Significance of radical oxygen production in sorus development and zoospore germination in *Saccharina japonica* (Phaeophyceae)

Hiroyuki Mizuta¹* and Hajime Yasui²

¹Laboratory of Aquaculture Genetics and Genomics, Faculty of Fisheries Sciences, Hokkaido University, Minato 3-1-1, Hakodate, Hokkaido 041-8611, Japan, e-mail: mizuta@fish.hokudai.ac.jp
²Laboratory of Marine Industrial Science and Technology, Faculty of Fisheries Sciences, Hokkaido University, Minato 3-1-1, Hakodate, Hokkaido 041-8611, Japan.

*Correspondence author

Running title: ROS production in sorus formation of *Saccharina japonica*
Abstract

We investigated production of radical oxygen species (ROS) in sorus development of sporophyte discs and during zoospore germination of *Saccharina japonica* (Phaeophyceae) using the fluorescent dye 2’,7’-dichlorofluorescein diacetate (DCFH-DA). Quantitative analysis of ROS showed high intracellular production during the stages of zoosporangium formation when paraphyses elongated. In this same stage, remarkable ROS release was observed. ROS production was also observed histologically (under a fluorescence microscope) in the elongating paraphyses and the sorus zoosporangia of the sorus. The sorus had significantly higher phenol content, anti-oxidant capacity and ROS scavenging enzyme activities (ascorbate peroxidase, catalase, glutathione reductase and superoxide dismutase) than adjacent non-sorus blade sectors. Thus, intracellular ROS scavenging mechanisms are active during ROS production in sorus formation. In contrast, iodine content was lower in the sorus than in the adjacent non-sorus tissues, suggesting the existence of an anti-oxidant defense mechanism based on iodine efflux. We demonstrated that ROS production is an important phenomenon in the reproduction of the sporophyte in *S. japonica*. Furthermore, ROS were also observed in the zoospore germination processes. We discuss the physiological and ecological roles of ROS production in sorus formation and zoospore germination.

Key words: antioxidant; *Saccharina*; reactive oxygen; sorus; zoospore germination
Introduction

The life cycle of kelps involves the alternation of macroscopic sporophyte and microscopic gametophyte generations. A better understanding of the reproduction mechanism is critical for the overall knowledge of kelp ecology and for the maintenance of kelp forests, which are key components of coastal ecosystems in cold and cold-temperate seas other than those off Antarctica.

There have been many reports on the development of sporangia in *Laminaria* spp. examining environmental influences on sporogenesis and reproductive effort (reviewed by Bartsch et al. 2008). Several physiological changes, including a decrease in photosynthesis, an increase in respiration (Matsuyama 1983, Aruga et al. 1990, Sakanishi et al. 1991, Nimura and Mizuta 2001), phlorotannin accumulation (Van Alstyne et al. 1999) and an increase in RNA/DNA ratio (Nimura and Mizuta 2001), occur in the process of sorus development. Sporulation inhibitors are thought to be involved in the mechanism of sorus formation (Buchholz and Lüning 1999, Lüning et al. 2000). Recently, it was reported that sorus formation in *Saccharina japonica* (J.E.Areschoug) C.E.Lane, C.Mayes, Druehl et G.W.Saunders (= *Laminaria japopnica* Areshoug) was regulated by internal auxin level (Kai et al. 2006). In contrast, sorus formation is promoted by abscisic acid (Nimura and Mizuta 2002).

Sorus development in *Laminaria* involves the formation of zoosporangia and paraphyses originating from the epidermal cells (Abe 1939). These structures are characterized by the elongation of epidermal cells, which is promoted by cell wall loosening. Furthermore, it has been suggested that ROS are related to the cell wall strengthening (Fry 1998), and it has been shown that they play an important role in higher plant growth and development (Foreman et al. 2003, Gapper and Dolan 2006, Carol and Dolan 2006). Among seaweeds, ROS are physiologically produced in the germination of zygotes of the brown algae *Fucus* (Coelho et al. 2002, 2008). ROS also control more specialized processes such as plant growth, defence, hormonal signalling, and development as signalling molecules (Mittler et al. 2004). Hence ROS play roles in several growth stages of kelps.

