Ua,pp | - (22)
8 8
Oa,rz Ca'44 B2 0 Coz,44 ar U,z
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Substituting Eq. (18) into (22), the stress vector is
rewritten as

[oalr,t)]; =Z[Tﬂ(r)]ij (Xa); efmota==et) (23)

where the matrix elements of T, yield

2 w \?
(Ta)11 = [(Canr— CA,12)W —Ca2 (;A—,O> ]
xI.(KaoT), (24a)
. O Julkaar
(Ta)1z=in(Ca,11 —Ca,12) a——gl—), (24b)
r r
} o?
(Ta)1z =1 %,2(0/1’11 - CA,12)5;3Jn(kA,2 r), (24c)
. 8 I, (kaor)
_ 9 In(kao 1) 24d
(Ta)21 =2in CA,446T " ) (24d)
32
(Ta)2z = —Caa | 255 + k4, | Ja(kan 7), (24e)
or?
_ ng 8 Jn(kapz )
(Ta)2s = —276—;; Ca,a4 e (24f)
. 1s)
(Ta)s1 =2i q Ca a4 EIn(K'A,O r), (24g)
(Ta)sz = —-Z:jq-CA,‘m Jn(ka 1), (24h)
¢ ) .
(Ta)ss = (kA,z - k—A—2> Caaa EJn(kAg T) (24i)

for r < R and

2

UB,0
xK,(kB,o T), (25a)
. 8 K,(kp1 T
(TB)12 =i n(CB,11 — CB,12) 5——(—8’—1—), (25b)
r r
. q d?
(TB)13 = lﬂB,z (CB,1 — CB,lz)a_rz'Kn(K'BJ ), (25c)
. 0 K,(kpoT
(TB)21 = 24 nCB,445;—‘(—TBQa (25d)
32
(Tg)22 = —CB,44 (ZW - KZB’I) Kn(kB1T), (25e)
_ o M4 EKn(KB,Z r)
(TB)23 = 2——'63,2 CB,a4 o (25f)
. o
(TB)31 = 2iqCBp,4a é‘r'Kn(KB,O r), (25g)
(TB)32 = —%03,44 K,(kB,1T), (25h)
¢ 9
(To)es = = (wpa+ 1) CougKnlenar) (250
KB,2 or

for r > R. Applying the boundary condition of continu-
ity of the displacement and stress fields at r = R as

UA(R, ¢,Z,t) = uB(Rv ¢727t) (26)

and
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O’A(R, ¢a27t) = UB(Ra ¢,Z,t), (27)

we obtain the characteristic equation
|U;'Us — T3 'Ts| = 0, (28)

provided that X 4 # 0 and Xp # 0.

B. Confined phonon modes and dispersions

The rotational symmetry order n is a parameter char-
acterizing the confined phonon modes. Hence we obtain
the dispersions and displacement vectors by numerically
solving the characteristic equation (28) for each rota-
tional symmetry order n.

1. Dispersions

For n = 0 there are two azimuthally symmetric modes
because x; decouples from xo and x2. The mode due to
V x ¥, has only the azimuthal component u4. In con-
trast, the mode due to the sum of terms Vgo+V xV x ¥,
has the radial u, and axial components u, of the displace-
ment vector. The former and latter modes are referred to
as the torsional (T) and dilatational (D) modes, respec-
tively, according to particle motion in a solid as shown
below. Figures 2(a) and 2(b) illustrate the dispersion
curves of the torsional and dilatational modes up to 1
THz for R = 100 A. Both modes have three dispersion
curves quantitatively similar to each other. Every dis-
persion curve of these modes has a finite cutoff frequency
close to the dispersion of the bulk TA mode of AlAs and

1.0 7
(@ (b) /
0.84 n=0(T-mode) | n=0(D-mode) ,
<061 Py P,
jes) TApias K
E Y,
? 044
02] S | Voo
’ R = 100A R = 100A
0.0£ . . - . . ; . :

qR qR

FIG. 2. Dispersions of (a) torsional and (b) dilatational
acoustic phonon modes confined to a GaAs quantum wire
embedded in AlAs for R = 100 A. There are three dispersion
curves (solid lines) with finite cutoff frequencies for both of the
modes. The lowest cutoff frequencies vo,7 and vo,p denoted
by arrows are almost equal to 0.22 THz. The dashed lines are
dispersions of the bulk-TA modes of GaAs and AlAs. The
points P, and P; at v = 0.6 THz are referred to in Figs. 5
and 6.
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tends to that of GaAs with increasing q. The lowest cut-
off frequencies, 1o, of the torsional mode and vo p of the
dilatational one, are almost equal to 0.22 THz.

