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Acoustic phonon modes and dispersion relations of nanowire

superlattices
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Department of Applied Physics, Graduate School of Engineering,
Hokkaido University, Sapporo 060-8628, Japan
(Dated: March 24, 2009)

Abstract

We study theoretically acoustic phonon modes in nanowire superlattices (NWSLs) composed of
cubic materials. We classify the acoustic phonon modes in rectangular and square cross-section
NWSLs, based on group theory. For NWSLs consisting of GaAs and AlAs, we calculate numerically
the dispersion relations of each phonon mode and corresponding displacement fields. We examine
the effects of both the lateral confinement and superlattice modulation along the wire axis. The
results suggest that peculiar electron-phonon interactions occur, because the vibrations of both
the lateral and longitudinal confining potentials induce scattering potential in addition to the

deformation and piezoelectric potentials.



I. INTRODUCTION

Recent advances in nano fabrication technologies enable the synthesis of one-dimensional
nanowire superlattices (NWSLs) made of various combinations of dissimilar materials, e.g.
GaAs/GaP, Si/SiGe, InAs/InP and ZnSe/CdSe[1-6]. The hetero-structure modifies electron
states in wire structure. The electronic states of the NWSLs were calculated with the one-
band effective-mass theory.[7] This result shows that the NWSLs offer unique features, which
are radically different from plain nanowires and quantum wells in their electronic, optical,
and transport properties. A variety of possible optical and electrical applications utilizing
the characteristics were also proposed[8-11].

In contrast, one pays little attention to modifications in the normal modes of phonons in
the NWSLs. The phonons influence the electronic states and the transport properties via
the electron-phonon interaction. Thus, the determination of the normal modes of phonons
and spectra peculiar to the system are indispensable in order to understand the optical
and electrical properties of the NWSLs and to predict the functions of devices using the
NWSLs. However, the normal modes in the NWSLs are not well understood. A recent study
of phonons in the GaN/AIN NWSL using Raman spectroscopy[11] shows an inexplicable
peak in the phonon spectra, demanding further study on the phonon modes peculiar to the
structure.

The fabricated NWSLs have various shapes of wire cross-section, e.g. triangular, rectan-
gular, and hexagonal, manifesting elastic anisotropy of the constituent materials. Generally
speaking, it is hard to derive analytically the phonon modes in the NWSLs. The only ex-
ception is acoustic torsional phonon modes in a cylindrical NWSL of elastically isotropic
materials. One of the present authors investigated the dispersion relation and displacement
field of the torsional modes, and examined the transmission of phonons in the NWSL using
a potential theory and transfer matrix method[12, 13]. Although the work revealed the
important aspects of phonon modes in the NWSL, they are limited to investigate the effects
of phonons on the electronic system.

One of the purposes of this work is to give a method to derive acoustic phonon modes
in a free-standing NWSL of anisotropic material with an arbitrary shape of cross-section.
Then, we actually investigate the phonon modes in the rectangular and square cross-section

NWSLs consisting of “anisotropic” materials, using the method. Based on group theory,



we classify the acoustic phonon modes in these NWSLs since the classification is a powerful
tool to discuss the electron-phonon interaction in further study of electron transport. For
each mode, we calculate their phonon dispersion relations and displacement fields.

The outline of the present paper is as follows. In Sec. II, the eigenvalue equation giv-
ing the dispersion relations and displacement fields is presented. In Sec. III, we consider
acoustic phonon modes in a rectangular cross-section NWSL consisting of cubic materials.
Expressions for matrix elements in the eigenvalue equation are analytically calculated for
this NWSL. Furthermore, the acoustic phonon modes are classified and discussed with the
use of group theory. In Sec. IV, we consider a square cross-section NWSL consisting of
cubic materials. In Sec. V, as a numerical example, we calculate the dispersion relations
of rectangular and square cross-section NWSLs consisting of the alternate stacking of GaAs

and AlAs. In Sec. VI, a summary and concluding remarks are given.