Thus, this study was conducted to confirm the occurrence of ROS production in the reproductive stage of the sporophyte in brown seaweed, *Saccharina japonica*. In addition, we discuss the significance of ROS in sorus formation and in the germination of zoospores in this species.

Materials and methods
**Preparation of materials**

Mature sporophytes of *Saccharina japonica* were collected from a coastal area near Hakodate, Hokkaido, Japan, and transported to the laboratory. The sporophyte was divided into vegetative and sorus parts. From the vegetative part, discs (2 cm in diameter) were cut and cultured in a polyethylene terephthalate bottle (1 l) with Provasoli’s enriched seawater (Provasoli 1968) without vitamins under aeration for 3–5 months. The culture conditions were set at 10°C, 60 μmol photons m⁻² s⁻¹ (12-h light: 12-h dark cycle). The medium was renewed every week. The seawater used as a medium was filtered through a glass fibre filter (GA-100, Toyo Roshi Kaisha, Ltd., Tokyo, Japan) and autoclaved at 121°C for 20 min (ASV-2401, Tiyoda Manufacturing Co., Ltd., Tokyo, Japan). After disc surfaces began to rise, showing that the sori had begun to develop, discs were collected as required. Based on the report of Nimura and Mizuta (2001), they were divided into four stages, Stage I (vegetative stage), Stage II (early stage of paraphysis elongation), Stage III (zoosporangium formation stage with paraphysis elongation) and Stage IV (zoospore release stage). These discs were used for the analytical and histological detection of ROS production.

Other discs (2 cm in diameter) collected from other sorus parts and adjacent non-sorus blade portions were used directly to measure the activity of ROS-scavenging enzymes, including ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR) and superoxide dismutase (SOD), as well as the anti-oxidant activity, phenol and iodine content.

A portion of the sorus was cut from the mature sporophyte with a scalpel to obtain zoospores. These portions were wiped with a paper towel, wrapped in newspaper and stored overnight at 4°C in a refrigerator. After 24 h, the sorus was then placed in 200 ml of seawater to release zoospores. The seawater containing zoospores was poured into a polystyrene vessel (square type, 8.5cm × 17.5cm × 3.5cm) containing a glass slide fragment (ca. 2 × 2cm) on the bottom. To allow zoospores to settle onto the glass slide fragment, the vessel was placed in an incubator set at 5°C, 60 μmol photons m⁻² s⁻¹ on a 12-h light: 12-h dark cycle. After the zoospores had settled, the seawater was exchanged with Provasoli’s enriched seawater without vitamins. Some of the glass slides were used the histological detection of ROS in the germination process.

**Analytical and histological detection of ROS production**

Sporophyte discs (2 cm in diameter) at different stages of sorus formation were incubated in seawater (2 ml) containing 2',7'-dichlorofluorescein diacetate (DCFH-DA, Wako chemicals, Osaka, Japan, final concentration 50 μM) for 1 h. The incubated discs were ground in a mill with
liquid N\textsubscript{2} and extracted in 1 ml of Tris-HCl buffer (40 mM, pH 7.0). After agitation for 5 min and centrifugation at 10,000\(\times\)g for 5 min, 500 \(\mu\)l of the supernatant was diluted to 2.5 ml with Tris-HCl buffer and used to measure fluorescence at 488 nm (excitation wavelength) and at 525 nm (emission wavelength) with a spectrofluorometer (FB-750, Jasco, Tokyo, Japan). The production of ROS was calculated with a standard curve for dichlorofluorescein (DCF, Wako chemicals, Osaka, Japan) and expressed in units of \(\mu\)g DCF per single-side area of disc. Other discs were also cultured in 2 ml of medium with 10 \(\mu\)M DCFH-DA for 1 h. The media at the start and the end of culturing were subjected to ROS analysis using a similar spectrofluorometrical procedure. ROS release was calculated as the amount of DCF produced during the culture period.

The discs at different stages of sorus formation were also cultured in seawater with 50 \(\mu\)M DCFH-DA for 15 min. After culturing, the discs were taken out and rinsed with sterilized seawater to remove the DCFH-DA on the surfaces. The discs and their hand-cut sections were observed using a fluorescence microscope (AH2, Olympus, Tokyo, Japan) at an excitation of 380–490 nm.