For n > 1, all the terms of Eq. (1) are coupled into one
mode termed a flezural mode. The dispersion relations
for n = 1 and 2 are plotted in Figs. 3(a) and 3(b), respec-
tively. There are five dispersion curves with finite cutoff
frequencies for both cases. Although the lowest curve
is obviously separated from the others, the second and
third curves, and the fourth and fifth curves, are close
to each other. These phonon subbands shift to a higher
frequency region when n increases from 1 to 2 and the
lowest cutoff frequency v, for n = 2 becomes larger than
vy for n = 1. The differences in frequency between the
second and third curves and between the fourth and fifth
curves expand with the increase of n. These tendencies
hold for any positive integers.

The mode with the negative integer n’ (= —n) has the
same dispersions as those of the mode with the positive
integer n because the characteristic equation is an even
function of n. Hence the dispersions of the modes with
the same absolute value of n are degenerate.

The phonon subband structures with finite cutoff fre-
quencies lead to staircaselike density of the confined
phonon states, as shown in Fig. 4. The lowest cutoff fre-
quency among {v, } is v; for n = £1 and yields 0.12 THz
for R = 100 A, below which there is no confined phonon
state. This figure also shows the increase of the cutoff
frequencies with the rotational symmetry order |n|. The
density of states tends to the 2 variation of the bulk 3D

qR

FIG. 3. Dispersions of flexural acoustic phonon modes with
(a) n = £1 and (b) » = £2 confined to a GaAs quantum wire
embedded in AlAs for R = 100 A. There are five dispersion
curves (solid lines) with finite cutoff frequencies for both of the
modes. The lowest cutoff frequencies v1 and v, are denoted by
arrows. The second and third dispersion curves and the fourth
and fifth ones are close to each other. Insets of (a) and (b)
show the regions enclosed by the dotted line. The difference
in frequency between the adjacent dispersions expands with
increasing |n|. The points P, Pz, and Ps at 0.6 THz are
referred to in Figs. 8 and 9. The dashed lines are dispersions
of the bulk-TA modes of GaAs and AlAs.
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1.0
z
=
3
Ne)
&
S 0.5+
&)
0.0+ T — T ‘ —
0.0 0.2 0.4 0.6 0.8 1.0
v (THz)
FIG. 4. Density of confined phonon states in the

GaAs/AlAs system versus frequency for R = 100 A. The
density of confined phonon states shows staircaselike struc-
tures owing to the dispersions with finite cutoff frequencies,
tending toward the 3D Debye model at high frequencies. The
thin solid line denotes the v? variation for reference. The in-
crease of the lowest cutoff frequency with |n| for |n| > 1 is
identified in this figure.

Debye model at high frequencies. The thin solid line is
drawn to show the v? variation for reference.

2. Displacements

Figure 5 illustrates amplitude wg of the azimuthal dis-
placement of the torsional mode at points P; and P;
when v = 0.6 THz of the lowest and second dispersions
denoted in Fig. 2(a). The amplitude w is defined by

w(r) =Ua(r)Xs0(R —7) + Ug(r)Xp0(r — R). (29)

The amplitude wy vanishes at r = 0, varying with in-
creasing r and disappearing at a large r. The ampli-
tude belonging to the higher dispersion curve has a node
in contrast to the lower one, which shows quantization

14
n=0
€
s
- 0
=
Ed
T r T T T 1
00 05 1.0 1.5 20 25 3.0

r/R

FIG. 5. Amplitudes of the lowest (P;) and second (P)
dispersion curves of the torsional modes. The points P; and
P; are designated in Fig. 2(a). The dashed line denotes the
interface between the wire and the surrounding medium.
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of wave vectors in the lateral direction. The region of
phonon confinement of P; is narrower that that of P,
because the wave vector kg ; in the surrounding of P; is
larger than that of P, due to the difference in the longitu-
dinal wave vector g, as readily understood from Eq. (15).