II. GENERALIZED EIGENVALUE EQUATION

In this section, we present the equation giving the eigenfrequencies of phonon modes in
a freestanding NWSL. Acoustic phonon modes in the long wavelength limit obey the elastic

wave equation,

0
2
pwu; + 0, =0. (1)

Here w; (i = x,y, z) is a displacement component, p is the mass density, w is frequency, and

o;; is the stress tensor given by
Oij = Zoijkﬁiuéa (2)
Y, &vk
where Cjjjs is the stiffness tensor of the material. Inserting Eq. (2) into Eq. (1), we obtain

0 0
J
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We expand the displacement u;(7) in terms of a set of basis functions ¢, (r),

u;(r) = ZAai¢a(T)- (4)



Substituting Eq. (4) into Eq. (3), we have
0
pw Z¢a Aaz + Z ( ka k¢a(7')> Aag = 0 (5)
,7,k, Z i

Multiplying Eq. (5) by ¢j(r) and integrating over the volume V', we obtain the generalized

eigenvalue equation,

ZHﬁi,aané = WQZsﬁi,azAaz- (6)
al al

Here, the matrix elements Hpg; os and Sg; s are defined by

Hgiae = Zk: (18 Cijke| kar) (7)
Spnt = 8 (Blpl 3)
where
(5 1Coel b = [ a‘?ﬂf,’")cwa‘f;“(k)dr, )
(Blrla) = [ ditriponr (10)

Solving Eq. (6) with Egs. (7) to (10), we can obtain the eigenfrequencies of phonons and
corresponding phonon displacements in the NWSL. If p is independent of r» and the basis
functions are orthogonal, the matrix Sgs; o, becomes diagonal. In NWSLs, however, p and
Cijke depend on 7. Furthermore, we adopt non-orthogonal basis functions in the present
work, as described below.

Hereafter, we consider NWSLs consisting of cubic materials. If the coordinate axes x, vy, z

are chosen to coincide with the cubic crystal axes, its stiffness tensor is expressed as
Cijre = C110ij0ke0ik + C126;5050(1 — 6ir) + Cuadidje(1 — 055) + Cuadigdji(1 — di). (11)

In this case, Hg; o can be explicitly written as

Hpiar = {(lﬂ Culia) + > (§B]Cul ja>} 0it

J#
+ {(iB|Cra| bar) + (€5 |Cua] i) } (1 — dy¢) - (12)



FIG. 1: Rectangular cross section NWSL

III. RECTANGULAR CROSS-SECTION NWSL OF ANISOTROPIC MATERI-
ALS

In this section, we consider acoustic phonon modes in a rectangular cross-section NWSL

consisting of cubic materials [Fig. 1].

A. Basis functions and matrix elements

As basis functions, we choose the product of powers of the Cartesian coordinates in the

xy plane and the plane wave propagating along the z axis:

oolar) = (5) () e (13

Here, X and Y denote the thicknesses of the wire in the x and y directions, respectively,
V=SD=XYD (14)

is the volume of the unit cell, where S = XY is the cross-section and D is the length of the
unit cell in the z direction. Considering the periodicity in the z direction, the z dependence
of the displacement component is expressed in the form of the Bloch wave in Eq. (13). G is

the reciprocal lattice vector determined by the periodicity D of the NWSL,
G =2rk/D, (15)

where k is an integer. Thus, the basis functions are specified with m,n, and G (or k), i.e.,

a=(m,n,G).



The matrix elements Hpg; o and Sg; ae, Egs. (7) and (8), depend on the shape of the
cross-section of the NWSL. Analytical expressions for these matrix elements can be easily
calculated for the rectangular and square NWSLs. Another advantage of using Eq. (13) is
that symmetry-adopted basis functions can be easily constructed.