Zoospores, which were attached glass slide segments, were used for ROS histological detection. The culture for the germination of zoospores was maintained at 10°C, 22.5 \(\mu\)mol photons m\(^{-2}\) s\(^{-1}\) (12-h light: 12-h dark cycle) for 1–2 days after release. Embryospores (germinating zoospores) were placed into 1 ml of seawater containing 50 \(\mu\)M DCFH-DA solution and incubated in the dark for 15 min. Glass slide segments were washed with seawater lacking DCFH-DA to remove the incubation medium. The glass slide segments with embryospores attached were placed on another slide glass for observation using a fluorescence microscope, as described above.

**Measurement of anti-oxidant activity and ROS scavenging enzymes**

Discs were powdered in liquid N\textsubscript{2}, and the powdered samples were extracted with 50 mM phosphate buffer (pH 7.0) containing 5\% (w/v) polyclar AT for CAT, GR and SOD. For APX, the extraction was carried out in 50 mM phosphate buffer (pH 7.0) containing 0.5 mM ascorbate, and 5\% (w/v) Polyclar AT.

Anti-oxidant capacity was assayed with 1,1-diphenyl-2-picrylhydrazyl (DPPH, Wako chemicals, Osaka, Japan) according to the method of Heo et al. (2005). Powdered samples were prepared in the manner as described earlier and placed in 2 ml of ethanol. The supernatants of the ethanol extracts (0.1 ml) were mixed with 2.9 ml of DPPH solution (400 \(\mu\)M) and incubated at room temperature for 30 min in the dark. The absorbance of the mixture was measured at 516 nm with a UV-VIS spectrometer (V-530, JASCO, Tokyo, Japan). ROS-scavenging activity was
expressed in units of mM Trolox equivalent (TE) per gram fresh weight.

The activities of CAT, GR and SOD were assayed following Aguilera et al. (2002). Decreases of 1 μmol H$_2$O$_2$ and NADPH for 1 min were used as units of CAT and GR activities, respectively. One unit of SOD was defined as the amount of enzyme required to inhibit the rate of cytochrome c reduction by 50%.

Ascorbate peroxidase activity was assayed following Chen and Asada (1989). Decrease in absorbance at 290 nm was followed for 1 min after the addition of 50 μl of extract to 950 μl of 50 mM phosphate buffer (pH 7.0) containing 0.1 mM H$_2$O$_2$ and 0.5 mM ascorbate. A decrease of 1 μmol ascorbate for 1 min was used as the unit of ascorbate peroxidase activity.

Total soluble protein (TSP) content was assayed by the Coomassie Blue G method. Coomassie Blue G staining solution (0.01%, 950 μl) was added to 50 μl of enzyme extract. The absorbance was recorded at 595 nm. The total soluble content was corrected using serum albumin solution.

**Measurement of phenolic and iodine contents**

The content of phenolics was determined following the method of Senevirathne et al. (2006). Discs were powdered in liquid N$_2$, and the fine powder was placed in vials (10 ml) with 1 ml of 95% ethanol, 5 ml of distilled water and 0.5 ml of 50% Folin-Ciocalteu reagent. The resultant mixture was allowed to react for 5 min, after which 1 ml of 5% Na$_2$CO$_3$ was added, followed by thorough mixing and storage in darkness for 1 h. Subsequently, the mixture was centrifuged at ca. 7000×g and the absorbance of the supernatant was recorded at 725 nm by UV-VIS spectrometry. To calculate phenolic contents, a gallic acid standard curve was used as the standard, and the content was expressed as gallic acid equivalents (GAE) per gram fresh weight.