Figures 6(a) and 6(b) shows the amplitude of the di-
latational mode at points P; and P, when v = 0.6 THz
belonging to the lowest and second dispersions denoted
in Fig. 2(b). Only the radial component w, vanishes at
r = 0. Both components w, and w, vary and alternate
in sign with increasing r, vanishing at a large . The re-
gion of phonon confinement of P; is narrower than that
of P, for the same reason as with the torsional modes.
The number of nodes of each component of P, increases
by one in comparison with that of P;, showing quanti-
zation of wave vectors in the radial direction. There is
a phase difference of 7/2 between w, and w,, leading to
elliptic particle motion in the plane including the wire
axis. The direction of elliptic particle motion depends
on the sign of the amplitude. The particle displacement
field patterns have the appearance of peristaltic motion
of the quantum wire as a whole as shown in Fig. 7.

For finite integers n, the phase factors of displacements
ugp and u, are shifted by 7/2 from wu,. The phase differ-
ence among the components leads to elliptic particle mo-
tion oblique to the wire axis. The amplitudes belonging
to the lowest three dispersions of the mode with n =1
are plotted in Fig. 8. The axial component w, vanishes
and the radial component w, equals the azimuthal com-
ponents —iwg at 7 = 0. The amplitudes vary with r and
rapidly vanish in the surrounding, where the dependence
of the region of phonon confinement on g is apparent.
These properties hold for all the three curves.

14 E
@n=0(P)
z 0 1
= 1w,
£ ;
s :
3 :
ERRE
=) (byn=0(P,)
E
< W,
0 W
—iwzé
-1 E

00 05 10 15 20 25 30
r/R

FIG. 6. Amplitudes of (a) the lowest (P;) and (b) second
(P2) dispersion curves of the dilatational modes. The points
P, and P; are designated in Fig. 2(b). The dashed line denotes
the interface between the wire and the surrounding medium.
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qz

FIG. 7. Displacement field pattern for the dilatational
wave traveling in the z direction. The shaded region denotes
the wire. The arrows denote the direction of elliptic particle
motion with time.

The amplitudes of the lowest dispersion do not have
nodes, and the number of nodes increases from low to
high dispersion curves, showing quantization of the wave
vector in the lateral direction. Aside from the number
of nodes, the amplitudes of the lowest and highest dis-
persions of the three are quite similar because the radial

(@n=1(P)
— W
K‘iwz
’@ 1 : + + +
g ; (byn=1 (P
£ N v,
N 0 :
[5) '
8 /K
:f:" : _iwz
g‘_l_ -— -iwg
< f
. ,
(©n=1(Py)
'iwzi-iwq,
0 L

\ \Wr

T T T T

00 05 10 15 20 25 3.0
r/R

FIG. 8. Amplitudes of (a) the lowest (P;), (b) second (P2),
and (c) third (Ps) dispersion curves of the flexural mode with
n = 1. The points P, , P;, and P; are designated in Fig. 3(a).
The dashed line denotes the interface between the wire and
the surrounding medium.
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component w, approximately equals —iwgy, independent
of r. The radial component w, of the second dispersion is
almost equal to iwy, except in the region of the wire axis,
in contrast to the other two dispersions. We have stud-
ied the amplitudes of higher dispersions and confirmed
the relations between the components, i.e., w, =~ iwg for
the fourth dispersion and w, ~ —iwg for the fifth dis-
persion. Thus the vibrations of modes with n = 1 are
classified into two types owing to the relation between
the components w, and wy.

Figure 9 shows the displacements of the mode with
n = 2 at the points belonging to the lowest three disper-
sions curves. The properties of amplitudes are the same

as those of the mode with n = 1, except that all the am-
J

u(r) = Re[w(r)e!™*+H))
_we(r) + wy(r)

N 2
wy(r) — wg(r)

2

in Cartesian vectorial notation (ug,uy,u;), where g =
gz — wt. For n = 1 the z component w(0) vanishes
and w,(0) is required to equal wy(0). For n > 1, all the
amplitudes must vanish at » = 0. These properties of
amplitudes at » = 0 coincide with the results obtained

~~

<]

E=|

E

)

el

<

SN~

Q

kS|

E

=

=

E 14 :

< H . .