Substituting Eq. (13) into Eq. (8), we have

D metm’ 2 :
Sﬁzaf - M /( ) /(?y) dyD/ Z(G G)Zd

= iﬁFm—i-m’,n—i-n’p(G - G/) (16)

Here, 8 = (m/,n',G"), F,,. is defined by

X/2 Y/2 n
e L[ L)
S X/2 vz \Y

= 5m evenén even 17
(m + 1) (n+1) ’ (17)
and p(G) is the Fourier component of p(z),
1 [P :
= 5/ p(2)e % dz. (18)
0

When dy = dg = D/2, p(G) is calculated as
l
— (pB — pa) Okoda for G #0
p(G) = mk pBA + PB :
— for G=0

(19)

where pa and pp are the mass densities of the constituent materials A and B, respectively.

Substituting Eq. (13) into Eq. (12), we have

/ /
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Here, C;;(G) is the Fourier component of Cj;(z),

1 [P :
C’”(G) = E/ Cl](Z)B_lGZdZ (29)
0
When dy = dg = D/2, C;;(G) is calculated as
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: (30)
for G=0
where Cf} and C’i]f- are the stiffness constants of the constituent materials A and B, respec-
tively.

In general, a large number of basis functions are necessary to express the phonon displace-
ments. By considering the symmetry of the system, however, the number of basis functions,

i.e., the size of the matrices Hg, or(q) and Spy aq(q), can be reduced, as described below.

B. Symmetry and acoustic phonon modes

In this section, we utilize group theory[14, 15] and classify the acoustic phonon modes
in the rectangular NWSL. The translational symmetry along the wire axis has been already
considered by introducing the wave numbers ¢ and G. While the point group of the unit
cell is Dy, the group of ¢ is Cy, for 0 < |g| < w/D. The character table of Cy, is shown in
Table 1.[14]

Using projection operators obtained with the character table of Cy,, we can construct
symmetry-adopted basis functions belonging to the irreducible representations of this group.

The projection operators corresponding to the irreducible representations are constructed



By 1-11-1

By 1-1-11

TABLE I: Character table of Cy,
as

Py, = E+ Cy + 0y + 0y,
Py, =E+Cy—o0,— 0y,
PBIZE—CQ—i-O'y—O'x,

PBQZE—CQ—Uy+Ux.
The obtained basis functions are as follows:
Ayt =5 uy =y; u = {27, 97},
Ay tuy = y; uy = 5 u, = 2y,
By :u, = {29’} uy =ay; u. =u,

Byt up = xy; uy = {2*,9°}; u. = y.

(35)
(36)
(37)
(38)

These modes are schematically illustrated in Fig. 2, in which the phonon displacements at

the corners of the rectangular cross-section are shown. Figure 2 shows only the symmetry

of the phonon displacements in the NWSL. Actual displacements are determined by solving

the eigenvalue equation (6).

Considering the symmetry of the basis functions shown in Eqgs. (35) to (38), we express

the displacement components as



1.

Z X

FIG. 2: Symmetry-adopted basis functions belonging to the irreducible representations of Cy,.

Arrows and + show the phonon displacements at the corners in the xy plane and in the z direction,

respectively.

for the A; mode,



for A, mode,

for B; mode, and

0(g7) = =3 Ao (g)
1
uy(g,r) = WZAOW(Q)

(%)
(%)
() = =3 el (%) (79) a0
(%)
(%)
(%)

Uz (g, T) = _ZAa,x(q>
1
uy(q,7) = WZALL:L/(Q)

1
uz(qv ’l") = W;AO&,Z(Q)

for By mode, where a = (s,t,G).

(48)

(49)

(50)

These modes are decoupled from each other. This can be directly confirmed, by substi-

tuting Eqgs. (39) to (50) into Eqs.(20) to (28).