Iodine content was determined following the method of Yasui et al. (1980). The disc was dried in a nickel crucible for 2 h at 110°C. Dry matter was cooled at room temperature. After the dry weight had been determined, the dry matter was fused completely for 5 h at 450°C in a muffle furnace. The ash sample was extracted in boiling water and the extract was collected through a glass fibre filter (Whatman GF/C). The extract was agitated with 0.5 ml of 36 N sulphate and 5 ml of 3% hydrogen oxide for 10 min in a separating funnel. After 10 ml of toluene had been added, the separating funnel was agitated again for 2 min. The lower layer was discarded and the upper toluene layer was added to a test tube with 1 g of anhydrous potassium sulphate. After the dehydration, the absorbance of the toluene layer was measured at 535 nm. The iodine concentration was measured using a standard curve of potassium iodide.
Statistical analysis
Data were expressed as mean + standard deviation. Bartlett’s test was used to test the homogeneity of variance. If homogeneous, the data were analyzed by one-way analysis of variance (ANOVA) with Dunnett’s multiple comparison test. If the variances were heterogeneous, comparison was analyzed by the Kruskal-Wallis test followed by Steel’s multiple comparison test. Significant difference of ROS scavenging activities and antioxidant contents between sorus and adjacent non-sorus sectors was analyzed by one-tailed paired Student’s t test. All calculations were performed using statistical software (Exel Tokei 2006, SSRI, Tokyo, Japan). The levels of significance were set at p<0.05.

Results
Analytical detection of ROS production
ROS production and release at different stages of sorus formation in Saccharina japonica are shown in Fig. 1A. Discs without sori (Stage I) had low ROS production of 0.13 ± 0.06 (mean ± SD) μg cm⁻² h⁻¹. When the paraphyses started to elongate (Stage II), mean ROS production increased, but the production was not significantly different from that in Stage I. During zoosporangium formation with paraphysis elongation (Stage III), highest ROS production (0.45 ± 0.23μg cm⁻² h⁻¹) was observed; values were five times higher than in Stage I. Production of ROS in Stage IV was not significantly different from the level in Stage I.

Release of ROS by discs at different stages of sorus formation is shown in Fig. 1B. ROS release was significantly higher in Stage II than in Stage I. Release was the highest (0.28 ± 0.4μg cm⁻² h⁻¹) in Stage III and 2.6 times higher than in Stage I. In Stage IV, ROS release decreased to the non-significant level in the undeveloped sorus stage.

Histological detection of ROS production
The sorus part of the sporophyte disc had a strong green DCF fluorescence (Fig. 2A, B). The non-sorus part distant from the sorus, had only a red chlorophyll fluorescence; the transitional area between sorus and non-sorus sectors was scattered with weak fluorescence. Strong green DCF fluorescence was observed in the elongating paraphysis (Fig. 2C); the fluorescence was located in the peripheral regions of the cytoplasm of paraphyses around the cell walls, particularly in the apical and central parts of the paraphyses. DCF fluorescence also occurred in zoosporangia (Fig. 2D). However, the mucilage cap, which is located on the tip of the paraphyses, did not have green fluorescence (Fig. 2E and 2E’).

During germination of attached zoospores, DCF fluorescence was localized in the germ tube in the early stage of its elongation (Fig. 3A, B). ROS were also located at the opposite end of the
germ tube in the cytoplasm (Fig. 3B, C). Production of ROS was maintained in the
dumbbell-shaped germlings with movement of cell contents, including chloroplasts that emitted
reddish fluorescence (Fig. 3C). After the distal extremity of the germ tube had become dilated by
the movement of embryospore contents into it, the empty spore had weak DCF fluorescence
(Fig. 3D).

Anti-oxidant activity, ROS-scavenging enzymes, phenol content and iodine content
Comparisons of anti-oxidant capacity and several ROS-scavenging activities between sorus and
the adjacent non-sorus sectors are shown in Fig. 4. The anti-oxidant capacity in the sorus parts
was 1.5 times higher than that in the non-sorus parts (t-test; p < 0.01) (Fig. 4 A). The activities of
ROS-scavenging enzymes, including APX, GR, CAT and SOD, were 2.1 to 2.5 times higher in
the sorus part than in the non-sorus part (p < 0.05) (Fig. 4 B–E). The phenol content in the sorus
part was 3.7 times higher than that in the non-sorus part (p < 0.01) (Fig. 4F). However, the
iodine content in the sorus was 63% of the level in the non-sorus part (p < 0.05) (Fig. 4G).