1 E
pTIW, (c)n=2(Py)
f}—iwq,
0 S —
T w,
T T T T T

0.0 0.5 1.0 1.5 20 25 3.0
r/R
FIG. 9. Amplitudes of (a) the lowest (P,), (b) second (Pz),
and (c) third (Ps) dispersion curves of the flexural mode with
n = 2. The points P;, P>, and P; are designated in Fig. 3(b).
The dashed line denotes the interface between the wire and
the surrounding medium.
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plitudes vanish at » = 0, and there are also two types
of vibrations concerning the relation between amplitudes
w, and wg. For a larger rotational symmetry order n,
the behavior of amplitudes is the same as in the case of
n = 2, including the vanishing of the amplitudes at r = 0.

The vanishing of amplitudes at » = 0 is closely related
to the rotational symmetry of the modes. Since the dis-
placement vector u(r) is independent of ¢ at r = 0, the
displacements u, of the dilatational modes and uy of the
torsional modes must vanish at » = 0 because of the
azimuthal symmetry of the modes. Assuming the ampli-
tude w to be (w,,iwy,iw), where w,, wy, and w are
real, the displacement vector u yields, for a flexural mode
with a rotational symmetry order n,

{cos[(n — 1)¢ + B], —sin[(n — 1)¢ + 3],0}

{cos[(n + 1)¢ + G],sin[(n + 1)¢ + B],0} — w’(r)[0,0,sin(nd + 3)] (30)

f
above and hold universally in the other phonon modes
such as interface and extended modes.

Equation (30) is useful to understand the vibrational
patterns of the flexural modes. This formula shows that
the displacement vector is given by the sum of two kinds
of rotations along the wire axis, i.e., clockwise and coun-
terclockwise rotations with angle ¢. The amplitudes of
the rotations are, interestingly, given by (w, —wy)/2 and
(wr +wy) /2, respectively. From these facts, the displace-
ments of the lowest, third, and fifth dispersions of the
flexural mode with n = 1 are found to be independent of
angle ¢ and the contour of the wire cross section becomes
a circle oblique to the wire axis whose center is displaced
from the axis. The displacement vector rotates clockwise
with increasing z because 3 = gz — wt. Then the circle
oblique to the wire axis rotates along the axis simultane-
ously with z, which results in a spiral rod. The dynamical
movement of the wire surface with time looks like a spiral
rod rotating counterclockwise with time, which is similar
to the motion of a barber pole. The confined acoustic
phonon modes with finite integers are thus termed flexu-
ral modes according to the motion. In contrast to these
cases, the displacement vectors, except for the wire axis
region of the second and fourth dispersions, rotate clock-
wise twice with ¢. The whole picture of the quantum wire
is also of a spiral rod, but with a deformed cross section
because of the ¢ dependence of the displacements. The
dynamical movement behavior is similar to the former
cases.

For n = 2 the displacements are expressed by the sum
of clockwise rotation of a third harmonic and counter-
clockwise rotation with a period of ¢. The displacement
vectors belonging to the lowest, third, and fifth disper-
sions show counterclockwise rotation along the wire axis
and the contour of the cross section of the wires becomes
a bent oval. The displacement vectors of the second and
fourth dispersions show clockwise rotation along the wire
axis and the cross section shows twofold rotational sym-
metry of the modes, although its shape differs from an
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oval. The whole picture of the quantum wire is of a
twisted rod with twofold symmetry of the cross section.

Finally, we discuss the displacements for negative n
integers. Putting n = —m, where m is a positive integer,
the displacement vector for a negative integer yields

wy + wy .
u=———{cos[(m + 1)¢ — f],sin[(m + 1)¢ — g], 0}
w, — wy

+—-2—{cos[(m —-1)¢ — 3],

—sin[(m — 1)¢ — 8],0} + w?/[0, 0, sin(m¢ — B)].
(31)

The displacement vectors belonging to the same disper-
sion should have the same ¢ dependence. Therefore, the
azimuthal component wy must change its sign in accor-
dance with the sign of the rotational symmetry order n.
The dynamical movement of the quantum wire shows the
barber-pole motion, but its direction changes to clock-
wise for negative integers because of the change in the
sign of §.