IV. SQUARE NWSL OF ANISOTROPIC MATERIAL

In this section, we consider acoustic phonon modes in a square cross-section NWSL. By

setting X = Y in the results obtained in Sec. III, we can calculate the phonon dispersion

relations of this wire. However, symmetry-adopted basis functions are different from those

of the rectangular wire. The group of ¢ becomes CYy, for the square cross-section NWSL.

The character table of Cy, is shown in Table 2.[14]

The projection operators are constructed as

Py, =E+C,+C ' +Ci+o,+0,+04+0a,
Py, =E+C,+C;'+C] —0,—0,— 04— 0,
Pp,=E—-Cy,—C;'+C;+0,+0,— 04— 0w,
Pp,=FE—~Cy—C;'+C;—0,— 0, +0q+0a,
PP =E—C?—0,+0,

Pg):E—CZ—i—Ux—Uy.

10

(51)
(52)
(53)
(54)
(55)
(56)



Cyu F 2Cy C’42 20, 204 compatibility relations with Co,

Ay 11 1 1 1 A1(Cay)
Ay 1 1 1 -1 -1 Ay (Cyy)
B; 1 -1 1 1 -1 A1(Cyy)
B, 1 -1 1 -1 1 Az(Cay)
E 20 -2 0 0 B1(Cay)+Ba(Cay)

TABLE II: Character table of Cy,

With the use of these operators, we obtain the basis functions belonging to the irreducible

representations of Cl,:

Ay, =, uy =y u, =2+ 9P (57)
Agiug =y, uy = —1; uy =y (2° — ), (58)
Biiu, =2, uy=—y; u, = 2 — 2, (59)
By :u, =y, uy = x; uzzxy(x2+y2), (60)
E:u,= {xQ,yQ} DUy = TY; Uy = T (61)
Ly = ay; uy = {2707} u. =y (62)

These modes are schematically illustrated in Fig. 3.

Considering the symmetry shown in Eqgs. (57) to (62), we can construct the basis func-
tions, as in the rectangular cross-section NWSL. Here, we note that both A; and B; modes
in Cy, correspond to A; mode in Cy,, i.e., the forms (57) and (59) are included in Egs. (39)
to (41). Thus, it is convenient to use Eqgs. (39) to (41) for both A; and By modes in the
actual numerical calculation. As a reference, the compatibility relations with Cs, are shown
in Table II. B; modes can be distinguished from A; mode by the calculated displacement
components. Similarly, Egs. (42) to (44) are available for Ay and By modes in the square
cross-section NWSL. Also, Egs. (45) to (47) and Egs. (48) to (50) are used for E mode.

Here, we stress that A; and B; modes are symmetrically different modes in the square
cross-section wire, though both A; and B; modes in a square cross-section “plain” nanowire
are named dilatational modes in a paper[17], where these modes were classified based on the

symmetry of the rectangular cross-section wire.

11



FIG. 3: Symmetry-adopted basis functions belonging to the irreducible representations of Cg.
Arrows and + show the phonon displacements at the corners in the xy plane and in the z direction,

respectively.
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V. NUMERICAL EXAMPLES
A. rectangular cross-section NWSL

As the first numerical example, we consider a rectangular cross-section NWSL consisting
of the alternate stacking of GaAs and AlAs (A=GaAs and B=AlAs). The size of the NWSL
is assumed to be X =100 A, Y =50 A, and dy = dp = D/2 =40 A. Other parameters we
used are as follows: p = 3.76 g/cm?, C1; = 120.2,C = 57.0, and Cyy = 58.9 (all in units
of 10 dyn/cm?) for AlAs; p = 5.36 g/cm?, Cy; = 118.8,C5 = 53.8, and Cyy = 59.6 (all in
units of 10! dyn/cm?) for GaAs.[16]

The phonon dispersion relations calculated for four modes are shown in Fig. 4. In the
present calculation, the number of basis functions at each ¢ point is empirically selected to
be 336 for each mode. These dispersion relations reflect the effects of both the confinement
of phonons in the lateral direction and superlattice modulation in the longitudinal direction.