Discussion

Origin of ROS
ROS production is induced by environmental stress, infection, wounding, drying, freezing and
ultraviolet radiation in higher plants. Such responsiveness to stress has also been found in
seaweeds (reviewed by Dring 2006). In *Saccharina japonica*, ROS production increased in
parallel with sorus development, suggesting that ROS production is closely linked to sorus
formation. ROS is also produced in metabolic processes of plant cells, and the major sources of
ROS are organelles such as chloroplasts and mitochondria. In the process of sorus development
in *S. japonica*, ROS appeared to be distributed mostly around the plasma membrane on the
inside of the cell wall of the paraphyses. In addition, we observed an extracellular release of
ROS through sorus formation. In higher plants, plasma membrane NADPH oxidase plays an
important role in ROS release in germinating radish seeds (Schopfer et al. 2001) and in ROS
signalling for cell growth (Foreman et al. 2003, Liszkay et al. 2004). These results suggest that
plasma membrane NADPH oxidase may be a major source of ROS in sorus formation of *S.
japonica*.

Regulation of internal ROS level
Generally, ROS cause oxidation of lipids, denaturation of proteins and the decomposition of
nucleic acids; these phenomena are life-threatening for plants. Therefore, ROS are generally
maintained at a low level in plant cells by ROS-scavenging enzymes and anti-oxidants. During sorus formation, ROS-scavenging enzymes were more active. High anti-oxidant capacity and high phenolics content was also observed. Plant phenolics are known to be important groups of natural anti-oxidants. Electron microscopic observations have revealed that many Golgi vesicles and physodes appear in paraphyses and zoosporangia of Saccharina angustata (Kjellman) C.E.Lane, C.Mayes, Druehl et G.W.Saunders (Motomura 1993). Physodes accumulated a large amounts of phenolic substances, suggesting that the synthesis and accumulation of phenolics occur actively in the cytoplasm of paraphyses and zoosporangia. Hence, phenolic anti-oxidants likely play an important role in the regulation of intracellular ROS levels.

Extracellular release of ROS was also observed in the sorus developmental process in Saccharina japonica. This release probably plays an important role in regulating intracellular ROS level in conjunction with anti-oxidant substances and ROS-scavenging enzymes. In addition, iodine, which is stored largely as iodide ion in the apoplast, functions as an inorganic anti-oxidant (Küpper et al., 2008). Iodine release by macroalgae is thought to occur in response to oxidative stress (Küpper et al., 2001; 2008). Therefore, iodine probably contributes in controlling the intracellular ROS levels when it is released. In S. japonica, lower iodine content in sorus than adjacent non-sorus sectors suggests that low levels of iodine are present because it is released in the ROS-producing process of sorus formation. However, non-sorus sectors released 80% of the ROS produced; 44–61% of these were released in Stages III and IV. The low ratio of ROS released to ROS produced in these stages suggests that a substantial part of the ROS produced is scavenged by iodine. Therefore, the contribution of iodine to scavenging ROS is likely to be greater during the sorus-formation process than in the vegetative stage.

Physiological Functions of ROS
The function of ROS as important regulators of cell development has been elucidated in higher plants. For example, ROS play an important role in the loosening of the cell wall in growing tissues (Fry 1998, Potikha et al. 1999, Liszkay et al. 2004) and in the lignification of xylem cell walls (Ros Barceló 1998). The loosening of the cell wall by ROS induces cell growth. In the sporophyte of Saccharina japonica, ROS are also normally produced in the development of the reproductive organs. In particular, ROS production seems to be active in the elongation of the paraphyses and zoosporangia. Therefore, we suggest that ROS contribute to loosening of the cell walls and to the elongation of epidermal cells in sorus formation.

ROS have also been observed in the zoospore germination process. Coelho et al. (2008) reported the existence of a tip-high ROS gradient in germinating Fucus serratus L. zygotes. They also observed that suppression of the ROS gradient inhibits polarized zygotic growth.
Their observation indicate that embryonic polarization in this species occurs through a ROS signalling pathway. In *Saccharina japonica*, ROS were locally produced in embryospores before germination, and ROS production was remarkable in the germ tubes. Therefore, the ROS are considered to play an important role in polarization and cell wall loosening in the germination process of zoospores of *S. japonica*. In addition, excess ROS production leads to necrotic cell death and programmed cell death in plant cells (Van Breusegem and Dat 2006). The accumulation of ROS in empty spores, the contents of which had already moved into the germ tubes, therefore seemed to be closely linked to the necrotic process of the spores.