III. INTERFACE MODES

As mentioned in Sec. I, the existence of interface modes
in a quantum wire depends on combinations of material

weIn(kaor) i 2In(kayT)

UA('I') =

i qIn(K'A,O 7')

and
82 w \?
(Ta)u1 = [(Cam1— CA,12)W —Ca,12 (U—,o) ]
xIn(ka,0 1), (36a)
. oI
(Ta)12 =in(Ca11 — Ca2) B_M’ (36b)
T T
. q 9?
(Tahs =1 P (Ca1 — CA,12)wIn('€A,2 r),  (36c)
. O I,(kaoT
(Ta)s1=2in CA,44E—‘(—:YQ_)7 (36d)
2 2
(Ta)22 = —Ca44 (2m - NA‘l) Li(kaaT), (36e)
_ oM O Li(kazr)
(Ta)2s = 2&4,2 Agags— =, (36f)
. 0
(Ta)s1 =2i q Cagq Eln(";’A,O T), (36g)
(Ta)32 = _?CA,M I(kan 1), (36h)
' 9
(Ta)ss = — (&4,2 + m) Ca,a4 5;171("'11,2 7). (36i)

i (ka0 ) —ZIn(kanr) —-2%
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parameters of the wire and the surrounding media. Thus,
in this section, we do not specify the quantum wire and
surrounding materials, but investigate combinations of
material parameters of the wire and surroundings for the
existence of interface modes.

Interface modes should be evanescent waves in
the radial direction in both media, for which the
longitudinal wave vector ¢ must be larger than

max(w/va,ta,w/vB,TA), i-€.,
q > max(w/v4 A, w/vB,TA)- (32)

All the potential functions in a quantum wire obey mod-
ified Bessel equations (10), given by

¢A,0(rat) = XA,OIn(K‘A,O r)ei(n¢+qz—wt)’ (333)
Sa1(r,t) = xan1ln(ka,y r)eiPetaz—wt) (33b)
Gaa(r,t) = X2 (g 5 r)einotase), (33¢)

where the radial wave numbers k4,; and & 4,2 are defined
by

2
w

The matrices U4 and T4 are obtained as follows:

1 -1 iIn(K,A,z T)

KA,2 or

A I.(ka2T)

0 —Ka2 In(ka2 7)

[

The potentials in the surrounding medium are un-
changed, as given by Eq. (17), and then the matrices
Up and Tp are the same as in Egs. (21) and (25), re-
spectively. Putting Egs. (35), (36), (21), and (25) into
(28), we obtain the characteristic equation of interface
modes. Numerically solving the characteristic equation
for each rotational order n, we investigate the existence
of interface modes at the quantum wire surface.

A. Region of material parameters for the existence
of interface modes

For n = 0, although x; decouples from x, and x, as
well as the confined modes, solutions do not exist for
the torsional waves. The reason is straightforward. The
displacement of the possible torsional interface mode in-
creases as I;(K4,17) in the quantum wire and decreases as
K,(kp,17) in the surrounding medium. Stress becomes
positive in the quantum wire and negative in the sur-
rounding, and the discontinuity in stress always occurs
at the interface. Thus the boundary condition cannot be
fulfilled for the torsional waves.

Figure 10 shows the region of combinations of material



10978
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FIG. 10. Range of existence of the dilatational interface
mode. The shaded region denotes the region of existence
of the interface modes at a plane interface. These results
are obtained by assuming wvpa/vra = +/3 for the quan-
tum wire and the surrounding media. The dashed line
denotes the contour of the region for the existence of in-
terface modes at a plane interface where vpa/vra = V2
is assumed. The solid triangle and square denote the
combinations of the GaAs/AlAs(paias/pcaas = 0.70 and
CA1A5,44/CGaAs,44 = 0.99) and W/AI (pAl /pw = 0.14 and
Cal44/Cw,aa = 0.17), respectively.