The overall structure of each phonon dispersion relation in Fig. 4 can be approximately
understood by the folding of the dispersion curves for a homogeneous cylinder into a mini-
Brillouin zone (BZ) determined by the periodicity D of the NWSL.

Subband structure exists in the dispersion relation of the homogeneous plain nanowire.
This is due to the fact that the wave vectors in the lateral direction are discretized because
of the lateral confinement. For comparison, we show in Fig. 5 the dispersion relations
calculated for the GaAs plain nanowire with the same cross-section as the present NWSL.

In the present example, the second mode at ¢ = 0 in each dispersion relation of the
NWSL originates from the second subband of the plain nanowire. On the other hand, the
third mode at ¢ = 0 originates from folding of the lowest subband of the plain nanowire.

Figure 4(a) shows the dispersion relations of A; modes. The calculated displacement
patterns corresponding to the lowest, second, and third modes at ¢ = 0 are illustrated in
Fig. 6(a). In this figure, the arrows show the phonon displacements projected into the zy
plane. The lowest mode shows a dilatation (or contraction) in the diagonal directions, while
the second and third modes show a dilatation in the x direction. Displacements for higher
frequency modes are more complicated patterns.

Figure 4(b) shows the dispersion relations of A; modes. The displacement patterns

corresponding to the lowest three modes at ¢ = 0 are illustrated in Fig. 6(b). This figure

13
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FIG. 4: Phonon dispersion relations of the rectangular cross-section NWSL consisting of GaAs and
AlAs. The size of the NWSL is assumed to be X =100 A, Y =50 A, and dy = dp = D/2 = 40
A.
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FIG. 5: Phonon dispersion relations of the rectangular cross-section GaAs plain nanowire. The

size of the plain nanowire is assumed to be X = 100 A and Y = 50 A.

shows the feature of a torsional mode. The lowest mode shows rotation about the wire axis.
In the second mode, on the other hand, there are two centers of rotation.

Figures 4(c) and 4(d) show the dispersion relations of B; and By modes, respectively,
and Figs. 6(c) and 6(d) illustrate their displacement patterns corresponding to the lowest
three modes at ¢ = 0. The lowest modes have the feature of a flexural mode, which shows

uniform displacement in the x or y direction. Displacements for higher frequency modes
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FIG. 6: Displacement patterns corresponding to the lowest and second dispersion curves at ¢ = 0.
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become more complicated patterns.
For small ¢, the lowest dispersion curves of A; and As; modes are linear in ¢. On the
other hand, the lowest dispersion curves of B; and By modes are proportional to ¢?. These

linear and parabolic behabiors are well known in the plain nanowire.[17]

B. square cross-section NWSL

As the second example, we consider a square cross-section NWSL consisting of GaAs and
AlAs. The size of this NWSL is assumed to be X = 70 A, Y =70 A, and dy = dg = D/2 =

40 A. The dispersion relations calculated for five modes are shown in Fig. 7.

’ 05></\_

@ o5 O o5

04 04

01

00

FIG. 7: Phonon dispersion relations of the square cross-section NWSL consisting of GaAs and AlAs:
(a) A1 mode (dilatational mode, solid lines) and B; mode (dashed lines); (b) A2 mode (torsional
mode, solid lines) and By mode (shear mode, dashed lines); (c¢) E modes (flexural modes). The size
of the NWSL is assumed to be X =Y =70 A, and dg =dp = D/2 =40 A. The dotted lines are

calculated with the approximated formulas. In (c), all dispersion curves are doubly degenerated.
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Figure 7(a) shows the dispersion relations of A; and B; modes. The solid and dashed
lines shows A; and B; modes, respectively. In the lowest dispersion curve of A; mode, w
vanishes at ¢ = 0. On the other hand, the lowest frequency of B; mode has a finite value at
qg=m/D.