**Ecological functions of ROS**

ROS production in sorus formation is considered to have ecological functions in addition to the physiological function described above. For example, correlations between the efficiency of ROS metabolism and stress tolerance have been reported in some brown and red algal species (Collén and Davison 1999a, b, c, Choo et al. 2004). The correlations are due to ROS functioning as a signalling substance for biotic and abiotic stresses (Mittler et al. 2004). The function of ROS in plants is also often discussed in terms of the resistance that occurs in plant-pathogen interactions. ROS exhibit anti-bacterial and sterilizing activities because of their strong oxidizing power. This suggests that the release of ROS plays an ecological role by inhibiting the growth of pathogenic bacteria on the surface of the sorus. Similarly, Küpper et al. (2001, 2002) showed that in *Laminaria digitata* (Hudson) J.V. Lamour, the oxidative burst controls growth of epiphytic and pathogenic bacteria.

Production of ROS in kelp results in the accumulation of chemical components that play a role in defence responses. Phenolic substances have several functions such as cellular support materials and the protection of plants against predators (Strack 1997). In *Saccharina japonica*, a high production of phenolics occurred during sorus formation. Van Alstyne et al. (1999) also reported that phlorotannin levels in the reproductive tissues of kelp were higher than in the vegetative tissues. In addition to the role of phenolics in scavenging ROS, as discussed above, the accumulation of phenolics can be considered to be an additional function related to the ecological success of reproduction of this seaweed. Ar Gall et al. (2004) proposed that iodine levels in kelps may reflect the antecedents of biotic and abiotic stress responses. It has also been proposed that both the oxidative burst and the concomitant iodine release participate in the early defence response to pathogenic micro-organisms (Leblanc et al. 2006). Iodine release, which is determined by lower content in the sorus than in the adjacent vegetative parts in *S. japonica*, is likely to contribute to chemical defence against microbial attack.
Conclusion
ROS were produced in the process of sorus formation in *Saccharina japonica*. ROS production is hypothesized to play a significant role in cell elongation in the paraphyses and zoosporangia. Additionally, several metabolic processes, including ROS release, anti-oxidant production and active ROS-scavenging activities, are activated to control the internal ROS level. These phenomena are additionally considered to function as a defence against herbivores and pathogens in the alternation from the sporophyte to the gametophyte generations. In contrast, the functional role of ROS in cell elongation is considered to contribute to the formation of the germ tube in the zoospore. During germination, ROS may be related to the necrosis of the empty spore after its contents have moved to the germ tube.

Acknowledgement
This work was supported in part by a Grant-in-Aid for Scientific Research from the Japan Society for the promotion of Science (no.22580195).

References


isozymes and the differences in their enzymatic and molecular properties. *Plant Cell Physiol.*
30: 987-998.

Choo, K., P. Snoeijis and M. Pedersén. 2004. Oxidative stress tolerance in the filamentous green
111-123.

Spatiotemporal patterning of reactive oxygen production and Ca$^{2+}$ wave propagation in *Fucus*

reactive oxygen species gradient is associated with polarized growth in *Fucus serratus*


Collén, J. and I. R. Davison. 1999b. Reactive oxygen production and damage in intertidal *Fucus*

Collén, J. and I. R. Davison. 1999c. Stress tolerance and reactive oxygen metabolism in the
intertidal red seaweed *Mastocarpus stellatus* and *Chondrus crispus*. *Plant Cell Environ.* 22:
1143-1151.

Dring, M. J. 2006. Stress resistance and disease resistance in seaweeds: The role of reactive

Foreman, J., V. Demidchik, J. H. F. Bothwell, P. Mylona, H. Miedema, M. A. Torres, P. Linstead,
species produced by NADPH oxidase regulate plant cell growth. *Nature 422*: 442-446.

Fry, S. C. 1998. Oxidative scission of plant cell wall polysaccharides by ascorbate-induced

Physiol. 141*: 341-345.