parameters for the existence of a dilatational interface
mode together with the region of the interface modes at
a plane interface. These results are obtained for the ra-
tio vpa /vTa = V/3 for both media, assuming the stiffness
constants C1p, = Cyq for them. The shaded region de-
notes the region for a plane interface, which is a limit of
infinite radius for the quantum wire. The regions with a
reduced longitudinal wave number gR are enclosed by
solid lines. The region contracts with decreasing ¢R.
This means that, for a combination of materials, the ex-
istence of a dilatational interface mode is limited to a
larger ¢R than a magnitude, at which the combination
of materials is located on the contour of the region. In
other words, the dispersion of the dilatational interface
mode begins at a finite wave number or frequency as will
be shown below. The region of the existence of the di-
latational interface mode vanishes at the critical reduced
longitudinal wave number g.,R = 4.2. At smaller than
the critical value, no dilatational interface mode exits in
any combination of materials. Although Fig. 10 shows
the range Cp 44/Ca,44 < 1 and pp 44/pa,aa < 1, there
is a region of the existence of the dilatational interface
mode in the range Cp 44/C4,44 > 1 and ppaa/pa,as > 1.
The shrinkage of the region from that of the interface
mode at a plane interface with decreasing the reduced
wave number ¢R also occurs.

For a finite integer n, there are modes termed flexural
interface modes as well as confined modes. Because the
characteristic equation is an even function of n, the region
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for a positive integer n is same as that for —n. Figure 11
plots the dependence of the region on n at ¢R = 10. The
region shrinks with increasing |n| for |n| > 1 and vanishes
for |n| > 3. That is, the existence of the flexural interface
modes are limited to [n| < 3 at ¢R = 10. With decreasing
qR, the region of the flexural interface modes contracts
and vanishes as well as the dilatational interface mode.
The critical reduced wave number g, R of the vanishing
of the region depends on n and yields 0.1, 4.2, 7.4, 10.1,
and 12.8 for |n| = 1, 2, 3, 4, and 5, respectively. From
these results, the flexural interface modes with n appear
when gR > ¢¢n R and then the number of the flexural
interface modes increases with an increase of ¢R.

Thus the region of material parameters for the possi-
ble existence of the interface modes in a quantum wire—
surrounding system simply contracts inside the region for
a plane interface and does not extend outside the region
for a plane interface. In other words, the interface modes
of the quantum wire-surrounding systems occur only for
a combination of materials which supports the interface
modes at a plane interface.

Here we examine the existence of interface modes in
the GaAs/AlAs and W/AI systems, which were stud-
ied for interface modes in the double heterostructures
by Wendler and Grigoryan.?” Since the ratios of stiff-
ness constants Calas44/CGaas,44a and mass densities
PAlAs,44/ PGaAs,a4 are 0.99 and 0.70, respectively, the com-
bination of GaAs/AlAs is apart from the region of the
possible existence of interface modes at a plane inter-
face, as denoted by a solid triangle in Fig. 10. Then the
GaAs/AlAs systems support only the confined phonon
modes. In contrast to the GaAs/AlAs systems, the com-
bination of W/Al is located within the region for a plane
interface (the solid square in Fig. 10); therefore, the sys-

1.0
0.8 1 qR=10
3 0.6-
<
@)
\‘fr - n=z=I
<
@
& 0.4 ’
. n=0
0.2 1L n=x2
———— n=%3
0.0 : , ' ]
00 02 04 06 08 1.0
PB/ Pa

FIG. 11. Dependence of the region of existence of the flex-
ural interface mode on the rotational symmetry order. The
dashed line denotes the contour of region for the dilatational
mode (n = 0) for reference. These results are obtained by
assuming vpa /vra = V3.
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tems support both interface and confined phonon modes.

It should be noted here that, though the ratio of sound
velocities vp,a /vTa (= v/2) for the GaAs/AlAs systems is
smaller than the /3 assumed in Fig. 10, the regions for
the existence of interface modes are almost unchanged
due to the difference in the ratios. The dashed line in
Fig. 10 denotes the contour of the region for a plane in-
terface at vpa /vra = V2.

B. Dispersions and displacement

The disappearance of the regions with a decrease of
the reduced wave number qR and with an increase of the
absolute value of n leads to a subband structure with
finite cutoff frequencies. Figure 12 shows the dispersion
curves of interface modes for the W/AIl systems. The
lowest dispersion curve is the flexural mode with n = +1,
which begins at a finite longitudinal wave number. The
number of interface modes increases with increasing qR
and all the dispersion curves tend toward that of the
Stoneley modes at a plane interface and should converge
on the dispersion for a plane interface at a very large qR.