The calculated displacement patterns corresponding to the lowest two of A; and By modes
at ¢ = 0 are illustrated in Figs. 8(a) and 8(c), respectively. In these figures, the arrows show
the phonon displacements projected into the xy plane. These figures clearly show that the
lowest A; mode has the feature of a dilatational mode, i.e., a dilatation (or contraction) of
the square cross-section in both the x and y directions, while the lowest B; mode shows the
alternating dilatation and contraction in the x and y directions.

Figure 7(b) shows the dispersion relations of Ay and By modes. The displacement patterns
corresponding to the lowest two of Ay and By modes at ¢ = 0 are illustrated in Fig. 8(b)
and 8(d), respectively. These figures clearly show the features of torsional and shear modes.
The torsional mode shows rotation about the wire axis, and the shear mode alternating
stretching in the two diagonal directions.

Figure 7(c) shows the dispersion relations of E modes. All dispersion curves are doubly
degenerate because the irreducible representation of E mode is two-dimensional, as shown
in Table II. The displacement patterns corresponding to the lowest and second modes at
q = 0 are illustrated in Fig. 8(e). These figures clearly show the features of flexural modes.

For E modes, the lowest dispersion curve near ¢ = 0 is proportional to ¢?. This parabolic
behavior is due to the fact that the flexural modes correspond to bending. The analytical
form of the dispersion relation of bending mode in the plain wire is known to be w oc ¢? in
the long-wavelength limit.[18, 19] On the other hand, the lowest dispersion curves of A; and
Ay mode are linear in ¢ in the long wavelength limit.

In the Appendix, we derive the explicit expressions for the dispersion relations of Ay,
A,, and E modes in the long wavelength limit. These expressions are compared with the
numerical results in Fig. 7. The approximated result reproduces the numerical dispersion

curve near the zone center.
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FIG. 8: Displacement pattern correspomding to the lowest and second dispersion curves at ¢ = 0.




VI. SUMMARY AND CONCLUDING REMARKS

In the present paper, we theoretically studied the acoustic phonon modes in NWSLs
composed of cubic materials. Based on group theory, we classified the acoustic phonon
modes in rectangular and square cross-section GaAs/AlAs NWSLs and calculated dispersion
relations and displacement fields. The results provide fundamental understandings of the
acoustic phonon modes in the NWSLs.

The acoustic phonon modes in the square cross-section NWSL are classified into five
types, i.e., A; (dilatational), Ay (torsional), By, By (shear), and E (flexural) modes. In
the rectangular NWSL, the shear mode is mixed with the torsional mode since they are
not distinguished owing to lower symmetry. Similarly, the dilatational mode is mixed with
the B; mode. In addition, the two-fold degeneracy of E mode is removed, i.e., the flexural
mode in the z direction is distinguished from that in the y direction. The dilatational,
torsional, shear, and flexural modes in plain nanowires with the same cross-section shapes
were discussed in a previous paper[17]. Our result shows that there is another mode (i.e.,
B; mode) in the square cross-section NWSL and also in the square plain nanowire.

The phonon dispersion relation of each mode reflects the effects of both the superlattice
modulation and the lateral confinement of phonons. The overall structure of the phonon
dispersion relations can be approximately understood by the folding of dispersion curves
of a homogeneous plain wire, whose dispersion relations have subband structure because
the wave vectors in the lateral direction are discretized due to the lateral confinement of
phonons. The dispersion curves of the plain wire are folded into the mini-BZ determined by
the periodicity along the wire axis, and the frequency gaps are generated.