Kai., T., K. Nimura, H. Yasui and H. Mizuta. 2006. Regulation of sorus formation by auxin in

Küpper, F. C., B. Kloareg, J. Guern and P. Potin. 2001. Oligoguluronates elicit an oxidative burst


Figure legends

Figure 1. *Saccharina japonica*: ROS production (A) and release (B) at different developmental stages of the sorus.

Stage I: Vegetative stage, Stage II: Early elongation stage of paraphysis, Stage III: Zoosporangium developmental stage with paraphysis elongation, Stage IV: Zoospore release stage. Values are means ± SD (for A: n=5; for B: n=6-8). (A) Kruskal-Wallis ANOVA: H=13.6, p<0.01; *p<0.05, compared with Stage I (Steel's test). (B) ANOVA: $F_{3, 22} = 20.508$, p < 0.01; *p<0.05, compared with Stage I (Dunnett's test).

Figure 2. *Saccharina japonica*: ROS production in the sorus of a sporophyte disc loaded with DCFH-DA.

(A) Bright field visual image of a sporophyte disc with vegetative (v) and sorus (s) sectors. (B) Microscopic fluorescence image of the surface view of a transitional area between non-sorus (v) and sorus (s) sectors, showing green and red fluorescence due to DCF and chlorophyll, respectively. (C) Fluorescence image of a section of sorus, showing strong green DCF fluorescence located in the paraphyses (arrows). (D) Fluorescence image of a section of the sorus showing DCF fluorescence in zoosporangia (arrows). (E and E’) Bright field (E) and fluorescence (E’) images of separated paraphyses (p) with mucilage cup (mc). Scale bars: 1 cm in (A), 100 μm in (B), and 50 μm in (C) - (E).

Figure 3. *Saccharina japonica*: Bright field (left) and fluorescence (right) images during ROS production in different germination stages loaded with DCFH-DA.

(A) First stage in germination of zoospores with germ tubes (arrows), showing green and red fluorescence due to DCF and chlorophyll, respectively. (B) Germ tube elongation stage in the germination of zoospore, showing DCF fluorescence distributed in the germ tube and in the cytoplasm of the opposite end of the germ tube. (C) Dumbbell-shaped germlings, showing movement of cell contents into the apical part and red fluorescence located in germ tube cytoplasm. (D) Later stage in germination, showing that cell contents have become separated by a septum (arrowhead), with weak DCF fluorescence in the empty spore (ep). Scale bars: 50 μm.

Figure 4. *Saccharina japonica*: Comparison between sorus and adjacent non-sorus sectors for anti-oxidant activity (A), four radical oxygen scavenging enzyme activities (B–E), phenol content (F) and iodine content (G).

(B) Ascorbate peroxidase activity (APX); (C) Glutathione reductase activity (GR); (D) Catalase
activity (CAT); (E) Superoxide dismutase activity (SOD). Values are means ± SD (n = 4).
Asterisks represent significantly different means (**p<0.01; *p<0.05, compared to non-sorus sector). TE, trolox equivalent; TSP, total soluble protein.
**Figure 1**

**Development of ROS production (μg DCF cm$^{-2}$ h$^{-1}$) during the sorus developmental stages**

- **Stage I**
- **Stage II**
- **Stage III**
- **Stage IV**

**Developmental stage of sorus**

**A. ROS Production**

- Stage I: 0.05 μg DCF cm$^{-2}$ h$^{-1}$
- Stage II: 0.10 μg DCF cm$^{-2}$ h$^{-1}$
- Stage III: *0.15 μg DCF cm$^{-2}$ h$^{-1}$*
- Stage IV: $\pm$0.20 μg DCF cm$^{-2}$ h$^{-1}$

**B. ROS Release**

- Stage I: 0.20 μg cm$^{-2}$ h$^{-1}$
- Stage II: **0.30 μg cm$^{-2}$ h$^{-1}$**
- Stage III: **0.35 μg cm$^{-2}$ h$^{-1}$**
- Stage IV: $\pm$0.25 μg cm$^{-2}$ h$^{-1}$
Figure 2
Figure 3
Figure 4