Figure 13(a) illustrates the amplitudes of the dilata-
tional interface mode at gR = 10. The radial component
w, vanishes at r = 0 due to the azimuthal symmetry of
the mode and the axial component w, is almost constant
within the wire. There is a phase difference 7/2 between
the components w, and w,, leading to elliptic particle
motion in the plane including the wire axis. The parti-
cle displacement field patterns become peristaltic motion
of the quantum wire similar to the dilatational confined
modes. The amplitudes of flexural interface modes with
n =1 at gR = 10 are plotted in Figs. 13(b). The phase
factor of radial component w, is also shifted by 7/2 from

c/ Vya

0.92 T T T
0 5 10 15 20
qR
FIG. 12. Phase velocities of the interface modes in

the W/Al systems. c denotes the phase velocity of
interface modes. The long-dashed line denotes the disper-
sion of the Stoneley modes at a plane interface. The mate-
rial parameters used here are pw = 19.317 gcm ™3, Cw,11
= 5.233 x 10*? dyncm ™2, and Cyw,44 = 1.607 x 10'2 dyn cm™2
for W and pa; = 2.733 gcm”3, Cai,1n = 1.068 x 102
dyn cm"z, and Cajeq = 0.282 X 102 dyncm"2 for Al.
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FIG. 13. Amplitudes of (a) dilatational and (b) flexural
interface modes in the W/Al systems. These results are ob-
tained at ¢R = 10. The material parameters used are same
as in Fig. 12. The dashed line denotes the interface between
the wire and the surrounding medium.

those of wy and w, and the displacement vector shows
elliptic particle motion in the plane oblique to the wire
axis. The radial and azimuthal components w, and wg
are finite even at the wire axis and comparable to those
at the wire surface and there is no relation between the
components w, and wy as shown for the flexural confined
modes. Finally, the amplitudes for n > 2 are qualita-
tively similar to those for n = 1, except for the wire axis
region, where all the components vanish at » = 0 due to
the rotational symmetry of the modes.

IV. SUMMARY AND DISCUSSION

We have investigated confined and interface acoustic
phonon modes in a cylindrical quantum wire embedded
in another material based on the elastic continuum model
by means of the potential theory. These acoustic phonon
modes are expressed in terms of a scalar and two vec-
tor potentials. The confined modes are classified into
three types of modes, i.e., the torsional, dilatational, and
flexural modes, due to the rotational symmetry of the
modes along the wire axis. The dispersions of the con-
fined modes in the GaAs/AlAs system appear between
the bulk TA modes of GaAs and AlAs and have sub-
band structures with finite cutoff frequencies owing to
quantization of wave vectors in the lateral direction. The
density of confined phonon states appears as a staircase-
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like structure according to the cutoff frequencies, tend-
ing toward the v? variation of the 3D Debye model with
increasing frequency. The phase difference in the ampli-
tudes results in elliptic particle motion of displacement
vectors in a plane including the wire axis for the dilata-
tional mode and in a plane oblique to the wire axis for the
flexural modes. The dynamical movement of the quan-
tum wire shows peristaltic and barber-pole motion, re-
spectively.

As for the interface modes in the wire-surrounding sys-
tems, we examined the regions of possible existence of
dilatational and flexural interface modes and found that
they shrink inside the region for a plane interface with a
decrease in the reduced longitudinal wave vector ¢R and
with an increase in the rotational symmetry order |n|.
Consequently, the existence of interface modes becomes
more sensitive to combinations of material parameters
than the case of a plane interface and novel combinations
of material parameters specific to the wire-surrounding
systems do not appear. Therefore, the interface modes of
the quantum wire-surrounding systems are expected only
for a combination of materials which has Stoneley modes
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at a plane interface. The GaAs/AlAs and W /Al systems
were examined for the existence of interface modes and
we found that the GaAs/AlAs systems support only the
confined phonon modes, in contrast to the W/Al systems.

Acoustic phonons are responsible for electron energy
relaxation at low temperatures. In Q1D wirelike struc-
tures the confined phonon modes should dominate the
dissipation processes in the temperature region and elec-
tron transport properties will be affected by the phonon
subband structures. Recently Senna and Das Sarma'*
reported enhancement of interaction between electron
and acoustic phonons caused by a many-body effect in
Q1D systems. As a consequence, peculiar modifications
in electron energy relaxation and the related transport
phenomena are expected.
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FIG. 7. Displacement field pattern for the dilatational
wave traveling in the z direction. The shaded region denotes
the wire. The arrows denote the direction of elliptic particle
motion with time.