All the phonon modes in the NWSLs contain both longitudinal and transverse wave
components. The former is responsible for electron-phonon interactions via the deformation
potential and the latter contributes to electron scatterings via piezoelectric coupling. In
addition to these bulk electron-phonon interactions, the acoustic phonons are expected to
induce non-local electron-phonon interactions peculiar to quasi-low-dimensional structure.
That is, electron energy levels due to quantum confinement are modified by the acoustic
phonons because the cross section of the system changes[20-22]. This type of interaction is
referred to as the ripple mechanism[21] or the macroscopic deformation potential[22]. This

interaction affects remarkably electron scattering in thin quantum wires in collaboration
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with the deformation potential[20]. The effects are also anticipated for electrons confined in
the NWSLs, which will lead to electron energy dissipation and transport properties different

from those in plain nanowires. These effects for the NWSLs will be discussed elsewhere.
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APPENDIX A: ANALYTICAL EXPRESSIONS FOR THE LOWEST DISPER-
SION CURVES IN THE LONG WAVELENGTH LIMIT

In this appendix, we derive the explicit expressions for the lowest dispersion curves of
the dilatational, torsional and flexural modes in the square cross-section NWSL in the long
wavelength limit.

For the dilatational mode, the basis function corresponding to the lowest dispersion curve

of the long wavelength phonon can be approximated as

Uy = xe'l, (A1)
u, = ye'’, (A2)
U/z = ez’qz7 (A3)

because the terms of the lowest power and G = 0 are dominant in Egs. (39) to (41).
Calculating the matrix elements (Egs. (8) and (12)) with Egs. (Al) to (A3), we have a

21



simple expression for the eigenvalue equation,

%6’1110) + 044T<O)q2 ) %012(00) %012(0)61 A,
£ C20) = Cul0) + @f %Clz(o)q A,
2L Cn(0)g “XOn00 Ou) ) \ 4
—p(0)w? 0 0 A,
= 0 %p(O)wQ 0 A, |- (Ad)
0 0 pO0p?) \ 4

Solving Eq. (A4), we have the dispersion relation for the long wavelength phonon as

w = Vg4, (A5)
where
Y
T A6
Udzl p(o) ? ( )
and

B C11(0)? + C11(0)C12(0) — 2C12(0)?
n C11(0) + C12(0) '

Eq. (A7) isin agreement with Young’s modulus determined by the average stiffness constants

C11(0) and C15(0), which are given in Eq. (30).

Y (A7)

For the torsional mode, the basis function corresponding to the lowest dispersion curve

of the long wavelength phonon can be approximated as

Uy = ye'’, (A8)
u, = —ze' (A9)
u, = 0. (A10)

Calculating the matrix elements (Eqgs. (8) and (12)) with Egs. (A8) to (A10), we have a

simple expression for the eigenvalue equation,

@ (2 4+L) o
Olers) o () ()
4 4 q 3
C44<O)ﬁ 044(0) (ﬁ + 3) AZ/ Ay
Solving Eq. (A11), we have the dispersion relation near ¢ = 0:
W = Vtor(, <A12)

22



where
Cy4(0)
Vtor = .
' p(0)

Equation (A13) shows the torsional mode corresponds to the pure transverse mode whose

(A13)

velocity is determined by the average mass density p(0) and average stiffness constant Cy4(0).
For the flexural mode, the basis function corresponding to the lowest dispersion curve

around ¢ = 0 is approximated as

Uy = ', (A14)
u, = zye'’, (A15)
u, = re's. (A16)

C'44(0)(]2 0 —%044(0)(] A,
0 e Ca@ron)+ e Zono) A,
%044(0)q —32—;(012(0)(1 %044(0) + 012(0)92 4.
p(0)w? 0 0 A,
- 0 ép(o)uﬂ 1 0 A, (A17)
0 0 e ) \ A

Solving Eq. (A17), we obtain the explicit expression for the dispersion relation

w= qu : (A18)

o = 044(0)2 + 011(0)044(0) _ 012<0)2

A19
If we use basis function of another form
Uy = Ye'?, (A20)
u, = €', (A21)
u, = ye's, (A22)

the same results as Eqs. (A18) and (A19) are obtained. This is due to the fact that the
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irreducible representation of E mode is two-dimensional.
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